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Abstract—Faster, cheaper, and more power efficient optimiza-
tion solvers than those currently possible using general-purpose
techniques are required for extending the use of model predictive
control (MPC) to resource-constrained embedded platforms. We
propose several custom computational architectures for different
first-order optimization methods that can handle linear-quadratic
MPC problems with input, input-rate, and soft state constraints.
We provide analysis ensuring the reliable operation of the re-
sulting controller under reduced precision fixed-point arithmetic.
Implementation of the proposed architectures in FPGAs shows
that satisfactory control performance at a sample rate beyond
1 MHz is achievable even on low-end devices, opening up new
possibilities for the application of MPC on embedded systems.

Index Terms—Predictive control of linear systems, embedded
systems, optimization algorithms

I. INTRODUCTION

Model predictive control (MPC) provides a systematic ap-
proach for handling physical constraints for automatic control
of cyber-physical systems [1], [2], often leading to improved
control performance and reduced tuning effort for new applica-
tions. However, the intense computational demands imposed
by MPC precludes its use in applications that could benefit
considerably from its advantages, especially in those that
have fast required response times and in those that must run
on resource-constrained, embedded computing platforms with
low cost or low power requirements.

For linearly constrained MPC problems of low dimension-
ality, one can partially avoid this computational burden by
precomputing the solution map offline using multi-parametric
programming [3]. In this case, the online controller imple-
mentation consists only of region search and table look-up
procedures. Further work integrating the design of the solution
map and embedded circuits has further increased the efficiency
in performing these operations [4]. However, this approach
quickly becomes impractical for larger problems, mainly due
to substantial memory requirements, forcing a return to online
optimization methods.

Recently, there has been significant interest in using
first-order methods, both in the primal [5] and dual do-
mains [6]–[9], for the online solution of linear-quadratic MPC
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problems. Compared to other solution methods for quadratic
programs (QPs) (e.g. active-set or interior-point schemes),
first-order methods do not require the solution of a linear
system of equations at every iteration, which is often a limiting
factor for embedded platforms with modest computational
capability. This feature, coupled with the observation that
medium-accuracy solutions are often sufficient for good con-
trol performance [10], make first-order methods promising
candidates for efficient, low cost MPC. In addition, first-
order methods have certain features that make them amenable
to fixed-point implementation, they can be efficiently paral-
lelized, and their simplicity invites analysis that can guide
low-level implementation choices for further efficiency gains.

There have been several recent efforts to translate innovation
in optimization algorithms into practical solvers customized
for MPC problems. In terms of software, [11], [12] and [13]
describe automatic state-of-the-art code generators for interior-
point and first-order solvers, respectively, whereas [14] de-
scribes a widely used active-set based solver. In all cases,
embedded applications were the primary target, although the
solvers are implemented using double precision floating-point
arithmetic which is generally not available or is very expensive
in embedded computing platforms. In terms of hardware,
[15]–[17] describe different custom computing architectures
for both interior-point and active-set methods using reduced
floating-point arithmetic in field programmable gate arrays
(FPGAs), reporting minor speed-ups or use of expensive
devices to provide significant acceleration. Although there
has been some progress in accelerating the core component
of these algorithms – solvers for linear equations – using
fixed-point arithmetic [18], extending these results to the
other aspects of interior-point or active-set algorithms remains
challenging.

Summary of contribution

In this paper we focus on practical and theoretical issues for
efficient implementation of optimization-based control systems
on low cost embedded platforms.

1) Architectures: We present a set of parameterized auto-
matic generators of custom computing architectures for
solving different types of MPC problems. For input-
constrained problems, we describe architectures for Nes-
terov’s fast gradient method (first described in the prelim-
inary publication [19]). For state-constrained problems
we describe architectures based on the alternating di-
rection method of multipliers (ADMM). Even if these
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methods are conceptually very different, they share the
same computational patterns and similar computing ar-
chitectures can be used to implement them efficiently.
These architectures are extended to support warm starting
procedures and the projection operations required in the
presence of soft constraints.

2) Analysis: Since for a reliable operation using fixed-point
arithmetic it is crucial to prevent overflow errors, we
derive theoretical results that guarantee the absence of
overflow in all variables of the fast gradient method.
Furthermore, we present an error analysis of both the
fast gradient method and ADMM under (inexact) fixed-
point computations in a unified framework. This analysis
underpins the numerical stability of the methods for
hardware implementations and can be used to determine
a priori the minimum number of bits required to achieve
a given solution accuracy specification, resulting in min-
imal resource usage.

3) Implementation: We derive a set of design rules for
efficient implementation of the proposed methods, such
as a scaling procedure for accelerating the convergence
of ADMM and criteria for determining the size of
the Lagrange multipliers. The proposed architectures are
characterized in terms of the achievable performance as a
function of the amount of resources available. As a proof
of concept, generated solver instances are demonstrated
for several linear-quadratic MPC problems, reporting
achievable controller sampling rates in excess of 1 MHz,
while the controller can be implemented on a low cost
embeddable device.

Outline

The paper is organized as follows: After a brief summary
of the general MPC formulation and the different first-order
methods in Sections II and III, we focus on the fixed-point
analysis in Section IV. We follow with the hardware architec-
tures and performance evaluation in Sections V and VI.

II. SOFT-CONSTRAINED MODEL PREDICTIVE CONTROL
SETUP

Throughout, we address control of a discrete-time linear
time-invariant (LTI) system in the form

x+ = Ax+Bu, (1)

where x ∈ Rnx is the system state, u ∈ Rnu is the system
input and x+ denotes the state at the next sampling instant. The
overall design goal is to construct a time-invariant (possibly
nonlinear) static state feedback controller µ : Rnx → Rnu

such that u = µ(x) stabilizes the system (1) while simultane-
ously satisfying a collection of state and input constraints in
the time domain.

In standard design methods for constructing linear con-
trollers for systems in the form (1), the bulk of the computa-
tional effort is spent offline in identifying a suitable controller,
whose online implementation has minimal computing require-
ments. The inclusion of state and input constraints renders
most such design methods unsuitable.

A now standard alternative is to use MPC [1], [2], which
moves the bulk of the required computational effort online
and which addresses directly the system constraints. At every
sampling instant, given an estimate or measurement of the
current state of the plant x, an MPC controller solves a
constrained N -stage optimal control problem in the form

J∗(x) = min
1

2
xTNQNxN +

1

2

N−1∑
k=0

xTkQxk + uTkRuk

+2xTk Suk +

N∑
k=1

(
σ1 · 1T δk + σ2 · ‖δk‖22

) (2)

subject to x0 = x,

xk+1 = Adxk +Bduk, k = 0, 1, . . . , N − 1,

uk ∈ U, k = 0, 1, . . . , N − 1,

(xk, δk) ∈ X∆, k = 0, 1, . . . , N.

If an optimal input sequence {u∗i (x)}N−1
i=0 and state trajec-

tory {x∗i (x)}Ni=0 exists for this problem given the initial state
x, then an MPC controller can be implemented by applying
the control input u = u∗0(x).

We will assume throughout that the system input con-
straint set U is defined as a set of interval constraints U :=
{u | umin ≤ u ≤ umax }. We assume that the system states
have both free (denoted by xF with index set F), hard-
constrained (index set B) and soft-constrained (index set S)
components, i.e. the set X∆ in (2) is defined as

X∆ =

{
(x, δ) ∈ Rnx× R|S|+

∣∣∣∣∣ xF free, xmin ≤ xB ≤ xmax,

|xi − xc,i| ≤ ri + δi, i ∈ S

}
,

(3)

with xc,i ∈ R being the center of the interval constraint of
radius ri > 0 for a soft-constrained state component. The
index sets F ,B and S are assumed to be pairwise disjoint and
to satisfy F ∪ B ∪ S = {1, 2, . . . , nx}.

