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ABSTRACT

Let M be an m-dimensional Riemannian manifold with sectional curvature bounded from below.

We consider hypersurfaces in the (m + 1)-dimensional product manifold M × R with positive

constant r-mean curvature. We obtain height estimates of certain compact vertical graphs in

M × R with boundary in M × {0}. We apply this to obtain topological obstructions for the

existence of some hypersurfaces. We also discuss the rotational symmetry of some embedded

complete surfaces in S2 × R of positive constant 2-mean curvature.

Key words: product manifold, hypersurface, r-mean curvature.

1 INTRODUCTION

If M
m+1

is an (m+ 1)-dimensional oriented Riemannian manifold and �m is a hypersurface in M ,

the r-mean curvature of �, denoted by Hr , is the weighted r’th symmetric function of the second

fundamental form (see Definition 2.1). The hypersurfaces with constant r-mean curvature include

those of constant mean curvature, and of constant Gauss-Kronecker curvature. In some situations,

for example, M = R
m+1, S

m+1, H
m+1(−1), a hypersurface of constant r-mean curvature is a critical

point for a certain variational problem (See the related works in (Reilly 1973), (Rosenberg 1993),

(Barbosa and Colares 1997) and (Elbert 2002)).

Heinz discovered that a compact graph � in R
m+1 with zero boundary values, of constant

mean curvature H �= 0, is at most a height 1
H

from its boundary. A hemisphere in R
m+1 of

radius 1
H

shows this estimate is optimal. Using Alexandrov reflection techniques, it follows that a
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compact embedded hypersurface with constant mean curvature H �= 0 and boundary contained in

xm+1 = 0, is at most a distance 2
H

from the hyperplane xm+1 = 0.

Height estimates have been obtained by the second author (Rosenberg 1993) for compact

graphs � in R
m+1 with zero boundary values and with a higher order positive constant r-mean

curvature. He also obtained such height estimates in space forms. For example, in R
3, such a

graph of positive constant Gauss curvature can rise at most 1√
H2

from the plane containing the

boundary. In general, the maximum height is 1

(Hr )
1
r

. For r = 1, this result in hyperbolic space

H
m+1(−1) was proved by Korevaar, Kusner, Meeks and Solomon (Korevaar et al. 1992). We refer

the reader to (Rosenberg 1993) for applications of these height estimates.

In (Hoffman et al. 2005), Hoffman, Lira and Rosenberg obtained height estimates for some

vertical graphs in M2 × R of nonzero constant mean curvature, where M is a Riemannian surface.

In this paper, we will consider orientable hypersurfaces in an (m + 1)-dimensional oriented

product manifold M × R with positive constant r-mean curvature. Here M is an m-dimensional

Riemannian manifold with sectional curvature bounded below. The typical models are when

M = R
m, S

m, H
m(−1). We will obtain height estimates for such compact vertical graphs with

boundary in M×{0}. A significant difference between this case and the previous cases we discussed

is the nature of the linearized operator. It is no longer a divergence form operator and we do not

have a flux formula. We prove that,

Theorem 1.1. (Th. 4.1). Let M be an m-dimensional oriented Riemannian manifold. Let � be a

compact vertical graph in the (m+1)-dimensional product manifold M ×R with positive constant

Hr , for some 1 ≤ r ≤ m, with boundary in M × {0}. Let h : � → R denote the height function

of �.

(i) If the sectional curvature of M satisfies K ≥ 0, then on �,

|h| ≤ H
− 1

r
r ; (1.1)

(ii) When r = 2, if the sectional curvature of M satisfies K ≥ −τ (τ > 0), and H2 > τ , then

on �,

|h| ≤
√

H2

H2 − τ
. (1.2)

(iii) When r = 1, if the sectional curvature of M satisfies K ≥ −τ (τ > 0), and H 2
1 > m−1

m
τ , then

on �,

|h| ≤ H1

H 2
1 − m−1

m
τ
. (1.3)

We give some applications of Theorem 1.1 using the Alexandrov reflection technique. First

we give the extrinsic vertical diameter estimate of compact embedded surfaces in M × R with

An Acad Bras Cienc (2005) 77 (2)



CONSTANT r-MEAN CURVATURE HYPERSURFACES 185

positive constant r-mean curvature (under the same curvature assumptions as in Theorem 1.1. See

Th.4.2); Secondly, we prove that if M is an m-dimensional compact Riemannian manifold and � is

a noncompact properly embedded hypersurface in Mm×R with positive constant r-mean curvature

(under the same curvature assumptions as in Theorem 1.1), then the number of ends of � is not

one (Th.4.3). Thus we give a topological obstruction for the existence of such a hypersurface. For

example, if � is a noncompact properly embedded hypersurface in S
m × R of positive constant

r-mean curvature for 1 ≤ r ≤ m, then the number of ends of � is more than one (Cor.4.1).

