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Embedded Network Protocols for Mobile

Devices

Despo Galataki1,2, Andrei Radulescu2, Kees Verstoep1, and Wan Fokkink1

1 VU University, Dept. Computer Science, Amsterdam, The Netherlands
2 ST-Ericsson, Eindhoven, The Netherlands

Abstract. Embedded networks for chip-to-chip networks are emerging
as communication infrastructure in mobile devices. We present three
novel embedded network protocols: a sliding window protocol, a pro-
tocol for opening and closing connections, and a bandwidth reservation
protocol. The design of these protocols is tailored to the low power and
low cost requirements of mobile devices. The model checker SPIN played
an important role in the design and analysis of these protocols. Large
instances of the protocols could be analyzed successfully using the dis-
tributed model checker DiVinE.

1 Introduction

For certain (e.g., mobile) applications there is too little physical space on the
chip packages to accommodate all the necessary traditionally-parallel interfaces.
Therefore, there is a shift from parallel interfaces towards high-speed serial inter-
faces. This trend is visible in, e.g., computer chips [12,16,18], FPGA chips [1,28],
and mobile device chips [23,15].

High-speed serial links, while very efficient in terms of energy per bit, have
transmission errors which need to be resolved by the protocols above. Moreover,
these links are intrinsically point-to-point, which implies that if multiple devices
need to be connected together, a network topology must be used.

The trade-offs for designing a chip-to-chip network are different from com-
puter networks [7,22], which are often designed for scalability and throughput,
or on-chip networks [4,6,13], which tend to be designed for low cost and power,
but have a much higher throughput due to wires being relatively inexpensive.
A chip-to-chip network is also designed for low cost and power. Moreover, it
must cope with relatively large latencies caused by the transmission serializa-
tion, which puts pressure on buffering, one of the most important cost factors.
Chip-to-chip interconnects are thus typically designed to offer reliable, in-order
communication at the Data Link layer. Additionally, due to the small-scale and
controlled environment, and to avoid retransmission buffers at the Transport
layer, routers do not drop data when their buffers fill up, but apply backpres-
sure instead.

In computer chip networks, the high-level protocols are memory-based and
host-centric to cope with the existing legacy [12,16,18]. In mobile devices, a
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different approach has been taken, in which, due to the trend towards multi-host
systems, the chip-to-chip networks are emerging as flat and non-hierarchical, of-
fering services similar to those in computer networks, such as TCP-like
connection-oriented communication [8,15,21]. A connection-oriented service in-
volves the ability to open connections, which are then used to transfer data,
and close connections, such that ports can be reused by the same application to
communicate to other nodes, or by a different application. Another aspect when
designing chip-to-chip networks for mobile devices is native support for band-
width reservation to enable correctness by a composable system design [8,21].
This is similar to some approaches for on-chip networks [10,14]. However, instead
of a tightly coupled system-wide time-division-multiplexing approach, which is
less suitable in an intrinsically asynchronous network, bandwidth is assumed to
be allocated at each link. Consequently, it needs to be allocated and deallocated
as part of the connection opening and closing stages.

We report on the design and analysis of three core protocols for communi-
cation and connection management. We focus on these protocols because their
design had to be tailored to the low power and low cost requirements, and model
checking played an important role in the design process. We first present a sliding
window protocol for the Data Link layer that has been optimized for the target
domain. We then present a protocol for opening and closing connections, which
takes advantage of in-order delivery in chip-to-chip networks within mobile de-
vices. As a result, the protocol does not use sequence numbers and maximum
segment lifetime as in TCP [19]. Finally, we discuss an extension of this connec-
tion management protocol that includes in-band link-bandwidth reservations.
Due to space restrictions, we cannot explain the protocols in full detail. The
reader is referred to [9] for detailed descriptions of the protocols.