We assume throughout that the penalty matrices Q ∈
Rnx×nx , QN ∈ Rnx×nx are positive semidefinite, R ∈
Rnu×nu is positive definite, and S ∈ Rnx×nu is chosen
such that the objective function in (2) is jointly convex in
the states and inputs. There is by now a considerable body
of literature [2], [20] describing conditions on the penalty
matrices and/or horizon length N sufficient to ensure that
the resulting MPC controller is stabilizing (even when no
terminal state constraints are imposed1), and we do not address
this point further. For stability conditions for soft-constrained
problems, the reader is referred to [21] and [22] and the
references therein. In the presence of numerical error, the
sub-optimality can be interpreted as an additive bounded state
disturbance. See [23] for a detailed investigation of stability
properties under this scenario.

If the soft-constrained index set S is nonempty, then a
linear-quadratic penalty on the auxiliary variables δk ∈ R|S|+ ,
weighted by positive scalars (σ1, σ2), can be added to the
objective. In practice, soft constraints are a common measure

1In the presence of polyhedral or ellipsoidal terminal constraints, the state-
constrained methods described in this paper can still be used by adding a
small number of ancillary variables.
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to avoid infeasibility of the MPC problem (2) in the presence
of disturbances. However, there also exist hard state constraints
that can always be enforced and cannot lead to infeasibility,
such as state constraints arising from remodeling of input-rate
constraints. For the sake of generality we address both types
of state constraints in this paper.

If σ1 is chosen large enough, then the optimization problem
(2) corresponds to an exact penalty reformulation of the
associated hard-constrained problem (i.e. one in which the
optimal solution of (2) maintains δk = 0 if it is possible to
do so). An exact penalty formulation preserves the optimal
behavior of the MPC controller when all constraints can be
enforced. We first characterize conditions under which a soft
constraint penalty function for a convex optimization problem
is exact.

Theorem 1 ([24, Prop. 5.4.5]). Consider the convex problem

f∗ := min
z∈Q

f(z) (4)

subject to gj(z) ≤ 0 , j = 1, 2, . . . , r,

where f : Rn → R and gj : Rn → R, j = 1, . . . , r, are
convex, real-valued functions and Q is a closed convex subset
of Rn. Assume that an optimal solution z∗ exists with f(z∗) =
f∗, strong duality holds and an optimal Lagrange multiplier
vector µ∗ ∈ Rr+ for the inequality constraints exists.

i) If σ1 ≥ ‖µ∗‖∞ and σ2 ≥ 0, then

f∗ = min
z∈Q

f(z) +

r∑
j=1

(
σ1 · δj + σ2 · δ2

j

)
(5)

subject to gj(z) ≤ δj , δj ≥ 0, j = 1, 2, . . . , r.

ii) If σ1 > ‖µ∗‖∞ and σ2 ≥ 0, the set of minimizers of
the penalty reformulation in (5) coincides with the set of
minimizers of the original problem in (4).

Remark 1. In the context of the MPC problem (2), the penalty
reformulation is exact if the penalty parameter σ1 is chosen
to be greater than the largest Lagrange multiplier for any
constraint |xi − xc,i| ≤ ri, i ∈ S , over all feasible initial
states x. In general, this bound is unknown a priori and
is treated as a tuning parameter in the control design. The
quadratic penalty parameter σ2 need not be nonzero for such a
penalty formulation to be exact, but the inclusion of a nonzero
quadratic term is necessary for our numerical stability results
under fixed-point arithmetic in Section IV.

For the sake of notational simplicity, the results of this paper
are presented with reference to the optimal control problem in
regulator form in (2). However, all of our results generalize
easily to setpoint tracking problems.

III. FIRST-ORDER SOLUTION METHODS

We next describe two different first-order optimization
methods for solving the optimal control problem (2) efficiently.
In particular, we apply the primal fast gradient method (FGM)
in cases where only input-constraints are present, and a
dual method based on the alternating direction method of

multipliers (ADMM) for cases in which both state- and input-
constraints are present.

A. Input-Constrained MPC Using the Fast Gradient Method

The fast gradient method is an iterative solution method
for smooth convex optimization problems first published by
Nesterov in the early 80s [25]. The method can be applied to
the solution of MPC problem (2) if the future state variables xi
are eliminated by expressing them as a function of the initial
state, x, and the future input sequence (so-called condensing
[1]), resulting in the problem

f∗(x) = min
z
f(z;x) :=

1

2
zTHF z + zTΦx (6)

subject to z ∈ K,

where z := (u0, . . . , uN−1) ∈ Rn, n = Nnu, the Hessian
HF ∈ Rn×n is positive definite under the assumptions in
Section II, and the feasible set is given as K := U× . . .×U.
The current state only enters the gradient of the linear term
of the objective through the matrix Φ ∈ Rn×nx . See [1] for
details on the construction of the matrices.

We consider the constant step scheme II of the fast gradient
method in [26, §2.2.3]. Its algorithmic scheme for the solution
of (6), optimized for parallel execution on parallel hardware,
is given in Algorithm 1. Note that the state-independent terms
(I − 1

LHF ), 1
LΦ and (1 + β) can all be computed offline and

that the product 1
LΦx must only be evaluated once. The core

operations in Algorithm 1 are the evaluation of the gradient
(implicit in line 2) and the projection operator of the feasible
set, πK, in line 3. Since for our application the set K is the
direct product of the N nu-dimensional sets U, it suffices
to consider N independent projections that can be performed
in parallel. For the specific case of a box constraint on the
control input, every such projection corresponds to nu scalar
projections on intervals, each computable analytically. In this
case, the fast gradient method requires only multiplication and
addition, which are considerably faster and use significantly
less resources than division when implemented using digital
circuits.

It can be inferred from [26, Theorem 2.2.3] that for every
state x, Algorithm 1 generates a sequence of iterates {zi}Imax

i=1

such that the residuals f(zi;x)− f∗(x) are bounded by

min

{(
1−

√
1

κ

)i
,

4κ

(2
√
κ+ i)2

}
· 2
(
f(z0;x)− f∗(x)

)
, (7)

for all i = 0, . . . , Imax, where κ denotes the condition number
of f , or an upper bound of it, given by κ=L/µ, where L and
µ are a Lipschitz constant for the gradient of f and convexity
parameter of f , respectively. Note that the convexity parameter
for a strongly convex quadratic objective function as in (6)
corresponds to the minimum eigenvalue of HF . Based on this
convergence result, which states that the bound exhibits the
best of a linear and a sublinear rate, one can derive a certifiable
and practically relevant iteration bound Imax such that the
final residual is guaranteed to be within a specified level of
suboptimality for all initial states arising from a bounded set
[5]. It can further be proved that there is no other variant
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Algorithm 1 Fast gradient method for the solution of MPC
problem (6) at state x (optimized for parallel hardware)
Require: Initial iterate z0 ∈ K, y0 = z0, upper (lower)

bound L (µ > 0) on maximum (minimum) eigenvalue
of Hessian HF , step size β =

(√
L−√µ

)
/
(√
L+
√
µ
)

1: for i = 0 to Imax − 1 do
2: ti := (I − 1

LHF )yi − 1
LΦx

3: zi+1 := πK(ti)
4: yi+1 := (1 + β)zi+1 − βzi
5: end for

of a gradient method with better theoretical convergence [26,
Thm. 2.2.2], i.e. the fast gradient method is an optimal gradient
method.