In this paper, we also consider the properties of symmetry of certain embedded hypersurfaces of

positive constant r-mean curvature. Alexandrov (Alexandrov 1962) showed an embedded constant

mean curvature hypersurface in the Euclidean space must be a standard round hypersurface. The

symmetric properties of hypersurfaces (with or without boundary) in the Euclidean space and the

other space forms with constant mean curvature or higher order constant r-mean curvatures have

been studied in varied degrees. We discuss the rotational symmetry of a complete embedded surface

in S
2 × R of positive constant 2-mean curvature and obtain that,

Theorem 1.2. (Th. 5.1; Cor. 5.1). Let S
2 be the unit sphere in R

3 and D be the open upper

hemisphere in S
2. Let � be a complete orientable embedded surface in S

2×R with H2 = constant >

0. If � ⊂ D × R, then � has the following properties:

(i) � is topologically a sphere; and

(ii) � is a compact surface of revolution about o′ × R, o′ ∈ D, that is, � is foliated by round

circles in D×{t}, the centers of which are o′ × t , where t ∈ (hmin, hmax) and hmin, hmax are the

maximum and minimum of the height of � respectively. Moreover, there exists a horizontal

level D ×{t0}, t0 = hmin+hmax
2 , such that � divides into two (upper and lower) symmetric parts;

and

(iii) Let φ0 ∈ [
0, π

2

)
denote the polar angle between the north pole of the open upper hemisphere D

and o′. Then H2 > − 1
2 log sin φ0

(if φ0 = 0, H2 > 0) and the generating curve of the rotational

surface � can be denoted by λ(u) = (φ(u), t (u)) where −1 ≤ u ≤ 1, and φ denotes the polar

coordinate (about o′) of S
2, and:

φ = cos−1 exp

(
−1 − u2

2H2

)
, (1.4)

t = − 1

H2

∫ u

1

√
1 − u2√

exp
(

1−u2

H2

)
− 1

du + C, (1.5)

where C is a real constant.

We conjecture a compact immersed surface in S
2 × R of positive constant 2-mean curvature

is rotationally symmetric about a vertical line. Moreover, such a surface in H
2 × R is rotational

when it is topologically a sphere.
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2 PRELIMINARIES

Let M
m+1

be an (m + 1)-dimensional oriented Riemannian manifold and let �m be an m-dimen-

sional orientable Riemannian manifold. Suppose x : � → M is an isometric immersion. We

choose a unit normal field N to � and define the shape operator A associated with the second

fundamental form of �, i.e., for any p ∈ �,

A : Tp� → Tp�, 〈A(X), Y 〉 = − 〈∇XN, Y
〉
, X, Y ∈ Tp�,

where ∇ is the Riemannian connection in M .

Let λ1, . . . , λm denote the eigenvalues of A. The r-th symmetric function of λ1, . . . , λr ,

denoted by Sr , is defined as

S0 = 1,

Sr =
∑

i1<···<ir

λi1 · · · λir , 1 ≤ r ≤ m, (2.1)

Sr = 0, r > m.

Definition 2.1. With the above notations, Hr = 1
Cr

m
Sr, r = 1, . . . , m, is called the r-mean

curvature of x.

Particularly, H1 = H is the mean curvature; Hm is the Gauss-Kronecker curvature. H2 is ,

modulo a constant, the scalar curvature of �, when the ambient space M
m+1

is Einstein (Elbert

2002).

We also introduce endomorphisms of T (�), the Newton transformations, defined by

T0 = I,

Tr = SrI − Sr−1A + · · · + (−1)rAr, r = 1, . . . , m.

It is obvious that Tr, r = 0, 1, . . . , m are symmetric linear operators and Tr = SrI − ATr−1.

Let e1, . . . , em be the principal directions corresponding respectively to the principal curvatures

λ1, . . . , λm. For i = 1, . . . , m, let Ai denote the restriction of the transformation A to the (m−1)-

dimensional subspace normal to ei , and let Sr(Ai) denote the r-symmetric function associated

to Ai .

One has the following properties of Tr and Sr .

Proposition 2.1. For 0 ≤ r ≤ m, 1 ≤ i ≤ m,

(i) Tr(ei) = ∂Sr+1

∂λi

ei = Sr(Ai);

(ii) (m − r)Sr = trace(Tr) =
m∑

i=1
Sr(Ai);
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(iii) (r + 1)Sr+1 = trace(ATr) =
m∑

i=1
λiSr(Ai);

(iv) H 2
1 ≥ H2.

Proposition 2.1 can been verified directly.

Proposition 2.2. For each r(1 ≤ r ≤ m), if H1, H2, . . . , Hr are nonnegative, then

(i) H1 ≥ H
1
2

2 ≥ H
1
3

3 ≥ . . . ≥ H
1
r

r ;

(ii) Hr−1Hr+1 ≤ H 2
r ;

(iii) H1Hr ≥ Hr+1, where, H0 = 1, Hm+1 = 0.

See the proof of (i) and (ii) of Proposition 2.2 in (Hardy et al. 1989. p.52). The inequality in

(iii) can be obtained from (ii).

Given a function f in C2(�) for p ∈ �, the linear operator Hessian of f is defined as

Hessf (X) = ∇X(∇f ), X ∈ Tp�, where ∇ is the induced connection on �.

With Tr and Hess, we can define a differential operator Lr as follows:

Definition 2.2. Given f ∈ C2(�), 0 ≤ r ≤ m,

Lr(f ) = tr (TrHessf ) . (2.2)

Given a local coordinate frame
{

∂
∂xi

}
of � at p, by direct computation, we have locally the

expression of Lr ,

Lrf (p) =
∑
i,j

∑
k,l

giktklg
lj ∂2f

∂xi∂xj
−

∑
i,j,k,l

giktklg
lj�s

ij

∂f

∂xs
,

where

gij =
〈

∂f

∂xi
,

∂f

∂xj

〉
, G = (gij ), G

−1 = (gij ), tij = Tr

(
∂f

∂xi
,

∂f

∂xj

)
, �s

ij

are the connection coefficients of ∇.

