
Embedded Real-time HD Video Deblurring

Timothy J. Dysart and Jay B. Brockman
Emu Solutions, Inc.

South Bend, IN 46617

Email: {tdysart,jbrockman}@emutechnology.com

Stephen Jones and Fred Bacon
Aerodyne Research, Inc.

Billerica, MA 01821

Email: {sjones,bacon}@aerodyne.com

Abstract—This paper explores a computational deblurring
algorithm that will ultimately be implemented in an embedded
system with a targeted form factor of 2”x2”x3”. The deblurring
algorithm completes a Fourier filtering step followed by a wavelet
transform denoising step on a 1080x1920 Bayer input 30 frame
per second video feed. A major challenge in performing this
processing in real time is that the wavelet denoising process
utilizes the stationary wavelet transform, thus exploding the
bandwidth requirements of the algorithm. To reach the desired
form-factor and performance rate, a hardware accelerator is
required. While both GPU and FPGA implementations have
been pursued, this paper limits itself to describing our successful
implementation using a desktop GPU card. Additionally, we
briefly highlight methods, left for future work, for improving GPU
performance based on our FPGA implementation efforts that
should aid in scaling from our current desktop implementation
to an embedded implementation.

I. INTRODUCTION

The goal of this work is to implement a high definition
(HD) video deblurring algorithm in real time at 30 frames per
second; as we assume that the point spread function of the
the camera and lens is known a priori, we are implementing a
non-blind image deconvolution. The overall system consists of
an out-of-focus HD video camera capturing 1080x1920 Bayer
color formatted frames at a rate of 30 frames per second and a
computational component that process these frames to provide
a reconstructed video feed to the end user. As our ultimate
goal is an implementation that fits into a 2”x2”x3” volume,
using a hardware accelerator is required.

Both GPU and FPGA based hardware accelerators have
been explored with the GPU based implementation being the
main target; as such, we do not discuss the FPGA imple-
mentation in depth here. We favored the GPU platform as it
provides a more flexible structure for investigating changes
to the underlying frame reconstruction algorithms. By being
able to quickly investigate various algorithmic options, we
could then target an FPGA implementation and minimize
our need to make expensive design modifications to explore
different algorithmic choices. However, as we learned during
the FPGA implementation phase, the capabilities of GPUs can
hide implementation details that result in a potentially sub-
optimal solution. The key capability difference between the
devices was that the GPU had a peak memory bandwidth of
almost 10x than the FPGA framework we studied.

Memory bandwidth is a key consideration in any imple-
mentation as moving a color image of 1080x1920 24-bit pixels
between memory and the device requires moving 5.93 MB;

thus just copying 30 frames/sec requires almost 356 MB/sec
of bandwidth. The deblurring algorithm utilized, the ForWaRD
(Fourier-Wavelet Regularized Deconvolution) algorithm [1],
has a Fourier filtering component and a wavelet transform
denoising component and, even after some algorithmic reduc-
tions, requires at least 55 GB/sec of memory bandwidth in our
current GPU implementation. Clearly, minimizing this value
will have a major performance impact.

Parallelizing the computation and minimizing memory
bandwidth requirements were two major factors that enabled us
to go from needing nearly 30 seconds to deblur a 1024x2048
grayscale frame with an unoptimized implementation on a
CPU to easily meeting the 30 frames per second requirement
to fully process 1080x1920 color frames on an Nvidia graphics
card. While we have needed to use a rather powerful graphics
card to meet the timing requirements of our computational
deblurrer, we are continuing to develop our implementation to
meet our performance goals on an embedded platform like the
Nvidia Jetson Pro automotive development kit.

The scope of this paper is the implementation of our
computational deblurring system using GPUs and how we have
met the real-time processing requirement. As a result, many of
the details regarding the choice of image processing algorithms
and the remainder of the system are not contained here.

Section II sets up the deblurring problem and describes
the algorithms used here. We describe our implementation of
the algorithms in Section III. Performance results are in Sec-
tion IV. Section V discusses the implementation modifications
that we will explore to be able to meet our desired frame rate
in an embedded system. Section VI concludes the paper.

II. DEBLURRING PROBLEM AND ALGORITHMS

The image blurring process can be modeled as

y(x) = g(x) ∗ f(x) + n(x) (1)

where y is the blurred image, f is the clear image, g is a
point spread function that characterizes the blur, and n is an
additive noise process. The goal of the deblurring process is
to recover the image from the noisy blurred measurements.