The fast gradient method is particularly attractive for appli-
cation to MPC in embedded control system design due both
to the relative ease of implementation and to the availability
of strong performance certification guarantees. However, its
use is limited to cases in which the projection operation πK
is simple, e.g. in the case of box-constrained inputs. Unfortu-
nately, the inclusion of state constraints changes the geometry
of the feasible set K such that the projection subproblem is
as difficult as the original problem, since the constraints are
no longer separable in uk. In the next section we therefore
describe an alternative solution method in the dual domain that
avoids these complications, though at the expense of some of
the strong certification advantages.

B. Input- and State-Constrained MPC Using ADMM

In the presence of state constraints, if one requires both Q
and QN to be positive definite, the fast gradient method
can be used again to solve the dual problem via Lagrange
relaxation of the equality constraints [6]. However, in this case
the dual function is not strongly concave and consequently
the convergence rate is severely affected (from linear to
sublinear). A quadratic regularizing term can be added to the
Lagrangian to improve convergence (the so-called method of
multipliers), but this prevents the use of distributed operations
for computing the gradient of the dual function, adding a
significant computational overhead. We therefore seek an
alternative approach in the dual domain.

For dual problems we do not work in the con-
densed format (6), but rather maintain the state vari-
ables xk in the vector of decision variables z :=
(u0, . . . , uN−1, x0, δ0, . . . , xN , δN ) ∈ Rn, n = N(nu + nx +
|S|) + nx + |S|, resulting in the problem

f∗(x) = min
z
f(z;x) :=

1

2
zTHAz + zTh (8)

subject to z ∈ K, F z = b(x).

The affine constraint Fz = b(x) models the dynamic cou-
pling of the states xk and uk via the state update equation (1),
and is at the root of the difficulty in projecting the variables
z onto the constraints in the fast gradient method.

The alternating direction method of multipliers (ADMM)
[27] partitions the optimization variables into two (or more)

groups to maintain the possibility of decoupled projection. In
applying ADMM to the specific problem (6), we maintain an
additional copy y of the original decision variables z and solve
the problem

f∗(x) = min
z,y

f(z, y;x) :=
1

2
yTHAy + yTh

+ IA(y;x) + IK(z) +
ρ

2
‖y − z‖2

(9)
subject to z = y, (10)

where (z, y) ∈ R2n contain copies of all input, state and slack
variables. The functions IA : Rn × Rnx → {0,+∞} and IK :
Rn → {0,+∞} are indicator functions for the sets described
by the equality and inequality constraints, respectively, e.g.

IA(y;x) :=

{
0 if Fy = b(x) ,

+∞ otherwise ,
(11)

where K := U× . . .×U×X∆ × . . .×X∆. The current state
x enters the optimization problem through (11). The inclusion
of the regularizing term (ρ/2)‖y − z‖2 has no impact on
the solution to (9) (equivalently (8)) due to the compatibility
constraint y = z, but it does allow one to drop the smoothness
and strong convexity conditions on the objective function, so
that one can solve control problems with more general cost
functions such as those with 1- or ∞-norm stage costs.

Note that there are many possible techniques for copying
and partitioning of variables in ADMM. In the context of
optimal control, the choice given in (9) results in attractive
computational structures [28].

The dual problem for (9) is given by

max
ν

inf
z,y

Lρ(z, y, ν) :=
1

2
yTHAy + yTh+ IA(y;x)

+ IK(z) + νT (y − z) +
ρ

2
‖y − z‖2 .

ADMM solves this dual problem by repeatedly carrying out
the steps

yi+1 := arg min
y
Lρ(zi, y, νi) , (12a)

zi+1 := arg min
z
Lρ(z, yi+1, νi) , (12b)

νi+1 := νi + ρ(yi+1 − zi+1) . (12c)

The parameter ρ can be any positive number to ensure conver-
gence. There are at present no universally accepted rules for
selecting the value of the penalty parameter however, and it is
typically treated as a tuning parameter during implementation.
See [29], [30] for a more detailed discussion.

Our overall algorithmic scheme for ADMM for the solution
of (9) based on the sequence of operations (12a)–(12c),
optimized for parallel execution on parallel hardware, is given
in Algorithm 2. The core computational tasks are the equality-
constrained optimization problem (12a) and the inequality-
constrained, but separable, optimization problem (12b).
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Algorithm 2 ADMM for the solution of MPC problem (6) at
state x (optimized for parallel hardware)
Require: Initial iterate z0 = z∗−, ν0 = ν∗−, where z∗− and

ν∗− are the shifted solutions at the previous time instant
(see Section V), and ρ is a constant power of 2.

1: for i = 0 to Imax − 1 do
2: yi+1 := M11(−h+ ρzi − νi) +M12b(x)
3:
4: νi+1 := ρyi+1 + νi − ρzi+1

5: end for

In the case of the equality-constrained minimization
step (12a), a solution can be computed from the KKT con-
ditions by solving the linear system[

HA + ρI FT

F 0

] [
yi+1

λi+1

]
=

[
−h− νi + ρzi

b(x)

]
.

Note that only the vector yi+1, and not the multiplier λi+1,
arising from the solution of this linear system is required for
our ADMM method. The most efficient method to solve for
yi+1 is to invert the (fixed) KKT matrix offline, i.e. to compute[

M11 M12

MT
12 M22

]
=

[
HA + ρI FT

F 0

]−1

,

and then to obtain yi+1 online from yi+1 =
M11 (−h− νi + ρzi) +M12b(x) as in Line 2 of Algorithm 2.
Observe that the product M12b(x) needs to be evaluated only
once, and that this matrix is always invertible when ρ > 0
since F has full row rank.

The inequality-constrained minimization step (12b) results
in the projection operation in Line 3 of Algorithm 2. In the
presence of soft state constraints, this operation requires in-
dependent projections onto a truncated two-dimensional cone,
which can be efficiently parallelized and require no divisions.
We describe efficient implementations of this projection oper-
ation in parallel hardware in Section V.

This variant of ADMM is known to converge; see [31,
§3.4; Prop. 4.2] for general convergence results. More recently,
sublinear and linear convergence rates were established. See
[32], [33] for more details.

C. ADMM, Lagrange multipliers and soft constraints

Despite its generally excellent empirical performance,
ADMM can be observed to converge very slowly in certain
cases. In particular, for MPC problems in the form (6),
convergence may be very slow in those cases where there
is a large mismatch between the magnitude of the optimal
Lagrange multipliers ν∗ for the equality constraint (10) and the
magnitude of the primal iterates (zi, yi). The reason is evident
from the ADMM multiplier update step (12c); the existence of
very large optimal multipliers ν∗ necessitates a large number
of ADMM iterations when the difference (zi − yi) remains
small at each iteration and ρ ≈ 1.

This effect is of particular concern for MPC problem
instances with soft constraints. If one denotes by zδ those com-
ponents of z associated with the slack variables {δ1, . . . , δN}

(with similar notation for yδ), then the objective function (9)
features a term σ1 · 1T yδ , with the exact penalty term σ1

typically very large. The equality constraints (10) include the
matching condition zδ − yδ = 0, with associated Lagrange
multiplier νδ . Recalling the usual sensitivity interpretation of
the optimal multiplier ν∗δ , one can conclude that ν∗δ ≈ σ1 · 1
in the absence of unusual problem scaling2.

For soft constrained problems, we avoid this difficulty by
rescaling those components of the matching condition (10)
to the equivalent condition (1/σ1)(zδ − yδ) = 0, which
results in a rescaling of the associated optimal multipliers to
ν∗δ ≈ 1. The aforementioned convergence difficulties due to
excessively large optimal multipliers are then avoided.

