
The following paper was originally published in the
Proceedings of the Third USENIX Conference on Object-Oriented Technologies and Systems

Portland, Oregon, June 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Embedded Programming with C++

Stephen Williams
Picture Elements, Inc.

Embedded Programming with C++

Stephen Williams, Picture Elements, Inc. steve@picturel.com

May 5, 1997

Abstract

This paper presents uCR, a C++ runtime package

for embedded program development. We make the

case that in certain situations embedded program-

ming is best done without the aid of a conventional

operating system. A programming environment in

the form of a C++ runtime is presented, and the

environment, including the C++ language, is evalu-

ated for appropriateness. Important factors are code

size, performance, simplicity and applicability to a

wide range of embedded targets.

1 The Problem

It is common, when building a newly designed board,

to install only a few components at a time and test

the partially built board to protect expensive com-

ponents, to validate portions of a design, or just to

contain the hardware debugging problems. The �rst

time power is applied to a board, often only the

CPU, memory and ROM socket are installed. Natu-

rally, software is usually required and a development

environment that works in this case is necessary, es-

pecially as the board design and construction pro-

gresses.

Even complex designs can have real estate con-

straints, leaving no room for the extra hardware to

support a full operating system. A case example of

this is shown in Figure 1. In order to �t this design

on a PCI card, extra parts like UARTS had to be

left out, and program memory had to be kept to one

ash and 2 DRAM chips.

Conventional operating systems usually serve two

interesting roles: they abstract the target hardware,

and they provide a means of loading and execut-

ing programs, often in separate protection domains.

An operating system provides an operating environ-

ment, including but not limited to a device driver

interface and a common interaction with the user.

It is separated from applications by a kernel struc-

ture, bounded by trap handlers or some form of call

gate that allows the operating system to function to

some degree independent of and protected from the

applications that it carries.

Several commercial embedded operating systems

are available that run on the relatively conventional

CPU in Figure 1, but most commercial operating

systems, available in binary form, require board sup-

port packages written to provide the necessary sup-

port for the O/S, including a console, time ticks, and

memory setup.

The ISE board (Figure 1) in particular has no se-

rial port, so program loading must be done either by

programming the socketed FLASH memory with a

prom programmer, or writing into the board support

package a console driver that uses the PCI bus to

communicate as a console. The MON960 monitor [8]

supports the latter, and the Cyclone-911 board [4]

in particular can be used this way, given the appro-

priate host software.1

Although it is sometimes nice to have an operating

system that is portable, and essential that certain li-

braries be portable, it is rare that an embedded pro-

gram is, or should be, portable. The whole point of a

program is to manipulate the speci�c toaster. There

is no value being able to run the toaster program

on the VCR. It therefore is rarely useful to have a

device-driver interface in an embedded kernel|such

can actually make things harder.

We questioned the prudence of forcing a kernel-

ized operating system onto a board with only a few

LEDS and an oscilliscope for debug output, and a

ROM socket for input. We anticipated this happen-

ing often, as designing and building boards is our

business. We also noted that the device driver inter-

face of a kernel is pointless, and our targets typically

run a single trusted program from reset to power o�.

We eventually concluded that we didn't really need

an operating system at all.

This, then, became the chosen path. We wrote a

minimal runtime to support C and C++ that works

on the sorts of target boards expected, and we pro-

vided that support for a speci�c compiler, the GNU

1Picture Elements supplies with the ISE board a bootstrap

loader that loads COFF �les from the PCI bus. The loader is

written using uCR and the techniques described in this paper.

6

6
?

?

80960RP

4M DRAM

DEC 21152

DMA

FIFO FIFO

PCI #2

PCI #1

Memory Bus
32 bits wide
200 MBytes/sec.

Primary PCI Bus

Daughter
Card

#1

Daughter
Card

#2

Daughter

Card
#5

Daughter
Card
#3

Daughter

Card
#4

Daughter

Card

#6

16-64 MBytes
Synchronous

DRAM

Processor

Image

(XC4000)

512KB Flash

Con�gurable

Figure 1: Imaging Subsystem Engine (ISE) Block Diagram [9]

GCC compiler. Writing the support for the compiler

alone, we reasoned, would be easier then writing a

board support package for compiler and operating

system and would get everything needed without the

added constraints of an operating system.

This runtime support for the compiler, called

uCR2, proved lightweight and powerful enough that

we not only used it as the regular development envi-

ronment, we used it to build bootstrap loaders and

other programs in support of embedded development

itself.

2 uCR, C and C++

The di�culty of porting embedded operating sys-

tems is more often dealing with the board, and not

the CPU proper. It is the memory layout and I/O

devices that make portable operating systems di�-

cult. If one can reduce the development environment

to something independent of the board, then there is

only the CPU to worry about and not all the devices

around it. uCR/i960 can run on any i960 without

porting.3

Eliminate the devices from the environment, and

eliminate the system call gate, and what remains is

a runtime that connects the compiler to the CPU.