The naı̈ve approach is to use the fact that convolution
in the spatial domain is equivalent to multiplication in the
frequency domain and attempt to recover f by applying
1/G(ω) to y. However, since G(ω) invariably has regions of
small amplitude, the effect is to cause a large amplification of
the noise so this approach is rarely practical. The Wiener filter,

978-1-4799-6233-4/14/$31.00 c© 2014 IEEE

Fig. 1. Bayer filter format.

G∗(ω)

|G(ω)|2 + Sn(ω)
Sf (ω)

(2)

minimizes the mean square error and performs much better
than Eq. 1, but it requires knowledge of the power spectra of f
and n which usually are not known. A useful, and frequently
applied, technique is to assume that the spectra of f and w are
white and that the signal to noise ratio is reasonably large. In
that case, Eq. 2 becomes

G∗(ω)

|G(ω)|2 +K
(3)

where K is a small number. This regularized Fourier do-
main filter can produce a reasonably sharp image, albeit noisy.
The approach used by the ForWaRD algorithm, discussed next,
is to follow this operation with wavelet denoising. The wavelet
processing is very effective at reducing the noise while not
degrading detail in the image [2].

A. Deblurring Algorithms

There are two main algorithms required to convert the
input frames, which are blurry and have a Bayer input format,
into a reconstructed frame which has been demosaicked and
deblurred. Demosaicking is the process of taking a color input
frame in the Bayer format, which has only one hue for each
pixel as shown in Fig. 1, and interpolating the missing pixels
so that each pixel has all three hues.

We initially utilized the one-step alternating projections
demosaicking approach in Ref. [3] which was based on the
approach of Ref. [4]. The results of Ref. [4] demonstrated a
clear improvement over the bilinear interpolation method of
demosaicking while the method of [3] demonstrated a perfor-
mance improvement over the earlier approach. Additionally,
we later explored the use of bilinear interpolation for the
demosaicking and found that it had some desirable properties
that we will describe in more depth in the following section.

To complete the image deblurring, we utilized the Fourier-
Wavelet Regularized Deconvolution (ForWaRD) approach of
Ref. [1]. The main aspects of this approach, shown in Fig. 2
are the pre-compute section (light gray), the threshold update
section (white), and the deblurring section (dark gray). The
following notations are used in the figure:

• PSF: Point-spread function

• FFT/IFFT: 2D forward and inverse Fourier transforms

• WT/IWT: 2D forward and inverse wavelet transforms

Fig. 2. ForWaRD Algorithm. See text for an explanation of the abbreviations
used.

• MAD: Median Absolute Deviation

The three major sections of the algorithm do the following
(the latter two are done separately for each color):

• Pre-compute (light gray boxes): This computes a
Fourier filter, via Eq. 3, and initial threshold and noise
factors based on the point-spread function of the cam-
era lens which is defocused by a known amount. The
initial threshold value is computed after transforming
the Fourier filter back into the time domain and is
based on the Daubechies-4 wavelet transform (WT1).
The initial noise factors are based on the Haar wavelet
transform (WT2). Once these values are computed,
they do not change while the system is operating.

• Threshold Update (non-input/output white boxes):
This section of the algorithm takes the blurred input
frame and needs to compute just a single-subband
of the first level Daubechies wavelet transform on
the blurred frame after it has been demosaicked. The
MAD Noise Estimate sorts the pixel values, finds the
median, and uses the median to update the threshold
values used in the deblurring section. While this
section of the algorithm does not have to be computed
with each frame, it is desirable to do so.

• Deblurring section (dark gray boxes): This is the main
component of the algorithm and consists of a filtering
step in the frequency domain followed by a denoising
step, via wavelets, after returning to the spatial do-
main. As can be seen in Fig. 2, one wavelet transform
goes directly into the wavelet domain Wiener filter
while the other is thresholded and then after an inverse

and forward wavelet transform (required to match up
the wavelet bases) also goes into the wavelet domain
Wiener filter.

One of the most challenging components of implementing
this algorithm is that we are utilizing the stationary wavelet
transform (aka, algorithme à trous) which maintains all of the
output rather than subsampling the output. As a result, the
stationary wavelet transform produces four full-sized frame
outputs at each level of 2D transform rather than being able
to remain stored in the space of the original frame. Similarly,
when doing the inverse stationary wavelet transform, we are
collapsing four frames back into a single frame at each level.