IV. FIXED-POINT ASPECTS OF FIRST-ORDER SOLUTION
METHODS

In this section we first motivate the use of fixed-point arith-
metic from a hardware efficiency perspective and then isolate
potential error sources under this arithmetic. We concentrate
on two types of errors. For overflow errors we provide analysis
to guarantee that they cannot occur in the fast gradient method,
whereas for arithmetic round-off errors we prove that there is
a converging upper bound on the total incurred error in either
of the two methods. The results we obtain hold under the
assumptions in Section IV-B and guarantee reliable operation
of first-order methods on fixed-point platforms.

A. Fixed-Point Arithmetic and Error Sources

Modern computing platforms must allow for a wide range
of applications that operate on data with potentially large
dynamic range, i.e. the ratio of the smallest to largest number
to be represented. For general purpose computing, floating-
point arithmetic provides the necessary flexibility. A floating-
point number consists of a sign bit, a mantissa, and an
exponent value that moves the binary point with respect to
the mantissa. The dynamic range grows doubly exponentially
with the number of exponent bits, making it possible to
represent a wide range of numbers with a relatively small
number of bits. However, because two operands can have
different exponents, it is necessary to perform denormalization
and normalization operations before and after every addition
or subtraction, leading to increased resource usage and long
arithmetic delays.

In contrast, hardware platforms employing fixed-point num-
bers use a fixed number of bits for the integer and fraction
fields, i.e. the exponent does not vary and does not need
to be stored. Fixed-point computations are the same as with
integer arithmetic, hence the digital circuitry is simple and fast,
leading to greater power efficiency and significant potential
for acceleration via extra parallelization in a custom hardware
implementation. For instance, in a typical modern FPGA plat-
form [34] fixed-point addition takes one clock cycle, whereas a
single precision floating-point adder would require 14 cycles
while using one order of magnitude more resources for the
same number of bits.

2If one sets the regularization parameter ρ = 0 in (9) and σ2 = 0, then it
can be shown that this approximation becomes exact.
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The benefits of fixed-point arithmetic motivate its use in
first-order methods to realize fast and efficient implementa-
tions of Algorithms 1 and 2 on FPGAs or other low cost and
low power devices with no floating-point support, such as em-
bedded microcontrollers, fixed-point digital signal processors
(DSPs) or programmable logic controllers (PLCs). However,
reduced precision representations and fixed-point computa-
tions incur several types of errors that must be accounted for.
These include:

Quantization Errors: Finite representation errors arise when
converting the problem and algorithm data from high precision
to reduced precision data formats. Potential consequences
include loss of problem convexity, change of optimal solution
and a lack of feasibility with respect to the original problem.

Overflow Errors: Overflow errors occur whenever the num-
ber of bits for the integer part in the fixed-point representation
is too small, and can cause unpredictable behavior of the
algorithm.

Arithmetic Errors: Unlike with floating-point arithmetic,
fixed-point addition and subtraction operations involve no
round-off error provided there is no overflow and the result
has the same number of fraction bits as the operands [35].
For multiplication, the exact product of two numbers with b
fraction bits can be represented using 2b fraction bits, hence a
b-bit truncation of a 2’s complement number incurs a round-
off error bounded from below by −2−b. Recall that in 2’s
complement arithmetic, truncation incurs a negative error both
for positive and negative numbers.

B. Notation and Assumptions

We will use (̂·) throughout in order to distinguish quantities
in a fixed-point representation from those in an exact represen-
tation and under exact arithmetic. Throughout, we assume for
simplicity that all variables and problem data are represented
using the same number of fraction bits b. We further assume
that the feasible sets under finite precision satisfy K̂ ⊆ K,
so that solutions in fixed point arithmetic do not produce
infeasibility in the original problem due to quantization error.

We conduct separate analyses of both overflow and arith-
metic errors for the fast gradient method (Algorithm 1) and
ADMM (Algorithm 2). In both cases, the central requirement
is to choose the number of fraction bits b large enough to
ensure satisfactory numerical behavior. We therefore employ
two different sets of assumptions depending on the numerical
method in question:

Assumption 1 (Fast Gradient Method / Algorithm 1).
The number of fraction bits b and a constant c ≥ 1 are chosen
large enough such that

i) The matrix

Hn =
1

c · λmax(ĤF )
· ĤF ,

has a fixed-point representation Ĥn with all of its eigen-
values in the interval (0, 1], where ĤF is the fixed-point
representation of the Hessian HF , with λmax(ĤF ) its
maximum eigenvalue.

ii) The fixed-point step size β̂ satisfies

1 > β̂ ≥
(√

κ
(
Ĥn

)
− 1
)(√

κ
(
Ĥn

)
+ 1
)−1

≥ 0 ,

where κ(Ĥn) is the condition number of Ĥn.

Assumption 2 (ADMM / Algorithm 2). The number of
fraction bits b is chosen large enough such that

i) The matrix([
M̂11 M̂12

M̂T
12 M̂22

]−1

−
[
ρI F̂T

F̂ 0

])
is positive semidefinite, where ρ is chosen such that it is
exactly representable in b bits.

Observe that it is always possible to select b sufficiently
large to satisfy all of the preceding assumptions, implying that
the above conditions represent a lower bound on the number
of fraction bits required in a fixed-point implementation of
our two algorithms to ensure that our stability results are
valid. Assumptions 1.(i) and 2.(i) ensure that the objective
functions (6) (for the fast gradient method) and (9) (for
ADMM) remain strongly convex and convex, respectively,
despite any quantization error.

In the case of the fast gradient method, Assumption 1.(ii)
guarantees that the true condition number of Ĥn is not
underestimated, in which case the convergence result of the
fast gradient method in (7) would be invalid. In fact, the
assumption ensures that the effective condition number for the
convergence result is given by

κn =

(
1 + β̂

1− β̂

)2

≥ κ
(
Ĥn

)
. (13)

C. Overflow Errors

In order to avoid overflow errors in a fixed-point imple-
mentation, the largest absolute values of the iterates’ and
intermediate variables’ components must be known or upper-
bounded a priori in order to determine the number of bits
required for their integer parts. For the static problem data
(I − Ĥn), Φ̂n, 1 + β̂, β̂, M̂11, or M̂12, the number of integer
bits is easily determined by the maximum absolute value in
each expression.

1) Overflow Error Bounds in the Fast Gradient Method:
In the case of the fast gradient method, it is possible

to bound analytically the largest absolute values of all of
the dynamic data, i.e. the variables that change with every
iteration. We will denote by Φ̂n the fixed-point representation
of

Φn =
1

c · λmax(ĤF )
· Φ.

We summarize the upper bounds on variables appearing in
the fast gradient method in the following proposition:

Proposition 1. If problem (6) is solved by the fast gradient
method using the appropriately adapted Algorithm 1, then
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the largest absolute values of the iterates and intermediate
variables are given by

‖ẑi+1‖∞ ≤ z̄ := max {‖ẑmin‖∞, ‖ẑmax‖∞} ,
‖ŷi+1‖∞ ≤ ȳ := z̄ + β̂‖ẑmax − ẑmin‖∞,

‖(I − Ĥn) ŷi‖∞ ≤ ȳinter := ‖I − Ĥn‖∞ · ȳ, (14)
‖x̂‖∞ ≤ x̄ := max

x∈X̂0

‖x‖∞,

‖Φ̂nx̂‖∞ ≤ h̄ := ‖Φ̂n‖∞ · x̄, and

‖ti‖∞ ≤ t̄ := ȳinter + h̄,

for all i = 0, 1, . . . , Imax − 1. The set X̂0 is chosen such that
for every state in exact arithmetic x ∈ X0 we have x̂ ∈ X̂0.

Proof. Follows from interval arithmetic and properties of the
vector/matrix ‖ · ‖∞-norm.

Note that the bound in (14) also applies for the intermediate
elements/cumulative sums in the evaluation of the matrix-
vector product. Observe that most of the bounds stated in
Proposition 1 are tight.