In the embedded world, anything is possible and im-

posing irrelevent requirements like a console and a

clock ticker can make things harder.

The problem, then, simply reduces to how one

maps C++ to a CPU, with nothing else. Although

board speci�c code still needs to be written, specif-

ically the reset handler and application code, uCR

makes no requirements other then those needed to

support the compiler. This is a task to remind one

about the nature of a programming language.

This is not quite the same as more conventional

development environments requiring board support

packages. Although uCR in practice needs board-

speci�c startup code, it does not impose a style of

interaction with the board and programmer. Typ-

ical systems require of the board support package

console drivers, timer drivers (with the timer con�g-

ured to tick at a speci�c rate) and package drivers

to initialize the options you choose to include. uCR

imposes no such requirements.

2uCR is an abbreviation of \Micro-C/C++ Runtime,"

pronounced U-C-R
3In practice, the uCR package, though not the core library,

includes code speci�c to select boards in order to get the de-

veloper started writing more complex programs.

2.1 What uCR is

uCR is more properly called a C/C++ runtime than

an operating system. A programmer writes an ap-

plication program in C++ and compiles with the

uCR headers. The compiler generates assembly code

from the source �les that the programmer writes,

and what the compiler cannot do it delegates to the

execution environment. uCR provides the execution

environment for the generated code.

The programmer links the resulting object code

with uCR libraries that �ll in the parts left out by

the compiler, and gets an executable image. This im-

age is loaded into the target by prom programmer,

ROM emulator, serial download|whatever works

for you|and is executed.

uCR libraries add support for thread program-

ming and interrupt handlers. These are features de-

pendent on the CPU and not the board, so includ-

ing them does not introduce board support prob-

lems. The uCR distribution also includes ancillary

libraries that contain device classes, and other code

that may not be speci�c to the CPU but is com-

monly used.

Interrupt handler support is also included with the

uCR core library, because again it is a matter for the

CPU and compiler how interrupt service routines are

entered and left, and not speci�c to target boards.

What the target boards do �x is the assignment of

devices to speci�c interrupts, so uCR makes no at-

tempt to guess such things.

2.2 What uCR is not

uCR is not a kernel, or a micro-kernel. There are no

system calls and there are no task structures such as

page translation tables or system call gates. Calls to

uCR operations are ordinary function (or method)

calls.

uCR also is not intended to abstract the board

away. Operating systems that try to abstract the

hardware away wind up instead requiring that the

hardware be a certain way. That is frequently

counter-productive. The uCR core does nothing to

devices other than the CPU, and does nothing to get

in between devices and the programmer.

2.3 Requirements of the Languages

Both C and C++ place some minimum requirements

on the execution environment, but many of the con-

straints are imposed by the compiler, not the lan-

guage. If some language construct can be handled

easily by the CPU, then the compiler typically just

generates the assembly code to deal with it. That is

what compilers are for. However, when something is

too hard, it gives up and generates a call to external

code.

The C language is relatively easy to compile and

the compiler only generates call instructions for calls

to external functions. Floating point emulation is

often placed in a library as well, if the target can

reasonably be expected not to have a
oating point

unit. The C++ language is a bit more interesting.

It has di�cult constructs that compilers often give

up on, like dynamic memory allocation.

The C language standard has a substandard, the

freestanding C standard [1], to guide the imple-

menter on what can be left out of the development

environement and still be worthy of the name \C".

In a nutshell, libraries are optional in a freestanding

environment. It is rare for an environment to not

include some of the more important optional parts,

though.

The C++ Working Paper has a similar substan-

dard.4 [3] The standard libraries are not required

of a freestanding C++ environemnt. Only a few

support libraries, some speci�c C library routines,

and support for the \new" and \delete" operators

are expected. Things like streamio are certainly

not required of a freestanding C++ execution en-

vironment, although a speci�c implementation may

choose to provide it.

Static initializers must obviously be done cor-

rectly. To fail to initialize static objects is a clear

and gross error, but the compiler certainly does not

know how to arrange that on my toaster CPU. That,

like the minimum library support, becomes a matter

for the runtime, namely uCR.

The g++ compiler generates external calls for new

and delete. This way, memory allocation can easily

be provided with some help at link time. Most tar-

gets have memory available for allocation, and some

have several di�erent kinds of memory for allocation.

Even if the default allocation operators do not apply,

the placement \new" operator has some interesting

advantages.

2.4 Requirements of Common Sense

Ultimately, it is not enough to just make the com-

piler happy. The programmer using the compiler

is the real customer and the programmer wants to

make devices do interesting things. It is therefore

not useful to have a beautiful and fast string ma-

nipulation library if the programmer cannot �t the

program in memory.