During their design, the protocols were analyzed using the SPIN model checker,
as well as with DiVinE, which distributes the workload of a verification among
multiple compute nodes. DiVinE could verify larger problems than SPIN, while
SPIN’s detailed error trails were used to find flaws in a particular design and cor-
rect them. The use of model checking was crucial in the protocol design. Notably,
through verification we learned that an extra phase is needed for the connection
management protocol, in contrast to TCP’s three-phase connection protocol. Ad-
ditionally, verification guided us in the design of an optimization of bandwidth
(de)allocation to reduce memory overhead.

The protocols were developed in the context of UniPro�, a serial high-speed
interface for interconnecting integrated circuits in mobile phones; it is bound to
become part of millions of mobile phones world-wide. It should be noted that
UniPro� is still under development, and the protocols described in this paper
will undoubtedly be adapted and extended in the near future, or be replaced by
alternative designs, to meet the requirements of the different industrial partners.

2 UniPro�

The diversity and complexity of the development of mobile phones has created
a need for standardization, which is addressed by the Mobile Industry Processor



166 D. Galataki et al.

Application

OSI Model

Presentation

Transport

Network

Data Link

Physical

Session

UniPro Model

Physical

Phy Adapter

Data Link

Network

Transport

Application - 
specific

protocols

Fig. 1. OSI and UniPro� network layers

Interface (MIPI�). MIPI�, which is supported by an alliance of most mobile
industry companies, defines the interface standards for mobile phones features,
like audio, displays and cameras. In particular, there is a need for a general
protocol that is responsible for the communication among applications and de-
vices. This is the responsibility of the UniPro� [15] layer stack. UniPro� can
support networks of up to 128 devices (integrated circuits, camera processor,
displays, baseband, etc). It is a generic hardware- and software-friendly tech-
nology, which can support a diversity of applications. UniPro� offers low-power
modes through the physical layer underneath to minimize power consumption.
Other important requirements are low memory consumption, high speed, relia-
bility and robustness, even in the face of failures in mobile devices, message loss
and crashing applications. Inspired by the new era of multitasking, UniPro� is
ready for upcoming innovations of parallel processing on mobile devices as well.

UniPro� is largely based on the OSI Reference Model. ¿From Fig. 1, one
can observe some differences between the two models. UniPro� partitions the
physical layer in two. The lowest layer is in charge of electrical signaling, line
encoding, etc. (like the physical layer in the OSI model), while the intermediate
layer (Phy Adapter) is responsible for abstracting the different technologies and
combining them in a heterogeneous environment. The Data Link layer ensures
that there is a reliable link between two modules in one hop distance, and that a
frame can be arbitrated and multiplexed corresponding to the specified priorities.
Similar to OSI, the Network layer deals with routing and addressing packets. The
Transport layer defines the quality of a connection and is responsible for the flow
and congestion control of the network. The UniPro� model combines the three
upper layers of the OSI model – Session, Presentation and Application – into a
single one, because it is responsible for connecting the diversity of applications
and modules together rather than for implementing applications. The interface of
the Transport layer has to be simple, so that applications can be easily adapted
to it.

3 Sliding Window Protocol

Errors may occur on the links and routers may get overflowed, so messages can
get lost. As a result, a continuous flow of communication between a sender and a
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receiver (data packets and acknowledgments providing feedback that they have
been received) has to be established by dedicated protocols. Sliding window
protocols (see, e.g., [22]) offer reliable data transmission and control the flow
of messages, accommodating differences in link and processing speeds. Sliding
window variations are used at both the Data Link layer (HDLC) and in the
Transport layer (TCP) of the OSI model.

