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Embedded nonlinear model predictive control for obstacle avoidance

using PANOC

Ajay Sathya, Pantelis Sopasakis, Ruben Van Parys, Andreas Themelis, Goele Pipeleers and Panagiotis Patrinos

Abstract— We employ the proximal averaged Newton-type
method for optimal control (PANOC) to solve obstacle avoid-
ance problems in real time. We introduce a novel modeling
framework for obstacle avoidance which allows us to easily
account for generic, possibly nonconvex, obstacles involving
polytopes, ellipsoids, semialgebraic sets and generic sets de-
scribed by a set of nonlinear inequalities. PANOC is particularly
well-suited for embedded applications as it involves simple steps,
its implementation comes with a low memory footprint and its
fast convergence meets the tight runtime requirements of fast
dynamical systems one encounters in modern mechatronics and
robotics. The proposed obstacle avoidance scheme is tested on
a lab-scale autonomous vehicle.

Index Terms— Embedded optimization, Nonlinear model pre-
dictive control, Obstacle avoidance.

I. INTRODUCTION

A. Background and Contributions

Autonomous navigation in obstructed environments is a

key element in emerging applications such as driverless

cars, fleets of automated vehicles in warehouses and aerial

robots performing search-and-rescue expeditions. Well-known

approaches for finding collision-free motion trajectories are

graph-search methods [1], virtual potential field methods [2]

or methods using the concept of velocity obstacles [3].

Recent motion planning research focuses on optimization-

based strategies. Here, an optimal motion trajectory is sought

while collision-avoidance requirements are imposed as con-

straints thereon. There is a broad range of such formulations.

The most straightforward approach constrains the Euclidean

distance between the vehicle and obstacle centers [4]. This,

however, only allows to separate spheres and ellipsoids as

the computation of distances from arbitrary sets is generally

not an easy operation.

Other approaches demand the existence of a hyperplane

between the vehicle and obstacle at each time instant [5],

[6]. This allows the separation of general convex sets. Some

methods formulate the collision avoidance requirement by

mixed-integer constraints [7]. These types of problems are,

however, cumbersome to solve in real-time. For some specific

problem types it is possible to transform the system dynamics
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such that collision-avoidance translates into simple box

constraints on the states [8], [9].

Model predictive control (MPC) is a powerful control

strategy where control actions are computed by optimizing

a cost function which is chosen in order to achieve a

control task. Constraints on states, inputs and outputs can

be seamlessly incorporated into such a framework. When

the system dynamics is linear, the constraints are affine and

the cost functions are quadratic, the associated optimization

problem is a quadratic program. There exists a mature

machinery of convex optimization algorithms [10], [11] which

are fast, robust and possess global convergence guarantees

which can be used to solve these problems.

Nevertheless, the dynamics of most systems of interest are

better modeled by nonlinear equations and constraints are

often nonconvex. This situation is very common in obstacle

avoidance involving nonconvex optimization problems. These

are commonly solved using sequential quadratic program-

ming (SQP) [10] and interior point (IP) methods [12] which

are not well-suited for embedded applications with tight

runtime requirements. Nonlinear MPC is often performed

using the real-time iteration scheme proposed in [13] which

trades speed for accuracy and is accompanied by global

convergence guarantees under certain assumptions.

For an algorithm to be suitable for an embedded im-

plementation, it needs to involve only simple steps. This

deems methods of the forward-backward-splitting (FBS)

type [14], such as the proximal gradient method [15, Sec. 2.3],

appealing candidates. FBS-type algorithms can be used

to solve nonlinear optimal control problems with simple

input constraints via first eliminating the state sequence and

expressing the cost as a function of the sequence of inputs

alone — the so-called single shooting formulation. However,

despite its simplicity, FBS, like all first-order methods, can

exhibit slow convergence. Its convergence rate is at best Q-

linear with a Q-factor close to one for ill-conditioned problems

such as most nonlinear MPC problems.

