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ABSTRACT 

 

During natural disasters, rescue teams fight against time to save as many civilians as 

they can. Researchers can contribute to rescue operations by investigating different 

ways of collecting information from the crisis area and delivering it to rescue teams. 

This project proposes a novel approach for collecting information from disaster areas 

in relation to building collapses and collapse pattern analysis. Our approach is based 

on classifying building collapse patterns using Wireless Sensor Networks (WSNs) 

and data-mining algorithms. Classification time and reliability are considered crucial 

factors, and one of the main objectives of this research is to improve these elements 

in order to deliver accurate information to rescue teams regarding building status in a 

stricken area. WSNs were installed in a simulated building to capture a building‟s 

motion during an earthquake. Four different types of collapse patterns were 

simulated: first column (FC), first storey (FS), mid-storey (MS) and pancake (PCK). 

The captured data was inputted to three different classification algorithms (PCA, 

VQH and HMM) to classify building collapse types.  

 

Two real-life case scenarios were designed to examine the algorithms‟ reliability 

under sensor failure. The first scenario was sensor failure on impact, which was 

designed to simulate sensor failure caused by interfering with an object or hitting the 

ground. The second scenario was the complete failure of random sensors, which was 

designed to simulate early malfunctioning sensors resulting from a power supply 

failure, communication problem or manufacture error. Moreover, the second scenario 

was designed to investigate the limit of each classification algorithm in terms of the 

number of failed sensors. The Hidden Markov Model (HMM) proved the most robust 
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and achieved 100% accuracy in least impact on accuracy (LIoA) case scenario and 

60% accuracy as an algorithm limit when 33.3% of the sensors failed during a 

building collapse. By achieving this level of accuracy, the objective of classifying 

four possible collapse patterns in a short processing time was achieved. 
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Chapter 1: Introduction 

 

 

Natural disasters can strike cities in many different ways. Some natural disasters, 

such as floods and tornadoes, may be predicted, which allows sufficient time to 

evacuate civilians. Others, such as earthquakes and tsunamis, hit suddenly, so there is 

no warning to enable the timely evacuation of people (see Figure 1.1). This can lead 

to high numbers of casualties. 

 

 

Figure 1.1: Rescue operations after an earthquake in Turkey [1]. 

 

Earthquakes that have affected cities have resulted in 30–70% destruction of 

buildings and infrastructure [2, 3]. This degree of destruction occurs because not all 

buildings have been constructed to anti-seismic standard. As a high percentage of 

buildings are typically occupied (for a range of purposes), building collapse is the 

main cause of death during an earthquake [4]. Therefore, many countries over the 

past decade have introduced standards for anti-seismic construction. However, these 

generally do not apply retrospectively and not all countries can afford the high 

financial cost.  
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Despite the high number of casualties from earthquakes, not all victims are killed 

instantly: some may survive for several hours, or as long as three days [5, 6]. This 

provides only a narrow opportunity to save lives, so rescue teams must work 

efficiently and professionally to maximise the chances of survival. Rescue teams 

place a high priority on rescuing people who are known to be alive [4]. One of the 

most important factors in rescue teams achieving their goals is the accuracy and 

availability of information about the earthquake-stricken area [5]. This information 

includes earthquake strength, population, road condition, communication, and 

position and number of collapsed buildings [5]. More details mean saving time and 

thus lives [5]. 

 

Authorities can gather a wide range of information at two different stages: 

1) after the earthquake strikes and before rescue teams enter the area 

2) after rescue teams reach the crisis zone. 

In the first stage, satellite and aerial images of the stricken areas are vital information 

resources for rescue teams [7-9]. The crisis control room can access a wide range of 

information about the crisis area based on these images (see Figure 1.2). For 

instance, images can provide information about the position and number of damaged 

buildings [7, 8]. Moreover, knowledge of the population of the stricken area can 

assist in estimating the number of casualties [10]. However, the level of detail of 

such information is insufficient for building rescue operations. Most systems classify 

buildings as either collapsed or un-collapsed [7, 11], and others as either damaged or 

undamaged [8, 12]. These types of classification can be useful for general plans, but 

not for individual rescue operations, because they cannot provide the rescue team 

with a complete picture of the collapse type. In addition, rescue teams cannot 
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prioritise their work or determine what equipment is necessary using this kind of 

classification. 

 

 

Figure 1.2: An example of a satellite images for earthquake-stricken zone (a) 

before earthquake (b) after earthquake [8]. 

 

In the case of individual buildings, rescue teams use the second approach: gathering 

the missing information once they are in the crisis zone [5]. Building collapse type is 

usually determined by direct observation once on-scene [13]. To gain information 

about internal damage to the building infrastructure, rescue teams may employ 

mobile robots because of the danger to human rescuers [14, 15]. This vital 

information is sent to the control unit, which then mobilises the necessary workers, 

food and equipment for the specific rescue operation. However, this approach is 

much less time efficient than obtaining all of the necessary information prior to 

leaving the station, which would allow rescuers to be better prepared and to prioritise 

locations. 

 

Most rescue operations in the stricken area will be based around collapsed buildings. 

Therefore, providing more information on the nature of those collapsed buildings can 
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help rescue teams in their operations. During earthquakes, buildings collapse in 

different ways [16]. Examples of collapse patterns include first column, first storey, 

mid-storey and pancake [17]. Information on how the target building has collapsed 

will assist rescue teams in planning the rescue operation, and will answer many 

questions, such as: 

1. How should they enter the building? 

2. What is the best equipment to use in the rescue operation? 

3. How many workers are needed? 

4. In what voids are survivors likely to be found? 

5. Should the building be considered a high priority compared to other collapsed 

buildings? 

For instance, in a pancake collapse, the chance of civilians surviving is much lower 

than in other collapse types [4]. In first-storey collapses, rescue teams know that all 

building entrances will be blocked by debris. 

 

The research work in this thesis focuses on classifying building collapse patterns 

caused by earthquakes. Different collapse patterns are simulated using the Blender 

game engine. For each model, a simulated wireless sensor network (WSN) records 

building behaviour during the earthquake. The WSN‟s output feeds into the 

classification algorithm that provides information regarding whether or not the 

building has collapsed, and its collapse pattern. 

 

1.1 Research Objectives 
 

The objective of this project is to design and examine three algorithms to classify 

building collapse patterns resulting from natural disasters. The study builds on 
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previous research on structural monitoring systems and classification algorithms. To 

date, the focus of most research work has been on pre-emptive building damage 

detection and structural monitoring systems including WSNs [18]. Such research has 

emphasised building monitoring to assist civil engineers in building maintenance and 

design, but few studies have been in the area of this research [19, 20], and thus 

substantial pioneering research work is needed. While structural monitoring systems 

use WSNs to record the forces exerted on buildings during earthquakes, the research 

in this thesis uses WSNs to record the three-dimensional (3D) acceleration sensory 

data of falling or moving building parts. This information is used in algorithms 

implemented to classify building collapse patterns. 

 

Finally, a comparison of algorithms that have been used in the classification of 

building collapse patterns is presented, leading to a recommendation of the most 

reliable and suitable algorithm. 

 

To achieve the project goals, the research proceeds as follows: 

1. Simulating building collapse patterns 

2. Designing WSNs for building collapse identification 

3. Examining output and implementing building collapse pattern classification 

algorithms 

4. Examining classification algorithms under sensor failure scenarios. 

 

1.2 Research Methodology 

 
The approach chosen to achieve the research objectives is based on simulating real-

world collapse scenarios without including detailed structure model, which would 

increase the research complexity without enhancing the outcome. It proceeds by: 
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1. Simulating building collapse patterns. Four collapse patterns are simulated 

using the Blender game engine software. During simulations, sensor 

information (e.g. position, speed and time) is extracted using simulated 

WSNs and the Python program cooperating with the Blender game engine. 

This information is used to study the behaviour of WSNs during building 

collapse by feeding it into the chosen classification algorithms. 

2. Designing WSNs for building collapse classification. To design WSNs for 

this research, the building structure itself must be identified. In general, WSN 

design considers two primary components of the building structure: the floors 

and the body of the building. Sixteen sensors are installed on each floor and 

on the outside of the building body without specifying a particular topology, 

which is beyond the scope of this research. 

3. Examining output and implementing building collapse pattern classification 

algorithms. After simulating the building collapse, the data was ready to be 

used by algorithms that can classify the building collapse patterns. Three 

methods of pattern recognition are used, such as principal component analysis 

(PCA), hidden Markov models (HMMs), and vector quantisation (VQ). The 

study also involves algorithm implementation and integration. The outcome 

of this process is the classification of four collapse patterns, plus the un-

collapsed building pattern, into five categories based on features extracted 

from the pattern database by the classification algorithms. This work may 

lead to further advancements in classifying building collapse, and thus reduce 

casualties. 

4. Examining the classification performance under sensor failure scenarios. This 

stage of the research aims to increase overall system reliability by examining 
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the classification algorithm performance under the influence of sensor failure, 

which is typical during a real-world building collapse. Two scenarios are 

under investigation: 

a) The first scenario covers sensor failure due to debris impact or impact 

with an object falling at a certain speed. This scenario represents a 

situation in which WSNs are maintained regularly and there are no 

randomly mell-functioning sensors or issues with their power source. 

b) The second scenario is an additional situation added to first scenario. It 

covers the early malfunctioning of sensors caused by either 

manufacturing issues or failure in the sensor power supply. Each 

classification algorithm is challenged to stand on its limit and capability 

before it fails. 

 

1.3 Thesis Organisation 

 

Many different disciplines are involved in this research: pattern recognition and data 

mining in classification algorithms; earthquake engineering in building collapse 

patterns and earthquake force; and Blender game engine and other software such as 

Python and MATLAB in building collapse simulations, algorithms and WSNs 

implementation. Also important is disaster aid research, which is the main motivation 

behind this study. The thesis is organised as follows: 

 Chapter 2 presents a comprehensive literature review in the areas of crisis 

relief and classification algorithms. It also provides a background to the 

technologies and methods used in the research in relation to crisis aid and 

classification algorithms. 
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 Chapter 3 presents an overview of building collapse patterns, which are the 

focus of this research, and an explanation of how the Blender game engine is 

used to simulate building collapse patterns.  

 Chapter 4 presents the results of the classification algorithms research. The 

classification algorithms used in this research are PCA, VQ and HMMs. 

