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Abstract The number of traffic accidents in Brazil has reached alarming lev-
els, and is currently one of the leading causes of death in the country. With
the number of vehicles on the roads increasing rapidly, these problems will
tend to worsen. Consequently, huge investments in resources to increase road
safety will be required. The vertical R-19 system for optical character recogni-
tion of regulatory traffic signs (maximum speed limits) according to Brazilian
standards developed in this work uses a camera positioned at the front of
the vehicle, facing forward. This is so that images of traffic signs can be cap-
tured, enabling the use of image processing and analysis techniques for sign
detection. This paper proposes the detection and recognition of speed limit
signs based on a cascade of boosted classifiers working with haar-like features.
The recognition of the sign detected is achieved based on the Optimum-path
Forest classifier (OPF), Support Vector Machines (SVM), Multi-layer Percep-
tron (MLP), k-Nearest Neighbor (kNN), Extreme Learning Machine (ELM),
Least Mean Squares (LMS), and Least Squares (LS) machine learning tech-
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niques. The SVM, OPF and kNN classifiers had average accuracies higher than
99.5%; the OPF classifier with a linear kernel took an average time of 87 µs

to recognize a sign, while kNN took 11,721 µs and SVM 12,595 µs. This sign
detection approach found and recognized successfully 11,320 road signs from a
set of 12,520 images, leading to an overall accuracy of 90.41%. Analyzing the
system globally recognition accuracy was 89.19%, as 11,167 road signs from a
database with 12,520 signs were correctly recognized. The processing speed of
the embedded system varied between 20 and 30 frames per second. Therefore,
based on these results, the proposed system can be considered a promising
tool with high commercial potential.

Keywords Cascade haar-like features · Pattern Recognition · Computer
Vision · Automotive Applications.

1 Introduction

Car accidents are one of the major causes of death worldwide. Estimates made
by the Secretary of Politics of Social Security, show that, in Brazil, the number
of people permanently disabled as a consequence of traffic accidents increased
from 33,000 to 352,000 between 2002 and 2012. In addition, the number of
deaths increased from 46,000 to 60,000 in the same time period. Consequently,
close to one million benefits paid nowadays by the National Social Security
Institute (INSS) are for victims of car accidents. This cost represents more than
12 billion Brazilian Reais from INSS funds. The data from the Lider Insurance
Company also indicates that most victims are between the ages of 18 and 40.
The benefit that generates the greatest expense to the INSS is retirement due
to disability, because it is a benefit that is paid for a long period of time, and
in most cases to young people [1].

Given this scenario, manufacturers such as Volvo, Toyota and Ford are
investing in technologies like Advanced Driver Assistance Systems (ADAS) in
their vehicles to ensure the safety of occupants by helping to avoid potential
accidents. The United States Department of Transportation estimates that
an investment of US $ 1.2 billion in Intelligent Transportation Systems (ITS)
technology would generate a return of US $ 30.2 billion in approximately 20
years. Likewise, Japan has been investing US $ 700 million annually in these
technologies since 2004, while South Korea plans to invest US $ 3.2 billion
between the years of 2008 and 2020 [2].

The goal of ADAS is to assist drivers, and consequently to significantly
decrease the number of accidents. These systems use technologies such as:
global positioning, radar, image sensors and techniques of computer vision.
A study by the US Insurance Institute for Highway Safety estimated that
the use of the intelligent assistance systems such as: lane departure warning
(LDW), foreward collision warning (FCW), blind spot detection and adaptable
headlights that are already available on the market can prevent or ameliorate
one in three fatal collisions and one in five collisions that result in moderate
or severe injuries [2].
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Observing this trend, this work explores the use of computer vision as a
solution for another major traffic safety problem: the driver’s lack of attention
to road signs, which causes a large number of accidents.

Many of the ADAS systems use computer vision techniques in their oper-
ations. For example, Lane Departure Warning System (LDWS) is a warning
system that alerts the driver when he or she is veering out of or changing lanes
by sending visual, audio and/or vibrational signals. This system is designed
to minimize accidents by addressing the main causes, such as distraction and
sleepiness [3, 4]. Adaptive cruise control systems read the speed limit signs
through computer vision and alert the driver if he/she is not obeying the limit
[5].