4Strictly speaking, C++ doesn't yet have any standard at

all.

Therefore, any practical system should make as

much of the standard libraries as reasonable avail-

able to the programmer, without imposing extra

costs. One programmer may not wish to pay for

stdio, but another may �nd it worth while.

Finally, we wanted a lot of power out of uCR,

but simplicity and e�ciency were most important.

It is intended to be a language runtime, so certain

standards, such as POSIX [5], were not considered

desireable for embedded applications. We also tried

to keep the size and complexity of the programming

interface small and understandable. When testing a

new board design, or debugging an older malfunc-

tioning board, simple and obvious software behavior

has its own special value.

3 Object Oriented Design

By using C++, Picture Elements gained a chance

to use object oriented techniques in an embedded

context, with threads of execution and interrupts.

The obvious potential object classes are:

� Threads,

� Synchronization variables,

� Devices,

� The Debugger,

� Various containers.

The various containers include ring bu�ers, lists,

strings, and the other sorts of things one expects of

object oriented designs, are not unique to embedded

programming so will not be discussed here.[3, 10, 12]

Incidentally, the requirement of keeping uCR sim-

ple and to the point precluded creation of a large and

complex system. Instead of a rich texture of objects

and classes, we �nished with a simple and elegant

design, with a few general but very useful classes.

A welcome bene�t of this is that programmers can

learn and be productive with uCR relatively quickly.

3.1 Threads as Objects

The thread programming interface for uCR was re-

vised several times before the current interface was

settled on. At �rst, we designed threads as ob-

jects with interesting methods and put them in

ThreadQueue containers. Eventually, however, we

chose to attach most of the thread methods to the

ThreadQueue class and left the THREAD a passive,

opaque object. The run queue, we reasoned, would

be a ThreadQueue that the programmer can manip-

ulate like any other ThreadQueue. Threads in the

run queue would be subject to execution, and could

be suspended simply by pulling the thread from the

run queue and placing it elsewhere.

class ThreadQueue {

public:

// Pass true to the flag to

// put the thread in front.

void enqueue(THREAD*, bool=false);

THREAD*pull();

THREAD*peek();

};

This proved successful, though occasionally cum-

bersome and less clear then the more conventional

POSIX-style thread functions. uCR internally uses

the ThreadQueue class for the run queue and sus-

pension lists in synchronization primitives. These

instances are generally hidden from the application

programmers, who have ultimately chosen to use

POSIX-style thread functions provided in the uCR

library. Programmers may use the ThreadQueue

class to implement new synchronization primitives,

if desired.

The threads themselves are opaque objects of type

THREAD, and are passed around to the ThreadQueue

objects and thread manipulation functions like a

thread identi�er in a more conventional thread pack-

age. The THREAD object is a completely opaque to-

ken used by the programmer, and uCR, to represent

the object that is a thread. This is more an abstract

data type design then an object oriented design. It

is a semantic quirk that this C abstract data type is

much like a concrete object class in C++.

The idea of a thread as an abstract class with a

virtual method for its behavior is known to us. Some

call this paradigm an active object. [2] Active objects

are di�erent from passive objects in that they have

their own thread of execution and activate passive

objects by calling methods. Threads and interrupt

handlers are two di�erent kinds of active objects,

synchronization primitives and devices examples of

passive objects.

We experimented with active objects, but ul-

timately decided to implement threads using the

THREAD token and a set of conventional thread ma-

nipulation functions. The traditional thread func-

tions are well established, easy to use, small and

generally don't come into play once the threads are

created and started. However, the speci�c interface

built-in to uCR allows for e�cient implementation

of active objects if desired.

3.2 Memory Heaps

Support for memory allocation in uCR is itself writ-

ten in C++. However, special care must be taken

that all the data structures for managing the default

heap in particular be in place before any static ini-

tializers are called. To arrange for this, the default

heap initializer is called separately and ahead of ini-

tializers by the startup function of uCR.

The HEAP SPACE object is an object token like the

THREAD type, and represents a segment of heap space

from which memory may be allocated. The uCR

startup creates an initial HEAP SPACE object that is

used by malloc and non-placement new operators.

Embedded systems often have di�erent kinds of

memory, for example SRAM for small private ob-

jects, or perhaps synchronous DRAM for manipula-

tion of large images, and so uCR allows programmers

to create other heaps in speci�ed sections of address

space.

The uCR support for memory allocation adds a

placement new operator that takes as a parameter

the HEAP SPACE to use. Because of the way the heap

data structures are designed, deallocation does not

require a reference to the HEAP SPACE object that

created it. This feature was speci�cally included to

support the delete operator. Any memory allocated

with \new" or \new(HEAP SPACE*)" can be deleted

with \delete". This is necessary because \delete"

cannot be overloaded to take a HEAP SPACE parame-

ter, and to require such would render \delete" un-

useable for memory allocated from alternate heaps.