In this work we propose a new modeling framework

for generic constraints which can accommodate general

nonconvex sets. The proposed methodology assumes that the

obstacles are described by a set of nonlinear inequalities and

does not require the computation of projections or distances

to them. Then, the obstacle avoidance constraints are written

as a nonlinear equality constraint involving a smooth function

which, in turn, is relaxed using a penalty function.

The resulting problems are solved using PANOC, a

proximal averaged Newton-type method for optimal control,

which was recently proposed in [16]. Gradients of the



cost function can be efficiently computed using automatic

differentiation toolboxes such as CasADi. The algorithm is

simple to implement, yet robust, since it combines projected

gradient iterations with quasi-Newtonian directions to achieve

fast convergence.

The proposed framework is tested on a number of sim-

ulation scenarios where we show that it is possible to

avoid obstacles of complex shape described by nonlinear

inequalities. PANOC is compared with SQP and IP methods

and is found to be significantly faster. Furthermore, we present

experimental results on a lab-scale robotic platform which

runs a C implementation of PANOC.

B. Notation

Let IN be the set of nonnegative integers, IN[k1,k2] be the

set of integers in the interval [k1, k2] and IR = IR∪{+∞} be

the set of extended real numbers. For a matrix A ∈ IRm×n,

we denote its transpose by A⊤. For x ∈ IR, we define the

operator [x]
+
= max{x, 0}. For a nonempty closed convex

set U ⊆ IRn, the projection onto U is the operator ΠU (v) =
argminu∈U ‖u− v‖. The distance from the set U is defined

as distU (v) = infu∈U ‖u − v‖. The class of continuously

differentiable functions f : IRn → IR is denoted by C1.

The subset of C1 of functions with Lipschitz-continuous

gradient is denoted as C1,1. We use the notation C1,1
L for

C1,1 functions with L-Lipschitz gradients.

II. NMPC FOR OBSTACLE AVOIDANCE

A. Problem statement

Kinematic equations lead to continuous-time nonlinear

dynamical systems of the form ẋ = fc(x, u, t) where x ∈
IRnx is the system state, typically a vector comprising of

position, velocity and orientation data, and u ∈ IRnu is

the control signal. We assume that the position coordinates

z ∈ IRnd are part of the state vector. The continuous-time

dynamics can be discretized (for instance, using an explicit

Runge-Kutta method) leading to a discrete-time dynamical

system of the form

xk+1 = fk(xk, uk). (1)

As it is typically the case in practice, we assume that fk :
IRnx × IRnu → IRnx are smooth mappings.

The objective of the navigation controller is to steer the

controlled vehicle from an initial state x0 to a target state

xref , typically a position in space together with a desired

orientation. At the same time, the vehicle has to avoid certain,

possibly moving, obstacles which are described by open sets

Okj ⊆ IRnd , j ∈ IN[1,qk], each described by

Okj = {z ∈ IRnd : hikj(z) > 0, i ∈ IN[1,mkj ]}. (2)

Sets Okj need not be convex. Obstacle avoidance constraints

can be concisely written as

zk /∈ Okj , for j ∈ IN[1,qk]. (3)

Moreover, the vehicle is only allowed to move in a domain

which is described by the inequalities

gk(xk, uk) ≤ 0, (4)

where gk : IRnx × IRnu → IRnc is a C2 mapping and ≤
is meant in the element-wise sense. Control actions uk are

constrained in a closed compact set Uk, that is

uk ∈ Uk, (5)

on which it is easy to project and hereafter shall be assumed

to be convex. Sets Uk often represent box constraints of the

form Uk = {u ∈ IRnu : umin ≤ u ≤ umax}.