These results are considered „theoretical‟ because sensors are not allowed to 

fail under any circumstances. This chapter presents a comprehensive analysis 

and discussion of the key results. 

 Chapter 5 examines the classification algorithm performance when sensor 

failure occurs. Two main scenarios of sensor failure are investigated, each 

covering a real-world scenario that could be faced by any WSN during an 

earthquake. 

 Chapter 6 presents the final discussion and conclusions of this research. It 

includes a comparison of classification algorithms and a final 

recommendation regarding which algorithm is more reliable, considering 

algorithm performances during the experiments. 

1.4 Research Contributions 

 

The main contributions of this thesis are: 

 An investigation into building collapse pattern classification using 

classification techniques and sensory data collected from WSNs. Such a 

classification scheme has not been used to classify collapse patterns 

previously. 

 An assessment and comparison of the performance of three algorithms (PCA, 

VQ and HMMs), and the use of this information to develop final 

recommendations. It is driven from the outcome results of algorithms 
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performance in classifying data of five different collapse patterns that 

captured during building collapse simulation.  

 An examination of the effect of sensor failure on the above classification 

algorithms. Two scenarios are examined: failure on impact and complete 

failure of random sensors. Each scenario covers a certain number of 

challenges that can be faced by WSNs during real-world building collapses. 

These give a measure of robustness of the classification algorithms. 
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Chapter 2: Literature Review 

 

 

The primary goal of this chapter is to present a thorough background of the various 

technology and research areas related to rescue operation after earthquakes as well as 

the methods and algorithms used in this study to reach the final goal: classifying 

building collapse during earthquakes. Section 2.1 provides an overview of the work 

done in other studies towards helping rescue teams during earthquakes by classifying 

damaged buildings in the stricken areas through satellite and aerial images. This 

section explains what modern research has achieved in terms of building 

classification. Section 2.2 provides an overview of how wireless sensor networks 

(WSNs) are used in structural health monitoring (SHM) systems. This section shows 

how civil engineers have used WSNs to serve their needs regarding to measure 

vibration level and structure strength during an earthquake. In addition, it highlights 

the gap in collapsed buildings between the aspect of civil engineering and the aspect 

of rescue teams. Section 2.3 discusses the theoretical background of pattern 

recognition algorithms that have been used in this thesis. Finally, an overview is 

provided of studies that have used these algorithms to interpret and classify data 

collected from different types of implementation such as motion and pattern 

recognition. A wide range of algorithm implementations have been used to examine 

the algorithms‟ performance under different data that were generated in various 

environments. 
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2.1 Remote Sensing Images for Disaster Assessments 

 

Image processing research is involved in a wide variety of applications [10, 21, 22]. 

One of the main reasons for this is the immediacy of the information and data 

provided by images [7]. When natural disasters such as earthquakes strike, the 

immediate information is very useful for drawing a complete picture about the 

stricken areas and provides technical support for rescue operations [7]. Remote 

sensing images can be produced in a variety of ways, including by satellite or aerial 

imagery. The following sections show the recent works in emergency aid using 

satellite and aerial imagery. In addition, they show strength and weakness of each 

technique.  

2.1.1 Satellite imagery for disaster assessment 

Researchers had taken advantage in the disaster assessment area of remote sensing 

technology development. Most developed countries have multifunctional satellites 

that serve disaster assessment by providing stricken areas‟ images before and after 

natural disasters.    

Dongjian et al. [12] took the advantage of satellite technology by investigating the 

features of buildings and roads damaged by earthquakes in high-resolution images 

taken by the satellite remote sensor GeoEye-1, which launched in 2008. This remote 

sensor can provide high-resolution images with an update every two to three days. 

Shape, colour, shadow and texture are the main features for diagnosing damaged 

buildings or roads. The interpretation of each image based on these features needs a 

clear and high-resolution image. The authors explained the benefit of this method, 

which helps to reduce the number of casualties after each earthquake. They described 

the main features that other researchers have used or suggested to locate the 
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collapsed buildings and to identify such details as building dimensions and roof 

materials.  

With a similar goal, Masfumi et al. [10] used satellite images to diagnose a disaster 

stricken area. Using information about the earthquake such as calculations of the 

earthquake‟s intensity and magnitude and the crisis area in terms of population and 

number of buildings, the authors were able to estimate the number of collapsed 

buildings dependent on the building types in the crisis zone using the magnitude 

distance attenuation equation. Instead of locating damaged buildings, the results 

showed images that represented the seismic area and number of casualties in it. 

These results were based on vital information about the area itself. Masfumi et al. 

posit that this research would be useful for global rescue operations, but they did not 

mention whether it could be used for local rescue operations. 

To summarise, satellite imagery has its advantages and disadvantages. Advantages 

are: 

 Swift method to collect information. 

 Low cost solution if satellite already exists. 

 No need for training staff to take images because it is a computer based 

methodology. 

 Suitable for global or general rescue operations plans.  

This method has its disadvantages which are: 

 Satellite technology is not available in most developing countries. 

 Images cannot cover a wide area and locate buildings across large areas 

simultaneously. 

 Image resolution is the prime barrier for large areas especially during the 

harsh weather conditions after natural disasters. 

 The types of driven information from satellite images do not reach rescue 

teams‟ expectation in term of helping them in ongoing operations.    
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2.1.2 Aerial imagery for disaster assessment  

It is another known methodology to obtain images related to the stricken area. An 

airplane occupied with high resolution camera travel over the stricken area in order 

to take images for certain areas or creating a grid of images covered whole stricken 

area.  

Dominik et al. [8] used high-resolution synthetic aperture radar (SAR) images to 

locate the damaged buildings after the earthquake. They estimated the three 

dimensions for each building in the post-images of the stricken area. In the second 

stage, they estimated a signature for each building using rendering and matching 

analysis (RMA). These signatures were used to find similarities between recent and 

latest images. High similarity indicated that buildings were undamaged. Buildings 

were classified into two categories: damaged and undamaged buildings (see Figure 

2.1). The results accuracy rate was 90 % based on 30 buildings that had various 

dimensions. This is one of the high accuracy scored works on crisis assessment, 

especially in locating damaged buildings.  

 

Jianwen and Sixian [7] depicted a novel algorithm that can detect a collapsed 

building using a high-resolution image taken after the earthquake only, whereas most 

research in this area is based on a comparison of images taken before and after 

earthquakes. The authors claimed that by understanding the relationship between 

building morphology behaviour in high-resolution images and the electromagnetic 

response of pixels in the image, they achieved 80 % output accuracy in classifying 

collapsed or uncollapsed buildings. They obtained the images from an aircraft flying 

over the stricken area after the earthquake. It took 30 minutes to cover the whole 

area. This algorithm has already been used in China in the 2008 and 2010 

earthquakes. 
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Figure 2.1: Building classification in a stricken area: damaged 

buildings outlined in red, undamaged buildings in blue, and yellow 

represents unclassified building [8]. 

 

Considering the computing time required for a large number of images taken by an 

aircraft over 30 minutes and the size of the data collected, Tao et al. [23] solved this 

problem by using parallel processing to process the Digital Photogrammetry Grid 

(DPGrid) of aerial images. The system can process thousands of images and build 

the DPGrid with the help of Global Positioning System (GPS) in 111 hours. This 

computing time is six times faster than serial processing. However, four days 

processing time is not suitable for rescue operations.   
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Sumer and Turker [24] used aerial images that were taken before and after an 

earthquake for building damage assessments. From the post disaster aerial images, 

the authors used the grey level to identify the boundary of each building in the crisis 

zone and save them in a boundary vector. Boundary vector helps to focus on the 

buildings only, neglecting any other objects such as roads, trees and cars. They found 

that collapsed buildings had a high grey level compared with uncollapsed buildings. 

The final result of this approach was 89.44 % accurate. Sumer and Turker mentioned 

that light intensity can vary from one building to another based on the roof materials. 

 

To summarise, aerial imagery has its advantages and disadvantages. Advantages are: 

 Locating buildings in stricken area and classifying them as either damaged or 

undamaged, which is useful for rescue teams. 

 Does not need advance technology to gather images and achievable in most 

developing countries. 

 Can cover a wide area in the stricken area. 

 Can avoid the weather condition by flying at varying altitude. 

This method has some disadvantages and they are; 

 Time consuming process that can exceed 3 days, which is not suitable for 

human rescue. 

 Requires highly trained pilot to fly over the stricken area who may be not 

available in developing countries. 

 Simple buildings‟ classification that cannot determine priority between 

collapsed buildings. 
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2.2 Building Structural Health Monitoring Systems  

 

In this section, examples of how WSNs have been used in monitoring buildings 

structures are presented. These examples provide a good introduction to the types of 

information that civil engineers are interested to investigate [25-30]. Damage 

detection and identification have been targeted by many researchers in various 

works. Krishna et al. [28] addressed damage detection and localisation issues using 

structural health monitoring systems (SHMs). They investigated two SHM systems, 

Wisden and NetSHM. A laboratory prototype of a four-storey building used in this 

study is shown in Figure 2.2a. MicAz sensors were used to gather data and a 

vibration device was used to make the building vibrate during the simulation. Figure 

2.2b shows the NetSHM systems results in damage detection and localisation. The 

results show how each storey lost stiffness because of vibration during the building‟s 

life cycle.  

 

The authors did not give any indication of when the building was going to collapse 

because of stiffness loss. In [28], sensors in both systems recorded the vibrations and 

sent them to a server to implement detection and identification algorithms that can 

classify the level of vibration and its impact on each story of the building.  

 

In contrast, Ajay et al. [29] focused on designing a powerful wireless sensor node 

that could perform damage detection and identification algorithms for SHM systems. 

They used a three-storey laboratory structure as a research environment. A time-

history database was created in the sensor node that represented the undamaged 

building coefficients. These coefficients were generated using auto-feedback (AF) 

models. The residual error of the AF model, which represents the sensitivity feature, 
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(a) (b) 

Figure 2.2: (a) the simulated building (b) the experimental results of four cases 

[28]. 

 

was produced by computing the Euclidian distance between the current coefficient 

vectors of the AF model and the time-history database. An auto-feedback with 

exogenous input (AFX) time-series model was fitted in the sensor node to find the 

correlation between the residual error of the AF model and the measured response. 

This was novel work because it implemented two damage detection and 

identification algorithms in a sensor node. However, the authors‟ damage detection 

and identification did not reach a level that can help other researchers interested in 

crisis relief, because damage was investigated on concrete strength and not based on 

whole building.  