From the above local expression, we know that the linear operator Lr is elliptic if and only if

Tr is positive definitive. Clearly, L0 = tr (Hessf ) = div(∇f ) is elliptic.

In this paper, the ambient space which we study is an (m + 1)-dimensional product manifold

Mm ×R, where M is an m-dimensional Riemannian manifold. � will be a hypersurface in M ×R

with positive constant r-mean curvature, i.e, Hr = constant > 0.

We use t to denote the last coordinate in M × R.

The height function, denoted by h, of � in M ×R is defined as the restriction of the projection

t : M × R → R to � , i.e., if p ∈ �, x(p) ∈ M × {t}, then h(p) = t . We have ∂
∂t

= ∇h.
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3 THE ELLIPTIC PROPERTIES OF THE OPERATOR Lr

The following Prop. 3.1 is known (cf. Elbert 2002. Lemma 3.10). For completeness, we give its

proof.

Proposition 3.1. Let M
m+1

be an (m + 1)−dimensional oriented Riemannian manifold and let

�m be a connected m−dimensional orientable Riemannian manifold. Suppose x : � → M is an

isometric immersion. If H2 > 0, then the operator L1 is elliptic.

Proof. Since L1 is elliptic if and only if T1 is positive definite, we will prove that T1 is positive

definite.

By H2 > 0 and H 2
1 ≥ H2, H1 is nonzero and has the same sign on �. We may choose the

normal N such that H1 is positive. So S1 = mH1 > 0.

By S2
1 = ∑

λ2
i + 2S2 > λ2

i , we have S1 > λi . Then S1(Ai) = S1 − λi > 0. Since

T1ei = S1(Ai)ei (Prop. 2.1 (i)), T1 is positive definite. �

In Prop. 3.2, we will prove the ellipticity of Lr when the hypersurface � with positive r-mean

curvature has an elliptic or parabolic point.

Proposition 3.2. Let M
m+1

be an (m + 1)−dimensional oriented Riemannian manifold and let

�m be a connected m−dimensional orientable Riemannian manifold (with or without boundary).

Suppose x : � → M is an isometric immersion with Hr > 0 for some 1 ≤ r ≤ m. If there exists

an interior point p of � such that all the principle curvatures at p are nonnegative, then for all

1 ≤ j ≤ r − 1, the operator Lj is elliptic, and the j -mean curvature Hj is positive.

Proof. Since Lj is elliptic if and only if Tj is positive definite, it is sufficient to prove that the

eigenvalues of Tj are positive, that is Sj (Ai) > 0 on �, for all 1 ≤ j ≤ r − 1, 1 ≤ i ≤ m.

In the following proof, the ranges of j and i are 1 ≤ j ≤ r − 1, 1 ≤ i ≤ m respectively.

Since Sr > 0 and the principal curvatures of x at p are nonnegative, we have that at p, at least

r principal curvatures are positive. For simplicity, we suppose that λ1, λ2, . . . , λr are positive.

Then, by direct verification, at p, Sj (Ai) > 0.

By continuity, there exists an open intrinsic ball B(p) ⊂ � with center p such that the functions

Sj (Ai) > 0 on B(p).

For any q ∈ �, since � is connected, there exists a path γ (t)(t ∈ [0, 1]) in �, joining p to q

with γ (0) = p and γ (1) = q.

Define J = {t ∈ [0, 1]|Sj (Ai) > 0 on γ |[0,t]}. Let t0 = sup J .

Note Sj (Ai) > 0 on B(p) so t0 > 0. By continuity, at t0, Sj (Ai) ≥ 0.

We will prove that Sj (Ai) > 0 at t0 and hence t0 ∈ J .

We first show that Sr−1(Ai) > 0 at t0. Otherwise, there exists 1 ≤ i ≤ r − 1 such that

Sr−1(Ai) = 0 at t0. For this i, by Sr = λiSr−1(Ai)+Sr(Ai), we have Sr(Ai) = Sr > 0 at t0. So, at

t0, Sj (Ai) ≥ 0, 1 ≤ j ≤ r − 1 and Sr(Ai) > 0. By (ii) in Prop. 2.2, at t0, the following inequality

holds,

H1(Ai) ≥ H2(Ai)
1
2 ≥ . . . ≥ Hr−1(Ai)

1
r−1 ≥ Hr(Ai)

1
r .

An Acad Bras Cienc (2005) 77 (2)



CONSTANT r-MEAN CURVATURE HYPERSURFACES 189

Then at t0, Hr−1(Ai) > 0, i.e., Sr−1(Ai) > 0, which is a contradiction. Thus, we have Sr−1(Ai) > 0

at t0.

Next, by Sr−1(Ai) > 0 and H1(Ai) ≥ H2(Ai)
1
2 ≥ . . . ≥ Hr−1(Ai)

1
r−1 at t0, we have that

Sj (Ai) > 0 at t0. Hence t0 ∈ J .

If t0 < 1, by continuity, there exists an open intrinsic ball B(γ (t0)) of center γ (t0) such that

Sj (Ai) > 0 on B(γ (t0)), which contradicts our choice of t0 = sup J . Hence, t0 = 1.

So we obtain that at q, Sj (Ai) > 0. Hence the Lj , for all 1 ≤ j ≤ r − 1 are elliptic.