2) Overflow Error Bounds in ADMM:
If problem (9) is solved using ADMM via Algorithm 2,

then we are not aware of any general method to upper
bound the Lagrange multiplier iterates νi analytically, and
consequently are unable to establish analytic upper bounds
on all expressions involving dynamic data. In this case, one
must instead estimate the undetermined upper bounds through
simulation and add a safety factor when allocating the number
of integer bits. As a result, with ADMM, we trade analytical
guarantees on numerical behavior for the capability to solve
more general problems.

D. Arithmetic Round-Off Errors

We next derive an upper bound on the deviation of an
optimal solution ẑ∗ produced via a fixed-point implementation
of either Algorithm 1 or 2 from the optimal solutions produced
from the same algorithms implemented using exact arithmetic.
In both cases, we denote by ẑi a fixed-point iterate. We wish
to relate these iterates to the iterates zi generated under exact
arithmetic, by establishing a bound in the form

‖ẑi − zi‖ = ‖ηi‖ ≤ ∆i

with limi→∞∆i finite, where ηi := ẑi − zi is the solution
error attributable to arithmetic round-off error up to the ith

iteration. Consequently, we can show that inaccuracy in the
computed optimal solution induced by arithmetic errors in
either algorithm are bounded, which is a crucial prerequisite
for reliable operation of first-order methods on fixed-point
platforms.

In both cases, we use a control-theoretic approach based on
standard Lyapunov methods to derive bounds on the solution
error arising specifically from fixed-point arithmetic error. For
simplicity of exposition, we consider only those errors arising
from arithmetic errors and neglect quantization errors in the
analysis. This choice does not alter substantively the results
presented for either algorithm. Our approach is in contrast to
(and more direct than) other approaches to error accumulation

analysis in the fast gradient method such as [36], [37], which
consider inexact gradient computations but do not address
arithmetic round-off errors explicitly. In the case of ADMM,
we are not aware of any existing results relating to error
accumulation in fixed-point arithmetic.

1) Stability of Arithmetic Errors in the Fast Gradient
Method:

We consider first the numerical stability of the fast gradient
method, by examining in detail the arithmetic error introduced
at each step of a fixed-point implementation of Algorithm 1.

At iteration i, the error in line 2 of Algorithm 1 is given by

t̂i − ti = (I − Ĥn)(ŷi − yi) + εt,i ,

where εt,i is a vector of errors from the matrix-vector multipli-
cation. Since there are n round-off errors in the computation
of every component, εt,i is componentwise in the interval
[−n2−b, 0].

For the projection in line 3, and recalling that K̂ ⊆ K
is a box, no arithmetic error is introduced. Indeed, one can
easily verify that the error t̂i − ti can only be reduced
by projecting onto a box, i.e. if t̂i and ti are inside the
feasible region the error remains, but if both quantities are
saturated the corresponding component of the error goes to
zero. This effect is modelled by multiplication with a diagonal
matrix diag(επ,i), with επ,i componentwise in the interval
[0, 1].

Finally, in line 4, the error induced by fixed-point arithmetic
is

ŷi+1 − yi+1 = (1 + β̂)ηi+1 − β̂ηi + εy,i ,

where two scalar-vector multiplications incur error εy,i with
components in [−2−b, 2−b] (addition and subtraction). Defin-
ing the initial error residual terms η−1 = η0 = ẑ0 − z0,
and setting ẑ0 − z0 = ŷ0 − y0, one can derive the two-step
recurrence

ηi+1 = diag(επ,i)
(
I−Ĥn

)(
ηi+β̂(ηi−ηi−1)+εy,i−1

)
+ εt,i

for the accumulated arithmetic error at each iteration. Note
that the error ηi at each iteration is inherently bounded by the
box K̂. However, in the absence of the projection operation of
line 3 and the associated error truncation, these errors remain
bounded. To show this, we can express the evolution of the
arithmetic error using the two-step recurrence[

ηi+1

ηi

]
︸ ︷︷ ︸
=:ξi+1

=

[(
1 + β̂

)(
I − Ĥn

)
−β̂
(
I − Ĥn

)
I 0

]
︸ ︷︷ ︸

=:A

[
ηi
ηi−1

]
︸ ︷︷ ︸

ξi

+

[(
I − Ĥn

)
I

0 0

]
︸ ︷︷ ︸

=:B

[
εy,i−1

εt,i

]
︸ ︷︷ ︸

=:υi

, (15)

and then show that this linear system is stable. Recalling
Assumption 1, which bounds the eigenvalues of Ĥn in the
interval (0, 1] and β̂ in the interval [0, 1), we can use the
following result:
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Lemma 1. Let C be any symmetric positive definite matrix
with maximum eigenvalue less than or equal to one. For every
constant γ in the interval [0, 1] the matrix

M =

[
(1 + γ)(I − C) −γ(I − C)

I 0

]
is Schur stable, i.e. its spectral radius ρ(M) is less than one.

Proof. Assume the eigenvalue decomposition I−C = V TΛV ,
with Λ diagonal with entries λi ∈ [0, 1). The eigenvalues of
M are unchanged by left- and right-multiplication by [ V V ]
and its transpose. It is therefore sufficient to examine instead
the spectral radius of

MD =

[
(1 + γ)Λ −γΛ

I 0

]
.

Since this matrix has exclusively diagonal blocks, its eigen-
values coincide with those of the two-by-two submatrices

MD,i =

[
(1 + γ)λi −γλi

1 0

]
, for i = 1, . . . , n,

and it is sufficient to prove that every such submatrix has
spectral radius less than one. Note that the eigenvalues of
MD,i are the roots of the characteristic equation

µ2 − (1 + γ)λiµ+ λiγ = 0. (16)

It is easily verified that a sufficient condition for any quadratic
equation in the form

x2 + 2bx+ c = 0

to have roots strictly inside the unit disk is for its coefficients
to satisfy i) |b| < 1, ii) c < 1 and iii) 2|b| < c + 1. For the
eigenvalue solutions to (16), this amounts to i) (1+γ)λi/2<1,
ii) λiγ < 1 and iii) (1 + γ)λi < γλi + 1. All three conditions
are easily confirmed for the case λi ∈ [0, 1), γ ∈ [0, 1].

2) Stability of Arithmetic Errors in ADMM:
As in the preceding section, for ADMM one can analyze in

detail the arithmetic error introduced at each step of a fixed-
point implementation of Algorithm 2.

Defining ηi := ẑi − zi, γi := ν̂i − νi, a similar analysis
to that of the preceding section produces the two-step error
recurrence[
ηi+1

γi+1

]
︸ ︷︷ ︸
=:ξi+1

=

[
ρ diag(επ,i) M̂11 −diag(επ,i) (M̂11− 1

ρ
I)

ρ2M̂11(I−diag(επ,i)) (I−ρM̂11)(I−diag(επ,i))

]
︸ ︷︷ ︸

=:A

[
ηi
γi

]
︸︷︷︸
ξi

+
[

diag(επ,i) 0
ρ(I − diag(επ,i)) I

]
︸ ︷︷ ︸

=:B

[
εy,i
εν,i

]
︸ ︷︷ ︸
=:υi

, (17)

where: εy,i ∈ [−n2−b, 0]n is a vector of multiplication errors
arising from Algorithm 2, line 2; επ,i ∈ [0, 1]n is a vector of
error reduction scalings arising from the projection operation
in line 3; and εν,i∈ [−2−b, 2−b]n is a vector of multiplication
errors arising from line 4 with εν,−1 = 0. Note that one can
show that even when K̂ is not a box in the presence of soft state
constraints, the error can only be reduced by the projection
operation. The initial iterates of the recurrence relation are
η−1 = η0, where η0 := ẑ0 − z0.