Assistance for vehicle parking uses ultra-sonic sensors and/or computer
vision to indicate the proximity of objects. Current systems actively control
the steering wheel, just leaving the driver with the control of moving the vehicle
[6].

Other intelligent assistance systems are the Blind Spot Warning System
(BSWS) and Sleepiness detector. BSWS is able to detect blind spots on the
passenger side. This feature alerts the vehicle’s driver if at the moment he/she
is maneuvering there is any risk of collision [7]. Sleepiness detector is an in-
telligent system that monitors the driver’s facial expressions to perceive the
state of the driver’s attention, alerting the driver that he or she should rest if
signs of sleepiness or tiredness are detected [8].

Some car manufacturers have develop technologies, like an autonomous
brake technology, that can stop a car when other vehicles or obstacles are very
close and provides support to stay in the same lane, by applying a corrective
force on the steering when the driver veers from the correct lane. A Cruise
control adapter can also be used to automatically maintain a safe speed and
a safe distance relatively to other vehicles, which in its most active form can
prevent a driver from exceeding the speed limit.

Barthès and Bonnifait say that the development of Advanced Driver Assis-
tance Systems to assist the driver and inform him/her of the road conditions
can significantly contribute to reduce the number of accidents [9]. These sys-
tems should respond in real time to be useful and some of the major technolo-
gies used to ensure these requirements are: global positioning systems, image
sensors and computer vision.

Cavalcanti Neto et. al [2] proposed a system to detect and recognize Brazil-
ian vehicle license plates, in which the registered users have permission to
enter a specific area. These authors used techniques of digital image process-
ing were used, such as Hough Transform, Morphology, Threshold and Canny
Edge Detector to extract the characters, as well as Least Squares, Least Mean
Squares, Extreme Learning Machine, and Neural Network Multilayer Percep-
tron to identify the numbers and letters. Neto et. al [2] used motion detection
to accelerate the embedded application previously developed because only the
moving regions in the image were analyzed, which is not possible here because
everything is moving in the input images.
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Fig. 1: Illustration of the system developed in this work.

The main aim of this work was to develop an android application that
can detect and recognize speed limit signs in real time. The system exhibits
sign-detection in the car as shown in Figure 1. In order to develop the system,
techniques of digital image processing (DIP) are used to extract, i.e. segment,
the characters, along with techniques of machine learning (ML) to recognize
the symbols obtained during the DIP stage.

This paper proposes detection of speed limit signs based on a cascade of
boosted classifiers working with haar-like features in the DIP step. It also
proposes the normalization of attributes for standardization of characters in
the DIP stage, which is usually done in the pattern recognition step.

Among the contributions of this work for the pattern recognition step is
the evaluation of seven classification methods and some of their variations in
terms of suitability as an embedded application in real time. The recognition
algorithms used were the k-Nearest Neighbors (kNN), Optimum-Path For-
est classifier (OPF) configured with seven distance functions, Least Squares
(LS), Least Mean Squares (LMS), Extreme Learning Machine (ELM), Arti-
ficial Neural Network Multilayer Perceptron (MLP) and Support Vector Ma-
chines (SVM) configured with four kernels. As far as the authors know, this
is the first time that the OPF classifier has been analyzed in an embedded
system.

2 Speed limit signs detection

The methodology proposed for the speed limit sign detection is based on a
cascade of boosted classifiers working with haar-like features [10, 11]. This
proposal will be compared to the methodology suggested by Neto et al. [2].
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2.1 Based on a cascade of boosted classifiers working with haar-like features

Viola and Jones [10] proposed a rapid object detection algorithm using a
boosted cascade of simple features, and Lienhart and Maydt [11] proposed
an extended set of Haar-like features for rapid object detection.

This approach has been applied in various applications to detect objects
in real time, such as face detection [12, 13, 14], pedestrian detection [15, 16],
license plate detection [17], and object classification in microscopy [18]. How-
ever, as far as the authors know, this methodology has never been used for
applications such as road sign detection neither incremented in an embedded
solution.

The classifier used to detect speed limit signs is trained with a few samples
of signs, called positive and negative examples [10, 11]. The positive examples
included hundreds of images with speed signs, and negative examples included
arbitrary images without valid signs. After a classifier is trained, it can be
applied to a region of interest in an input image. The classifier outputs a “1”
if the region is likely to show a sign, and “0” otherwise. To search for the object
in the whole image the search window moves across the image and checks every
location using the classifier. The classifier is designed so that it can easily find
the objects of interest with different sizes, which is more efficient than resizing
the image itself. So, to find an object of an unknown size in the image, the
scan procedure is done several times using different scales.