 

Liang et al. [30] focused on using three different types of sensor readings to monitor 

the strain of a single location in a cantilever beam (see Figure 2.3). The authors used 

a fuzzy inference system (FIS) to process three different types of measurement that 

came from an accelerometer, strain gauge and piezoceramic transducer.  
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Figure 2.3: Fuzzy inference system for damage detection [31]. 

 

They detailed how they used membership functions and weights to detect and ignore 

the incorrect sensor reading to achieve accurate results. Based on field-gathered data 

and simulated FIS in MATLAB, the authors achieved a low percentage of errors in 

the fused data, which was the aim of the fusion model.  

 

As shown from above examples [28-30], WSNs have been used to gather various 

types of information and analyse it in different algorithms to serve only one goal: to 

discover how different parameters (such as temperature and vibration) affect 

concrete strain. Concrete strain is considered one of the main parameters that civil 

engineers use in deciding if a building can be occupied or not. In addition, civil 

engineers consider a building is collapsed if there is a crack in one of the main beams 
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[30], which reflects the meaning of building collapsed terminology from their point 

of view. As a result, WSNs have not yet been used to detect and classify a physical 

building collapse. 

 

2.3 Theoretical Background on Classification Methods 

 

In this section, we preset a theoretical background on principal component analysis 

(PCA) algorithm, Vector quantisation (VQ), and Hidden Markov models (HMM) 

that used in this thesis. The aim of this section is to present an overview on each 

classification methods from the aspect of mathematical background and features. 

  

2.3.1 Principal Component Analysis  

 

Principal component analysis (PCA) is one of the best-known multivariate analysis 

techniques [31-35]. Authors maintain it first appeared in 1901 in a study by Pearson 

and was later developed by Hotelling in 1933 [32]. PCA is used primarily for both 

dimension reduction or pattern recognition [35-38]. PCA has the capability of 

processing uncorrelated dimensions in high-dimension datasets in a short time to less 

correlated dimensions, depending on the similarity and difference between 

dimensions. PCA can give an indication of the most important dimensions and the 

relationship between features in the same dimension. To implement PCA in a high-

dimension dataset, certain steps need to be followed. The first step is to find the 

covariance matrix. The covariance matrix represents the variance between a 

combination of the dimensions. 

var(x) ∑                   , 
(2.1) 
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cov (x,y)  = 
∑ (     )                 , 

(2.2) 

where x and y are vectors, while   and   are the mean of each vector. Equation (2.2) 

shows the covariance between two dimensions while equation (2.3) shows the 

overall covariance matrix 

  (                                                                        ) , 

(2.3) 

where C is the covariance matrix of three dimensions. Each column in C represents a 

principal component (PC). Each PC represents the correlation between all 

dimensions in the original dataset. To select the best PC or PCs that include the most 

variance between dimensions, eigenvectors and eigenvalues need to be calculated 

using equation (2.4)  

C × v = λ ×v (2.4) 

where v is the eigenvectors and λ is the eigenvalues. The eigenvectors with the 

highest eigenvalues are the most valuable PCs in the dataset. After choosing the 

valuable PCs, it is easy to make an observation on the correlation between features. 

 

2.3.2 Vector Quantisation  

 

Vector quantisation (VQ) is a well-known technique that has been used for many 

different applications such as data compression and pattern recognition [39-43]. Both 

applications include common steps such as using a codebook to generate the index 

vector for data compression. Codebook is used to represent one category or pattern in 

pattern recognition [44, 45]. The following are the steps to implement the VQ 

technique: 
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1. Data preparation: The first step in VQ is to order data to n-dimensional vector 

(X). For example, RGB images can be ordered in three-dimensional vector. 

The way to order the data and the number of dimensions needed are 

application-specific. 

 

2. Codebook design: There are two main type of codebooks: local and global. 

The main difference between them is the source of training data that are used 

in the training phase [45-48]. The local codebook training data source is the 

targeted data. For instance, a codebook can be trained with the same image or 

pattern that is to be compressed or classified [44]. In this way, all the crucial 

features will be included in the codebook. This type of codebook can generate 

high-accurate results in data compression and classification [39]. However, 

local codebooks are considered too specific and need to be sent to the 

receiver side in the data compression scenario. In addition, a codebook must 

be generated for every dataset, which is considered a high overhead. In 

contrast with global codebooks, the training data is taken from several 

samples. This type of codebook can cover more data compression and 

classification cases, but the performance is significantly degraded in contrast 

with local codebooks. 

 

Linde-Buzo-Gray (LBG) algorithm is the best-known algorithm for codebook 

design [48, 50]. A codebook initialisation is required for LBG algorithm because 

it is an iterative algorithm. There are three steps to implement LBG algorithm.  

 

 The first step is to initialise [45, 47, 48, 50]: the codebook  ̂     where 

i = 1,2,3, … ,  , distortion measure d, and frictional distortion change 
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threshold µ . In addition, a high number must be assigned for average 

distortion for all training vectors      as an initial value and the 

iteration counter L = 1. There are three main methods for codebook 

initialisation: random codes, splitting and pairwise nearest neighbour 

(PNN) clustering. Choosing random vectors from the training data is 

the primary idea behind the random codes method in codebook 

initialisation. In the splitting method, the initial codebook contains 

only one codeword, which is the centroid for the entire training data. 

The next stage in the splitting method is to split the first codeword 

into two words. Therefore, the initial codebook contains two 

codewords. LBG algorithm will use the codebook in the first iteration 

and the process is repeated again until the codewords equal to   . In 

the PNN method, the initial codebook starts with N number of 

vectors, each vector representing a cluster. The two vectors with the 

closest observation are merged together to create a new codebook 

with (n-1) clusters. This process is continuously repeated until the 

codebook reach    clusters and the codebook represents the initial 

codebook for LBG algorithm. 

 

  After initiating the codebook, the second step in LBG algorithm can 

be started by training the codebook. In this level of codebook training, 

the decision region is mapped and every training vector is encoded to 

the nearest code vector in the map. The minimum distortion rule 

making both defining decision region and assigning the training 

codevector in the map. The common distortion measure is mean 
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square error (MSE), which represents the square of the Euclidean 

distance between to vectors as shown in equation (2.5).  

 (   ̂)    ∑      ̂    
          (2.5) 

   
In some applications, a weighted MSE has been used for the same 

purpose, as shown in equation (2.6). 

 (   ̂)    ∑         ̂    
              (2.6) 

 

If the average distortion      is less or equal to the threshold, the LBG 

algorithm achieved convergence and the codebook is ready to use for  

                   ≤ ϵ 
(2.7) 

 

VQ technique. Otherwise, the codebook update step is required.  

 

 The final step is to update each code vector in the codebook by 

replacing the code vector  ̂     with a new vector  ̂        which 

minimises the quantisation error in that decision region. After 

updating the codebook, a new iteration will start from step two and 

this process will repeat itself until the algorithm reaches the 

convergence. The threshold is play man rules in number of iterations, 

but a specific number of iterations can be signed to control the 

processing time if the threshold has low value. 

 

3. Comparing codebook with test data: After the codebook is trained, each 

vector from testing data   is assigned to one of codebook vectors  ̂ based on 
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MSE and its index k will be either transmitted to the receiver side or saved in 

the new vector for classification purposes. 

 

As mentioned previously, codebooks can be initiated in various ways. In addition, 

the codebook itself can be structured in various ways to obtain the best results [39, 

40, 49]. For instance, if the codebook words    is high and the number of vectors in 

the testing data n is high too, this means n ×    comparison process. To reduce time 

consumption, a tree-structured codebook (see Figure 2.4) can help in reducing the 

number of codewords in the codebook, as shown in equation (2.8)            (2.8) 

where p is the number of levels and m is the number of branches.  

 

 

 

Figure 2.4: An example of binary VQ tree structure for    = 8 [33]. 
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This codebook structure will reduce computational cost to (          ). However, 

tree structure will increase the storage cost to n×m×(  -1)/ (m-1). Classified VQ 

(CVQ) is another way to use codebooks. For classification purposes, each category 

or data set has its own codebook, but in some applications it does not produce 

satisfactory outcomes. The prime reason for these outcomes is that VQ index vector 

can provide misleading features in the training phase. Instead of using one codebook 

per dataset, CVQ uses more several codebooks for each dataset. Every codebook in 

CVQ represents a specific feature in the dataset. In this way, the comparison process 

will be between the features codebook instead of the main dataset codebook.  

 

In summary, understanding the nature of the application can help to take the final 

decision of how to structure and design the codebook for VQ technique. 

 

2.3.3 Hidden Markov Models  

 

The main theory behind the hidden Markov model (HMM) is the Markov chain, 

which was introduced more than a century ago [50]. In the last three decades, HMM 

has been used as a pattern recognition algorithm in many different applications [51-

55]. It is considered a powerful statistical tool for modelling generative sequences 

categorised by a set of observable sequences [53, 56]. HMMs consist of two primary 

stochastic processes. The Markov chain is the first stochastic process and is 

completely „hidden‟. The second stochastic process, which is the visible part, 

produces the sequence of observed symbols based on a state-dependent probability 

distribution. 
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2.3.3.1 Definition of Hidden Markov Model 

 

There are five main elements that define every HMM: state, state probabilities, 

transition probabilities, emission probabilities and initial probabilities. For compete 

HMM definition, the five elements have to be defined: 

 N represents the number of states of the model 

S = {   ,...,   } (2.9) 

M represents the number of observation symbols per state             . M is infinite, if the observations are continuous. 

 A set of state transition probabilities A = {   }.                |                   (2.10) 

where      represents the current state. The transition probabilities should 

satisfy the normal stochastic constraints,                     and   ∑          ,         

 Each state probability distribution,           where       is the 

probability of    is emitted in state   .                |                   

where    donates the current parameter vector, and    is the     observation 

symbol in the alphabet. The following stochastic constraints must be 

satisfied: 

                        ∑       
              

In continuous observations, we need to use a continuous probability density 

function, usually the probability density if approximated by a weighted sum 

of   Gaussian distributions  , 
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       ∑     (    ∑     ) 
    

(2.11) 

where     = weighting coefficients,     = man vectors, and ∑  = covariance 

matrices.     should satisfy the stochastic constraints, 

                       ∑             
     

 The initial state distribution for HMM       ; however,    is the 

probability when the model in state    at time     with  

                              (2.12) 

 

It is critical to decide if the model will be discrete, continuing or a hybrid. For a 

discrete model, the following formula has been used in some studies [57]: 

           (2.13) 

 

The following formula is used to denote a continuous model: 

             ∑        (2.14) 

 

 

Figure 2.5: HMM example [53]. 
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2.3.3.2 Hidden Markov Models Theory Assumptions 

 

HMM considered one of the mathematical and computational complex theory and for 

this reason some assumption is made as shown below. 