As in the case of the fast gradient method, the arithmetic
error ηi is inherently bounded by the constraint set K̂. How-
ever, even in the absence of these bounding constraints (so
that diag(επ,i) = I), one can still establish that the arithmetic
errors are bounded via examination of the eigenvalues of the
matrix

N :=

[
ρM̂11 −(M̂11 − 1

ρI)

0 0

]
. (18)

Recalling Assumption 2, we have the following result:

Lemma 2. The matrix N in (18) is Schur stable for any ρ > 0.

Proof. The eigenvalues of (18) are either 0 or ρλi(M̂11), so it
is sufficient to show that the symmetric matrix M̂11 satisfies
ρ‖M̂11‖ < 1. Recalling that[

M̂11 M̂12

M̂T
12 M̂22

]
=

[
Ẑ F̂T

F̂ 0

]−1

where Ẑ := ĤA + ρI � 0, the matrix inversion lemma
provides the identity

M̂11 = Ẑ−
1
2

[
I − Ẑ− 1

2 F̂T (F̂ Ẑ−1F̂T )−1F̂ Ẑ−
1
2

]
Ẑ−

1
2

=: Ẑ−
1
2 P̂ Ẑ−

1
2 , (19)

where P̂ is a projection onto the kernel of F̂ Ẑ−
1
2 , hence

‖M̂11‖ ≤ ‖Ẑ−
1
2 ‖‖P̂‖‖Ẑ− 1

2 ‖ = ‖Ẑ−1‖. It follows that

ρ‖M̂11‖ ≤ ρ‖(ĤA + ρI)−1‖ = ρ · 1

λmin(ĤA) + ρ
≤ 1,

where λmin(ĤA) is the smallest eigenvalue of the positive
semidefinite matrix ĤA. If ĤA is actually positive definite,
then the preceding inequality is strict and the proof is com-
plete.

Otherwise, to prove that the inequality is strict we must
show that 1/ρ is not an eigenvalue for M̂11 (which is positive
semidefinite by virtue of (19)). Assume the contrary, so that
there exists some eigenvector v of M̂11 with eigenvalue 1/ρ,
and some additional (arbitrary) vector q that solves the linear
system [

v
q

]
=

[
Ẑ F̂T

F̂ 0

]−1 [
ρ · v

0

]
.

Any solution must then satisfy both ĤAv ∈ Im(F̂T )
and v ∈ Ker(F̂ ). Consequently vT ĤAv = 0, which re-
quires v ∈ Ker(ĤA) since ĤA is positive semidefinite.
Recall that any such v can be decomposed into v =
(u0, . . . , uN−1, x0, δ0, . . . , xN , δN ). If the quadratic penalty
for each δi is positive definite, then v ∈ Ker(ĤA) requires
each δi = 0.

Since F̂ v = 0, the remaining components of v must
correspond to a sequence of state and inputs compatible with
the system dynamics in (2), starting from an initial state
x0 = 0. Any solution v 6= 0 would then require at least one
component ui 6= 0. Then vT ĤAv ≥ uTi Rui > 0 since R is
assumed positive definite, a contradiction.
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3) Arithmetic Errors Bounds for the Fast Gradient Method
and ADMM:

Finally, for both the fast gradient method and ADMM we
can use Lemmas 1 and 2 to establish an upper bound on the
magnitude of error ηi for any arithmetic round-off errors that
might have occurred up to iteration i.

Proposition 2. Let b be the number of fraction bits and n
be the dimension of the decision vector. Consider the error
dynamics due to arithmetic round-off in (15) or in (17),
assuming no error reduction from projection. The magnitude
of any accumulation of round-off errors up to iteration i,
‖ηi‖ = ‖ẑi − zi‖, is upper-bounded by

η̄i=‖EAi‖
∥∥∥∥[η0

η0

]∥∥∥∥+2−b
√
n(1+n2)

i−1∑
k=0

‖EAi−1−kB‖ (20)

for all i = 0, . . . , Imax − 1, where matrix E =
[
I 0

]
.

Proof. From the one-step recurrence (15) or (17) we find that

ξi = Ai ξ0 +

i−1∑
k=0

Ai−1−kBυk, i = 0, 1, . . . Imax − 1,

such that the result is obtained from applying the properties
of the matrix norm. Observe that 2−b

√
n(1 + n2) is the

maximum magnitude of υk for any k = 0, . . . , i− 1.

Since the matrix A is Schur stable, the bound in (20)
converges. Indeed, the effect of the initial error ξ0 decays
according to

‖EAi‖ ∝ max
j
|λj |i, (21)

whereas the term driven by arithmetic round-off errors in every
iteration behaves according to
i−1∑
k=0

‖EAi−1−kB‖ ∝ 1

1−maxj |λj |
− maxj |λj |i

1−maxj |λj |
. (22)

This result can be used to choose the number of bits b a priori
to meet accuracy specifications on the minimizer, as illustrated
with an example in Figure 6.

V. EMBEDDED HARDWARE ARCHITECTURES FOR
FIRST-ORDER SOLUTION METHODS

Amdahl’s law [38] states that the potential acceleration of
an optimization algorithm through parallelization is limited by
the fraction of sequential dependencies in the algorithm. First-
order optimization methods such as the fast gradient method
and ADMM have a smaller number of sequential dependencies
than interior-point or active-set methods. In fact, a very
large fraction of the computation involves a single readily
parallelizable matrix-vector multiplication, hence the expected
benefit from parallelization is substantial. Our implementations
of both the fast gradient method (Algorithm 1) and ADMM
(Algorithm 2) differ somewhat from more conventional imple-
mentations of these methods in order to minimize sequential
dependencies. Observe that in both of our algorithms, the
computations of the individual vector components are inde-
pendent and the only communication occurs during matrix-
vector multiplication. This allows for efficient parallelization

πK̂

Fig. 1: Fast gradient compute architecture. Boxes denote stor-
age elements and dotted lines represent Nnu parallel vector
links. The dot-product block v̂T ŵ and the projection block
πK̂ are depicted in Figures 2a and 3a in detail. FIFO stands
for first-in first-out memory and is used to hold the values of
the current iterate for use in the next iteration. In the initial
iteration, the multiplexers allow x̂ and Φ̂n through and the
result Φ̂nx̂ is stored in memory. In the subsequent iterations,
the multiplexers allow ŷi and I−Ĥn through and Φ̂nx̂ is read
from memory.

given the custom computing and communication architectures
discussed next. Specifically, we describe a tool that takes as
inputs the data type, number of bits, level of parallelism and
the delays of an adder/subtracter (lA) and multiplier (lM ) and
automatically generates a digital architecture described in the
VHDL hardware description language.

A. Hardware Architecture for the Fast Gradient Method

For a fixed-point data type, the parameterized architecture
implementing Algorithm 1 for problem (6) is depicted in
Figure 1. The matrix-vector multiplication is computed in the
block labeled v̂T ŵ, which is shown in detail in Figure 2a. It
consists of an array of Nnu parallel multipliers followed by
an adder reduction tree of depth dlog2Nnue. The architecture
for performing the projection operation on the set K̂ is shown
in Figure 3a. It compares the incoming value with the upper
and lower bounds for that component. Based on the result, the
component is either saturated or left unchanged.