The data being transferred from a sender to a receiver is fragmented into
packets. The packets carry sequence numbers, which can be seen as a running
index into the buffered packets at the sender, with an extra bit to avoid confusion
between old and new fragments. The receiver sends as acknowledgment (ACK)
the sequence number of a received packet to the sender. It may also send a
negative acknowledgment (NAC) in case of a failure. Sliding window protocols
are typically enhanced with optimizations, e.g., to hide latency of transmission
and increase the network utilization by pipelining techniques. An example is
TCP [5], which in addition uses the maximum packet lifetime and an estimate
of the round trip time [24]. Variations of sliding window protocols have been
studied and formally verified in different ways (see, e.g., the related work section
in [2]).

There are two generic sliding window protocols in the literature [22]. One
version, called go-back-N, is that the receiver ignores all packets after an error
until it receives the correct one; the sender resends all packets that have not
been acknowledged, after a timeout. The second version, called selective repeat,
is that only failed packets are resent; the receiver informs the sender if there is
a failure and on which packet. Go-back-N wastes time, compared to selective
repeat, because the sender needs a timeout to learn about failed packets. On
the other hand, it is simpler and gives less memory overhead at the receiver.
The sliding window protocol (SWP) we developed for the Data Link layer is a
mixture of go-back-N and selective repeat. When the receiver notices a failure, as
in selective repeat, it sends NACi with i the sequence number of the last correct
packet it received. The sender thus gets to know about the failure earlier than
if it had to wait for a timeout. As in go-back-N, the receiver ignores all packets
after an error until it receives the correct one.

The sender’s flow chart is shown in Fig. 2. In general, the sender can send
up to N packets to the network, and it can only send the next one when some
of the packets that it sent are acknowledged by the receiver. It will resend a
packet only if it receives a NAC or after a timeout. The sender needs to store
any two out of three predicates, beginning, on post and current. These are the
basic variables defining the sender’s window of packets which have been sent but
not acknowledged. By maintaining two of these variables for a connection, the
sender can easily derive the third one, because beginning = current − on post .

– beginning: Indicates the first packet that was sent but not acknowledged.
– on post: Indicates the number of the packets waiting for an acknowledgment;

it can be no more than the maximum window size.
– current: Indicates the next packet that will be sent.
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Fig. 3 shows a flow chart of the receiver’s algorithm. The protocol starts
with current = 0, where current indicates the identity of the expected packet.
When the receiver receives a packet, it checks if it is the expected one; if so, it
sends back an acknowledgment ACK i, and waits for the next packet to arrive by
incrementing current. In case an unexpected or garbled packet arrives, it sends
NAC i−1 with the identity of the last correct packet which arrived in order.

The resulting protocol has the advantage of little memory overhead (the same
as go-back-N), while giving a significant recovery time gain compared to go-back-
N. For further details, the reader is referred to [9, Sect. 3].

4 Connection Management Protocol

The connection management protocol (CMP) presented here is based on the
well-known TCP connection protocol, with its three-way handshake, which works
as follows. A client initiates a connection by sending a synchronization request
(SYN) to a server. The server, if readily available, acknowledges the request.
Finally the client sends an acknowledgment back. The client repeats sending a
SYN and the server repeats sending an ACK when a timeout occurs. After re-
ception of a client’s ACK, both end nodes are connected and ready to exchange
data. If a node wants to leave, it informs the other party by sending a finaliza-
tion request (FIN), and waits for an acknowledgment. If this acknowledgment is
delayed, then after a timeout it resends the FIN. After receiving a FIN, a node
can continue to send data until it is also ready to close the connection.
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Fig. 4. Server’s state machine with its current client

To improve power and memory consumption, we make a number of adap-
tations to TCP’s connection management protocol. We aim at minimizing the
number of exchanged messages, memory overhead and completion time. Tables
that hold history information and interpretations whether a delayed message has
become obsolete are excluded. Session identification of a connection and timing
variables are kept to a minimum. Messages may be dropped due to resource
contention, if there is a shortage of buffer space or processing power. However,
the network is designed to deliver messages in order.