1. The Markov Assumption: In this assumption, the next state is dependent only on 

the current state and it becomes a first-order HMM. If the next state depends on 

previous   states, it is a     order HMM.                      |                                                 

2. The Stationary Assumption: It is assumed that the state transition probabilities and 

the time when the transition takes place are independent.            |                |                        

 

3. The Output Independence Assumption: It is assumed that the present output               is statistically independent of the pervious output    |               ∏     |          . (2.15) 

 

2.3.3.3 Hidden Markov Model Types 

 

In this section, three main types of HMM are presented. They are discrete HMM 

(DHMM), continuous HMM (CHMM) and semi-continuous HMM (SCHMM). 

Depending on the application‟s nature and complexity, one of these HMM types 

need to design a modern HMM-based system. 
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DHMM is used to solve the issue when continuous valued feature vectors are 

available and an HMM is needed. To solve this problem, three primary steps are 

needed: 

1. Use dimension reduction methods such as VQ to reduce a set of d-

dimensional real valued vectors to k-dimensional vectors. 

2. Select the closest codeword vector for the current feature vector. 

3. Using the index vector that is produced by VQ as an input to DHMM for 

training to generate the final HMM. 

 

CHMM is a three-phase stochastic process. The first phase is equal to the first and 

second steps in DHMM, which represented selection of the next state. The second 

and third phases have the same title in DHMM, which is the training phase, but in a 

different way. The second phase in CHMM is the selection of the mixture density by 

mixture coefficient, and the third phase includes the selection of the output vector by 

the Gaussian density. 

SCHMM represents the comparison between DHMM and CHMM. Comparing with 

CHMM, Gaussian mixture densities are used for all states in SCHMM. Baum-

Welch/Viterbi algorithms have been used in all previous HMMs for training 

purposes including some modification in CHMM and SCHMM [57, 58]. HMM 

complexity, which causes an increase in computational expense, is a crucial factor in 

choosing HMM type. 

 

It considered bias to assume there is a previous knowledge of HMMs [59, 60]. For 

that reason Baum-Welch (BW) algorithm used to estimate the HMM hidden 

parameters [58] from training database. The main objective of BW algorithm is using 

training data to compute maximum likelihood estimates and posterior mode 
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estimates [59, 61]. After obtaining maximum likelihood, a comparison between 

likelihoods that obtained from the training and testing data can be made to find the 

correct pattern or class.  

 

2.4 Previous Works on Classification Methods 

 

In the last three decades, many studies have reached a high level in classifying 

different types of databases. For instance, in image processing, different applications 

have been invented to help in such matters as crisis time, face recognition and object 

classification [7, 11]. In sound recognition, many applications in mobile phones and 

computers are used to detect the user‟s identity or to detect instructions or orders. In 

addition, many other researchers have used classification algorithms for 

understanding and improving knowledge about different types of datasets that come 

from specific applications. Nevertheless, the performance of classification algorithms 

can be diverse from one application to another based on variance in the data itself 

and the variance between each category or pattern. This section presents an overview 

of previous works on different pattern classification algorithms such as PCA, VQ, 

and HMM. Because our building collapse pattern classification research is a novel 

scenario for these algorithms, different types of implementation for these algorithms 

are described. 

 

2.4.1 Principal Component Analysis Implementations 

 

PCA is one of the widely used common pattern recognition algorithms [62]. PCA is 

used to reduce dimensionality, to extract features, to find correlations between 
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variables and pattern [62-68]. Ashish et al. [63] addressed dimension reduction in 

integrated circuits (ICs) classification using the PCA algorithm. A database of ICs 

with high dimensionality from Texas Instruments for a high volume device 

manufactured was used. Part of the database was used as training data and the rest 

used as test data. To classify ICs based on whether they were qualified or 

unqualified, the first PC was used to generate a score for each IC. Both the PC and 

score vector were used to generate clusters in the training phase. In the testing phase, 

each IC went first through a score generating, and then the score vector was 

compared with the centroids of different clusters. The ICs‟ cluster is the cluster with 

the closest match. Increased process efficiency and reduction of computing time are 

the main achievements of this work.  

 

Another example of extracting features and finding the correlations between features 

is presented in [64, 65]. Wu and Huang [64] addressed groundwater contamination 

patterns using PCA. By finding patterns for each contamination type, the authors 

aimed to allocate different areas in the study area. Variance of 82.4 % was 

represented by four PCs only. These four PCs were used for clustering assignment. 

Subtracting the data from mean and dividing by the standard deviation of each 

column was the data preparation stage. For data classification, a Euclidean distant 

was used to find a measure of similarity between clusters. The combination of PCA 

information and clustering information outlined the spatial allocation of groundwater 

contamination within the study area. This research opened up an opportunity to 

understand and identify the source of the contamination. Continually with previous 

work, Wu and Huang [65] used PCA to find a correlation between groundwater 

contamination sources for identification and tracking groundwater contamination. By 
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using the most valuable PC, the authors were able to discover the linear correlation 

between potential sources of groundwater contamination and the route path in the 

study area.  

 

In both of these examples, groundwater contamination and IC classifying, only good 

results were mentioned and no consideration was given to the confusing or 

unclassified cases. PCA is a lossy dimension reduction. This means that patterns that 

have low variance between them can be a challenging case for PCA. An example of 

such cases is represented in [66]. Xiong et al. [66] addressed early diagnosis of 

breast cancer using data mining methods. One of the data mining methods is PCA. 

The authors used PCA to classify breast cancer based on a fine needle aspiration 

(FNA) database. Using the first and the second PCs, PCA showed clear clusters 

representing infected or not infected, as shown in Figure 2.6.  

 

Despite the good results, there were a few cases in which two clusters overlapped, 

and thus generated misclassifications. The authors combined PCA with partial least 

 

Figure 2.6: Using first and second PC breast cancer data clustering [67]. 

 

squares (PLS) to achieve more accurate and reliable results. This is a good example 

of how PCA is not always highly accurate and can miss classifying some patterns 
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based on the type of object or data needing to be classified. Another contrast for PCA 

has been found in image processing. Qiu et al. and YunBing et al. [62, 68] 

respectively came to completely different conclusions in regard to PCA and 2D-PCA 

performance and process time. Both authors used images, but for different 

applications. Qiu et al. [62] focused on comparing PCA, 2D-PCA and two-stage 2D-

PCA performances on SAR radar images. Instead of changing the images to vectors 

to be compatible with PCA, the authors used 2D-PCA to extract the column and row 

features. Despite PCA extracting only one-dimension features, the results show that 

PCA can reach the same accuracy as the 2D-PCA in less time. This means that 

extracting more features increases the process time without enhancing the accuracy.  

 

On the other hand, YunBing et al. [68] addressed a comparison between PCA and 

2D-PCA performance in wood identification. The authors claim that 2D-PCA is 

faster and more accurate than PCA. They used PCA and 2D-PCA to extract features 

from wood images and classified them into categories. Images that had similar 

features were in the same category. The final results proved that 2D-PCA is better 

than PCA in wood classification. To classify wood based on images, many details 

need to be extracted from the images, which were taken from a horizontal cut of the 

tree. This means that using both dimension features were useful in this case.  

 

In the radar image scenario, three objects needed to be classified. In this case, the 

level of complexity was lower compared with the wood scenario and one-dimension 

features were more than enough for classifying the object. Using features from two 

dimensions did not add any accuracy enhancement.  
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The above studies indicate that PCA can be time efficient, but the output accuracy 

cannot be guaranteed, especially when using PCA with a new dataset that came 

completely from a new application. 

 

2.4.2 Vector Quantisation Implementations 

 

The flexibility of designing a VQ codebook and the capability of fitting different 

types of data structures in the codebooks enables the VQ technique to be used 

extensively in different types of application such as image assessment, face 

recognition, motion detection and human body action recognition [21, 49, 69, 70].  

 

Cui et al. [69] addressed the vector quantisation histogram (VQH) method for image 

quality assessment. Image quality assessment is based on the difference between a 

distorted image and reference image features. Different methods have been used to 

assess the images, including MSE and peak signal to noise ratio (PSNR). However, 

these methods do not reflect what the human visual system can observe. The authors 

used the summation of absolute difference between the projection histogram from the 

reference image using VQ and the histogram of distorted image at the receiver side. 

This method gave better results than five different distortion types such as MSE, 

PSNR and structural similarity (SSIM). In addition, sending a reference image 

histogram does not require much bandwidth because it is a small amount of data.  

 

In [21], Kotani et al. focused on using image histograms that were generated using a 

VQ codebook for face recognition purposes (see Figure 2.7). A low pass filter was 

used to avoid the high-frequency noise and focus more on low-frequency face 
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features. The second step was to divide the images into blocks and then use VQ to 

generate the image histogram. The Manhattan distance method was used to find 

matching measurements between the histograms. This simple method achieved high-

accuracy results (95.6 %) and required low computational power.  

 

 
Figure 2.7: Typical examples of histograms [21]. 

In the area of motion detection, Hao and Shibata [49] addressed ego-motion 

detection algorithms using VQ techniques. In ego-motion detection, the prime goal is 

to detect the observer motion and a determination of global motion is needed for this 

purpose. In contrast, normal motion detection focuses on recognising a specific 

object‟s motion. The authors studied four types of motion: vertical, horizontal, 

zooming and rotation. Each motion type was summarised in a vector that represented 

the edge movements of objects in each frame. The VQ technique used these vectors 

for edge histogram projection. These histograms were used as patterns to detect the 
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observer motion using Manhattan distance. The overall results reached over 93% and 

had low computational expense.  