3.3 Synchronization Objects

These classes were obvious and successful. uCR

includes several synchronization classes, most de-

rived from the base class ISync. The ISync class

is a concrete class that allows threads to wait for a

general condition to become true, and allows other

threads to notify of a possible change in state. This

base class is the most primitive and general synchro-

nization that allows threads to interact with other

threads and interrupt service routines.5

typedef bool (*sfun)(volatile void*);

class ISync {

public:

void sleep(sfun fun,

volatile void*);

void wakeup();

};

5ISRs may not block so may not wait for a condition, but

can and usually do report a potential change in state.

The ISema class is a counting semaphore imple-

mented with the ISync class. The only operations

supported are increment and decrement (and initial-

ize with a speci�c value). The methods are easily

implemented with the sleep and wakeup operations

of the ISync class.

The ILock class is a binary semaphore. In prin-

ciple, it could be implemented with the ISema class,

but it works out more e�ciently derived directly

from ISync. Operations for ILock are get and put,

and do the obvious things.

ISema, ILock and other classes are implemented

by deriving from the ISync class. They all have simi-

lar fundamental behavior that can be easily factored

into the base ISync class. The Mutex class imple-

ments monitor style synchronization and does not

�t well in the ISync class hierarchy, so it is imple-

mented separately.

The Mutex class has \enter()" and \leave()"

methods to enter critical sections of code. Only one

thread may be active in a critical section, hence the

synchronization. The Condition class is a way for

a thread to sleep within a critical section. A thread

sleeping on a condition is not considered active in the

critical section so other threads can enter. However,

the implementations of Mutex and Condition assure

that at all times there is no more then one thread

executing in the critical section.

3.4 Devices as Objects

uCR proper does not operate devices, or expect any

to be present, but ancillary libraries include classes

that drive various devices. The application may

add more device classes simply by writing the code

needed to manipulate device registers, and putting

that code into classes.

Devices make good objects. Programmers seem

to understand and respond well to this technique.

As an example, a uCR library includes classes for

communicating with a host through a PCI bus. The

class \BUS" has a subtype BUS::Device that is the

abstract type of a bus interface device. The PLX9060

class is derived from BUS::Device and drives the

PLX Technology PCI9060 [11] interface chip. The

I960RP class is also derived from BUS::Device and

drives the ATU function unit of the Intel i960rp [6]

microprocessor.

The BUS class in Figure 2 uses BUS::Device ob-

jects to implement a channel protocol with the host

processor. The abstract BUS::Device class has a

minimum set of methods used by the BUS class for

sending packets to the host and getting packets back.

The classes derived from BUS::Device implement

the minimum methods (which are pure virtual) and

others that the device can support in addition to

the minimum requirements. This is a fairly classic

object oriented design. A similar hierarchy exists

for timers (in case you choose to use them) where

the abstract Ticker class provides a common in-

terface for a generic clock and the derived classes

implement the virtual methods as necessary for the

speci�c hardware available.

The Ticker class hierarchy in Figure 3 is another

example of an object oriented device driver design,

also taken from the uCR libraries. The Ticker

base class provides the methods of a generic inter-

val timer, that portable code may use. The concrete

class derived from the Ticker drives the real hard-

ware timer to implement the behavior of the abstract

class.

Even when inheritance does not make sense,

device driver code �ts well into classes. For

example, the XC40006 class has the method

device configure() for programming the device,

but does not speci�cally support or require any

derivation.

Device classes can be templates, too. The uCR li-

braries include a template class LED that is a driver

for light-emitting diodes. This template is also use-

ful for controlling general purpose output bits, and

other miscellaneous jobs.

template <class RT> class LED {

public:

explicit LED(volatile RT*base);

void set(unsigned idx);

void clr(unsigned idx);

[...]

};

Often, LEDS are connected to a register some-

where in the address space of the processor. The

register may be a word, or a byte, or whatever the

hardware costs and design allow. The program-

mer uses as the template parameter the integer type

needed to access the word (for example \char" or

\unsigned long") and passes to the constructor the

address of the register. Individual bits of the regis-

ter can then be set or cleared with the \set()" and

\clr()" methods.

The nice feature of this template is that the pro-

grammer can use custom types for RT that for ex-

ample store its value in memory outside the address

space, such as I/O space.

6A Xilinx Field Programmable Gate Array

� -

�
�
�
��

@
@
@
@I

BUS::Device

PLX9060 I960RP

The BUS and BUS::Device classes cooperate

to support an interface to a host bus. There

are di�erent kinds of devices that interface

to the bus, represented by classes derived

from the BUS::Device class.