Part of the state machine of a server is displayed in Fig. 4 (for the interplay
of a server with a node that is not its client, see [9, Fig. 22]). The initial state is
Listen. The received messages are from its client. The states are as follows:

– Listen: The server is free to accept a new connection and is not busy with
a client. When it receives a SYN from a new client, it sends back an ACK
and proceeds to WaitSynAck.

– WaitSynAck: The server can receive an ACK or a DATA (a message con-
taining data), indicating its client received its ACK and is connected. The
server then moves to Connected. If it receives a FIN, it replies with FIN and
goes back to Listen. The FIN may indicate that the client does not want to
use the connection anymore. The server stays in the same state if it receives
another SYN or a timeout; in both cases it sends ACK to its client.

– Connected: The server is participating in a data exchange. It stays in the
same state if it receives an ACK, DATA or FIN; they are not answered. At
reception of a FIN, it sets got fin = true; (ε∗) means that the server closes
the connection. If the server already received a FIN from its client, it can
reply with FIN and move to Listen. Otherwise, it just moves to Want2Close.

– Want2Close: The server can receive an ACK in case there was a repeated
and delayed ACK from the client. Then the server stays in the same state.
When a FIN arrives, the server answers with FIN and moves to Listen.
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Fig. 5. Client’s state machine with its current server

If the server receives a FIN or (except for state Listen) SYN from a node that
is not its client, it replies with FIN or NAC, resp., and stays in the same state.

Fig. 5 shows a client’s interaction with its server (for the interplay of a client
with a node that is not its server, see [9, Fig. 24]). The initial state is Closed.

– Closed: The client chooses a server and tries to connect to it by sending SYN
and moving to WaitSynAck.

– WaitSynAck: The client expects to receive an ACK, which it answers with
ACK. It may receive a NAC, indicating the server is busy. It is important that
in this case, the client replies with FIN and moves to WaitFinAck (this will
be explained in detail below). SYN is replayed after a timeout. If the client
receives a FIN, this means the server replied to a FIN of an old connection.

– Connected: The client can receive another ACK, after which it sends ACK
back to its server. As this is the state where data exchange is done, the client
generally receives some DATA too. When it does not want to send more data,
it informs the server with a FIN and moves to WaitFinAck. Notice that the
client should not receive any FIN from its server before it sends its own FIN.

– WaitFinAck: The client waits for a FIN, after which it goes to Closed. Apart
from a successful request (through Connected), the client also reaches this
state after it receives a NAC. That means it can receive multiple ACKs and
NACs before it gets a FIN from the server.

In every state a FIN can arrive, as a delayed repeated message from a server of
an old connection. The client ignores such messages.

We explain why the client should send FIN after the server answers with
NAC to a SYN. The other option would be that the client simply stops trying
to connect and moves to Closed. The server is not affected, as at the moment it
answered to the SYN, it was busy with another client and it did not initiate any
new connection. This is a fast and simple way to close the connection. However,
by means of the model checker SPIN, we found a flaw in this idea, depicted by
the scenario in Fig. 6. The client sends two SYNs to the server. While receiving
the first one, the server is busy with another client, and thus answers with NAC.
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Fig. 6. An example where the client closes immediately after a server’s NAC without
going through WaitFinAck

By the second SYN, the server is ready to set up a new connection and replies
with ACK. Then it moves to WaitSynAck, where a timeout occurs, and as a
result it replays ACK. In the meantime, the client has received a NAC and has
moved to the Closed state. As a result, the client may follow up connecting
to another server. Consequently, when the client receives teh first ACK from
the first server, it responds with NAC. As a result, the server moves to Listen
(in the correct version of the protocol this NAC to the server cannot happen,
therefore it is not considered in Fig. 4). The client decides to reconnect to the
server, and receives an ACK from it. However, the received ACK is from the
first connection attempt, and the server is not aware of this new connection,
because the corresponding SYN was lost, due to resource contention. The client
incorrectly assumes it has a connection, and starts sending data to the server.