Considering just the Daubechies-4 wavelet transforms that
occur before and after the Hard Threshold step, a direct
implementation of a three level forward transform has a total
of 9 frame reads and 18 frame writes and results in 10 frames
left for use in the Hard Threshold step. The total number
of reads and writes is flipped for performing the inverse
transform. Even with embedding the thresholding step into
the inverse transform processing to reduce memory bandwidth,
over 35 GB/sec of memory bandwidth is required for just this
processing step (single precision floating point values).

III. ALGORITHM IMPLEMENTATION

We have developed the DDGPU (Demosaic and Deblur
on GPU) library based on Nvidia’s CUDA GPU program-
ming model to implement the algorithms in the prior section.
Throughout the development process, we frequently modified
the demosaicking and deblurring algorithms in order to reach
the desired 30 frames/sec processing rate. In this section,
we highlight the major algorithmic changes and performance
optimizations that enabled us to reach the desired frame rate.

One feature of the DDGPU library is that it preallocates
and maintains all of the memory device space necessary to
run the algorithm. This preallocation, approximately 1GB of
device memory, prevents losing time to create and free memory
spaces as each frame is being processed.

A. Demosaicking Modifications

While our original demosaicking approach was the alter-
nating one-step projections of Ref. [3], we found that this
approach was not particularly amenable to a GPU based
implementation. With this algorithm, each color of an input
frame is broken into four one-fourth sized subframes and then
the majority of the demosaicking operation is performed on
the subframes (total of 12 subframes). Once the subframe
processing has completed, the twelve subframes are stitched
back together into a final color image. The major challenge
of this approach is that the initial breaking of the frame and
the final stitching of the frame require processing that is not
coalesced1. This lack of coalescing occurs because each 2x2
pixel block in the input frame has a single pixel to direct to
each subframe. Similarly, a single row of the output frame has
to pull data from 6 subframes so one can either optimize the
reads or the writes to be coalesced, but the other will not be.

1Memory coalescing refers to a group of threads (a warp) accessing
contiguous memory, preferably aligned to the L2 cache line width of the
GPU.

While the memory coalescing issues can be managed, this
demosaicking method is also computationally expensive as
four forward and eight inverse 2D Fourier transforms are also
required for each input frame. This, coupled with the issues
outlined above, led us to investigate bilinear interpolation as
a demosaicking approach. By changing our approach to using
bilinear demosaicking, we were able to quickly separate an
input frame into its respective color frames by applying a
mask (precomputed and stored) for each color onto the entire
input frame. This results in a separate image for each color
which is then transformed into the frequency domain. The
demosaicking is then done for each color by embedding it
into the frequency domain filtering step by first multiplying
the frequency domain version of the input by a precomputed
demosaicking filter and then multiplying this result by the
regularized Fourier filter. While some additional processing
was required to write out and perform an inverse 2D Fourier
transform on the blurry demosaicked frame (the result of the
first multiply) for updating the thresholds, we greatly reduced
the time required to demosaic a frame.

One of the unexpected benefits from switching the demo-
saicking algorithm was that some of the edge effects using
the one-step approach, shown in Fig. 3(a), disappeared when
using the bilinear interpolation approach as shown in Fig. 3(b).
While not a major impact on the final frame output, it does
provide a more visually appealing output.

(a) (b)

Fig. 3. Edge differences after running our version of the deblurring algorithm
after using (a) one-step alternating projections and (b) bilinear demosaicking.

B. Deblurring Implementation

Overall, we made two major changes to the ForWaRD
algorithm to reach our performance goals. The first was
the elimination of the wavelet domain Wiener filter and the
second modification was using only a subset of the frame,
rather than a full frame, to update the thresholds used in
the wavelet denoising process (the MAD noise estimate and
Compute Thresholds steps). After applying these changes,
there was only a minimal impact to the PSNR ratios between
the original frames and the frames output from applying the
full ForWaRD algorithm and the reduced ForWaRD algorithm,
thus the algorithm modifications were acceptable.

As the benefit of eliminating the wavelet domain Wiener
filter is obvious based on the bandwidth requirements of a
wavelet transform, we focus on the changes to the threshold
update steps. One of the major components in performing the
MAD noise estimate step is that the frame under consideration
has to be sorted to identify the median pixel value in the
frame. For a 1080x1920 input frame, this requires sorting
over 2 million values. By using only a portion of the frame,
e.g., 64x64 pixels taken from the middle of the frame, the
sort is reduced to about 4,000 values; clearly, this is a major
performance benefit.