B. Nonlinear model predictive control

Nonlinear model predictive control problems arising in

obstacle avoidance can be written in the following form

minimize ℓN (xN ) +

N−1
∑

k=0

ℓk(xk, uk), (6a)

subject to x0 = x, (6b)

xk+1 = fk(xk, uk), k ∈ IN[0,N−1], (6c)

uk ∈ Uk, k ∈ IN[0,N−1], (6d)

zk /∈ Okj , j ∈ IN[1,qk], k ∈ IN[0,N ] (6e)

gk(xk, uk) ≤ 0, k ∈ IN[0,N ], (6f)

gN (xN ) ≤ 0. (6g)

The stage costs ℓk : IRnx × IRnu → IR for k ∈ IN[0,N−1]

in (6a) are C1,1 functions penalizing deviations of the state

from the reference (destination and orientation) and may

be taken to be quadratic functions of the form ℓ(xk, uk) =
(xk−xref)

⊤Qk(xk−xref)+(uk−uref)
⊤Rk(uk−uref). The

terminal cost ℓN : IRnx → IR in (6a) is a C1,1 function such

as ℓN (xN ) = (xN − xref)
⊤QN (xN − xref).

C. Reformulation of obstacle avoidance constraints

Consider an obstacle described as the intersection of a

finite number of strict nonlinear inequalities

O = {z ∈ IRnd : hi(z) > 0, i ∈ IN[1,m]}, (7)

where hi : IRnd → IR are C1,1 functions. The constraint

z /∈ O — cf. (6e) — is satisfied if and only if

hi0(z) ≤ 0, for some i0 ∈ IN[1,m], (8)

or, equivalently,
[

hi0(z)
]2

+
= 0. This constraint can then be

encoded as

ψO(z) :=
1
2

m
∏

i=1

[

hi(z)
]2

+
= 0. (9)

We have expressed the obstacle avoidance constraints as a

nonlinear equality constraint. We should remark that, unlike

approaches based on the distance-to-set function [17], function

ψO in (9) is a C1 function of z. Indeed, ψO is differentiable

in IRnd \ O (and equal to 0), it is differentiable in O with

gradient

∇ψO(z) =







m
∑

i=1

hi(z)
∏

j 6=i

(hj(z))2∇hi(z), ifx ∈ O,

0, otherwise.

(10)



Note that ∇ψO on the boundary of O vanishes, so it is

everywhere continuous. If, additionally, O is bounded, ψO is

C1,1.

The formulation of Eq. (9) can be used for obstacles

described by quadratic constraints of the form O = {z ∈
IRnd : 1 − (z − c)⊤E(z − c) > 0}, such as balls and

ellipsoids. Then, the associated equality constraint becomes

[1− (z − c)⊤E(z − c)]
2
+

= 0. Polyhedral obstacles of the

form O = {z ∈ IRnd : bi − a⊤

i z > 0,∈ IN[1,m]}, with

bi ∈ IR and ai ∈ IRnd , can also be accommodated by the

constraint
∏m

i=1 [bi − a
⊤

i z]
2
+
= 0.

Equation (9) can also be used to describe general nonconvex

constraints such as ones described by semi-algebraic sets

where hi(z) are polynomials as well as any other obstacle

which is available in the aforementioned representation.

Obstacle avoidance constraints (9) are equivalent to the

existence of t ∈ IRm so that

min{t1, . . . , tm} = 0, (11a)

hi(z) ≤ ti, for i ∈ IN[1,m]. (11b)

This observation reveals a link to vertical complementarity

constraints which have been studied extensively in the

literature [18], [19].

D. Relaxation of constraints

Due to the fact that modeling errors and disturbances may

lead to the violation of imposed constraints and infeasibility of

the MPC optimization problem, it is common practice in MPC

to replace state constraints by appropriate penalty functions

known as soft constraints. Quadratic penalty functions are

often used for this purposes revealing a clear link between

this approach and the quadratic penalty method in numerical

optimization [15, Sec. 4.2.1].

Equality constraints, such as the ones arising in the refor-

mulation of the obstacle avoidance constraints in Section II-

C, can be relaxed by means of soft constraints. Indeed,

constraints of the form Φk(zk) = 0, k ∈ IN[1,N ], where

Φk : IRnd → IR+ are C2 functions, can be relaxed by

introducing the penalty functions Φ̃k(zk) = ηkΦk(zk) for

some weight factors ηk > 0.