2.2 Based on the Hough transform and Canny edge detector

This approach was proposed by Neto et al. [2] for the detection of license plates
according to the Brazilian Standards. This approach uses the Canny operator
combined with the Hough transform to detect objects.

The Canny edge detector performs two tasks: the filtering of noise and high-
lighting the pixels defining the border of an object in a digital image [19, 20].
To develop this algorithm, primary studies were focused on optimal borders,
that can be represented by using functions in one dimension (1-D) [21, 22]. The
authors showed that the best filter to start their algorithm was a smoothing
algorithm, the Gaussian operator, followed by a Gaussian derivative, which in
one dimension can be given by [23]:

d = (−
x

σ2
)e−

x
2

2σ2 , (1)

where σ2 consists of the data variance and x the input data. The Canny algo-
rithm was designed to have three main properties: minimum error detection,
good border locations, and minimal response time.

Edge detection has been used in many applications for object segmentation
[24, 25, 26, 27], and the Canny detector has been commonly used to find
objects, and Hough transform to recognize the right objects.
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The Hough transform is a feature extraction technique used in digital image
processing [28]. The aim of the technique is to find imperfect points on the
object by comparing it to the desired object class through a voting process.
The Hough transform algorithm elects in the voting process objects that have
similarities to the desired shape.

The classic Hough transform was projected to identify lines on images, and
it has been extended to identify other shapes, like circles or ellipses [28, 29].
Neto et al. [2, 30] applied it to detect lines, but in this work we will use it to
detect circles.

3 Speed limit sign recognition

In this section, the seven machine learning techniques under comparison are
introduced.

3.1 Support Vector Machines

One of the fundamental goals of the learning theory can be stated as: given
two classes of known objects, assign one of them to a new unknown object.
Thus, the objective in a two-class pattern recognition is to infer a function
[31]:

f : X → {±1}, (2)

regarding the input-output of the training data.
Based on the principle of structural risk minimization [32], the SVM opti-

mization process is aimed at establishing a separating function while accom-
plishing a trade-off between generalization and over-fitting.

Vapnik [32] considered a class of hyperplanes in some dot product space
H:

〈w,x〉+ b = 0, (3)

where w,x ∈ H, b ∈ R, corresponding to the decision function:

f(x) = sgn(〈w,x〉+ b), (4)

and, based on the following two arguments, the author proposed the Gener-
alized Portrait learning algorithm for problems that are separable by hyper-
planes:

1. Among all hyperplanes separating the data, there exists a unique optimal
hyperplane distinguished by the maximum margin of separation between
any training point and the hyperplane;

2. The over-fitting of the separating hyperplanes decreases with increasing
margin.
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Thus, to construct the optimal hyperplane, it is necessary to solve:

minimize
w∈H,b∈R

τ(w) =
1

2
||w||2, (5)

subject to :
yi(〈w,xi〉+ b) ≥ 1 for all i = 1, ...,m, (6)

with the constraint (6) ensuring that f(xi) will be +1 for yi = +1 and −1
for yi = −1, and also fixing the scale of w. A detailed discussion of these
arguments is provided in [31].

The function τ in (5) is called the objective function, while in Equation
6 the functions are the inequality constraints. Together, they form a so-called
constrained optimization problem. The separating function is then a weighted
combination of elements of the training set. These elements are called Support
Vectors and characterize the boundary between the two classes.

The replacement referred to as the kernel trick [31] is used to extend the
concept of hyperplane classifiers to nonlinear support vector machines. How-
ever, even with the advantage of “kernelizing” the problem, the separating
hyperplane may still not exist.

In order to allow some examples to violate Equation 6, the slack variables
ξ ≥ 0 are introduced [31], which leads to the constraints:

yi(〈w,xi〉+ b) ≥ 1− ξi for all i = 1, ...,m. (7)

A classifier that generalizes efficiently is then found by controlling both
the margin (through ||w||) and the sum of the slack variables

∑

i ξi. As a
result, a possible accomplishment of such a soft margin classifier is obtained
by minimizing the objective function:

τ(w, ξ) =
1

2
||w||2 + C

m
∑

i=1

ξi, (8)

subject to the constraint in Equation 7, where the constant C > 0 determines
the balance between over-fitting and generalization. Due to the tuning variable
C, these kinds of SVM based classifiers are normally referred to as C-Support
Vector Classifiers (C-SVC) [33].