In terms of the actual implementation of the ForWaRD
algorithm, substantial performance improvements came from
two major sources: the reduction of host/device memory
transfers and reducing unnecessary data movements, partic-
ularly frame transposes, in the denoising process. Host/device
memory transfers were generally eliminated by precomputing
as much data as possible and placing it into device memory
as well as keeping small sequential functions on the device
rather than the host. The second improvement, reducing data
movements, was extremely beneficial as frame transposes
perform no practical work. In the full ForWaRD algorithm,
when using a wavelet transform depth of 4 levels, the longest
path (through the “Hard Thresholding” step) required 100
frame transposes. The majority of these transposes were in
reorienting the frame to align the columns of the frame onto
the rows to do the wavelet transform on the columns and have
coalesced memory accesses and then reorienting the frame
back to its original alignment.

To eliminate these unnecessary transposes, we utilized the
block based approach of Ref. [5] to perform the transform
operation. This approach does the horizontal (row-based) pass
in a standard fashion. However, for the vertical (column-based)
pass, they use “slabs” to perform the wavelet transform on
a set of rows within a column. The slabs read in a block
of data that is a power-of-2 number of columns wide to
ensure data coalescing and the number of rows to be updated
along with additional rows to handle boundaries. This is an
extremely advantageous GPU operation as each slab is then
computationally independent of the other slabs and can be a
single operational block.

Fig. 4. Slabs for doing wavelet transform operations on a set of columns

Figure 4 shows an overview of the read and write regions
for two slabs with slab X+1 shifted by a group of columns
(e.g, 16 or 32) to improve the visual quality. As the individual
wavelet transforms operate on “local” data, minimizing the
overlap regions is a desirable option. For example, in our
implementation, we utilize a slab that is 16 columns wide and
120 rows long that then writes out 80 rows of data. While this
is a significant amount of read overhead at nearly 50%, it is a
far superior approach to using frame transposes. Quantitatively,
if we assume that two transposes are necessary to rotate the
frame and then return it to its original orientation, nearly 16MB
of data is transferred as compared to a read overhead of about
4MB (per color, single point floating point values). Stretching
this out to all three colors and our desired frame rate, replacing
2 transposes with a slab-based operation saves over 1GB/sec
of memory bandwidth.

TABLE I. PSNR VALUES (DB) FOR EACH VERSION OF FIG. 5 AS

COMPARED TO THE ORIGINAL.

Y Cb Cr

Blurry 25.64 40.73 38.25

Full 30.39 40.50 38.8

Reduced 32.74 41.32 40.64

TABLE II. GPU CARDS USED HERE. EACH CARD HAS A TOTAL OF 64
KB OF LOCAL MEMORY/CACHE PER SYMMETRIC PROCESSOR.

GTX 580 GTX 670 GTX 780

Compute Cores 512 1344 2304

Cores per symmetric processor 32 192 192

Max GFLOPs (single-precision) 1030 2460 3977

Memory Bandwidth (GB/s) 192.4 192.2 288.4

Cuda Architecture and Capability Fermi, 2.0 Kepler, 3.0 Kepler, 3.5

C. Image Quality

Figure 5 shows four snips of an image from our test set to
demonstrate the visual performance of our implementation of
ForWaRD. Table I provides the PSNR results (Y=luminance,
Cb, Cr = chrominance) when comparing the full-sized figures
in (b)-(d) against the original image. As the figure and table
results demonstrate, this is an effective deblurring approach
and there is no degradation in quality using the reduced version
of the algorithm (for this case, the reduced version is actually
better).

IV. PERFORMANCE

While implementing the DDGPU library, we ended up
using three different Nvidia GPU cards. Table II shows the
capabilities of each of these cards. Overall, the majority of our
algorithm modifications and development occurred on the GTX
580 and GTX 670 cards. Since our initial tests of the GTX 780
card easily met our desired frame rate, we did not pursue any
further optimizations. For reference, a 30 frames per second
rate provides a window of just 33ms to process a frame. In
general, we have written custom CUDA kernels except for the
sort (CUDA Thrust library), the FFT/IFFT operations (CUFFT,
CUDA FFT library), and a few instances where the CUBLAS
(CUDA BLAS) library could be utilized.