That said, constraints like (9) for a set of time-varying

obstacles Okj = {z ∈ IRnd : hikj(z) > 0, i ∈ IN[1,mkj ]}, with

j ∈ IN[1,qk], can be relaxed by the appending the following

term in the original cost function

h̃k(zk) =

qk
∑

j=1

ηkj

mkj
∏

i=1

[

hikj(z)
]2

+
, (12)

for some positive weight factors ηkj > 0.

Note that the proposed approach for dealing with obstacle

avoidance constraints requires only a representation of the

obstacles in the generic form (7) and does not call for the

computation of distances to the obstacles as in distance-based

methods [4], [17], nor does it require the obstacles to be

convex sets.

Similarly, inequality constraints of the form gk(xk, uk) ≤
0 and gN (xN ) ≤ 0 can be relaxed by introducing the

penalty functions g̃k(x, u) = βk [gk(x, u)]
2
+

and g̃N (x) =

βN [gN (x)]
2
+

for positive weights βk > 0, k ∈ IN[0,N ].

We may now relax the state constraints in (6) by defining

the modified stage cost and terminal cost functions

ℓ̃k(x, u) = ℓk(x, u) + g̃k(x, u) + h̃k(zk),

ℓ̃N (x) = ℓN (x) + g̃N (x),

leading to the following relaxed optimization problem without

state constraints

minimize ℓ̃N (xN ) +
N−1
∑

k=0

ℓ̃k(xk, uk), (13a)

subject to x0 = x, (13b)

xk+1 = fk(xk, uk), k ∈ IN[0,N−1], (13c)

uk ∈ Uk, k ∈ IN[0,N−1], (13d)

E. NMPC problem formulation

In this section we cast the nonlinear MPC problem (6) as

minimize
u∈U

ℓ(u), (14)

where the optimization is carried out over vectors u =
(u0, . . . , uN−1) ∈ IRn, with n = Nuu and U :=U0 × U1 ×
· · · × UN−1 and ℓ : IRn → IR is a real-valued C1,1

Lℓ
function.

We introduce the following sequence of functions Fk :
IRn → IRnx for k ∈ IN[0,N−1]

F0(u) = x, (15a)

Fk+1(u) = fk(Fk(u), uk). (15b)

Define the smooth function ℓ : IRn → IR

ℓ(u) := ℓ̃N (FN (u)) +

N−1
∑

k=0

ℓ̃k(Fk(u), uk). (16)

The gradient of function ℓ in (16) can be computed by means

of the reverse mode of automatic differentiation (also known

as adjoint method or backpropagation) as shown in Alg. 1 [20].

Algorithm 1 Automatic differentiation for ℓ in (16)

Input: x0 ∈ IRnx , u ∈ IRn.

Output: ℓ(u), ∇ℓ(u)
1: ℓ(u)← 0
2: for k = 0, . . . , N − 1 do

3: xk+1 ← fk(xk, uk), ℓ(u)← ℓ(u) + ℓ̃k(xk, uk)
4: ℓ(u)← ℓ(u) + ℓ̃N (xN ), pN ← ∇ℓ̃N (xN )
5: for k = N − 1, . . . , 0 do

6: pk ← ∇xk
fk(xk, uk)pk+1 +∇xk

ℓ̃k(xk, uk)
7: ∇uk

ℓk(u)← ∇uk
fk(xk, uk) +∇uk

ℓ̃k(xk, uk)

Problem (14) is in a form that allows the application of

the projected gradient iteration

uν+1 = Tγ(u
ν) := ΠU (u

ν − γ∇ℓ(uν)), (17)

with γ > 0. In particular, if ℓ ∈ C1,1
Lℓ

and γ < 2/Lℓ, then all

accumulation points of (17), u⋆, are fixed points of Tγ called

γ-critical points, that is [10, Prop. 2.3.2]

u⋆ = Tγ(u
⋆). (18)



u

ϕγ(u)

ℓ(u)

Fig. 1. Construction of the FBE with γ = 0.15 (red line) for the function
ℓ(u) = sin(2u) over the set U = [0, 2] (thick blue line). The dashed line
shows the approximation of ℓ at a point u by the quadratic model Qℓ

γ(v;u).