BUS

Figure 2: BUS Class hierarchy

�
�
���

@
@
@@I

I960Timer

Ticker

The Ticker is a general interface

to hardware timers. The I960Timer

is a Ticker using the i960Jx timer,

and the TimerModule is a Ticker

using the mc68322 timer module.

TimerModule

Figure 3: Ticker Class hierarchy

3.5 The Debugger

Some targets have su�cient I/O capabilities to sup-

port an interface to a debugger, so uCR provides the

GDB class. A GDB object is an interface to a suitably

modi�ed version of the GNU Debugger GDB that

runs on a host computer.

The GDB class is a concrete class that takes in

its constructor a pointer to a suitable device class

for use as the communication channel with the host.

Once created, the debugger does not become avail-

able to the host until its \go()" method is called,

generally by a special thread. This method never

returns and forever communicates with the host, re-

ceiving and processing requests for action, memory,

etc.

The uCR core leaves things like breakpoint traps

and faults available to the programmer, so the

GDB class uses standard interfaces to gain access to

threads and the faults they make. The debugger

runs in a thread of its own, so can be said to be

an active object. As an active object, it is free to

manipulate other threads, stop them, run them, ex-

amine memory, etc.

It turns out that not much of what the proxy

needs to do is CPU speci�c, and other then actual

I/O that communicates with the hosts, none of it

involves board details. Many of the details of the

target CPU are managed by the host GBD program,

leaving only some CPU speci�c cache management

and fault handling for the GDB class to cope with.

3.6 Summary

Table 1 summarizes the core set of types, plus a

few others. Notice that this list is very short indeed.

The uCR core really exists to provide a runtime con-

text for the C++ program, and not to provide a lot

of features. However, the thread and heap support

tends to be compiler and CPU speci�c so must be

provided in the core.

Device drivers are not required by the compiler,

or by uCR, but some types of devices are common

enough to o�er in a packaged library some classes

to help the programmer. The BUS, Ticker and LED

classes are examples of class library support for de-

vices. The list of device types here is not exhaustive.

By putting device support in a library instead of a

kernel, the drivers can be brought in by the linker

automatically if the device is used by a program.

Type Description
THREAD Opaque object representing a single thread

ThreadQueue Container for THREAD objects

ISync Interrupt safe synchronization variable

ILock binary semaphore

ISema counting semaphore

Mutex MONITOR style thread synchronization

Condition Condition variables used with Mutex objects

HEAP SPACE Opaque object representing a memory heap

BUS BUS interface abstract class

Ticker Timer device abstract class

LED L-E-D and output bit driver template

GDB Proxy for the GNU Debugger

Table 1: Common uCR Object Types

4 Performance

All the cleverness in the world is useless if the result-

ing design performs poorly. This in fact is where we

met the most resistence from C programmers. The

premise of most criticism is that C++ code leads

to inferior executables, either bloated by support

for C++ capabilities, or somehow merely unopti-

mizable.

Much e�ort went into proving by example that

tight and e�cient C++ code is certainly possible.

Since we chose to stick with a speci�c compiler, we

had the luxury of studying the output assembly code

and working it until the assembly couldn't be further

improved. That experience has led to some general-

izations.

4.1 Branching and Method Calls

Compilers are good enough that sequential sections

of code are optimized very well and branches are the

bulk of the execution time and code space. These

are the logic of the program, and cannot usually be

eliminated. The optimizer can be helped by avoiding

conditional code, short loops should be unrolled, and

it may be best to not branch around useless code in

certain cases.

Object oriented designs, and C++ programs in

particular, tend to introduce many smaller functions

that perform near-trivial operations. For example:

class Foo {

[...]

int value()

{ return value_; }

unsigned size() const

{ return 16; }

[...]

};

The call to value() can be reduced to a single

\mov" or \ld" instruction on most types of CPUs,

and the size()method can be optimized completely

away. However, if those methods were not de�ned

inline then the compiler would be forced to generate

a call and a return, would need to invalidate reg-

isters and/or shift register windows, and otherwise

multiply the complixity.

By inlining, the call instruction is eliminated and

the basic block is expanded to surround the method

invocation. Subexpression elimination and regis-

ter allocation can be applied more globally and

code around the method call shrinks along with the

method call.

C programs can also bene�t from this technique.

Linux source code, for example, is �lled with tiny

inlined functions of this sort. They are easier to

read then similar macros, and more clearly express

intent to the compiler.

4.2 Virtual Methods

Implementing virtual methods usually means an ex-

tra memory access before the call to the method.

This sounds like a performance problem, but in fact

it turns out to be a useful optimization, when used

wisely.

A call to a C++ virtual method is often used to

invoke a context-speci�c behavior. For example, one

might use virtual methods to perform I/O on an

abstract class Device. The typical C equivilent is to

keep function pointers in a function, and use those

function pointers to perform the operation.