If we can distinguish SYN messages from different sessions (replayed SYNs are
considered to be in the same session), the problem is solved. A trivial solution
is to keep track of the last session of all servers at the client side and all clients
at the server side. This solution, however, does not scale. Trying to keep track
of all different sessions with only one extra bit is not possible, because servers
and clients can connect to each other multiple times.

By asking the client to close the connection via WaitFinAck, we prevent it
from connecting to another server until it receives the server’s FIN. The main
idea is that the client can only move to the next session when it is certain it
will not receive any more ACKs and NACs from the server for this session.
Once the server sends ACK, it moves to WaitSynAck, and after that, it can
only send ACKs after a timeout, until it gets an answer from the client. Hence
the client receives at least one of the NACs or ACKs before it goes to the next
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session. Once it receives an ACK, it can only receive ACKs until it moves to
the next session. If none of the NACs arrive at the client, it sends SYNs until it
gets an ACK, and then moves to Connected. If a NAC arrives at the client, it
answers ACKs and NACs with a FIN, until it gets a FIN from the server, and
then it moves to Closed. Thus we make sure that both ends absorb all the SYNs,
ACKs and NACs for this session before moving to the next session.

We have simplified the closing of connections by enforcing that the client is
always the first to send a FIN to the server. The server thus always closes before
the client. In addition, the client is the one who requests a new connection.
Therefore, there is no way to mix one session with another. One could claim
that having the client always close first is a limitation of the protocol. This can
be hidden, however, as we could give the server (in Want2Close) the option to
piggyback a flag that it wants to close the connection.

5 Router Management Protocol

We now turn to the router management protocol (RMP) for congestion avoid-
ance, on top of CMP. The protocol is able to avoid overloading paths in the
network by making explicit bandwidth allocations at the routers for every seg-
ment of the path. First we sketch how it works when the bandwidth allocation
succeeds; see Fig. 7 for an illustration of this procedure. The client starts by
sending SYN to the server. To this message it attaches the bandwidth (bw1)
that needs to be reserved. Routers do not make a reservation on receiving this
SYN, but just forward it to the next router or the server. The server sends an
ACK with an aggregate value (bw1+bw2) of the client’s and its own bandwidth.

A router, when receiving an ACK from server to client, first searches if the
triple (client, server, bandwidth) already exists in its memory. If not, and if the
router has sufficient remaining bandwidth, it creates a triple with bandwidth
bw1 + bw2, which reserves this bandwidth to the connection. The connection
is established by the subsequent ACK from client to server, and then data can
be exchanged. The routers wait until they receive a FIN from the server to the
client, indicating the end of the connection on both sides. Then the router checks
if a corresponding triple exists in memory. If so, it reclaims the bandwidth for
this connection and removes the triple from memory.

Suppose a router, when receiving an ACK from server to client, finds it has
insufficient remaining bandwidth. As illustrated in Fig. 8, the router then sends
ERR in the client’s direction without storing the triple. If this ERR gets lost,
the client replays SYN or the server replays ACK after a timeout, invoking
another ERR at the router. When the client finally receives the ERR, it closes
the connection exactly as when it receives a NAC (by sending a FIN and waiting
for the server’s FIN). When a second ACK arrives at the router, the router may
in the meantime have freed adequate bandwidth to serve the connection. Then
the connection can still get established, if the ERR never arrived at the client.

When a connection is being closed, routers must be able to distinguish the
first FIN received from a client and repeated FINs for closing this same connec-
tion. Otherwise routers could reclaim bandwidth for the same closing connection
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multiple times. An easy solution is to let routers store triples (client, server,
bandwidth) until the end of a connection. However, since there can be hundreds
of active connections, this imposes a relatively heavy memory load. Therefore,
in the final version of the protocol we introduced an optimization in which such
triples are only kept in the routers’ memory while setting up and closing the
corresponding connection, and not during data exchange.