The value of FBE at u is then given by ϕγ(u) = infv∈U Qℓ
γ(v;u). Note

that the local minima of ℓ over U are exactly the local minima of ϕγ .

III. FAST NONLINEAR MPC

The problem of finding a fixed point for Tγ can be reduced

to the equivalent problem of finding a zero of the fixed-point

residual operator which is defined as the operator

Rγ(u) =
1
γ
(u− Tγ(u)). (19)

This motivates the adoption of a Newton-type iterative scheme

uν+1 = uν −HνRγ(u
ν), (20)

where Hν are invertible linear operators, appropriately chosen

so as to encode first-order information about Rγ . This is done

by enforcing the inverse secant condition sν = Hν+1y
ν , for

sν = uν+1 − uν and yν = Rγ(u
ν+1)−Rγ(u

ν) and can be

obtained by quasi-Newtonian methods such as the limited-

memory BFGS (L-BFGS) method [10] which is free from

matrix operations, requires only a limited number of inner

products and is suitable for embedded implementations. The

main weakness of this approach is that convergence is only

guaranteed in a neighborhood of a γ-critical point u⋆. We

shall describe a globalization procedure which hinges on the

notion of the forward-backward envelope function.

A. The Forward-Backward envelope function

The forward-backward envelope (FBE) is an exact, con-

tinuous, real-valued merit function for (14) [16], [21]–[24].

Function ℓ can be approximated at a point u ∈ U by the

quadratic upper bound

Qℓ
γ(v;u) = ℓ(u) +∇ℓ(u)⊤(v − u) + 1/2γ‖u− v‖2. (21)

The FBE is then defined as

ϕγ(u) = inf
v∈U

Qℓ
γ(v;u). (22)

This construction is illustrated in Fig. 1. Provided that it is

easy to compute the distance to U , the FBE can be easily

computed by

ϕγ(u) = ℓ(u)− γ
2 ‖∇ℓ(u)‖

2 + dist2U (u− γ∇ℓ(u)). (23)

Therefore, the computation of the FBE is of the same

complexity as that of a forward-backward step.

The FBE possesses several favorable properties, perhaps

the most important being that it is real-valued, continuous and

for γ ∈ (0, 1/Lℓ) shares the same (local/strong) minima with

the original problem (14). This means that (14) is reduced to

an unconstrained minimization problem. Moreover, if ℓ ∈ C2,

then ϕγ ∈ C
1 with ∇ϕγ(u) = (I − γ∇2ℓ(u))Rγ(u).

B. PANOC Algorithm

We employ the proximal averaged Newton-type method

for optimal control, for short PANOC, which was recently

proposed in [16]. PANOC performs fast Newton-type up-

dates while an FBE-based linesearch endows it with global

convergence properties while it uses the same oracle as the

projected gradient method.

Algorithm 2 PANOC algorithm for problem (14)

Input: γ ∈ (0, 1/Lℓ), Lℓ > 0, σ ∈ (0, γ2 (1−γLℓ)), u0 ∈ IRn,

x0 ∈ IRnx , L-BFGS memory length µ.

1: for ν = 0, 1, . . . do

2: ūν ← ΠU (u
ν − γ∇ℓ(uν))

3: rν ← γ−1(uν − ūν)
4: dν ← −Hνr

ν using L-BFGS

5: uν+1 ← uν − (1 − τν)γr
ν + τνd

ν , where τν is the

largest number in {1/2i : i ∈ IN} such that

ϕγ(u
ν+1) ≤ ϕγ(u

ν)− σ‖rν‖2 (24)

The iterative scheme, which is presented in Alg. 2, involves

the computation of a projected gradient point ūν in step 2 and

an L-BFGS direction dν in step 4. L-BFGS obviates the need

to store or explicitly update matrices Hν in (20) by storing a

number µ of past values of sν and yν . The computation of dν

requires only inner products which amount to a maximum of

4µn scalar multiplications. In step 5, the iterates are updated

using a convex combination of the projected gradient update

direction −γRγ(u
ν) and a fast quasi-Newtonian direction dν .