The implementation used here for the SVM is the one suggested in [34]
and [35].

3.2 Optimum-path Forest classifier

The Optimum-Path Forest (OPF) is a framework for the design of pattern
classifiers based on optimal graph partitions [36, 37], in which each sample
is represented as a node of a complete graph, and the arcs between them
are weighted by the distance of their corresponding feature vectors. The idea
behind OPF is to rule a competition process between some key samples (proto-
types) in order to partition the graph into optimum-path trees (OPTs), which
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will be rooted at each prototype. It is assumed that samples that belong to the
same OPT are more strongly connected to their root (prototype) than to any
other one in the optimum-path forest. Prototypes assign their costs for each
node, and the prototype that offered the optimum path-cost will conquer that
node, which will be marked with the label of the corresponding prototype.

Let Z = Z1 ∪ Z2 be a dataset labeled with a function λ, in which Z1 and
Z2 are, respectively, training and test sets such that Z1 is used to train a given
classifier and Z2 is used to assess its accuracy. Let S ⊆ Z1 be a set of prototype
samples. Essentially, the OPF classifier creates a discrete optimal partition of
the feature space such that any sample s ∈ Z2 can be classified according to
this partition. This partition is an optimum path forest (OPF) computed in
ℜn by the Image Foresting Transform (IFT) algorithm [38].

The OPF algorithm may be used with any smooth path-cost function which
can group samples with similar properties [38]. This work used the path-cost
function fmax, which is computed as follows:

fmax(〈s〉) =

{

0 if s ∈ S,
+∞ otherwise,

fmax(π · 〈s, t〉) = max{fmax(π), d(s, t)}, (9)

in which d(s, t) means the distance between samples s and t, and a path
π is defined as a sequence of adjacent samples. The fmax(π) computes the
maximum distance between adjacent samples in π, when π is not a trivial
path.

The implementation used here for the OPF is the one suggested in [39, 40].

3.3 Least Squares

Least Squares (LS) was used first by [41], and is a very popular technique to
make adjustments around a varied dataset:

yk(i) = ϕk





m
∑

j=1

xj ·wkj



 . (10)

From Equation 10, the output value from the network can be obtained
through:

Y = W ·X, (11)

where Y corresponds to the output matrix stimulated by the input vector X.
Therefore, the W matrix is a matrix with a dimension of m x (k+1) because
of the bias on the input system, that is: i=1,2...,m and j=1,2,...,k in Equation
10 [42].

Among the proposed LS models, this paper adopted the model proposed by
[43]. The input attributes of the classifier are in each column of the X matrix
and the vectors of the classifier outputs are in each column of the Y matrix.
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In Equation 11, mathematical operations are used to achieve the goal,
which is to isolate the W matrix. In order to remove the X matrix from the
right side of the equation, it is necessary to multiply this side by the inverse
matrix. However, the matrix must be square, so it is necessary to multiply by
its transpose:

W = Y XT (XXT )−1. (12)

The Optimal Linear Auto Associative Memory (OLAM) algorithm is used
for both regression functions and classification. This classifier can be used
either as a batch or iteratively depending on its application [44].

The implementation used here for the LS based classifier is the one sug-
gested in [2, 1].

3.4 Least Mean Squares

According to [45], a Least-Mean Square (LMS) network is based on the use
of instantaneous values, and the current values of the input network for the
activation function [46]. The topology of the simple perceptron network is
similar to the LS algorithm; however, they differ in their form of training. The
output values are achieved as follows:

Y (i) = W ·X(i), (13)

where Y(i) corresponds to the output matrix simple perceptron stimulated by
the input vector X(i) and i corresponds to the actual iteration. Therefore, the
W matrix is a matrix with the m x (k+1) dimensions due to bias from the
input system where i=1,2...,m [42, 47].

The neuron activation function y(t) uses the signal function and the error
value is calculated at each iteration. TheW matrix is the weight matrix, which
is obtained iteratively, using the derivative of the cost function:

w(t+ 1) = w(t)− α
∂ξ(w)

∂w
, (14)

where w(t) is the value of the weights from the previous iteration, and α is the
learning rate [46].