By Prop. 2.1 (ii), Hj (for all 1 ≤ j ≤ r − 1) are positive. �

4 THE HEIGHT ESTIMATES OF THE VERTICAL GRAPH

In this section, we will consider hypersurfaces in an (m+1)−dimensional product manifold Mm×R

of positive constant r-mean curvature.

Lemma 4.1. Let M be an m−dimensional oriented Riemannian manifold and let � be an immersed

orientable hypersurface in M × R (with or without boundary). Then

Lr−1(h) = rSrn, (4.1)

where 1 ≤ r ≤ m + 1, h denotes the height function of �, and n = 〈
N, ∂

∂t

〉
.

Proof. Fix p ∈ �. Let {ei} be a geodesic orthonormal frame of � at p. So at p, ∇ei
ej (p) = 0.

We can assume {ei} are the principal directions at p, that is, Aei(p) = λiei, where λi are the

eigenvalues (principal curvatures) of A at p (this frame can been obtained by rotating {ei}).
Observe that the vertical translation in M × R is an isometry. Hence ∇h = ∂

∂t
is a Killing

vector field, and ∇ei
∇h = 0, for i = 1, . . . , m.

We have

Hess(h)(ei) = ∇ei
∇h = [∇ei

(∇h)]T
= [∇ei

(∇h − 〈∇h, N
〉
N)]T

= −[∇ei
(
〈∇h, N

〉
N)]T ,

where the T denotes the tangent part of the vector of T (M × R) to �.

Then

〈Hess(h)(ei), ei〉 (p) = − 〈〈∇h, N
〉 ∇ei

N, ei

〉
(p)

= n 〈λiei, ei〉 (p) = nλi

Hence

Lr−1(h)(p) =
∑

i

〈ei, Tr−1Hessh(ei)〉 (p)

=
∑

i

n(p)λiTr−1(ei) (4.2)

= n(p)tr(ATr−1) = n(p)rSr .
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Since rSrn is independent of the choice of the frame, we obtain that, on �

Lr−1(h)(p) = rSrn. (4.3 �)

In order to prove the following Lemma 4.2, we first recall some known results.

Let � ⊂ M
m+1

be an oriented hypersurface. Let D be a compact domain of �. Consider a

variation of D, denoted by φ. φ : (−ε, ε) × D → M × R, ε > 0, such that for each s ∈ (−ε, ε) ,

the map φs : {s} × D → M × R, φs(p) = φ(s, p) is an immersion, and φ0 = D.

Let At(p) be the shape operator of �(t) at p and for 0 ≤ r ≤ m, let Sr(t)(p) be the r-th

symmetric function of the eigenvalues of At(p). We are interested in the first variation of Sr .

To calculate this one may differentiate the equation rSr = tr(Tr−1A). We refer the reader to

(Rosenberg 1993) for details of this calculation in space forms. In general ambient spaces, Elbert

(Elbert 2002. Proposition 3.2) proved the following result.

Set Es(p) = ∂φ

∂s
(p, s) and fs =< Es, Ns >, where Ns is the unit normal to φs(D). We have

∂

∂s
Sr(s) = Lr−1(fs) + fs(S1Sr − (r + 1)Sr+1)

+ fs tr(Tr−1RN) + ET
s (Sr),

(4.4)

where RN is defined as RN(X) = R(N, X)N , R the curvature operator of M , and ET
s denotes the

tangent part of Es .

Lemma 4.2. With M and � as in Lemma 4.1, assume Hr of � is constant, for some r, 1 ≤ r ≤ m+1.

Then, on �,

Lr−1(n) = −n(S1Sr − (r + 1)Sr+1 + tr(Tr−1RN)). (4.5)

Proof. We may choose the variation φs : (−ε, ε)×D ⊂ (−ε, ε)×� → M × R given by vertical

translation of M × R, (x, t0) → (x, t0 + s), (x, t0) ∈ M × R.

Under this variation, Sr(s) is constant, i.e., ∂
∂s

Sr(s) = 0. Also by the hypothesis Sr = constant

on �, we have ET
s (Sr) = 0, for s = 0. Hence, when s = 0, we have f0 = 〈E0, N0〉 = 〈

∂
∂t

, N
〉 = n

and

Lr−1(n) + n(S1Sr − (r + 1)Sr+1 + tr(Tr−1RN)) = 0. (4.6)

Thus (4.6) holds on �. �

We will express tr(T1RN) using the sectional curvature of M in order to prove Theorem 4.1.

Given p = (x, t) ∈ M × R. For X ∈ TpM × R, let Xh denote the horizontal component of

X. If {ei} denotes a geodesic frame of � at p and N denotes the unit normal to � at p, we have,

by direct calculation,

R(ei, N, ei, N) = R(eh
i , N

h, eh
i , N

h) = K(eh
i , N

h) × |eh
i ∧ Nh|2,
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where K is the sectional curvature of M .

If ei are also the principal directions of A. We have Trei = Sr(Ai)ei . Then

tr(TrRN)(p) =
∑

i

〈
ei, TrRN(ei)

〉
(p)

=
∑

i

Sr(Ai)R(N, ei, N, ei)(p) (4.7)

=
∑

i

Sr(Ai)K(eh
i , N

h)|eh
i ∧ Nh|2(p).