 

Feng and Perona [70] addressed human body action recognition in a sequence of 

images using VQ and HMM. A human body was partitioned into numbers on regions 

of interest (ROI). The movements of the ROI were then interpreted to numbers of 

movelet codewords. A movelet represents the RIO features of the main parts of the 

body. These features are shape, motion and position. VQ was used to put these 

movelets into one codebook, generating a sequence of numbers that represented the 

action in the tested image. HMM interoperated the outcome from VQ to meaningful 

action. The authors used three periodic and eight no periodic actions imaged as 

testing actions. In the overall results, accuracy of 80% was achieved in this work.  

In [21, 49, 69], the authors used VQH in different ways for different purposes. In 

[21, 69], the authors used the original images as a source for a VQ codebook, but for 

comparing the same image in [69] and comparing with different images in [21]. In 

[49], the authors used the features of the original data to create the codebook. 

Conversely, the VQ codebook contained the wide range of human body actions, 

which were represented as a global codebook that detected the human body‟s 

movement, without understanding what these sequences of movement meant.  

 

To summarise, VQ is a technique that can combine two important features: 

simplicity and efficiency. These two features make it worth using in many new 

implementations, such as this research. In addition, its outcome can be easily used as 

an input for other classification methods. 
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2.4.3 Hidden Markov Model Implementations 

 

HMM has been extensively and successfully used in different research areas that aim 

to classify patterns based on creating models for each category. For instance, HMM 

has been used in speech, image and motion recognition [51, 52, 71-74].  

 

In the speech recognition area, Abushariah et al. [51] used acoustic signals to 

recognise English decimal numbers in various scenarios using HMM. The input 

signal digitising and Mel Frequency Cepstral Coefficients (MFCCs) algorithm was 

used to generate the feature vector. HMM was used to classify and categorise each 

frame in the feature vector. Until this level, HMM was used to generate a pattern for 

each English decimal number. The Viterbi algorithm was used as a decision maker 

depending on the maximum likelihood. Experimental results fluctuated between 

56.25 and 99.5%, depending on the experimental environment.  

 

In the same research area, Foo et al. [71] focused on lip reading using HMM. With 

some modifications and improvements to the Baum-Welch training algorithm, the 

researchers obtained a lower error rate in English letter recognition when compared 

with a basic HMM algorithm.  

 

Moving to human motion recognition, this research area is considered one of the 

closest to our research because it uses sensory data motion recognition. Hara et al. 

[73] focused on detecting unusual human behaviour using HMM. Sensors were 

installed in different types of accommodations, such as houses and apartments, to test 

the model. VQ was used as a dimension reduction algorithm to reduce the number of 

sensors. A sensor network recorded different types of human activity to create a 
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robust human behaviour model. The likelihood of a user action or the distance 

between the state transition probabilities were used to detect the unusual behaviour. 

The authors claimed that this research proved that unusual human behaviour without 

previous knowledge could be detected by using HMM.  

 

More specifically in human motion recognition, Wan et al. [52] addressed human 

motion real time recognition. Motion feature vectors were collected from a micro 

inertial measurement unit (μIMU). A combination of VQ and DHMM was used 

instead of PCA and CHMM because of its low computational cost, which reached 

less than 350 ms. VQ was used as a dimension reduction method, and HMM as a 

classifier for five different categories that were composed of 10 different typical 

human motions. Sliding window algorithm was used for real time detection purposes. 

The recognition rate was between 95 and 100 %. Continuing on with this work, the 

same authors enhanced the classification phase by using a hybrid classifier composed 

of HMM and a support vector machine (SVM) [74]. The upgraded classifier had a 

99% precise recognition, which was more robust than in [52].  

 

To summarise, HMM has been implemented on different types of applications in 

different methodologies. VQ and PCA have been the most common methods used for 

the data preparation phase, and the Baum-Welch algorithm has been used in many 

studies in the training phase [57-61]. HMM was introduced as a robust algorithm that 

could classify different types of data composed of different categories. HMM 

features have strongly encouraged researchers who work on this research to consider 

using it. 
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2.5 Chapter Summary 

 

In this chapter, we presented the disaster aid research area and the current methods 

used in gathering building status in the stricken-area mostly by remote sensing 

images. The SHM system research area shows the current methodology in using 

WSN in term of building monitoring prior to collapse. In addition, a theoretical 

background on the three classification methods used in this research work have been 

presented. Different types of classification algorithms were presented overall 

algorithms performance under different implementations. This overall performance 

gave a general idea on how classification algorithms will perform in our novel 

application.    
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Chapter 3: Building Collapse Patterns and Simulation 

 

 

This chapter provides an overview of how building collapse patterns were simulated 

based on information driven from disaster aid research institutions reports. It 

describes how research teams collect and classify information in collapsed buildings 

reconnaissance reports. These survey reports show examples of classification types 

and the methods used in the classification process, and this information is presented 

in the introduction (see Section 3.1). Section 3.2 presents various kinds of building 

collapse patterns, which are included in reconnaissance reports taken from various 

cities around the world. Section 3.3, presents how building collapse patterns were 

simulated using the Blender game engine. In addition, an illustration of how Wireless 

Sensor Networks were simulated inside each building and how the data gathering 

process operated. Section 3.4 provides a summary of Chapter 3.  

 

3.1 Introduction 

 

Disaster research institutions like the Multidisciplinary Centre for Earthquake 

Engineering Research (MCEER) and National Centre for Earthquake Engineering 

Research (NCEER) are interested in studying the effect of natural disasters on 

houses, buildings, infrastructure, human health conditions and crisis aid. Therefore, 

after each natural disaster and as soon as it secure, emergency services in cooperation 

with research institutions begin sending their teams, consisting of rescue workers, 

researchers and experts, to assess and classify the level of damage caused by these 



 

41 

 

disasters. These teams normally write a reconnaissance report that contains the level 

and type of damage in the stricken area with statistics on casualties, injuries, rescues 

and damaged and undamaged building and infrastructure. These statistics are 

obtained from observations and the cooperation of police stations and hospitals [17]. 

Complete reconnaissance reports take approximately three to four months to prepare 

before they are ready for publication [17], and they are considered useful for civil 

engineers and crisis aid researchers. However, immediate reconnaissance reports can 

be used one or two days after the crisis for rescue planning operations [17]. Remote 

sensing images are used in some cases to save time (see Figure 3.1) [75]. 

Reconnaissance reporting teams face many challenges during the few days after a 

crisis, including difficulties with electricity, communication and transportation [17]. 

 

 

Figure 3.1: Remote sensing image used for building collapse detection by a 

research institution in Iran during the Bam earthquake in 2003[75]. 

 

The main contribution of reconnaissance reports in this research is the surveys on 

reinforcement concrete building collapse patterns and the causes behind these 

collapses. In addition, these reports show when the collapsed building was built and 
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whether it was built based on the country-specific Uniform Building Code (UBC). 

For example, the reconnaissance report on the 1995 earthquake in Japan shows that 

buildings built on UBCs current at the time did not show any damage after the 

earthquake, and most of the collapsed buildings were built on ten year old UBCs [17, 

76]. Conversely, during the 1999 earthquake in Taiwan, 24 modern 10- to 15-storey 

apartment buildings collapsed [77]. These buildings were built based on UBC United 

States (US) standards from that period. When buildings that were built on the most 

recent UBCs collapse during a natural disaster, it highlights the possibility that 

current UBCs may need updating. In most cases, based on reconnaissance reports 

and civil engineer‟s reports, UBCs are changed and updated to face new challenges. 

This means that the existing buildings could still collapse if they are faced with 

natural disasters that they are not designed to withstand. 

 

The majority of collapses caused by natural disasters are due to either poor design or 

poor materials [75, 78]. Unfortunately, people in many developing countries, such as 

Iran [75] and Sumatra [78], are not able to build many buildings based on the latest 

UBCs, which increases the statistics of casualties and collapsed buildings. 

 

3.2 Building Collapse Pattern Types 

 

The primary objective of this section is to describe the building collapse patterns that 

have been used as categories in this research. However, it is necessary to provide an 

explanation on how earthquakes cause building collapse before discussing collapse 

patterns. 
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Buildings lose their stability in earthquakes due to lateral movement of the structure 

[79]. Specifically, the most destructive load effect on a structure is horizontal 

oscillating movement, which shakes the foundation. The lateral movement can 

significantly change the basic shape of a structure, which leads to a new shape that 

has much less capability of carrying the building mass. In addition to this, there is a 

vertical resistance force generated by the building mass and gravity, which is trying 

to keep the building in place (see Figure 3.2). As a result, a structure keeps seeking 

stability by changing shape under the horizontal and vertical forces. If there is no 

damage to the structure that causes structural failure, then the building will survive. 

However, if this type of damage is prolonged, then a partial or complete collapse 

may occur [79]. 

 

 

Figure 3.2: Shows the horizontal and vertical forces that can cause 

building collapse [79]. 

 

Different types of building collapse patterns are observed during natural disasters 

around the world [17, 75–78]. This thesis will cover first column (FC), first-storey 

(FS), mid-storey (MS) and pancake (PCK) collapse patterns. An explanation on how 

these collapse patterns occur is presented in the following sections. 
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3.2.1 First Column Collapse Pattern  

 

Another name for the FC collapse pattern is local column collapse. It is a type of 

progressive collapse that occurs in part of the building and is caused by loss of 

stability (see Figure 3.3) [79]. This type of building collapse can be caused by one or 

a combination of the following failures: 

 Inadequate shear strength failure 

 Inadequate beam/column joint strength failure 

 Tension/compression failure. 

 

 

Figure 3.3: On the left, Ronan Point building local column collapse in 

1968 [63]. On the right, a sketch of local column collapse [79]. 

 

The majority of loss of life occurs in the collapsed column, and the percentage of 

survivals is significantly high in the rest of the building [79]. Opening a new exit 

could be part of the rescue operation if the collapse occurs at the entrance [79]. 
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3.2.2 First-storey Collapse Pattern  

 

This FS type of collapse is also called a soft, first-storey collapse pattern [75–79], as 

it occurs in buildings that have first storeys with significantly less stiffness than the 

other storeys [79]. For example, there could be fewer or no walls in the collapsed 

storey. This type of collapse occurs in commercial or parking buildings (see Figure 

3.4) [79].  This type of collapse can be caused by the following: 

 Inadequate shear strength failure 

 Inadequate beam/column joint strength failure. 

 

 

Figure 3.4: First-storey collapse of residential building with shops in 

Koriyama city Japan after 2011 earthquake [17]. 