Thus, the final result of W is obtained iteratively through the LMS matrix
rule:

w(t+ 1) = w(t) + αe(t)x(t). (15)

The implementation used here for the LMS classifier is the one suggested
in [2].
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3.5 Extreme Learning Machine

The Extreme Learning Machine (ELM) is a neural network with a topology
of a Single Hidden Layer Feedforward Neural Network (SLFN), which is a
network that has a single hidden layer [48, 49].

The ELM uses a training method for its layers as follows: the weights of
the hidden layer are randomly generated and the output layer weights are
generated after the activation function of the hidden layer. The output of the
hidden layer is used as input to the output layer and then the OLAM algorithm
is used to obtain the values of the output layer weights [50].

The ELM algorithm, unlike other traditional algorithms, assumes a smaller
training error and also the lowest standard of weights [50]. The disadvantage
of the ELM is the need to use a high number of neurons in the hidden layer
due to the need of higher hit rates, thus making the implementation of the
algorithm in real-time embedded systems difficult, due to its high complexity
and processing time [49, 51].

The matrix weights of the hidden layer w are generated randomly. After
obtaining the weights randomly, it performs the activation of the neurons in
the hidden layer from the input x(t) of the system, thus obtaining the activated
output of the hidden layer. The output of the hidden layer becomes the input
of the output layer, thus transforming the network into a linear network [52].

The implementation used here for the ELM is the one proposed in [2].

3.6 Multi-layer Perceptron

The Multi-layer Perceptron (MLP) network is a Single-layer Neural Network
(SLNN) organized in a cascade and subdivided in an input layer, one or more
hidden layers and an output layer [53, 54, 45].

According to [55], SLNN does not represent separable functions linearly.
This problem is solved by the use of two or more neurons with adaptive weights.
However, it is necessary to use a training algorithm to adjust weights in these
layers [56], to ones that perform error back propagation to compute the errors
of hidden layers [45, 57].

One output layer with nonlinear neurons and one or more intermediate
layers composed of neurons that represent the network activation function is
the composition of a MLP network [58, 59, 60, 1]. The signal is always forward
propagated, layer-by-layer.

The data for training was defined as follows: the input vector was equal
to 1225, which is the result of 35x35 pixels size image vectorization, the class
labels were 0-9 for the class of digits, as the number of neurons in the output
layer is equal to the number of possible outputs, 10 digits.

In this work, we used a three-layer MLP with an input layer, a hidden
layer and an output layer. According to [61], the classification of numbers on
traffic signs can be made using a MLP network. Thus, we developed an MLP
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network for the database used. The training of the MLP was based on the
error backpropagation algorithm [45].

A network which has the number of hidden neurons equal to three times
the number of classes (30 neurons) was used. The activation function used in
the hidden layer was the logistic sigmoid function. Numbers were randomly
generated between 0.0001 and -0.0001 for the initial weights of the network
[62]. In the training of the network a decreasing learning rate was used with
an initial value of 0.5.

For the stopping criteria of the network training, it was decided that the
network should not be trained if the network spent 10 cycles without decreasing
the mean square error or when this error was higher than the one of the
previous epoch. The problem of these stopping criteria is that if the solution
started to climb to a local minimum, the network training could continue.
With that, we defined several starting solutions for the training to be sure
that the network stops at the global minimum.

The implementation used here for the MLP was the one described in [63]
and [2].

4 Proposed Framework

The framework developed in this work was built using C language for the
Android Operating System (OS). The integrated algorithm for the automatic
analysis of speed limit signs is composed of two main steps: Detection and
Recognition, where the first step is to find the desired sign in an image with
several objects, and the second step is to interpret the information on the sign,
i.e. the maximum speed limit, Figure 2.

The first step in the computational pipeline developed is the speed limit
sign detection via a cascade of boosted classifiers working with haar-like fea-
tures [10, 11].

The classifier used to detect speed limit signs is trained with a few sample
signs, called positive and negative examples [10, 11]. The positive examples
included about 1,000 images with speed signs, and negative examples used
were arbitrary images without validate speed limit signs. After a classifier
is trained, it can be applied to a region of interest in an input image. The
classifier outputs a “1” if the region is likely to show a speed limit sign and
“0” otherwise. To search for the object in the whole image, the search window
moves across the image and checks every location using the classifier. The
classifier is designed so that it can easily find the objects of interest with
different sizes, which is more efficient than resizing the input image itself. So,
to find an object of an unknown size in the image, the scan procedure should
be done several times using different scales.