Theorem 4.1. Let M be an m-dimensional oriented Riemannian manifold. Let � be a compact

vertical graph in the product manifold M ×R with boundary in M ×{0} and with positive constant

Hr , for some 1 ≤ r ≤ m. Let h : � → R denote the height function of �.

(i) If the sectional curvature of M satisfies K ≥ 0, then on �,

|h| ≤ H
− 1

r
r ; (4.8)

(ii) When r = 2, if the sectional curvature of M satisfies K ≥ −τ (τ > 0), and H2 > τ , then

on �,

|h| ≤
√

H2

H2 − τ
. (4.9)

(iii) When r = 1, if the sectional curvature of M satisfies K ≥ −τ (τ > 0), and H 2
1 > m−1

m
τ , then

on �,

|h| ≤ H1

H 2
1 − m−1

m
τ
. (4.10)

Proof. At a highest point, all the principal curvatures have the same sign. Since we assume that

Hr > 0, we know that at this point, all the principal curvatures are nonnegative and the unit normal

N to � is downward pointing. Since � is a vertical graph, we may choose the smooth unit normal

field N to � to be downward pointing (i.e.,n = 〈N, ∂
∂t

〉 ≤ 0 on �). Hence we can apply Prop. 3.1

and Prop. 3.2 to obtain that, Lr−1 is elliptic, and Hi(1 ≤ i ≤ r − 1) are positive.

Define ϕ = ch+n on �, where c is a positive constant to be determined. On ∂�, ϕ = n ≤ 0.

Since Lr−1 is an elliptic operator, we have, by the maximum principle, that if Lr−1ϕ ≥ 0, then

ϕ ≤ 0 on �. Then h ≤ −n
c

≤ 1
c
.

Now we will choose c such that Lr−1ϕ ≥ 0. By Lemma 4.1 and 4.2,

Lr−1(ϕ) = crSrn − (S1Sr − (r + 1)Sr+1 + tr(Tr−1RN))n.

So Lr−1(ϕ) ≥ 0 is equivalent to

−rSrc + S1Sr − (r + 1)Sr+1 + tr(Tr−1RN) ≥ 0.
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If K ≥ a (a ≤ 0), we have

tr(Tr−1RN)(p) =
∑

i

Sr−1(Ai)K(eh
i , N

h)|eh
i ∧ Nh|2

≥ a
∑

i

Sr−1(Ai)|eh
i ∧ Nh|2

≥ a
∑

i

Sr−1(Ai)

= (m − r + 1)aSr−1. (by Prop. 2.1)

So we may choose c such that

−rSrc + S1Sr − (r + 1)Sr+1 + (m − r + 1)aSr−1 ≥ 0.

When H1, . . . , Hr are nonnegative, H1Hr ≥ Hr+1, that is, m−r
m

S1Sr ≥ (r + 1)Sr+1. So it is

sufficient to choose c such that

−rSrc + r

m
S1Sr + (m − r + 1)aSr−1 ≥ 0.

Then, c ≤ S1
m

+ (m−r+1)a

r
· Sr−1

Sr
= H1 + a · Hr−1

Hr
.

(i) Take a = 0 and choose c ≤ H
1
r

r . Hence h ≤ H
− 1

r
r .

(ii) Take a = −τ(τ > 0). Then c ≤ H1 − τ · Hr−1
Hr

.

When r = 2, c ≤ H1 − τ · H1
H2

= H1(1 − τ
H2

).

By H1 ≥ √
H2, we may choose c ≤ √

H2

(
1 − τ

H2

)
= H2−τ√

H2
. Hence h ≤

√
H2

H2−τ
.

(iii) When K ≥ a(a < 0) and r = 1, we have a better estimate. Note

tr(T0RN)(p) =
∑

i

K(eh
i , N

h)|eh
i ∧ Nh|2

≥ a
∑

i

|eh
i ∧ Nh|2

= a(m − 1)|Nh|2
≥ (m − 1)a.

Similar to the above, we may choose c ≤ S1
m

+ (m−1)a

S1
= H1 + a · (m−1)

mH1
. Take a = −τ(τ > 0).

We have h ≤ H1

H 2
1 − m−1

m
τ
. �

Remark 4.1. The height estimate in Theorem 4.1 is sharp. Consider a hemisphere of the unitary

round sphere S
m in R

m+1. It is a vertical graph on R
m = R

m × {0} of Hr = 1 with boundary

S
m−1 × {0} and has the maximum height 1.
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Remark 4.2. In the case m = 2 and r = 1, (i) and (iii) of Theorem 4.1 was proved in (Hoffman et

al. 2005).

Theorem 4.2. Let M be an m-dimensional Riemannian manifold and let � be a compact orientable

embedded hypersurface in M × R with Hr = constant > 0, for some 1 ≤ r ≤ m. Then � is

symmetric about some horizontal surface M × {t0}, t0 ∈ R. Moreover,

(i) If the sectional curvature of M satisfies K ≥ 0, then the extrinsic vertical diameter of � is no

more than 2H
− 1

r
r ;

(ii) When r = 2, if the sectional curvature of M satisfies K ≥ −τ and H2 > τ(τ > 0), then the

extrinsic vertical diameter of � is no more than 2
√

H2
H2−τ

.

(iii) When r = 1, if the sectional curvature of M satisfies K ≥ −τ (τ > 0), and H 2
1 > m−1

m
τ , then

the extrinsic vertical diameter of � is no more than 2H1

H 2
1 − m−1

m
τ
.