The typical C code has the function pointers in

the structure with the other variables, making the

structure larger. Every instance has pointers to all

the functions, so there are many pointers to every

function. A more e�cient way to do this is to keep

in the structure only a pointer to a set of functions.

Thus, the structure has only one pointer to represent

the behavior functions.

C++ compilers do this automatically. The virtual

table is generated by the compiler for each type, and

placed in constant memory. Here is an example, for

the i960, of a call to a virtual method following a

pointer in sfoo:

ld _sfoo,g5

ld 8(g5),g4

ldis 8(g4),g0

ld 12(g4),g4

addo g5,g0,g0

callx (g4)

This generated code loads into g4 the pointer to

the function to be execute, and into g0 the pointer

to the object. The external pointer variable \sfoo"

contains the pointer to the object to be manipulated,

and the virtual method takes no parameters. With

carefully crafted C code, the programmer can save

maybe one instruction here.

Obviously, however, this code is far too much to

use for acessor methods, such as \Foo::value()"

above. Although the virtual method performs a use-

ful function e�ciently, it is clearly too expensive for

trivial functions. The common technique of creating

a virtual method that returns a constant value to

reveal the true object type is ine�cient. If you must

do this, run time type information is more practical.

One unexpected bene�t of virtual methods is that

in certain cases the compiler can tell a priori which

implementation of a virtual method applies, and can

optimize all the above away, as in:

ld _sfoo,g0

ld _sfoo+4,g4

cmpible g4,g0,L4

mov g4,g0

L4:

In this example, \sfoo" is an object and not a

pointer. C++ knows exactly which implementation

applies, and took the liberty of implementing the

method inline. The only di�erence between this and

the previous example is that \sfoo" is known ex-

actly to be of type Foo.

4.3 Assembly Code

When dealing with \bare iron," some assembly code

is inevitable. There is, for example, no reason-

able way to implement thread switching entirely in

C or C++, and in most processors interrupt and

trap handlers must have assembly code to save the

context of an interrupted thread and setup a fresh

C/C++ calling sequence.

However, assembly code should typically be kept

to a minimum. A human can do a good job of opti-

mizing a small stretch of assembly code, but as the

code grows, the human capacity to manage resource

allocation becomes overwhelmed and the compiler

performs better.

The paradox is that short assembly functions are

more likely to be ine�cient if placed in seperate

source �les, as the call and return overhead starts

to overwhelm. What we really want is a way to

write inline assembly code. Look at the following

example:

inline int isr_hot_flag()

{

register unsigned tmp;

asm("modpc 0, 0, %0" : "=r" (tmp));

return tmp & 0x2000;

}

This code returns true if the caller is running in an

interrupt handler on an i960. The \modpc" instruc-

tion takes around 14 clock cycles to execute (it is

slow) but that is not too bad. The call and return

instructions on the i960Jx each consume 6 cycles and

also push a register set, leading to at least 12 cycles

for the call/return pair. Putting this function in a

seperate source �le would double the execution time

of the function and may cause a register cache spill

as well. Inlining this function is therefore rather im-

portant and powerful.

The bene�ts do not stop there. The GNU com-

piler syntax for inline assembly allows the program-

mer to match up registers and supply constraints

that allow the C/C++ compiler to include the code

in the optimization phase. The following degenerate

case:

int foo() { return 0 && isr_hot_flag(); }

obviously leads to the following optimized i960 as-

sembly code:

_foo__Fv:

mov 0,g0

ret

More complex situations are possible, but the

point here is that the inline assembly can and should

be included in the optimization passes of the com-

piler for the best results. A more complex example

for the i386[7] works as follows:

inline int call_host1(int sys, int parm)

{

asm ("int \$0x80\n"

: "=a" (sys)

: "0" (sys), "b" (parm));

return sys;

}

The previous code makes a system call by putting

the parameter in the ebx register and the system call

number in the eax register, and calling \int $0x80"

to trap to the system. The compiler now knows how

to allocate the eax and ebx registers around this as-

sembly statement and can use that knowledge when

optimizing register allocation around it. It can also

eliminate the whole mess if the result is not at all

used.7

This point doesn't have much to do with object

oriented design (except that you can write meth-

ods in assembly code) but has everything to do with

writing the low-level code in C++. If assembly code

could not be inlined, an e�cient implementation

would necessarily pull more code into the assem-

bly �les to cut down on the cost of function call

overhead. At that point, the C++ compiler would

become more a hindrance then a help.

Including assembly code inline, and using con-

straints to control the optimizer, eliminates much

of the interface overhead between C++ and assem-

bly and gives the programmer the best of the C++

and assembly worlds.