The algorithm is terminated when ‖Rγ(u
ν)‖∞ drops below

a specified tolerance.

In line 5, the backtracking line search procedure ensures

that a sufficient decrease condition is satisfied using the FBE

as a merit function. Under mild assumptions, eventually only

fast updates are activated and updates reduce to uν+1 =
uν + dν . The sequence of fixed-point residuals {rν}ν∈IN

converges to 0 square summably, while PANOC produces

sequences of iterates, {uν}ν∈IN and {ūν}ν∈IN, whose cluster

points are γ-critical points.

In absence of a Lipschitz constant Lℓ, the algo-

rithm can be initialized with an estimate, e.g., L0
ℓ =

‖∇uℓ(u
0 + δu)−∇uℓ(u

0)‖/‖δu‖, where δu ∈ IRn is a

small perturbation vector. Then, step 2 in Alg. 2 needs to

be replaced by the backtracking procedure of Alg. 3 which

updates Lℓ, σ and γ.

Algorithm 3 Lipschitz constant backtracking

while ℓ(ūν) > ℓ(uν)− γ∇ℓ(uν)⊤rν + Lℓ/2‖γrν‖2 do

Lℓ ← 2Lℓ, σ ← σ/2, γ ← γ/2
ūν ← ΠU (u

ν − γ∇ℓ(uν))

Alg. 3 updates Lℓ, σ and γ only a finitely many times, so,

it does not affect the convergence properties of the algorithm.



Fig. 2. In-house developed mobile robot with trailer.

In MPC, we may warm start the algorithm using the optimal

solution of the previous MPC instance. Unlike SQP and IP

methods, PANOC does not require the solution of linear

systems or quadratic programming problems at every iteration

and it involves only very simple operations such as vector

additions, scalar and inner products. Additionally, PANOC

converges globally, that is, from any initial point u0 ∈ IRn.

IV. SIMULATIONS

The proposed methodology is validated on the control of

a mobile robot carrying a trailer shown in Fig. 2. Assuming

zero slip of the trailer wheels, the nonlinear kinematics is

ṗx = ux + L sin θ · θ̇, (25a)

ṗy = uy − L cos θ · θ̇, (25b)

θ̇ = 1
L
(uy cos θ − ux sin θ) , (25c)

where the state vector x = (px, py, θ) comprises the coordi-

nates px and py of the trailer and the heading angle θ. The

input u = (ux, uy) is a velocity reference which is tracked by

a low-level controller. The distance between the center of mass

of the trailer and the fulcrum connecting to the towing vehicle

is L = 0.5m. In Fig. 3 we present four obstacle avoidance

scenarios involving, among other, obstacles described by

polynomial and trigonometric functions. The system dynamics

given in (25) is discretized using the fourth-order Runge-

Kutta method and we use memory µ = 10 for the L-BFGS

directions in Alg. 2.

The single shooting formulation of Section II is solved

with PANOC, the interior point solver IPOPT, the forward-

backward splitting (FBS) implementation of ForBES and

the SQP of MATLAB’s fmincon. The problem was also

brought in a multiple shooting formulation where obstacle

avoidance constraints were imposed as in (9) and it was

solved using IPOPT and SQP. A comparison of runtime is

shown in Fig. 4. All simulations were executed on an Intel

i5-6200U CPU with 12GB RAM machine running Ubuntu

14.04. PANOC exhibits very low runtime and outperforms

all other solvers by approximately two orders of magnitude.