The second step of the pipeline is the segmentation and identification of the
digits, but before the segmentation, it is necessary to perform a thresholding
of the sign for easy identification of the contours. These are identified through
the application of an adaptive thresholding algorithm [64].
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The next step is to filter the contours found in order to find the digits
of the speed sign. The digits, before being sent to the next step, go through
4 filtering processes: by height, by width and through the spacing between
digits.

The process of filtering checks the height of the average height of all objects
and all filters that are above or below average with a tolerance of 15%. After
the filtering process by height, the next step is to filter by width. The width
filtering algorithm works the same as the algorithm for height, but based on
the width. After identifying the digits in possible circles, the region where they
are is segmented to separate the digits correctly. Figure 2 shows the possible
circles found in green and the region where the digits are in blue.

After validation of the sign, the position of the digits, which are separated
and standardized before the last step, is the recognition of the digits. This
pattern recognition process assumes white digits with dimensions of 35x35
pixels on a black background. The digits are resized to make the algorithm
invariant to distance.

The scaling of the digits occurs primarily by resizing the height which
should be 33 pixels. Then, the width is defined in proportion to the original.
Each digit after resizing is placed centrally in relation to the width.

The standardized digits were then subject to the LS, LMS, ELM, MLP,
kNN, SVM and OPF classifiers. The recognition performance of these classi-
fiers was evaluated by accuracy and processing time.

5 Results and discussion

This work proposes an efficient and powerful embedded system to recognize
speed limit signs, where the stages must have high accuracy and low processing
time. This section presents the results of the digital image processing and
pattern recognition steps to find the best method to use in each step.

5.1 Speed limit digits detection

The proposed method in the step of digital image processing for the detection
of speed limit signs is based on a cascade of boosted classifiers working with
haar-like features. Figure 3 shows examples of speed limit sign digits segmented
by the developed approach, showing the stages involved from the input image
to the size standardized digits.

The detection step starts with an image acquired by a smartphone cam-
era, and the images obtained are satisfactory, because the image sensor used,
presents low noise, good focus and good brightness adjustments, as can be
seen in Figures 3(a), 3(b), 3(c) and 3(d).

Figures 3(e), 3(f), 3(g) and 3(h) show the results of the conversion of
the color acquired images to grayscale images. After applying the cascade of
boosted classifiers working with haar-like features, these images have several
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Fig. 2: Pipeline of the developed framework.

possible signs. After applying the adaptive thresholding (Figures 3(m) to 3(p)),
the sign digits are obtained, and presented in Figures 3(u) to 3(x).

The test of the embedded system was performed using the speed limit
signs of 20, 30, 40, 60 and 80 (km/h) as these are the most commonly used
in urban environments. A total of 12,520 images were acquired with different
inclinations and distances in streets and avenues of the city of Fortaleza and
Maracanaú in the state of Ceará in Brazil.

From the 12, 520 images of the speed limit signs that were used as test,
11, 320 signs were properly located by the segmentation step, giving 90.41% of
success in the detection of speed limit signs. On the other hand, the approach
proposed by Neto et al. [2] based on the Canny operator combined with the
Hough transform obtained only 45.3% correct results.

5.2 Speed limit digits recognition

In this work, we evaluated several classifiers to integrate an efficient and pow-
erful embedded system to recognize the speed limit signs. Then, the recogni-
tion step using the k-Nearest Neighbors (kNN), Optimum-Path Forest (OPF),
Least Squares (LS), Least Mean Squares (LMS), Extreme Learning Machine
(ELM), Artificial Neural Network Multilayer Perceptron (MLP) and Support
Vector Machines (SVM) based classifiers was carried out. The following section
presents the results and discusses them.

From the results obtained in the step of digit detection presented in Sec-
tion 5.1, a database with the segmented digits was built, Table 1. The feature
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

(u) (v) (w) (x)

Fig. 3: Examples of results obtained for the segmentation of speed limit digits.

extraction approaches and classifier algorithms were combined to yield an in-
telligent system with high accuracy and low computational cost.

Table 1: Number of elements in each class of the speed limit sign digit database.