When a router receives an ACK from client to server, it looks if there is
a corresponding triple in its memory, and if so, removes this triple. On the
other hand, when a client closes a connection, it attaches the bandwidth of this
connection to FIN, so that routers can restore the triple. To remove this triple
from the routers’ memory again, we add an extra message at the very end of
CMP. After a client has received a FIN from its server, finalizing the closure of
the connection, it sends one extra message back, to inform intermediate routers
that they can remove the corresponding triple.

6 Model Checking Analysis

We applied the model checker SPIN [11] during the design of the SWP, CMP
and RMP protocols. SPIN is widely used to analyze real-life communication
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protocols. The tool can discover potential deadlocks, livelocks or invalid states.
In addition, properties written in LTL (Linear Time Logic) can be checked.

SPIN has a wide range of analysis options, e.g., live simulation, and full scale
or approximate state space analysis. An important characteristic of SPIN specifi-
cations are the dimensions of the various model state variables. These maximum
dimensions need to be chosen carefully, or the corresponding state space will
very quickly grow such that full scale analysis is no longer feasible.

To reduce the relevant state space to a managable size, a wide range of tech-
niques is reported on in the literature [20], but applying them successfully may
require significant expertise and often some amount of experimentation while
“tuning” the model. As a result, memory requirements are frequently the bot-
tleneck in being able to analyze larger protocol instances. It can thus be beneficial
to employ analysis tools using a large distributed memory, provided that both
data and computation can be distributed effectively.

A prominent example in the category of distributed LTL model checkers is
the DiVinE [3] system. As shown in [25], the DiVinE model checker has good
scalability on clusters with a fast interconnect, but can also be applied success-
fully in a high-bandwidth computational grid environment. Unlike sequential
model checkers, which typically use depth-first search, DiVinE uses breadth-
first search (which parallellizes well) and employs a hashing function to evenly
spread the state space and work load over the compute nodes. To facilitate LTL
model checking, which requires a cycle detection algorithm, DiVinE implements
various distributed algorithms. In this paper we used the “OWCTY” algorithm,
which is based on a distributed version of Topological Sort.

DiVinE supports both a native modeling language “DVE” and codes writ-
ten in SPIN’s modeling language Promela. Promela specifications are handled by
DiVinE using the embedded “NIPS” module. NIPS is a complete reimplementa-
tion of the original SPIN tool, by means of a specially developed model-checking
virtual machine [27]. An interesting aspect of this SPIN reimplementation effort
is that the resulting model checking byte code can be optimized off-line by ad-
ditional tools, which can significantly reduce the resulting state space. Practical
examples of these reductions will be discussed below. Instead of using Promela,
the protocols discussed might also have been modeled in DVE, giving an addi-
tional performance gain. However, for pragmatic reasons we chose Promela.

We ran DiVinE on 64 compute nodes of the DAS-3 cluster (www.cs.vu.nl/
das3/) at VU University. The 2.4 GHz AMD Opteron-based nodes are intercon-
nected by a fast Myri-10G network, and have 4 Gigabyte of memory each.

6.1 Model Checking SWP

For SWP, we checked a number of LTL properties that together assert the re-
quired behavior of the protocol, i.e., it should eventually deliver all messages,
in order, without duplication, despite possibly loosing packets. In particular, we
looked at the following LTL properties:

www.cs.vu.nl/das3/
www.cs.vu.nl/das3/
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Table 1. States in the SWP LTL=1 for SPIN and DiVinE/NIPS

Window SPIN states DiVinE/NIPS states
PR/DVR/SCR PR DVR SCR Base

2 1.38 ∗ 105 1.00 ∗ 105 1.56 ∗ 105 1.47 ∗ 106 1.75 ∗ 106 1.75 ∗ 106

3 3.19 ∗ 106 2.00 ∗ 106 3.62 ∗ 106 3.55 ∗ 107 4.44 ∗ 107 4.44 ∗ 107

4 5.11 ∗ 107 2.95 ∗ 107 5.78 ∗ 107 5.82 ∗ 108 7.43 ∗ 108 7.43 ∗ 108

– LTL 1: no message is duplicated
– LTL 2: messages are not reordered
– LTL 3: every data message sent is eventually received

We also included LTL 4, which is a combination of LTL 2 and 3, and LTL 5,
which is an alternative formulation of LTL 3. We will focus on LTL 1 and 5,
being representative for the model checking effort required (e.g., the size of the
resulting state space). For the formulation of these properties, see [9].