A. Demosaicking Performance

Our best performing version of the alternating one-step
projections demosaicking method required around 7.5ms per
frame on the GTX 670 card. After integrating the bilinear
demosaicking in with the Fourier filtering step, we reduced
the demosaicking time to approximately 1.5ms per frame.
However, that demosaicking time is slightly misleading figure
as some frames need to be demosaicked and output in their
blurry state to update the noise thresholds. This results in
having to write an intermediate data value from the Fourier
filtering step to memory, performing an inverse 2D FFT on it,
and then scaling it for use in the threshold update steps. While
this extra processing is done for each color, the total processing
“penalty” is about 5ms, thus bringing the total demosaicking
time to 6.5ms which is still an improvement over the one-
step projection approach. Overall, the major performance boost
occurs when threshold calculations do not have to be done with
each frame as the algorithm can skip three 2D inverse Fourier
transforms in these cases.

(a) (b)

(c) (d)

Fig. 5. Various image snippets: (a) Original (b) blurred (c) full algorithm (d) our reduced implementation.

B. Deblurring Performance

In the prior section we discussed our algorithmic changes
prior to our discussion on the implementation of the deblurring
algorithm. We reverse that discussion as the limits of the
implementation improvements was the impetus for making the
algorithmic changes. As mentioned previously, the major per-
formance improvement was in eliminating frame transposes.
In our initial attempts to reduce the number of transposes,
we skipped realignment transposes when possible. This effort
removed slightly more than half of the transposes and when
coupled with some additional improvements in reducing other
memory bandwidth and placing small “sequential” functions
on the GPU rather than the host, we improved our time per
frame on the GTX 580 card from about 165ms to 100ms (one-
step demosaicking, 4 level deep wavelet transforms) per frame
(no threshold updates; about 12ms to complete them).

After applying the approach of Ref. [5] to remove the
remaining transposes in the wavelet transform processing step,
our run time on the GTX 580 card was reduced to about
72ms per frame (no algorithmic changes). One of the more
interesting results we had was when we switched from the
GTX 580 to the GTX 670 card at this stage of development.
This switch in card caused a performance reduction as DDGPU
was optimized for the Fermi GPU architecture [6] rather than
the Kepler GPU architecture of the GTX 670 [7].

Once we optimized for the GTX 670 and had not made
significant progress on the run time per frame, we began to
investigate the ForWaRD algorithmic changes above to go
along with the bilinear interpolation demosaicking. The first
optimization was to reduce the number of levels of wavelet
transform to three as each level added several milliseconds of
processing time. Further study then identified that the wavelet
domain Wiener filter was having almost no impact on the
resulting output image, so it was removed as well. With these
changes our processing time per frame without updating the
thresholds approached 30ms, but updating the thresholds took
a much longer time in proportion – almost 20ms.

This 20ms difference consists of the 5ms penalty for having
to compute the demosaicked blurry frame and nearly 5ms per
color for updating the thresholds. Further analysis showed that
the main time component of the threshold update step was in
sorting the image to find the median. Although we utilized the
CUDA Thrust library [8] to have a native CUDA sort function,
there were few options for improving performance short of
using the smaller window as discussed in the prior section.
By using a 64x64 pixel subframe to update the thresholds, we
reduce the time per color to about 0.7ms. This then leaves
a roughly 7-7.5ms difference in per frame computation times
when the thresholds are updated and when they are not.

While we are at the edge of performing the demosaic and

TABLE III. PERFORMANCE SUMMARY.

Time per Color GPU Major Improvements
frame (ms)

70 Gray GTX 580 Initial GTX 580 implementation

55 Gray GTX 580 Removed additional host/device transfers

165 Color GTX 580 Initial color implementation; demosaicking
nearly “free”

100 Color GTX 580 Removed unnecessary computation, espe-
cially redundant frame transposes

72 Color GTX 580 Removed remaining transposes except those
that may be in CUDA libraries

37.5 Color GTX 670 Full reduced algorithm (includes Threshold
Update section)

23 Color GTX 780 Upgraded hardware; safely met performance
requirement

deblurring process in real time, these performance estimates do
not consider the time required to move the frame out of the
camera nor the time for the host system to display the output
frame. In order to reach our goal of operating the system in
real time, we acquired a GTX 780 card (also a Kepler based
GPU architecture) and found it capable of processing frames,
including updating the thresholds, in roughly 23ms which left
plenty of time for the other required operations.

Table III summarizes the algorithm performance at various
stages of development.