The amount of parallelism in the circuit is parameterized
by the parameter P . In Figure 1, P =1, meaning that there is
parallelism within each dot-product but the Nnu dot-products
required for matrix-vector multiplication are computed sequen-
tially. If the level of parallelization is increased to P =2, there
will be two copies of the shaded circuit in Figure 1 operating
in parallel: with one unit computing the odd components of ŷi
and ẑi and with the other unit computing the even components.
The different blocks communicate through a serial-to-parallel
shift register that accepts P serial streams and outputs Nnu
parallel values for matrix-vector multiplication. These Nnu
values are the same for all blocks. It takes

⌈
Nnu

P

⌉
clock cycles

to have enough data to start a new iteration, hence the number
of clock cycles needed to compute one iteration of the fast
gradient method for P ∈ {1, . . . , Nnu} is

LF :=

⌈
Nnu
P

⌉
+ lAdlog2Nnue+ 2lM + 3lA + 1 . (23)

Expression (23) suggests that there will be diminishing
returns to parallelization – a consequence of Amdahl’s law.
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+
+

+
+

+

(a) Dot-product block with
parallel tree architecture.

(b) Hardware support for warm-
starting, which adds one cycle de-
lay. The last entries of the vector are
padded with wN , which can be con-
stant or depend on previous values.

Fig. 2: Architectures of dot-product and warm-starting.

(a) Box projection
block. The total delay
from t̂i to ẑi+1 is
lA + 1.

(b) Cone projection block. The total delay
for each component is 2lA+1. x and δ are
assumed to arive and leave in sequence.

Fig. 3: Projection architectures. A delay of lA cycles is denoted
by z−lA .

However, (23) also suggests that if there are enough resources
available, the effect of the problem size on increased com-
putational delay is only logarithmic in the worst case. As
Moore’s law continues to deliver devices with greater transistor
densities, the possibility of implementing algorithms in a fully
parallel fashion for medium size optimization problems is
becoming a reality.

B. Hardware Architecture for ADMM

Algorithm 2 shares the same computational patterns with
Algorithm 1. Matrices M̂11 and M̂12 have the same dense
structure as matrices I − Ĥn and Φ̂n, hence the high-level
architecture is very similar and we do not include it here
to avoid replication. The differences lie in the size of the
matrices, which affect the number of clock cycles to compute
one iteration

LA :=
⌈nA
P

⌉
+ lAdlog2 (nA)e+ lM + 6lA + 2 , (24)

where nA := N(nu + nx + |S|) + nx + |S|, warm-starting
support for variables z and ν (shown in Figure 2b), and the
projection block for supporting soft state constraints described
in Figure 3b. This block performs the projection of the pair
(x, δ) onto the set satisfying {|x− c| ≤ r + δ, δ ≥ 0} by using
an explicit solution map for the projection operation and com-
puting the search procedure efficiently. In fact, only lA extra
cycles are needed compared to the standard hard-constrained
projection. The block performs a set of comparisons that are
used to drive the select signal of a multiplexer.

Note that since multiplication and division by powers of
two requires no resources in hardware (just a reinterpretation
of an array of signals), if ρ is restricted to be a power of two,
no hardware multipliers are required in ADMM outside of
the matrix-vector multiplication block. Table I compares the

TABLE I: Resources required for the fast gradient and ADMM
computing architectures.

Fast gradient ADMM
multipliers P [Nnu + 2] PnA

adders/subtracters P [Nnu + 3] P [nA + 15]
memory blocks P [Nnu + nx + 4] P [nA + 8]

size of memory blocks
⌈
Nnu
P

⌉ ⌈nA
P

⌉

u4

Fig. 4: Oscillating masses example.

resources required to implement the two architectures. Again,
with ADMM we trade higher resource requirements and longer
delays for the capability to solve more general problems.

Note that in a custom hardware implementation of either of
our two methods, the number of execution cycles per iteration
is exact. We also employ a fixed number of iterations in our
implementations of both algorithms, rather than implementing
a numerical convergence test, since such convergence tests
represent a somewhat self-defeating computational bottleneck
in a hard real-time context. Providing cycle accurate comple-
tion guarantees is critical for reliability in high-speed real-time
applications [39].

VI. NUMERICAL BENCHMARK STUDY

We reported an implementation of the fast gradient ar-
chitecture in the preliminary publication [19] to implement
an input-constrained MPC controller for a real-world, highly
dynamic positioning system inside an atomic force microscope
requiring a sampling rate in excess of 1MHz. In this paper, for
easier comparison with the existing literature, we use a widely
studied benchmark example consisting of a set of oscillating
masses attached to walls [10], [40], as illustrated by Figure 4.
The system is sampled every 0.5 seconds assuming a zero-
order hold and the masses and the spring constants have a
value of 1kg and 1Nm−1, respectively3. The system has four
control inputs and two states for each mass, its position and
velocity, for a total of eight states. The goal of the controller,
with parameters N = 10, Q = I and R = I , is to track a
reference for the position of each mass while satisfying the
system limits.

We consider first the case where the control inputs are
constrained to the interval [−0.5, 0.5] and the optimization
problem (6) with 40 optimization variables is solved via the
fast gradient method. Secondly, we consider additional hard
constraints on the rate of change in the inputs on the inter-
val [−0.1, 0.1] and soft constraints on the states corresponding
to the mass positions on the interval [−0.5, 0.5]. The remaining
states are left unconstrained. The state is augmented to enforce
input-rate constraints, and the further inclusion of slack vari-
ables increases the dimension of the state vector to nx = 12.
Note that for problems of this size, MPC control designs

3Note that we choose this sampling time and parameter set for ease of
comparison to other published results. Our implemented methods require
computation times on the order of 1µs, as we report later in this section.
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(a) Trajectory with 21 samples hitting the input constraints.
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(b) Trajectory with 11, 28 and 14 samples hitting the input, rate and
output constraints, respectively.

Fig. 5: Closed-loop trajectories showing actuator limits, desir-
able output limits and a time-varying reference. MPC allows
for optimal operation on the constraints.

based on parametric programming [3], [4] are generally not
tenable, necessitating online optimization methods. The result-
ing problem with 216 optimization variables in the form (9)
is solved via ADMM. The closed-loop trajectories using an
MPC controller based on a double precision solver running to
optimality are shown in Figure 5, where all the constraints
become active for a significant portion of the simulation.
We do not include any disturbance model in our simulation,
although the presence of an exogenous disturbance signal
would not lead to infeasibility since the MPC implementation
includes only soft-constrained states. Trajectories arising from
closed-loop simulation using a controller based on our fixed-
point methods are indistinguishable from those in Figure 5, so
are excluded for brevity.

As a reference for later comparison, an input-constrained
problem with two inputs and 10 states, formulated as an
optimization problem of the form (6) with 40 variables, was
solved in [40] using the fast gradient method in approximately
50 µseconds. In terms of state-constrained implementations,
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Fig. 6: Practical convergence behavior of the fast gradient
method (top) and ADMM (bottom) under different number
representations. Theoretical error bounds given by (20) are
represented by solid lines.

a problem with three inputs and 12 states, formulated as a
sparse quadratic program with hard state constraints and 300
variables, was solved in [10] using an interior-point method
reporting computing times in the region of 5 milliseconds,
while the state constraints remained inactive. In both cases,
the solvers were implemented in software on high-performance
desktop machines.

Our goal is to choose the minimum number of bits and
solver iterations such that the closed-loop performance is
satisfactory while minimizing the amount of resources needed
to achieve certain sampling frequencies. Assumptions 1 and 2
impose a lower bound on the number of bits given by b ≥ 10
and b ≥ 18 for the input- and state-constrained problems,
respectively. Figure 6 shows the convergence behavior of
the fast gradient method and ADMM for two samples in



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. X, NO. Y, DECEMBER 2014 12

TABLE II: Percentage difference in average closed-loop cost
with respect to a standard double precision implementation.
In each table, b is the number of fraction bits employed and
Imax is the (fixed) number of algorithm iterations. In certain
cases, the error increases with the number of iterations due to
increasing, yet bounded, accumulation of round-off errors.