Digit Class No of Elements
0 1 1428
1 2 1841
2 3 1879
3 4 1688
4 5 1824
5 6 1569
6 7 1725
7 8 1414
8 9 1650
9 10 1952
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For the training and test set sample sizes, a holdout procedure with 50%
for the training and 50% for the test, with 10 steps, was employed. Each
classifier was configured in various ways, and the best results obtained are
the ones shown in Table 2. The kNN was configured with 1, 3 and 5 nearest
neighbors. The SVM was configured using the linear kernels, polynomial, RBF
and sigmoid, but only the linear and polynomial kernels had accuracy rates
above 90%. The OPF was set with seven distances, but only the Euclidean
and Chi Squared distance obtained accuracy rates above 99% for all samples.
The MLP classifier trained by the ELM and MLP used 1,225 neurons in the
input layer, 10 in the output layer and 30 in the hidden layer.

Each classifier was tested ten times, always shuffling the training and test-
ing samples on a mobile device with Android OS 2.5 GHz Quad Core with
2GB of RAM.

Table 2: Results obtained in the evaluation of each classifier used for the
recognition of the segmented speed limit digits. (Best values are in bold.)

Maximum Minimum Mean Standard Average Average testing
Classifier accuracy accuracy accuracy deviation training time for

rate (%) rate (%) rate (%) time a sample
LS 91.3 89.43 90.81 0.4 8.5 s 1.9 µs
LMS 90.80 45.00 76.45 17.52 50.56 s 4.1 µs
ELM 97.76 96.46 96.88 0.40 24.6 s 12.7 µs
MLP 96.83 87.12 91.93 3.08 158 s 14 µs
kNN (K=1) 99.83 98.51 99.14 0.61 0.027 s 10651 µs
kNN (K=3) 99.89 99.7 99.78 0.06 0.028 s 10639 µs
kNN (K=5) 99.79 99.71 99.76 0.03 0.029 s 11721 µs
OPF (Euclidean) 99.65 99.36 99.54 0.10 2.5 s 87 µs
OPF (ChiSquared) 99.7 99.23 99.47 0.13 2.5 s 748 µs
SVM (Polynomial) 99.88 97.04 99.43 0.94 70 s 9875 µs
SVM (Linear) 99.87 99.76 99.82 0.04 40 s 5595 µs

Table 2 summarizes the results obtained by each classifier. The values
presented show that some classifiers were distinguished in terms of the training
speed, mainly the ELM, kNN and SVM. Other classifiers stand out in terms
of the speed to process a sample, such as the LS, LMS, MLP and SVM with
linear kernel.

In terms of accuracy, the kNN, SVM and OPF classifiers were superior
than the others, especially the kNN with 5 nearest neighbors, the SVM with
linear Kernel and both OPF configurations. These classifiers are distinguished
for the high average accuracies, always greater than 99%, presenting also high
classification stability with low standard deviations.

Table 2 shows the accuracy rates and the prediction times to classify sam-
ples that are important criteria for embedded applications, and the OPF and
SVM classifiers are the ones with the best results. To evaluate these classifiers
further, Table 3 presents the accuracy (Acc), sensitivity (Se), specificity
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Table 3: Acc, Se, Sp, FS for the worst case of the SVM, with linear and
polynomial kernel, and OPF, with Euclidean and Chi Squared distances.

SVM

Linear kernel Polynomial kernel
class Sp(%) Se(%) HM(%) Acc(%) class Sp(%) Se(%) HM(%) Acc(%)
0 99.94 100.0 99.95 99.72 0 99.97 100.0 99.97 99.86
1 99.96 100.0 99.96 99.83 1 100.0 74.04 97.18 85.09
2 99.97 100.0 99.97 99.89 2 100.0 100.0 100.0 100.0
3 100.0 99.17 99.91 99.58 3 96.87 99.88 97.17 87.53
4 99.94 99.78 99.92 99.67 4 100.0 99.78 99.97 99.89
5 99.98 100.0 99.98 99.93 5 99.96 100.0 99.96 99.80
6 99.98 99.76 99.96 99.82 6 100.0 99.53 99.95 99.76
7 99.97 99.85 99.96 99.78 7 99.98 99.85 99.97 99.85
8 99.97 99.51 99.92 99.63 8 99.97 99.63 99.94 99.69
9 99.98 99.59 99.94 99.74 9 99.94 99.89 99.94 99.74