Proof. We will prove that � has a horizontal surface of symmetry M(t0) = M × {t0}, for some

t0 ∈ R.

Note that vertical translation is an isometry, as well as reflection through each horizontal M(t).

Hence we can use the Alexandrov reflection technique. One comes down from above � with the

horizontal surfaces M(t). For t slightly smaller than the highest value of the height of �, the part

of � above M(t) is a vertical graph of bounded gradient over a domain in M(t). The symmetry

through M(t) of this part of �, is below M(t), contained in the domain bounded by �, and meets

� only along the boundary. One continues to do these reflections through the M(t) translated

downwards, until a first accident occurs. This plane is a plane of symmetry of �, and the part of

� above this plane is a graph with zero boundary values. This proves the Theorem. �

Remark 4.3. Consider the case m = 2 and r = 2 in Theorem 4.1 or Theorem 4.2. From the Gauss

equation, we obtain that the intrinsic sectional curvature of � has a positive lower bound H2. So

Bonnet-Myers theorem yields the intrinsic diameter estimate of � and hence the vertical height or

the extrinsic vertical diameter estimate. That is, (a) when � is a vertical graph with zero boundary

values, a geodesic on � from the highest point to ∂� (and hence the vertical height) is at most π√
H2

;

(b) when � is a compact embedded surface, a geodesic on � from the highest point to the lowest

point (and hence extrinsic vertical diameter) is at most π√
H2

. But our estimates (a) 1√
H2

and (b) 2√
H2

are better. Moreover our estimate works for any dimension m and any r , for which Bonnet-Myers

theorem indeed doesn’t apply.

Theorem 4.3. Let M be an m-dimensional compact Riemannian manifold and let � be a noncom-

pact properly embedded hypersurface in M × R with Hr = constant > 0, for some 1 ≤ r ≤ m.

If the sectional curvature of M and the r-mean curvature of � satisfy the conditions in (i), (ii) or

(iii) of Theorem 4.1, then the number of ends of � is not one.
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Proof. Suppose on the contrary, that � has exactly one end E. Since � is properly embedded, E

must go up or down, but not both. Assume E goes down. Then � has a highest point so we can do

Alexandrov reflection coming down from above � with horizontal surfaces M(t).

Since � is not invariant by symmetry in any M(t), there is no first point of contact of the

symmetry of the part of � above M(t), with the part of � below M(t). But by the Alexandrov

reflection technique, the part of � above each M(t) is always a vertical graph. This contradicts the

height estimate for such vertical graphs. �

Corollary 4.1. Let � be a noncompact properly embedded hypersurface in S
m × R with

Hr = constant > 0, for some 1 ≤ r ≤ m. Then the number of ends of � is not one.

5 ROTATIONAL SYMMETRY OF SOME SURFACES IN S
2 × R OF CONSTANT 2-MEAN CURVATURE

If M is the unit sphere S
2 in R

3, an embedded surface in S
2 × R of positive constant 2-mean

curvature has another symmetry under some restriction. If we demand the vertical projection of

such a surface on S
2 × {0} is contained in an open hemisphere, then it is also rotational about a

vertical line parallel to the vertical R-axis.

We now give some definitions which are modifications of the related concepts in R
3 (cf. Hopf

1983. p.147-148).

Let D be the open hemisphere in S
2 and ∂D be the boundary of D. Let {p, −p} denote a pair

of antipodal points on ∂D, and γ denote a semi-circle on D joining p and −p. We call the surface

P = γ × R in S
2 × R a vertical geodesic strip.

Definition 5.1. For a point q ∈ D × R, a point q ′ ∈ D × R is called a point of symmetry of q

about a vertical geodesic strip P = γ ×R if, for a geodesic l passing through q and perpendicular

to P , we have q ′ ∈ l, lies on the opposite part of l divided by P , and dist(q, P ) = dist(q ′, P ).

This means q ′ is the image of q by the isometry of S × R which is reflection of each S(t) through

γ × {t}.
A vertical geodesic strip P = γ × R in S

2 × R is called a vertical strip of symmetry for a set

W ⊂ S
2 × R if, for every point q ∈ W , its point of symmetry q ′ is also in W .

We will obtain the following:

Theorem 5.1. Let S
2 be the unit sphere in R

3 and D be an open hemisphere in S
2. Let � be a

complete oriented embedded surface in S
2 × R with H2 = constant > 0. If � ⊂ D × R, then �

has the following properties:

(i) � is topologically a sphere; and

(ii) � is a surface of revolution about a vertical line parallel to the vertical R-axis, that is, � is

foliated by round circles in D × {t}, the centers of which are the same point on D modulo t ,

where t ∈ (hmin, hmax) ⊂ R, and hmin, hmax are the maximum and minimum of vertical height

of � respectively; and
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(iii) there exists t0 = hmin+hmax
2 such that D × {t0} divides � into two (upper and lower) symmetric

parts.

Proof. By the Gauss equation, the sectional curvature of � is bounded below by a positive

constant, hence � is compact by the Bonnet-Myers theorem. By the Gauss-Bonnet theorem, �

is topologically a sphere. By Corollary 4.2, we know there exists t0 = hmin+hmax
2 such that the

horizontal level D × {t0} divides � into two (upper and lower) symmetric parts.

We prove � is rotational in two steps 1) and 2).

1) � has a vertical strip of symmetry about every pair of antipodal points.