V. EXPERIMENTAL RESULTS AND DISCUSSION

The proposed NMPC algorithm is validated on an in-

house mobile robot with a trailer (Fig. 2). The robot has

four independent DC motors with Mecanum wheels, which

render it holonomic. A low-level microcontroller implements

a velocity controller for each motor. Therefore, from a high-

level perspective, the robot can be treated as a velocity-steered

holonomic device. A trailer is attached to the robot and the

angle between robot and trailer is measured with a rotary

potentiometer. A ceiling camera detects the robot’s absolute
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are circumscribed by thick green lines. (First row) Obstacle avoidance with
circular and rectangular obstacles, (Down, left) Enlarged obstacle defined by
O = {(x, y) : y > x2, y < 1+ x2/2} and (Down, right) Enlarged obstacle
defined by O = {(x, y) : y > 2 sin(−x/2), y < 3 sin(x/2− 1), 1<x<8}.
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Fig. 4. Comparison of runtime to solve the NMPC problem for four solvers:
PANOC, IPOPT and fmincon’s SQP algorithm (for the single and multiple
shooting formulations) and projected gradient (ForBES implementation).
These timings correspond to the navigation problem presented in Fig. 3
(upper right subfigure), starting from the initial point x0 = (−0.1,−0.2, π/5)
and with N = 50. The tolerance was set to 3 · 10−3 for all solvers. All
solvers are warm-started with their previous solution.

position and orientation using a marker attached on top of the

robot. This information is sent to the robot over Wi-Fi and

is merged with local encoder measurements to retrieve a fast

and accurate estimate of its pose. An Odroid XU4 platform

runs the NMPC algorithm on board the robotic platform.

PANOC is implemented in C following the C89 standard

without external dependencies and can, therefore, be readily

executed on embedded systems. The C code for performing

Alg. 1 was generated using the AD tool CasADi [25].

The NMPC algorithm is used to steer the vehicle

to a desired destination and trailer orientation xref =
(3.77, 1.40, 0.0). The system dynamics is discretized using

the Euler method. A quadratic cost function is employed

with Qk = QN = 0.1 · I3 and Rk = 0.01 · I2. Box

constraints are imposed on the inputs with umin = −0.8m/s
and umax = 0.8m/s. The obstacles are modelled as discussed

in Section II-C and are slightly enlarged for safety so as to
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Fig. 5. Point-to-point motion of a holonomic robot with a trailer. The robot avoids a circular and rectangular obstacle indicated with the green lines. The
predicted position trajectories are represented in blue and the target position is indicated with the red cross.
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Fig. 6. Number of iterations ν̄, solve time ts and final residual ‖rν‖∞
for each NMPC cycle.

completely avoid collisions. A horizon length of N = 50
is used and the NMPC control rate is 10Hz. Fig. 5 shows

the resulting motion of the robot and the predicted position

trajectories at four time instants. PANOC is terminated when

‖rν‖∞ ≤ 10−6 or if the number of iterations reaches 500.

The number of iterations ν̄, the solving time ts on the Odroid

XU4 and the norm of the fixed point residual at termination

at each time instant k are shown in Fig. 6.

Additional material and videos from the experiments are

found at https://kul-forbes.github.io/PANOC.

VI. CONCLUSIONS AND RESEARCH DIRECTIONS

We proposed a novel framework which enables us to

encode nonconvex obstacle avoidance constraints as a smooth

nonlinear equality constraint. This offers a flexible modeling

framework and allows the formulation of nonlinear MPC

problems with obstacles of complex nonconvex geometry.

The resulting MPC problem is solved with PANOC which has

favorable theoretical convergence properties and outperforms

state-of-the-art NLP solvers. This framework was tested using

a C89 implementation of PANOC on a lab-scale system.

Future work will focus on the development of a proximal

Lagrangian framework for the online adaptation of the weight

parameters in the obstacle avoidance penalty functions —

cf. (12) — so that (predicted) constraint violations, modeled

by h̃(zk), are below a desired tolerance. Moreover, the use

of semismooth Newton directions in PANOC will lead to

quadratic convergence and superior performance [21].
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