Total 99.97 99.76 99.95 99.76 Total 99.67 97.04 99.40 97.04

OPF

Euclidean Distance Chi Squared Distance
class Sp(%) Se(%) HM(%) Acc(%) class Sp(%) Se(%) HM(%) Acc(%)
0 99.93 100.0 99.94 99.71 0 99.97 99.81 99.96 99.81
1 99.95 100.0 99.96 99.80 1 99.97 99.81 99.96 99.81
2 99.61 100.0 99.65 98.37 2 99.95 99.81 99.94 99.72
3 99.95 96.48 99.61 98.02 3 99.97 98.97 99.87 99.39
4 100.0 99.64 99.96 99.82 4 99.93 99.81 99.92 99.62
5 100.0 99.81 99.98 99.90 5 99.91 99.62 99.89 99.44
6 99.95 98.91 99.85 99.27 6 99.65 99.08 99.60 98.00
7 99.97 99.82 99.96 99.82 7 99.97 100.0 99.98 99.91
8 99.91 99.07 99.83 99.16 8 99.79 96.51 99.47 97.31
9 99.95 99.82 99.94 99.73 9 99.95 98.89 99.85 99.25

Total 99.92 99.36 99.87 99.36 Total 99.91 99.23 99.84 99.23

(Sp) and Harmonicmeans (HM) metrics for each class under study for the
worst case obtained.

The values presented in Table 2 show that the SVM with linear Kernel
stands out as it has the highest accuracy and lowest standard deviation. Also,
OPF with Euclidean distance had the lowest test time compared to the other
classifiers; its training time was 16 times lower and the testing time was 64
times lower than the SVM with linear kernel. The OPF with Euclidean dis-
tance had an average accuracy of 99.54±0.10.

These findings confirm that the OPF classifier with Euclidian distance
is suitable to be integrated in an android application for speed limit sign
recognition with high efficiency.

The standardized digit sizes obtained in the DIP step, and used in the
classifiers evaluation for the pattern recognition step are available at website

http://lapisco.ifce.edu.br/?page_id=140
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5.3 Overall results and main contributions

Many methods have been proposed to detect speed signs, often using some
reference object in the input images. The first contribution of the framework
proposed is the detection of speed signs based on a cascade of boosted clas-
sifiers combined with haar-like features. This approach detects speed signs
independent of the image acquisition distance, which is an important feature
since the signs are smaller the further they are from the camera. This is because
samples of signs with various sizes were used in the training of the cascade
classifier.

Another important contribution of the proposed framework is not having
to use additional attributes, since the digits are resized to a standard size
of 35x35 pixels. By doing this, it was found that the digits are invariant in
terms of size, but here this is attained by processing the image and not in
the recognition step as is normally done. This increases the recognition speed
and robustness. Another contribution is also related to the processing speed,
verifying seven types of classifiers to check which one had the best recognition
performance and low processing time. The top recognition rate obtained was
superior to 99.7% with the SVM and OPF classifiers performing in real time
in the embedded system.

Analyzing the framework in an optimal configuration, we obtained a de-
tection and recognition of 89.19%, which corresponds to 11,167 signs correctly
detected and recognized from a database with 12,520 signs. The speed of the
embedded system varied between 20 and 30 frames per second, depending on
the number of signs found in the input image.

All the solutions that were developed here are fast and able to be embedded
in commercial systems.

The drawback of the methodology developed is the error generated by
large rotations, but this can be mitigated with the correct configuration of the
camera.

6 Conclusion

The addresed problem is very challenging because with the growth of cities
and the rise in the number of cars on the streets, it is extremely important to
use systems able to identifying speed limit signs.

The objectives defined for this work were fully met, since the system de-
veloped is able to detect and recognize the speed limit signs satisfactorily. The
developed system successfully segmented the speed signs and recognized their
values with high accuracy.

The system obtained a global detection and recognition rate of 89.19%,
with 90.41% in the detection step and 98.64% in the recognition step. From
the images tested, it can be concluded that the system implemented is quite
tolerant relative to the size of the image to be evaluated.
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Even with good results, this work has some limitations. First, the system
implemented is limited in terms of the distance between the image device and
the speed limit sign, and the rotation involved, since when these are high, the
identification can be erroneous.
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