Fix a pair of antipodal points {p, −p} on ∂D. Then ∂D is divided into two semi-circles joining

p and −p. Let θ denote the rotational angle from one semi-circle to the other (0 ≤ θ ≤ π ), and

γ (θ) denote the semi-circle on D joining p and −p, with the rotational angle θ .

Since � ⊂ D×R and � is compact, the vertical strip P(θ) = γ (θ)×R is disjoint from � for

sufficiently small θ . Note the rotation on S
2 is an isometry. We may do the Alexander reflection

through P(θ), as θ moves from 0 to π , to obtain a vertical strip of symmetry P(θ0) such that � is

divided into two graphs of symmetry over a domain of P(θ0).

By the arbitrariness of p on ∂D, we have proved 1).

2) Since any two such vertical strips of symmetry intersect in a line parallel to the vertical R-axis,

it is sufficient to prove all of these lines coincide.

Choose a horizontal surface D(t) = D×{t} whose intersection with � has at least two points.

Fix this t . Let �(t) = D(t) ∩ �. Since � is embedded and compact, �(t) is a simple closed

curve on D(t). Any vertical strip of symmetry P = γ × R of � corresponds to a semi-circle of

symmetry γ (t) = γ × {t} of �(t) on D(t). By 1), we know that every pair of antipodal points

{p, −p} on ∂D(t) determines a semi-circle of symmetry γ of �(t).

We will look into the relation of all the semi-circles of symmetry {γ (t)}. For simplification of

notation, we omit t in γ (t). Fix a semi-circle of symmetry γ0 on D(t). Let γ1 be any other one, and

β denote the angle between γ0 and γ1 (we may choose the direction of the angle such that, if the

rotation from the oriented γ0 to the oriented γ1 is anti-clockwise, β is positive). Then the reflection

of �(t) by γ1, followed by a reflection of �(t) by γ0, corresponds to a rotation of �(t) through an

angle 2β about the intersection of γ0 and γ1, and leaves �(t) invariant. By this property of rotation

and the arbitrariness of p ∈ ∂D, we know all of the rotations of γ are about the same point. Hence

�(t) contains a circle and thus must be this circle. Thus we have proved that all of γ intersect at

the same point, and �(t) is rotational about this point on D(t).

Therefore we have proved that � is a surface of revolution (rotational about a vertical line

parallel to the R-axis). �

An Acad Bras Cienc (2005) 77 (2)



196 XU CHENG and HAROLD ROSENBERG

In the following, we discuss complete (hence compact) smooth surfaces of revolution, about

a vertical line, in S
2 × R of positive constant 2-mean curvature. We will give the parameterized

equation of such surfaces.

Given o′ ∈ S
2. Then {o′} × R is a vertical line. Let � denote a complete surface of revolution

about {o′} × R, in S
2 × R (that is to say that � is rotational about the vertical line {o′} × R).

Let p ∈ S
2 × R, and let (φ, θ, t) (0 ≤ φ ≤ π, 0 ≤ θ ≤ 2π) denote the local coordinate

of p where t denotes the R-coordinate of R and (φ, θ) denotes the spherical coordinate of S
2

about o′, that is, φ and θ are the polar coordinate and azimuthal coordinate respectively. Then

p = (sin φ cos θ, sin φ sin θ, cos φ, t).

The generating curve λ(s) of the rotational surface � is λ(s) = (φ(s), t (s)), where s is the

arc-length parameter.

� can be denoted by (sin φ(s) cos θ, sin φ(s) sin θ, cos φ(s), t (s)).

Take the unit normal N of � as N = (t ′ cos φ cos θ, t ′ cos φ sin θ, −t ′ sin φ, −φ′). Then the

two principle curvatures of � are

λ1 = t ′′φ′ − t ′φ′′, λ2 = t ′ cot φ, (5.1)

and the 2-mean curvature of � is

H2 = (t ′ cot φ)(φ′t ′′ − t ′φ′′). (5.2)

Since s is the arc-length parameter, t
′2 + φ

′2 = 1. Then t ′t ′′ + φ′φ′′ = 0. So

H2 = −φ′′(cot φ) = const. > 0. (5.3)

Suppose y is the lowest point of �. We may choose s positive with y = λ(0). We have

t ′(0) = 0. From λ2 = t ′ cot φ, we know that φ = 0, or π at y. Without loss of generality, we

assume that φ = 0 at y. This implies y = o′ × {ty} for some ty ∈ R.

Since H2 > 0, φ �= π
2 . Hence the domain of φ is contained either in

[
0, π

2

)
or in

(
π
2 , π

]
. Since

we assume φ(0) = 0, we have φ ∈ [
0, π

2

)
. This means that � stays in D × R, where D is the open

hemisphere of S
2 of the center o′.

Since y = λ(0) is the lowest point, we have t ′(s) > 0 and hence λ2(s) > 0 for sufficiently

small positive s. But λ2 must have the same sign, so t ′(s) > 0 for all s. Hence t increases as s

increases and � must be embedded.

Suppose z = λ(s1) is the highest point �. Also we have φ = 0 at z (i.e., z = o′ × {tz} for

some tz ∈ R.

Hence the domain of s is [0, s1], and φ(0) = φ(s1) = 0; t ′(0) = t ′(s1) = 0; φ′(0) = 1,

φ′(s1) = −1.