Imax\b 10 12 14 16 18 20
5 5.30 2.76 2.87 3.03 3.05 3.06
10 14.53 0.14 0.06 0.18 0.20 0.02
15 17.04 0.35 0.25 0.04 0.00 0.01
20 16.08 0.15 0.19 0.06 0.01 0.00
25 17.27 0.15 0.19 0.05 0.01 0.00
30 16.90 0.31 0.21 0.03 0.02 0.00
35 18.44 0.19 0.22 0.05 0.01 0.00

(a) FGM

Imax\b 10 12 14 16 18 20
10 53.49 0.18 1.17 0.68 0.57 0.58
15 47.84 0.46 1.08 0.63 0.51 0.49
20 44.79 0.76 0.95 0.57 0.45 0.42
25 47.03 0.98 0.86 0.51 0.39 0.37
30 45.17 1.02 0.82 0.46 0.35 0.32
35 46.02 1.07 0.81 0.43 0.31 0.28
40 46.87 1.29 0.74 0.41 0.28 0.25

(b) ADMM

the simulation with an actively constrained solution. The
theoretical error bounds on the residual round-off error ηi,
given by (20), allow one to make practical predictions for the
actual error for a given number of bits, which, as predicted
by Lemma 2 and (21) and (22), converges to a finite value.
Table II shows the relative difference in closed-loop tracking
performance for different fixed-point fast gradient and ADMM
controllers compared to the optimal controller. Assuming that
a relative error smaller than 0.05% is desirable, using 15
solver iterations and 16 fraction bits would be a suitable
choice for the fast gradient method. The problem (9) solved
via ADMM appears more vulnerable to reduced precision
implementation, although satisfactory control performance can
still be achieved using a surprisingly small number of bits. In
this case, employing more than 18 fraction bits or more than
40 ADMM iterations results in insignificant improvements.

For the implementation of ADMM there are a number of
tuning parameters left to the control designer. Setting the
regularization parameter to ρ = 2 simplifies the implementa-
tion and provided good convergence behavior. The maximum
observed value for the Lagrange multipliers ν was 7.8, so
the penalty parameter σ1 was set to σ1 = 8 to obtain an
exact penalty formulation as described by Theorem 1. In
Section III-C it was noted that the convergence of ADMM
can be very slow when there is large mismatch between the
size of the primal and dual variables. This problem can be
largely avoided by scaling the matching condition (10) with
a diagonal matrix, where the entries associated with the soft-
constrained states and the slack variables are assigned σ and
the rest are assigned 1. This scaling procedure correspond to
variable transformations y = Dỹ and z = Dz̃ that can be
applied offline.

In order to evaluate the potential computing performance
the architectures described in Section V were implemented in
FPGAs. For a fixed number of iterations one can calculate

the execution time of the solver deterministically according
to (23) or (24). The FPGA designs can be clocked at more
than 400 MHz using chips from Xilinx’s high-performance
Virtex 6 family or at more than 230 MHz using devices from
the low cost and low power Spartan 6 family. Table III shows
the achievable sampling times on the two families for different
levels of parallelization. The resource usage is stated in terms
of the number of embedded multiplier blocks since this is the
limiting resource in these designs. For the input-constrained
problem solved via the fast gradient method, one can achieve
sampling rates beyond 1 MHz with Virtex 6 devices using
a modest amount of parallelization. One can also achieve
sampling rates in the region of 700 kHz with Spartan 6 devices
consuming in the region of 1 W of power. For the state-
constrained problem solved via ADMM, since the number of
variables is significantly larger, larger devices are needed and
longer computational times have to be tolerated. In this case,
achievable solution times range from 40kHz to 200kHz for
different Virtex 6 devices.

Note that the fastest performance numbers reported in the
literature are in the millisecond region, several orders of
magnitude slower than what is achievable using the techniques
presented in this paper.

TABLE III: Resource usage and potential performance at
400MHz (Virtex6) and 230MHz (Spartan6) with 15 and 40
solver iterations for FGM (Table IIIa) and ADMM (Table IIIb),
respectively. The suggested chips in the bottom two rows of
each table are the smallest with enough embedded multipliers
to support the resource requirements of each implementation.

P 1 2 3 4 8 16 32
multipliers 42 84 126 168 336 672 1344

V6 Ts (µs) 1.95 1.20 0.98 0.82 0.64 0.56 0.53
S6 Ts (µs) 3.39 2.09 1.70 1.43 1.10 0.98 0.91

V6 chip LX75 LX75 LX75 LX75 LX130 LX240 SX315
S6 chip LX45 LX75 LX75 LX100 - - -

(a) FGM

P 1 2 3 4 5 6 7
multipliers 216 432 648 864 1080 1296 1512

V6 Ts (µs) 23.40 12.60 9.00 7.20 6.20 5.40 4.90
S6 Ts (µs) 40.70 21.91 15.65 12.52 10.78 9.39 8.52

V6 chip LX75 LX130 LX240 LX550 SX315 SX315 SX475
S6 chip - - - - - - -

(b) ADMM

VII. ACKNOWLEDGEMENTS

This work was supported by the EPSRC (Grants
EP/G031576/1 and EP/I012036/1) and the EU FP7 Project
EMBOCON, as well as industrial support from Xilinx, the
Mathworks, and the European Space Agency.

REFERENCES

[1] J. M. Maciejowski, Predictive Control with Constraints. Harlow, UK:
Pearson Education, 2001.

[2] J. B. Rawlings and D. Q. Mayne, Model predictive control: Theory and
design. Nob Hill Publishing, 2009.

[3] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The explicit
linear quadratic regulator for constrained systems,” Automatica, vol. 38,
no. 1, pp. 3–20, Jan 2002.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. X, NO. Y, DECEMBER 2014 13

[4] F. Comaschi, B. A. G. Genuit, A. Oliveri, W. P. Heemels, and M. Storace,
“FPGA implementations of piecewise affine functions based on multi-
resolution hyperrectangular partitions,” IEEE Transactions on Circuits
and Systems I, vol. 59, no. 12, pp. 2920–2933, Dec 2012.

[5] S. Richter, C. Jones, and M. Morari, “Computational complexity cer-
tification for real-time MPC with input constraints based on the fast
gradient method,” IEEE Transactions on Automatic Control, vol. 57,
no. 6, pp. 1391–1403, Jun 2012.

[6] S. Richter, M. Morari, and C. Jones, “Towards computational complexity
certification for constrained MPC based on lagrange relaxation and
the fast gradient method,” in Proc. 50th IEEE Conf. on Decision and
Control, Orlando, USA, Dec 2011, pp. 5223–5229.
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IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. X, NO. Y, DECEMBER 2014 14

Paul Goulart received the S.B. and S.M. degrees in
aeronautics and astronautics from the Massachusetts
Institute of Technology, Cambridge, MA, USA, and
the Ph.D. degree in 2007 from the University of
Cambridge, Cambridge, U.K., where he was a Gates
Cambridge Scholar. From 2007 to 2011, he was a
Lecturer in control systems in the Department of
Aeronautics, Imperial College London, and is cur-
rently with the Automatic Control Laboratory, ETH
Zurich. His research interests include robust and
predictive control, robust optimization, and control

of fluid flows.

Stefan Richter received an MSc in Telematics from
the Technical University of Graz, Austria, in 2007.
In 2012 he obtained a PhD from ETH Zürich for
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gree from ETH Zürich, Zürich, Switzerland, and
the Ph.D. degree from the University of Minnesota,
Minneapolis, MN, USA, both in chemical engineer-
ing. He was appointed Head of the Department of
Information Technology and Electrical Engineering,
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