4.4 Templates

This brings up an interesting theoretical optimiza-

tion feature of templates. If in the previous example

the class Foo were a template, the size() method

could just return a template parameter. Thanks to

template semantics, calls to the size() method are

subject to constant elimination, which may in turn

lead to dead code elimination. That is an exam-

ple of the compiler deciding on the course of some

7If the assembly statement has side e�ects and should not

be eliminated, it can be declared \volatile" and the compiler

will preserve it.

branches, and eliminating the actual branch instruc-

tion from the execution stream.

Similar code in C uses preprocessor macros to get

the same bene�ts, and is not type-safe. Templates

used this way save much space and execution time,

and are more readable. Use templates as a means

of manipulating the type structure of the program,

and not a way to create code, and templates may

actually reduce to take no code space at all.

If template methods are not inlined, the compiler

must generate an implementation of the template,

often in a di�erent compilation unit. To make mat-

ters worse, much near-duplicate code may be gen-

erated. For example, instantiations with the \int"

type and the \unsigned" type may generate iden-

tical code for a small inlined method but generate

unique implementations for complex out-lined meth-

ods. Comparisons, for example, require di�erent as-

sembly code for \int" and \unsigned" values.

Templates are therefore a terri�c way to generate

lots of excess code when used in this fashion. When

inlined, the compiler may use template semantics to

implement e�cient, locally optimized code. Other-

wise, they generate lots of redundant code.

Compiler writers are still arguing over how to deal

with template repositories and the like, but in prac-

tice, for our purposes, the issue is moot. Large tem-

plate classes or functions will expand to consume all

available ROM. Practical templates should be small

enough to be inline, and if inlined everywhere, there

is no need for a template repository.

4.5 Smaller is Better

Software tends to expand to �ll available memory,

and programmers tend to judge their creations by

the number of lines of code. There are two good

reasons for worrying about program size, even when

virtual memory is available and inexhaustible.

The most obvious reason to embedded program-

mers is that memory costs money and board space.

Actually, it is the hardware designers who notice

this �rst, and design in small amounts of mem-

ory. The programmer then asks for an additional

4Meg of
ash memory and learns that 512Kbyte per

chip means that 4Meg is 8 chips and the board just

doesn't have that much space.

Large programs also tend to run slower. If it

isn't simply because all those instructions take a

long time to fetch from memory, it's because large

programs over
ow the instruction cache more often.

Even dead code tends to spread the useful code into

a larger address space and can lead to cache misses.

Thanks to the widespread use of caches, memory

and instruction, large programs are slow programs.

4.6 Link-time E�ciency

After all the compilation units are compiled, the pro-

gram must be linked together with the run time li-

brary to create a single executable. On conventional

operating systems, there are shared objects to be

linked to, and the kernel to be made available. In

a kernel-based operating system the common func-

tions are placed in a protected kernel that all the

applications share.

In an embedded environment, where there is only

one application, the kernel is not being shared so its

size should be included as part of the cost of the

application. uCR is not kernelized, it is presented

as a library that the linker uses to resolve symbols.

Only the parts of uCR that are explicitly used are

allocated space in the �nal image.

This is an example program, linked with uCR,

that has only an empty main and the code necessary

to enable all the devices on a Picture Elements ISE

board. The text section includes executable code

and constants and can be placed in ROM. The bss

section is large because it contains generous stack

space (10K) for the main thread.

text data bss dec filename

3520 1232 10664 15416 file.exe

The following is the same program compiled for

Linux/SPARC. The stack space is not included in

the totals, nor is the linux kernel itself or any of the

4 shared objects that this image links to.

text data bss dec filename

2688 2575 8 5271 a.out

Ignore the bss sections (mostly stack space in

�le.exe) and the linux image is about the same size.

The linux image is for sparc whereas the uCR image

is for i960 so the di�erences may easily be due to

instruction set constraints.

What is signi�cant about this example is that the

entire uCR image takes up no more space then an

image linked to run in an environment that has sev-

eral megabytes of uncounted resources in the host

kernel and shared objects. These resources provide

a very important value in the case of Linux, but none

of them are of interest in an embedded target.

As the program becomes more interesting, the

uCR image sizes naturally increase. For example,

the following numbers apply to a program that has

included a debugger interface and code to drive a

PCI bus interface, along with an implementation of

a channel protocol that communicates with a driver

on a host computer. In this image, 16K of bu�er

space is included in the bss number, along with the

main stack.

text data bss dec filename

12544 2824 27284 42652 file.exe

The advantage of placing the uCR infrastructure

in a library is that only the parts actually used are

brought into the image. This can include individual

methods of a class (those that are not inlined). A

kernel image, on the other hand, must be included

all at once or not at all.

5 Java, Anyone?

We have considered, and are still considering, the

use of Java in embedded programming. There is an

important problem with it, however, that reduces its

usefulness, and that is the lack of an \asm" state-

ment, and other inlining.