Almost all victims of the collapse will be found within the first storey, and survivors 

will be found in the second storey and above [79]. The rescue operation should be 

carried out from the second storey in order to access the collapsed storey. 
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3.2.3 Mid-Storey Collapse Pattern  

 

The MS collapse is another type of soft-storey collapse (see Figure 3.5). This type of 

collapse can occur for the following reasons: 

 No walls exist in the collapsed storey, while a significant amount of walls 

exist in the above and below storeys. 

 The collapsed storey has shorter columns than the storeys above and below it. 

 

 

Figure 3.5: Sixth-storey collapse in the eight-storey Kobe city hall 

building in the 1995 Japan earthquake [81]. 

 

The survival rate for the above and below storeys is high, and the death rate will be 

high in the collapsed storey [79]. In order to rescue the victims in the collapsed 

storey, an operation should be carried out from the above storey after securing access 

into the below storey [79]. 

 

3.2.4 Pancake Collapse Pattern  

 

The PCK collapse pattern is also referred to as the catastrophic collapse pattern (see 

Figure 3.6). It can occur due to the same factors that cause the FS and MS collapse 
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patterns. The survival rate is very low and rescue dogs can be very useful in this type 

of collapse [79]. 

 

 

Figure 3.6: A collapsed four-storey building in the Turkey earthquake [82]. 

 

3.3 Building Collapse Pattern Simulations 

 

Experimental environments can be represented in various ways, such as in the field, 

in laboratories or by computer simulation. The best environment is in the field; 

however, experiments in this area of research cannot be implemented in the field 

unless there is earthquake. A laboratory earthquake simulator was unavailable. In 

simulating building collapses, we chose the Blender game engine, which is open 

source software, for its capability and flexibility in simulating buildings and the 

environment that surrounds them [83-86]. We chose not to use civil engineering 

simulation programs (such as Strand, Staad, and ANSYS) in order to avoid material 

calculation complexity, which is not within the scope of this research. In addition, 

most civil engineering simulations do not prepare for complete physical building 

collapse; they are used to predict building collapse probability based on vibration, 

strength and material type. The Blender physics game engine, has been used in 
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previous research studies and shows the capability of simulating different 

environments, such as indoor robot vision [87, 88], and simulating a complete 

outdoor environment for simulated robots [89]. Despite Blender being designed for 

animation and not for simulations, researchers were generally satisfied with this 

software [87–89]. However, researchers complained about the rendering quality on 

corners but agreed it does not affect the experimental results [89]. Blender provides a 

wide space for simulating various collapse patterns. In particular, blender‟s ability to 

track a block though out the entire collapse is crucial to the study of collapse 

patterns. Moreover, using the Python programming language with Blender gives an 

opportunity to observe the building collapse behaviour during an earthquake‟s 

simulated force using simulated WSNs. This flexibility helped implement different 

types of collapse patterns. The four building collapse patterns that were presented in 

section 3.2 were simulated using the Blender game engine. The following sections 

will discuss the details. 

 

3.3.1 Building Dimensions 

 

Our prototype represents a very basic building with three storeys and four columns. 

Building dimensions were set to reduce the complexity and increase the building 

generality. As shown in Figure 3.7, the building dimensions are 20×5×12 m. The life 

and death load was included by considering materials used in our simulation. The 

main building structure, including the building columns and roof for each storey, is 

constructed from concrete, which weighs 2500 kn/   [90] for a death load and 100 

kn/   for a life load in an office building [90]. The walls are constructed from 

masonry and are 26×13×10 cm in dimension and a weight equal to one kilogram.  
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Figure 3.7: The basic building prototype that was used in this research. 

 

3.3.2 Earthquake Simulation 

 

To design an anti-seismic structural building, the horizontal forces that are equivalent 

to an earthquake must be calculated. We used the same methodology that is used in 

seismic engineering to find the equivalent horizontal forces and then implemented 

these in our simulation. The following steps show how we calculated the horizontal 

forces: 

1. The most important storey of the building needs be determined. This 

estimation is based on the designer‟s point-of-view and the main use of the 

building [see Appendix A]. In the prototype, we determined that the second 

storey was the most important because the building was an office building. 

2. Finding the probability factor (  ) and hazard factor (Z) is necessary to find 

the estimated work life of the building. The hazard factor is based on the 

Sydney CBD area. We estimated that the average work life was equal to 50 

years. Based on this work life, we found the following: 

 Annual probability of exceedance = 1/500 [see Appendix A] 
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    = 1.0 [Table 3.1; AS 1170.4-2007] [see Appendix A] 

 Z = 0.08 [Table 3.2; AS 1170.4-2007] [see Appendix A] 

3. The site‟s sub-soil class has an effect on the equivalent earthquake force. 

There are many types of sub-soil class, such as strong rock, rock, shallow 

soil, deep or soft soil and very soft soil. The site‟s sub-soil class is determined 

by estimating the soil profile of the ground under the building. Figure 3.8 

shows the estimated soil profile for our simulation. The next step is 

calculating the travelling time (T) based on the soil profile, which is shown 

below [see Appendix A]. 

    ∑ (                                 )        (Equation 1) 

 

where ratio = 0.6 

    (    )       (    )       (    )                (Equation 2) 

T < 0.6, so site sub-soil class is shallow soil (  ) 

4. From the calculations so far, we can determine the earthquake design 

category (EDC). Using the site‟s sub-soil class, building height, Z and    [see 

Appendix A], the EDC type is calculated as equal to II. This type means that 

earthquakes have a critical effect on buildings in the area. 

5. The last step is to calculate the horizontal equivalent static forces on each 

storey. V in equation 3 represents the static force [73]. 

 V = [  Z  (  )   /µ]    (Equation 3) 

Where   (  ) = value of the spectral shape factor for the fundamental natural 

period of the structure. 
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    = seismic weight of the structure taken as the sum of    for all storeys.    = structural performance factor. 

   = structural ductility factor.  

By implementing equation 3, the equivalent forces were as follows: 

 First-storey force = 144.8 N 

 Second-storey force = 332.7 N 

 Third-storey force = 541.2 N 

 

 

Figure 3.8: Soil profile for the simulated building [90]. 

 

3.3.3 Building Collapse Implementation 

 

Sensors and controls are used in Blender to implement the earthquake forces. The 

sensors (which are not the WSNs in the building; they are controllers in the Blender 

game engine) and controls are used to execute the Python code that implements 

forces. Python and Blender integration helps to make the simulation more stable and 

reliable in generating desirable forces. Based on the building collapse type, part of 

the building is joined together so it will not be affected by the earthquake forces. For 

example, in an FC collapse, three columns were joined together to prevent collapse 

in those columns. Figure 3.9 shows an example of the four collapse types that have  
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Figure 3.9: Building collapse patterns. From top to bottom: first column (FC), 

first-storey (FS), mid-storey (MS) and pancake (PCK) collapse patterns. 
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been investigated and presented in this thesis. This is because the main purpose is to 

generate many finger prints for each type of collapse. 

 

3.3.4 Wireless Sensor Networks (WSNs) Simulation 

 

As shown in Figure 3.7, the building prototype has 12 blocks. Each block has four 

wireless sensors installed in the block roof (see Figure 3.10). Therefore each building 

consists of 48 sensors. The sensor itself is a blank cube in Blender and is not 

functional. However, each sensor (cube) is linked with a Python program [see 

Appendix C] that can record sensor velocity in three directions in real time, using 

Blender controllers. The Python program will record the sensor‟s velocity during and 

after building collapse and save the record in .csv files for post-processing in 

MATLAB [see Appendix C]. 

 

It is worth to mention that in early experiments of this work, acceleration was used 

instead of velocity. We used sensors acceleration based on simulating real world 

acceleration sensors as an input data to classification algorithms. However, sensors 

acceleration database created major confusion for classification algorithms because 

of the similarity between unmoved sensors and moving sensors. In unmoved sensors, 

simulated earthquake forces cause a small amount of shaking in the embedded 

sensors that leads to a change in acceleration. These small changes in acceleration 

matched moved sensors in two scenarios. The first scenario appears when the 

building collapse starts and sensors start falling. In this window of time, moving 

sensors record an acceleration similar to the unmoved sensors during the earthquake 

vibration. The second scenario appears when moving sensors travel with high speed 

and slight changes in velocity. This kind of similarity either shows moving sensors as 
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unmoved or vice versa.  Therefore, investigating velocity signatures instead of 

acceleration signatures removed all disadvantages above (see the outcome of chapter 

4 and 5). 

 

 

Figure 3.10: Illustrates the position of wireless sensors in each block. 

 

3.4 Training and Testing Databases 

 

Five building patterns were investigated: four collapse patterns plus one pattern for 

uncollapsed building. For training purposes, we generated 15 datasets for each 

pattern, while 50 datasets were generated for each pattern to use in the testing phase. 

In total, 75 datasets for training phase and 250 datasets for testing phase were 

generated. Data was normalised with respect to number of samples to make all the 

pattern datasets even. The prime purpose behind generating many datasets is to train 
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and test classification algorithms with different collapse types to determine 

feasibility.  

3.5 Summary 

 

A novel method to capture building collapse motion is presented in this chapter. The 

Blender game engine, Python code and MATLAB were used to create a database for 

each collapse pattern that reflected building behaviour during the collapse. Collapse-

pattern databases are beneficial for classification purposes. This research aims to 

help rescue teams by providing information that can create a primary report on 

buildings condition after the earthquake and a pattern of building collapse. 
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Chapter 4: Experimental Results 

 

 

In this chapter, we present the experimental results of the building collapse pattern 

classification algorithms. We highlight the important trends that helped to assemble 

the research process into a clear picture, which in turn answer the research questions 

regarding the efficiency of the proposed pattern identification algorithms for 

situation awareness in disaster events. The goal of each of the classification 

algorithms presented here is to classify collapsed buildings under five categories: 

first column (FC) collapse, first storey (FS) collapse, mid-storey (MS) collapse, 

pancake (PCK) collapse and uncollapsed (UC). Section 4.1 presents an overview of 

sensor behaviour during building collapse. In Section 4.2, a general experimental 

setup for all classification algorithms is presented. Each algorithm has its own 

additional experimental setup, presented in the same algorithm section. Section 4.3 

introduces the first classification algorithm, PCA; while Sections 4.4 and 4.5 present 

the VQ and HMM techniques respectively. A hybrid algorithm is presented in 

Section 4.6. Results, statistical analysis and interpretation are discussed in Section 

4.7.  