V. MOVING TO AN EMBEDDED GPU SYSTEM

To date, we have implemented our deblurring solution on
desktop based GPU cards. While it simplifies development and
demonstrates the desired capability, a desktop card is not a
feasible solution for the desired system volume of 2”x2”x3”.
However, should a slightly larger volume be acceptable, then
a system similar to the Nvidia Jetson [9] may be a viable
solution. If we can combine this board with its Tegra K1 chip
with a single Kepler multiprocessor (7 Kepler multiprocessors
are on the GTX 670) and have a second board with a discrete
GPU, it is reasonable to think that 3-4 Kepler multiprocessors
will be available for use.

Assuming this type of configuration, the DDGPU library
will need to reduce its runtime by nearly 50% again (based
on the GTX 670 performance). It is in attempting to reach
this performance level that the lessons learned from trying
to implement our deblurring algorithm in an FPGA can be
applied. In particular, since our FPGA system did not have
the same memory bandwidth as the GPUs, we identified
two possible implementation modifications that can be done
in the wavelet processing to enable more computation per
CUDA kernel and reduce memory bandwidth requirements.
As we have shown, reducing bandwidth is a highly productive
approach for improving processing speed.

The first method divides the image into 16x16 or 32x32
pixel blocks and performs the full wavelet denoising on each
block. We have validated the correctness of this approach
in Matlab. This method would cause a massive reduction in
memory bandwidth as only one frame read and one frame
write would be required per pixel block. The main limitation,
however, is that a large amount of local memory may be
needed to complete the processing steps; in turn, this may
limit the amount of computation done on the device at a given
time and impact performance in a negative manner.

The second method would be to immediately expand and
collapse frames that go through the hard threshold step but
are not used in the next level of the wavelet transform. Doing
this would remove several frame reads and writes from both
the forward and inverse wavelet transform steps. Additionally,
this method should be applicable to the prior method of doing
the full wavelet transform on small pixel blocks to reduce the
local memory required to process each block.

Another modification, separate from the wavelet process-
ing, is that since the demosaicking process is quite expensive
when needing to update the noise thresholds, it may be
worthwhile to investigate if demosaicking should be applied
to the blurry frame prior to performing the 2D forward FFT
on it. While this may slow the processing time for frames that
do not update the thresholds, it may reduce the processing time
of frames where the thresholds are updated by enough to be a
net positive.

VI. CONCLUSION

We have shown the implementation of a HD video de-
mosaicking and deblurring algorithm, a modified version of
ForWaRD, that can run at greater than 30 frames per second
on desktop graphics cards. We have also described a viable
path for further development, applying lessons learned from
developing an FPGA based implementation, that would allow
embedded scale graphics hardware to run this algorithm in
real time. In the near term, we will continue to advance our
implementation on the desktop graphics card to reach a per
frame processing time that would allow for an embedded
system, such as the Nvidia Jetson Pro, to perform the final
implementation in real-time.

ACKNOWLEDGMENT

The authors would like to thank the United States Army
Research Laboratory for their support of this work.

REFERENCES

[1] R. Neelamani, H. Choi, and R. Baraniuk, “Forward: Fourier-wavelet reg-
ularized deconvolution for ill-conditioned systems,” Signal Processing,

IEEE Transactions on, vol. 52, no. 2, pp. 418–433, Feb 2004.

[2] S. Mallat, A wavelet tour of signal processing, 3rd ed. Academic Press,
2009.

[3] Y. Lu, M. Karzand, and M. Vetterli, “Demosaicking by alternating pro-
jections: Theory and fast one-step implementation,” Image Processing,

IEEE Transactions on, vol. 19, no. 8, pp. 2085–2098, Aug 2010.

[4] B. Gunturk, Y. Altunbasak, and R. Mersereau, “Color plane interpolation
using alternating projections,” Image Processing, IEEE Transactions on,
vol. 11, no. 9, pp. 997–1013, Sep 2002.

[5] W. van der Laan, A. Jalba, and J. B. T. M. Roerdink, “Accelerating
wavelet lifting on graphics hardware using cuda,” Parallel and Dis-

tributed Systems, IEEE Transactions on, vol. 22, no. 1, pp. 132–146,
Jan 2011.

[6] N. Corporation, “Nvidia’s next generation cuda compute architecture:
Fermi,” Nvidia Corporation, White paper, 2009.

[7] ——, “Nvidia’s next generation cuda compute architecture: Kepler gk
110,” Nvidia Corporation, White paper, 2012.

[8] Nvidia, “Thrust::cuda toolkit documenation,” Online,
http://docs.nvidia.com/cuda/thrust/.

[9] ——, “Jetson automotive development platform,” Online,
http://www.nvidia.com/object/jetson-automotive-development-
platform.html.