It turns out, when dealing with physical hardware,

that there is always some little bit of assembly code

that needs to be written. The obvious �rst thought

is to put the assembly code is a library somewhere

and call it when needed. But that is not necessarily

the right answer. Consider the following familiar

example for an Intel i960 microprocessor:

inline int isr_hot_flag()

{

register unsigned tmp;

asm("modpc 0, 0, %0" : "=r" (tmp));

return tmp & 0x2000;

}

This function basically reduces to the single in-

struction, the \modpc" instruction. Put that in a li-

brary and you get around it two branches and some

register �le shu�ing, maybe even a few memory ac-

cesses. Wrap it up in a java class somewhere, and

you also get the overhead of leaving and entering

java.

A just-in-time compiler for java byte code would

address many performance issues by generating un-

rolled directly executable machine code as the pro-

gram runs. A syntax would be needed to specify

speci�c assembly instructions for inclusion in the

stream, or the compiler will not be able to match

the optimization performance of C++.

6 Conclusions

uCR as a whole has become a richer environment,

now that it works with more substantial processor

boards. However, its original design goal to stay

small and e�cient seems to be working. The core

library of uCR is still quite simple. We have also

come to some conclusions on the matter of C++

and embedded programming.

We to this day face people telling us that C++

generates ine�cient code that cannot possibly be

practical for embedded systems where speed mat-

ters. The criticism that C++ leads to bad exe-

cutable code is ridiculous, but at the same time ac-

curate. Poor style or habits can in fact lead to awful

results. On the other hand, a skilled C++ program-

mer can write programs that match or exceed the

quality of equivilent C programs written by equally

skilled C programmers.

The development cycle of embedded software does

not easily lend itself to the trial-and-error style of

programming and debugging, so a stubborn C++

compiler that catches as many errors as possible at

compile time signi�cantly reduces the dependence

on run-time debugging, executable run-time support

and compile/download/test cycles. This saves un-

told hours at the test bench, not to mention strain

on PROM sockets.

7 Epilogue

There are times when the proper development envi-

ronment for a project is not an operating system at

all. For these times, run time suppport is all that is

required for convenient development. If an operat-

ing system does not contribute to the solution, it is

part of the problem and should not be there.

Without an operating system, however, the code

generated must stand alone on the target hardware.

The runtime support necessary to allow this, and

even to add some extra features normally associated

with operating systems (like threads and memory

management) is fortunately not di�cult or expen-

sive.

uCR does a good job of providing the necessary

runtime support to the compiler, with little over-

head. Its small size comes from a careful attention

to the details of performance, and stubborn controll

of feature creep. The core design allows interesting

functionality to be placed in libraries outside of uCR

and brought in by the linker only if a programmer

uses it.

With uCR, it is possible to get software for a new

board up and running, if the CPU is already sup-

ported, in a few hours. It is an important milestone

to get a trivial program running an in�nite loop on a

new processor board and it is best to not invest days

getting there. Once trivial programs work, more ex-

tensive hardware debugging can commence.

The ongoing work on uCR is available for anony-

mous ftp from the Picture Elements ftp and web site,

including the documentation, at:

http://www.picturel.com/ucr/uCR.html, and

ftp://ftp.picturel.com/pub/source.

It is indeed interesting that e�orts to reduce code

size and increase speed have led to the conclusion

that signi�cant portions of the source code must be

visible to the programmer in the form of inline func-

tions.

References

[1] American National Standaards Institute, 11 West 42nd Street, New York, New York 10036. American

National Standard for Programming Languages { C, ansi/iso 9899-1990 edition, 1990.

[2] Grady Booch. Object Oriented Design with Applications, chapter 2, page 66. The Benjamin/Cummings

Publishing Company, Inc., 1991.

[3] Working paper for draft proposed international standard for information systems { programming lan-

guage c++. http://www.cygnus.com/misc/wp/draft/index.html, April 1995.

[4] Cyclone Microsystems. PCI Intelligent I/O Controllers User's Manual.

[5] IEEE. Information Technology{Portable Operating System Interface (POSIX){Part 1: System Appli-

cation: Program Interface.

[6] Intel Corporation. i960 RP Microprocessor User's Manual.

[7] Intel Corporation. Pentium Family User's Manual.

[8] Intel Corporation. MON960 Debug Monitor User's Guide, 1995.

[9] Picture Elements, Inc. Imaging Subsystem Engine - Theory of Operation. Preliminary.

[10] P. J. Plauger. The Draft Standard C++ Library. Prentice Hall, 1995.

[11] PLX Technology. PCI Bus Interface and Clock Distribution Chips.

[12] Stephen Williams. Using ucr. http://www.picturel.com/ucr/uCR.html.