 

4.1 Sensor Behaviour During Building Collapse 

 

As mentioned in Chapter 3, each simulation is based on a building equipped with 48 

sensors, distributed over four columns in three storeys. In this section, we outline 

sensor behaviour during building collapse. As shown in Table 4.1 (see Appendix D), 

four different sensor readings were taken from various positions in various collapse 
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patterns. Each sensor (in Table 4.1 (Appendix D)) reflects the sensor behaviour 

fallen from a specific storey. We classify sensor behaviour in four categories (see 

Table 4.1 (Appendix D)).   

 

The first three categories are first-, second- and third-storey sensors. Three main 

variables diagnose sensors in these three categories:  

 Sensor maximum fall velocity 

 Travelling time 

In regards to fall velocity, as expected, sensors that fell from the third storey to the 

first storey recorded higher velocities than did sensors that fell only one or two 

storeys. For instance, third-storey sensors in FC and PCK had a higher velocity than 

did sensors in any other collapse pattern.  

 

On the topic of travelling time, some sensors fell directly from the third or second 

storey to the ground, without hitting any objects on the way. Conversely, other 

sensors took more time to reach the ground because they hit objects during their 

journey. For instance, a sensor located on the third storey of an FC collapse pattern 

that hit an object had a slower rate of fall than did a sensor falling from the same 

position without interference. 

 

The last category is unmoved sensors. There are many similarities between FC and 

MS sensors. The vibration caused by an earthquake‟s equivalent horizontal force and 

building collapse could cause a small movement along three axes and make sensor 

recordings differ slightly. However, we believe that the fourth category of sensors 

can record more difficult vibrations in reality because all buildings shake during 

earthquakes. However, this is not the case with UC patterns. UC sensors should not 
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record any major vibration during normal operation when there are no major 

earthquakes. Moreover, buildings with three storeys did not record vibrations from 

wind force as this is beyond our research scope; although, because we used a game 

engine as a simulator, some vibrations did occur during simulation.   

 

In summary, the time a sensor takes to reach the ground, the vertical velocity, and the 

number of fallen sensors can play a major part in pattern recognition algorithms. 

 

4.2 The Experimental Results using PCA Algorithm 

 

In this section, we present the PCA algorithm in three ways: basic PCA, two-level 

PCA and sensor-by-sensor based PCA. The main difference between these methods 

lies in their manner of feeding the PCA algorithm with data, so that each method 

gathers various features. 

 

4.2.1 Basic PCA 

 

After preparing the training data, the organised dataset containing 75 patterns was 

input to the PCA algorithm to extract the most crucial features as represented by the 

principal components (see Figure 4.1). We chose 19 principal components from  

 

 

Figure 4.1: Process steps of basic PCA. 
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overall 75 principal components, representing a 90% data variance. We could have 

chosen 33 principal components to achieve a 98% variance. However, the additional 

14 principal components did not add any useful information in regard to creating a 

trend for each collapse pattern. 

 

The decision-making process was strongly dependent on how the principal 

components translated sensor readings into features able to distinguish between each 

category. Below are the decision rules driven from the 19 principal components: 

 

If principal component 1 is negative, then the pattern is UC. 

If principal component 2 is bigger than 0.1, principal component 3 

is negative, and principal component 4 is negative, then the pattern 

is MS. 

If principal component 3 is bigger than 0.16, then the pattern is FC. 

 

The PCA algorithm could not provide a clear boundary between FS and PCK. For 

this reason, we built Table 4.2, and combined rules to assist in the final decision 

between FS and PCK collapse patterns. A pattern should achieve 60% or higher 

score in Table 4.2 to classify either FS or PCK collapse pattern. Otherwise, the 

pattern is considered unclassified. 

 

Table 4.2: Decision rules for FS and PCK collapse patterns. 
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During testing phase, unknown building collapse patterns added to the 75 training 

data for classification purposes, based on decision rules. Figure 4.1 shows the 

process undertaken, while Table 4.3 details the classification results.  

 

It is clear from (Table 4.3) that the combined rules in Table 4.2 are biased toward FS. 

As all sensors in both FS and PCK are moving during building collapse, the PCA 

algorithm could not distinguish features between them. For this reason, the algorithm 

failed to classify PCK accurately (42%). 

 

Table 4.3: Basic PCA results and Confusion matrix.  

 

 

 

With MS, seven patterns were misclassified from this category. To explain this 

situation, we reviewed the decision rule for MS. The combination of three principal 

components indicated that the PCA algorithm could not find specific features 

between MS patterns and other collapse patterns. These results indicate that more 



 

61 

 

sensors moving during the building collapse results in more confusion for the basic 

PCA algorithm.  

 

4.2.2 Two-level PCA 

 

To improve the outcome of the basic PCA algorithm, a two-level PCA algorithm was 

implemented. In this two-level PCA, the first level is similar to the basic PCA 

without FS and PCK collapse pattern decision rules. In other words, the first level 

classifies FC, MS and UC collapse patterns only. If the unknown collapse pattern is 

not one of the three collapse patterns at the first level, the second level takes place by 

implementing PCA with FS and PCK collapse pattern training data, extracting 

features that classify each collapse pattern (see Figure 4.2). Fourteen principal 

components were required to achieve 90% from the total 30 principal components. 

However, only the first principal component was needed to distinguish between FS 

and PCK collapse patterns, as shown below: 

 

If principal component 1 is bigger than 0.15, then the pattern is PCK. 

Otherwise, the pattern is FS. 

 

It is important to mention that the previous rule covered 99.5% of all cases. Table 4.4 

shows the two-level PCA final results and presents the confusion matrix. As shown 

in Table 4.4, the two-level PCA algorithm did well in demarcating the FS and PCK 

collapse patterns. In addition, this method clarified that the primary confusion was 

between FS and MS. There are two possible reasons for this: the decision rule for 

MS, or the similarity of building behaviour during the collapse between FS and MS 

collapse patterns.  
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Figure 4.2: shows two-level PCA decision making process. 
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Table 4.4: Two-level PCA results and Confusion matrix. 

 

 

 

In the first case, the rule covers 99.5% of MS collapse patterns. This means that only 

one pattern out of 15 training patterns does not match the rule. This could indicate 

that the MS collapse pattern has various scenarios not covered in the training data. 

Using Blender, it is impossible to generate 100% matching patterns, but a high level 

of similarity between collapse patterns under the same class is guaranteed. 

 

 In the second case, sensors in both the MS and FS collapse patterns travelled one 

storey during the collapse. This means that the velocity recorded can be close in the 

two patterns (see Table 4.1). However, the first storey in the MS collapse pattern did 

not move, and should give a major difference when compared to the first storey in 

the FS collapse pattern. The way the PCA algorithms were input into this method 

might explain the loss of demarcation between the FS and MS collapse patterns. As a 

result, we can conclude that MS behaves similarly to FS in some cases, based on 
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PCA features analysis. Sensor-by-sensor based analysis is needed to solve the 

confusion between the FS and MS collapse patterns, and to more fully recognise 

unmoved sensors and high velocity sensors (sensors fallen through three storeys). 

 

4.2.3 Sensor-by-sensor based PCA 

 

To increase PCA algorithm accuracy, each sensor can be treated individually. This 

means that PCA is implemented 48 times, based on sensor numbers in the simulated 

building. As a result, the 48 training datasets of principal components in each dataset 

contained 75 principal components. Optimum decision rules were derived from 48 

training datasets (see Figure 4.3).  

 

In this method, the PCA algorithm was fed one sensor from each set of training data, 

considering sensor position matching. Getting closer to each sensor reading by 

extracting features based on sensor location affects the way the classification is 

considered, using PCA from different viewpoints. This is confirmed by results and 

decision rules that reflect a contrast between sensors in different collapse patterns 

(see Figure 4.3). A clear classification of the FC, PCK and UC collapse patterns and 

pure decision rules reflects this method. Despite the confusion between FS and MS, 

we consider the results acceptable (see Table 4.5), taking into account the variability 

in datasets with each category. In addition, it is worth mentioning that two patterns 

were classified as UC, but were FS. This indicates that sensor-by-sensor based 

classification can sometimes erase pattern identity by relying on sensors features and 

ignoring pattern features. 
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Figure 4.3: Decision-making rules for sensor-by-sensor based PCA. 

 

The PCA algorithm results show high accuracy, considering the nature of 

implementation and the similarity in the sensor readings. The main advantage of this 

algorithm is its ability to extract features that create a boundary between categories, 

with low computation costs. However, incorrect classification forces a review of 

PCA algorithm performance when different scenarios of the same building collapse 

pattern are implemented (which are not part of this research). In Chapter 5, questions 

are raised regarding PCA algorithm performance when we implement sensor failure 

scenarios during a building collapse. 
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Table 4.5: Sensor-by-sensor based PCA results and Confusion matrix. 

 

 

 

Table 4.6: Final results of the PCA algorithm. 

 
 

 

4.3 Vector Quantisation Histogram  

 

As mentioned previously, we have five building collapse patterns. To classify them 

using VQH, we used five codebooks. One dataset was used as an initial codebook, 

while another dataset was used for the training phase of each collapse pattern, using 

the VQ design toolbox in MATLAB. To increase methodological robustness, we  
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Figure 4.4: VQH implementation process. 

 

used five codebooks per pattern instead of one. Codebooks were still considered as 

local, but we tried to cover more collapse scenarios in the same category. 

 

Next, we created known histograms for each known collapse pattern using the 

training data with the codebooks from the first step (see Figure 4.4). We reduced 

these histograms to five by averaging the histograms belonging to the same category 

as representing a signature for each collapse pattern. In the third step, we generated 

unknown histograms using testing data and codebooks from the training data in step 

one. Each unknown pattern had five histograms that represented the relationship 

between the unknown pattern and pattern categories.  
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Table 4.7: VQH algorithm result and Confusion matrix. 

 

 

 During our decision-making phase, the Euclidean distance was used to classify the 

test patterns. To better demonstrate the results in Table 4.7, examples of histograms 

are highlighted in Table 4.8 (see Appendix D). In Table 4.8 (see Appendix D), single 

pattern histogram is generated using a single dataset, general histogram is the 

summarise of 50 histograms under the same category (Training phase), while 

misclassified row represents an example of misclassified UC collapse pattern during 

testing phase. 