With sequential SPIN, we could indeed check all properties. However,
the state space growth when gradually increasing the maximum window size (the
most important model parameter) was considerable. As illustrated in Table 1,
the growth rate is over an order of magnitude for every increment of the window
size. As a result, analyzing the properties for a window size of 4 is already be-
coming difficult, as the state space exceeds available memory (we determined the
largest state space on a special DAS-3 node equipped with more memory than
the 4 GByte available by default). By enabling SPIN’s state compression meth-
ods, the state space capacity can be extended, but the most efficient compression
technique comes at a significant runtime cost – potentially further increasing the
high runtime by a factor of ten of more. It is worth mentioning that the SWP
specification discussed is already optimized using most well-known SPIN state
space reduction techniques available; unoptimized initial versions of the SWP
specification could in fact only be analyzed up to a window size of 2. On the
other hand, a full-scale analysis for a window size of 4 appears reasonable, given
the target setting.

Table 1 also shows the sizes of the state spaces using the SPIN support in
DiVinE. The unoptimized NIPS bytecode (the “Base” version in the table)
induces a much larger state space than SPIN. However, successive bytecode
optimizations by means of the SARN [17] toolset reduce the effective state space
to somewhat below the state space reported by SPIN with its default partial
order optimization enabled. The SARN tools applied are Path Reduction (PR),
Dead Variable Reduction (DVR) and Step Confluence Reduction (SCR). PR
appears to be the optimization with the largest impact, since it most effectively
reduces the number of synchronization points in the model checking byte code.

Fig. 9 shows the effects of state space reduction on the DiVinE running time.
Note that the figure is log-log scaled to account for the wide range in state
spaces (due to static optimization discussed above) and parallel running times.
The figure indicates that DiVinE is able to achieve almost linear speedup up to
32 compute nodes, and for the larger problem sizes up to 64 compute nodes. A
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Table 2. SPIN and DiVinE SWP run times in sec. for large instances (note that state
space volumes are not identical)

Problem Instance SPIN DiVinE DiVinE DiVinE DiVinE
1 node 1 node 4 nodes 16 nodes 64 nodes

SWP max=4,ltl=1 8.8 24.9 7.3 2.1 1.5

max=4,ltl=5 18.2 40.6 11.9 3.3 1.7

max=5,ltl=1 158 448 122 29.5 8.1

max=5,ltl=5 324 819 214 49.9 12.8

similar pattern can be seen in Fig. 10, where the state space variation is induced
by scalings in the maximum window size (and the LTL formula). Finally, Table 2
shows the running times of SPIN and DiVinE, the latter on 1, 4, 16 and 64 nodes.

6.2 Model Checking CMP

For the analysis of CMP, the state machines for the client and server shown
in Sect. 4 were transformed into Promela code. Assertions were added regard-
ing messages that should be impossible to be received in particular states. The
protocol was instantiated with a configuration of two clients making a sequence
of arbitrary connections to two servers. For the initial analysis we used SPIN
in default mode, i.e., checking for possible deadlocks, unreachable code, invalid
end states and assertions. As explained in Sect. 4, this SPIN analysis led to the
detection of a flaw in our original CMP, where the server answered with NAC
to a SYN. The rest of this section discusses the analysis of the corrected CMP.