Since H2 = −φ′′(cot φ), we have φ′′ < 0. This implies φ′ decreases from φ(0) = 1 to

φ′(s1) = −1. So as s increases from 0 to s1, φ first increases from 0 to φmax then decreases from

φmax to 0.
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By equation (5.3),

φ
′2 = 2H2 log cos φ + C1, (5.4)

where C1 is a constant to be determined by the boundary conditions.

By φ(0) = 0 and φ′(0) = 1, we have C1 = 1. So

φ
′2 = 2H2 log cos φ + 1. (5.5)

We have φmin = 0, φmax = φ|φ′=0 = cos−1 exp
(
− 1

2H2

)
.

Let u = φ′(|u| ≤ 1). We will give the equation of the generating curve λ.

By equation (5.5), we have

φ = cos−1 exp

(
−1 − u2

2H2

)
, (−1 ≤ u ≤ 1). (5.6)

Since u = φ′, du
ds

= φ′′ = − H2
cot φ , we have

dt

du
= t ′ · ds

du
=

√
1 − φ

′2
(

−cot φ

H2

)
= − 1

H2

√
1 − u2√

exp
(

1−u2

H2

)
− 1

.

Then

t = − 1

H2

∫ u

1

√
1 − u2√

exp
(

1−u2

H2

)
− 1

du + C, (−1 ≤ u ≤ 1), (5.7)

where C is a real constant.

We have

tmin = t |u=1 = C, tmax = t |u=−1 = 1

H2

∫ 1

−1

√
1 − u2√

exp
(

1−u2

H2

)
− 1

du + C.

t0 = tmin + tmax

2
= 1

H2

∫ 0

−1

√
1 − u2√

exp
(

1−u2

H2

)
− 1

du + C.

Therefore, we obtain the equations (5.6) and (5.7) of φ and t . As u decreases from 1 to −1, t

increases from tmin to tmax, and φ first increases from 0 to φmax then decreases from φmax to 0. Also

� is symmetric about D × {t0}.
From the above analysis, we obtain that

Proposition 5.1. Let � be a complete immersed surface of revolution (about a vertical line o′ ×R,

o′ ∈ S
2) in S

2 × R with H2 = constant > 0. Then � has the following characters:
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(i) � is topologically a sphere and embedded; and

(ii) � stays in D × R, where D denotes the open hemisphere of S
2 of the center o′; and

(iii) the generating curve of � can be denoted by λ(u) = (φ(u), t (u)) with parameter u(−1 ≤
u ≤ 1), where t denotes the R-coordinate of R and φ denotes the polar coordinate (about o′)
of S

2, as follows:

φ = cos−1 exp

(
−1 − u2

2H2

)
, (5.8)

t = − 1

H2

∫ u

1

√
1 − u2√

exp
(

1−u2

H2

)
− 1

du + C, (5.9)

where C is a real constant.

The equation of λ implies that there exists a horizontal level D × {t0}, t0 ∈ R such that �

divides into two (upper and lower) symmetric parts.

By Theorem 5.1 and Proposition 5.1, we can determine the generating curvature of � satisfying

the conditions of Th. 5.1 as follows:

Corollary 5.1. Let S
2 be the unit sphere in R

3 and D be the open upper hemisphere in S
2. Let

� be a complete orientable embedded surface in S
2 × R with H2 = constant > 0. If � ⊂ D × R,

then � has the following properties:

The 2-mean curvature H2 satisfies

H2 > − 1

2 log sin φ0
, if φ0 ∈

(
0,

π

2

)
; H2 > 0, if φ0 = 0

(where φ0 ∈ [
0, π

2

)
denotes the polar angle between the north pole of the open upper hemisphere

D and o′).
Moreover, the generating curve of the rotational surface � can be denoted by λ(u) =

(φ(u), t (u)) where −1 ≤ u ≤ 1, and φ denotes the polar coordinate (about o′) of S
2, and:

φ = cos−1 exp

(
−1 − u2

2H2

)
, (5.10)

t = − 1

H2

∫ u

1

√
1 − u2√

exp
(

1−u2

H2

)
− 1

du + C, (5.11)

where C is a real constant.

Proof. We just need to prove H2 > − 1
2 log sin φ0

. Since � ⊂ D
2 × R, φ0 + φmax < π

2 . Here

φmax denotes the maximum of φ. Of course, we have φmax = φ|φ′=0 = cos−1 exp
(
− 1

2H2

)
. By it,

H2 > − 1
2 log sin φ0

. �
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Remark 5.1. We have proved that if � is a complete embedded surface in D
2 × R ⊂ S

2 × R of

positive constant 2-mean curvature, � is rotationally symmetric about a vertical line. We conjecture

this is true for immersed such � in S
2 × R (also in H

2 × R). This is true if one assumes that the

mean curvature is constant instead of positive constant H2 under the condition that the genus of �

is zero (Abresch and Rosenberg 2005).
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RESUMO

Seja M uma variedade riemanniana de dimensão m, de curvatura seccional limitada de abaixo. Consideramos

as hipersuperfícies na variedade produto M×R de dimensão m+1, com curvatura r-média constante positiva.

Obtemos uma estimativa para altura das alguns gráficos verticais em M ×R com seus fronteiras em M ×{0}.
Aplicamos isto para obter as obstruções topológicas sobre existência das algumas hipersuperfícies. Também

discutimos a simetria rotacional das algumas superfícies completas em S2×R de curvatura 2-média constante

positiva.

Palavras-chave: variedade produto, hipersuperfície, curvatura r-média.
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