As an additional CMP model parameter we varied the capacity of the channels
between the client and server processes. Asynchronous communication with the
channel size set to one found no errors, but detected some unreachable code,
which indicates that some valid scenarios may not have been analyzed with a
channel size this small. Parallel performance of the DiVinE analysis of CMP
using channel capacity between two and five is shown in Fig. 11.
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Table 3. SPIN and DiVinE run times for CMP and RMP in sec. for large instances
(note that state space volumes are not identical)

Problem Instance SPIN DiVinE DiVinE DiVinE DiVinE
1 node 1 node 4 nodes 16 nodes 64 nodes

CMP cap=2 103 5.7 2.0 0.9 1.0

cap=3 N/A 47.3 14.1 4.1 1.9

cap=4 N/A 291.7 78.1 20.1 5.7

RMP cap=1 18.4 18.5 5.6 1.7 1.2

cap=2 1470 N/A N/A 116.2 30.6

Table 3 compares the running times of SPIN and DiVinE. The entries marked
N/A could not be completed due to memory shortage. The state space corre-
sponding to the CMP protocol is again very effectively reduced by the SARN
toolset, in particular by its Step Confluence Reduction (SCR) tool. By merg-
ing equivalent sets of states based on program location, SCR here reduces the
state space almost by a factor of 60, allowing DiVinE with NIPS and SARN to
outperform SPIN even on a single compute node, which is rather uncommon.

6.3 Model Checking RMP

For the analysis of RMP, the model of CMP was extended with explicit routing
nodes between a client and server. A fixed configuration of three routing nodes
was used to represent arbitrary setups involving an initial, intermediate, and final
routers. State regarding remaining bandwidth described by the (client, server,
bandwidth) triples was modeled for every router explicitly, and referred to in
assertions for particular states. We used an LTL expression to verify that the
router bandwidth allocation does not exceed capacity (no duplicated bandwidth
allocation) and does not become negative (no duplicated bandwidth releases).
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Parallel performance of a DiVinE analysis of RMP is shown in Fig. 12. As
the figure shows, RMP displays quite extreme effects on the state space when
the model parameter for the channel capacity is scaled up, making a distributed
analysis with DiVinE attractive.

7 Conclusions

In this paper we discussed the design of three embedded networking protocols
that were tailored to the specific resource requirements of novel mobile devices.
We investigated a sliding window protocol, a protocol for connection establish-
ment and a related bandwidth reservation protocol. In designing the protocols,
the SPIN model checking tool was very helpful in preventing errors in the proto-
col descriptions at a very early stage. This should be contrasted with scenarios
where a design is already mostly pinned down or an actual implementation ex-
ists, which first has to be reformulated back into a different modeling language.

In the models we checked deadlock freeness, various assertions on states, as
well as more general properties formulated in LTL. As the protocol designs be-
came more mature, the checking of larger model instances was attempted. The
state space explosion phenomenon forced us to apply a range of SPIN model “op-
timization” techniques to significantly reduce the effective protocol state space.
Unfortunately, this forces a modeler to focus on low-level SPIN implementation
aspects which are mostly irrelevant to the abstract model as such.

Despite extensive state space reductions achieved on the models, several re-
alistic instances still were infeasible for analysis with SPIN, due to the limited
memory capacity. These larger instances were then checked with the distributed
DiVinE tool, which also supports SPIN specifications. This should be weighed
against the limited support for error tracing in the SPIN version of DiVinE;
for effective work with Promela specifications, use of SPIN itself is currently
indispensible. Though DiVinE sequentially runs slower than the highly opti-
mized SPIN tool, given a fast cluster network it exhibits excellent scalability on
large problems, making it a useful option for cluster environments with a large
distributed memory capacity.

An additional advantage of large-scale distributed model checking is that it
can make an approach where model checking is applied to the target application
language (e.g., as in Java PathFinder [26]) able to efficiently deal with realistic
instances, despite the larger state space.
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