 

The FC collapse pattern displayed a clear signature in the histograms. For instance, 

fallen sensors were distributed between codewords 1 to 12 that represent the fallen 

sensors from different storeys, while the unmoved sensors were generally distributed 

between codewords 25, 37 and 40 which are part of unmoved sensors range. The FC 

trend was very clear in the pattern histograms, by creating groups to represent fallen 

and unmoved sensors. Unmoved sensors gave FC patterns a high weight for 

classification and distinguished them from other collapse patterns.  
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The MS collapse pattern displayed a similar trend, scoring high occurrences in 

codeword 2, which represents one of the unmoved sensors codewords. The fallen 

sensors were distributed among many codewords because all the fallen sensors 

travelled one storey during the collapse. This created similarities between sensors, 

regardless of their positions.  

 

Like FC and MS, PCK collapse patterns achieved a high classification rate. Sensors 

that fell one storey played a major part in drawing a clear signature in the PCK 

histograms. These sensors were distributed across three or four codewords; while the 

remaining sensors covered a large number of codewords. In contrast, FS and UC 

classification rates were lower than for other collapse patterns. All sensors in the FS 

collapse pattern travelled one storey, which caused confusion with the MS histogram, 

despite some codewords showing a clear trend. Moreover, because unmoved sensors 

showed a high trend in FC, this created confusion with UC. All sensors were 

unmoved in UC and they were distributed highly through the first 12 codewords. 

This makes UC closer to the FC histogram, as shown in the example of incorrectly 

classified patterns in Table 4.8 (see Appendix D). 

 

Some patterns thus benefited from having unmoved sensors, distinguishing them 

from patterns without unmoved sensors. Some patterns used the fallen sensors as a 

clear signature in their histograms, while others used both types of sensors to create 

their signature. Despite some collapse patterns having a high confusion rate as 

compared to other collapse patterns, they did not lack a signature. This confusion can 

be attributed to the nature of the VQ technique in assigning vectors to the closest 

codeword, as this can cause an undesirable reshaping of collapse patterns. 
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4.4  Hidden Markov Model Results 
 

As part of experimental preparations, a Piecewise Aggregate Approximation 

algorithm (PAA) was used to convert sensor readings to a specific integer number to 

interpret the data using three different break point distributions (see Figure 4.5). 

 

We required five models to represent the building collapse patterns. To increase 

methodological robustness, we generated a HMM of each training dataset. The 

model with the maximum likelihood for the testing data was the classification of 

unknown building collapse patterns (see Tables 4.9). The Baum-Welch training 

algorithm was applied to the HMMs.  

 

In experiment one (see Table 4.9 and Table 4.10(a)), we designed the PAA algorithm 

to focus on positive and negative velocities and vibration areas (see Figure 4.5(a)). 

We aimed to detail general trends of sensor behaviour during building collapse. 

 

Despite excellent results in most collapse patterns, the MS collapse pattern category 

failed completely. The manner in which PAA represented high velocity took no 

account of any high velocity that appeared only in three-storey fallen sensors. This 

caused great confusion between the MS and PCK collapse patterns.  

 

To reduce confusion, we redesigned the PAA algorithm in a more logical way (see 

Figure 4.5(b)). Using two breaking points, sensor readings were classified into two 

categories: fallen and unmoved. In this way, we aimed to clarify HMM so that the 

algorithm produced less confusion between MS and PCK, as MS had 16 unmoved 

sensors. 
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Figure 4.5: PAA breaking points. 
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Table 4.9: HMM results. 

 

 

 

The experimental results displayed an improvement in MS classification accuracy. 

However, confusion remained regarding the FS collapse pattern, which reduced PCK 

and MS accuracy. MS and FS can be confused when sensors in both patterns fall one 

storey. Moreover, the PCK and FS collapse patterns have the same number of fallen 

sensors. This reading of number of fallen sensors creates a similarity between the 

two patterns, as does the breaking point design because the speeds of fall for the high 

fallen sensors were undistinguishable for the two pattern types. 

 

We redesigned the PAA to be able to clearly separate high speed fallen sensors from 

other fallen sensors (see Figure 4.5(c)). We focused completely on clarifying any 

confusion regarding PCK collapse patterns. The result in Table 4.10(c) clearly shows 

that the new very high speed state ended any confusion with the PCK collapse 

pattern. However, it created a major confusion between MS and FS. The new state 

created a major similarity between FS and MS because no sensors in either of these 

patterns fell through three storeys, as was necessary for high velocities to occur. 

  



 

73 

 

Table 4.10: Confusion Matrix of HMM (a) using PAA (five breaking points)     

(b) using PAA (two breaking points) (c) using PAA (three breaking points). 

 

Thus, breaking points represent states in HMM. Adding or deleting breaking points 

had both advantages and disadvantages, creating confusion between patterns and 

affecting the overall results. The simplicity of data representation achieved the 

highest results with HMM. This could be the basis of HMM performance when 

dealing with sensor failure during building collapse, as detailed in Chapter 5. 

However, such simplicity can result in confusion between patterns that the HMM 

algorithm alone cannot improve.  

 

4.5 HMM-PCA Hybrid Algorithm 
 

The primary method behind the hybrid algorithm is to use the advantage of each 

algorithm in classifying building collapse patterns. In the previous section, HMM in 
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experiment 3 achieved 100% accuracy in classifying FC, PCK and UC collapse 

patterns, but with major confusion remaining between FS and MS collapse patterns. 

Attempting to improve the HMM results led to confusion between MS and PCK 

collapse patterns.  

 

At this stage, we decided to use the sensor-by-sensor based PCA algorithm for only 

FS and MS collapse patterns as the second stage for HMM experiment 3 results. 

HMM was responsible for classifying FC, PCK and UC patterns only (see Table 

4.11). If the unknown pattern were not one of the previous three patterns, the second 

stage would classify the pattern as either FS or MS. Sensors from various positions in 

the building showed a clear variance represented by principal components. Sensor 15 

was the most robust sensor to extract the rule for pattern classification, as shown 

below: 

If PC (1) > 0.02, then the collapse is FS otherwise it is MS. 

 

Table 4.11: HMM_PCA results. 
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The results (see Table 4.11) affirmed the successful combination of these two 

algorithms. Using HMM features in taking in the count from each observation, and 

using PCA features to find dissimilarities between patterns, 100% accuracy was 

achieved.  

 

4.6  Discussion 
 

Building collapse pattern datasets can be analysed in many different ways, including 

sensor-by-sensor based analysis, fallen speed analysis, column- or row-based 

analysis, block-based analysis and whole pattern-based analysis. In this research, we 

covered pattern-based analysis using the PCA algorithm, sensor-by-sensor based 

analysis using the PCA algorithm and VQ technique, and fallen speed analysis using 

HMM. Each algorithm and technique achieved acceptable results in building collapse 

pattern classification, with optimum results achieved by combining the HMM and 

PCA algorithms. The HMM method confirmed its capacity to classify collapse 

patterns in the case of major dissimilarities by focusing on speed of fall patterns. 

Further, the PCA algorithm encountered difficulties in pattern classification when 

using whole patterns, but proved a robust algorithm for finding variance between 

patterns based on sensor features working as principal components.  

 

Although VQ did not score the best results among other methods due to sensor 

distribution through the codebook, it could reduce the impact of sensor failure on the 

overall accuracy of VQ results. Before we make a decision on identifying which 

algorithm, or combination of algorithms, is best for this implementation, we must 

consider data used in this chapter is “theoretical” data. Theoretical data does not 
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include any real collapse scenarios such as sensor failure due to crushed or error 

manufacturing that can affect classification algorithm performance.  

 

  



 

77 

 

Chapter 5: Sensor Failure Scenarios 

 

 

The aim of this chapter is to examine building collapse pattern classification 

algorithm reliability in more realistic scenarios, which would include sensor failure 

before or during building collapse. The consequences of sensor failure are varied, 

based on sensor position, collapse pattern and classification algorithm. There are 

many different causes for sensor failure, including being crushed during building 

collapse, power source failure, faults manufacturing and disconnection from the 

WSNs. 

 

Two main scenarios are examined in this chapter. The first scenario, which is 

represented in Section 5.1, considers sensor failure on impact. In this scenario, sensor 

failure is caused by a sensor collision with an object at a certain speed or a sensor 

hitting the ground. The second scenario, which is examined in Section 5.2, is added 

to the first scenario by considering random sensor failure throughout the building 

collapse. The cause for this type of sensor failure can be due to the power source or a 

manufacturing error. This scenario could be more challenging for classification 

algorithms because sensor data is missing from the outset that can impact the 

efficiency of classification algorithms. 

 

Each section includes a comparison between the sensor failure experiment and the 

experiment in Chapter 4 for the same classification algorithms. To distinguish 

between the results, results from chapter 4 are labelled theoretical results, as all 

sensors function during and after the building collapse, regardless of impacts.  
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5.1 Scenario 1: Sensor Failure on Impact (SFoI)  

 

During a building collapse, sensor functionality is a major challenge due to debris 

that is caused by tremendous destruction during earthquakes. In comparison with 

theoretical sensor behaviour as mentioned in Chapter 4 (see Figure 5.1 (a)), sensor 

failure during building collapse has its advantages and disadvantages.  

 

For example, if a sensor stops sending data after hitting the ground, it is considered 

an advantage for the classification algorithms because the sensor will not record any 

collapse noises (see Figure 5.1 (b)). Collapse noises can play a major part in creating 

similarity between collapse patterns by recording low vibrations, similar to 

uncollapsed patterns. Conversely, if a sensor hits an object before hitting the ground 

and then stops working (see Figure 5.1 (c)), it is considered a disadvantage for 

classification algorithms because it did not record the entire journey. This type of 

sensor failure could cause confusion between sensors fallen from different storeys. 

 

The following sections present a reflection of the classification algorithms 

performance, including PCA, VQH, HMM and the hybrid HMM/PCA method. The 

sections focus on the performance and reliability of each classification algorithm 

under two types of sensor failure during building collapse. 
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Figure 5.1: Sensor recording in three different cases: (a) theoretical case, (b) 

hitting the ground and (c) hitting an object during a fall. 
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5.1.1 Experimental Setup 

 

All sensors in the training and testing patterns were subjected to a sensor failure 

check process to diagnose possibly damaged sensors during a building collapse. The 

diagnosing process is based on the changes in sensor velocity. A threshold was set 

for the level of velocity that can cause sensor damage after hitting an object or the 

ground. After locating the collision time, all subsequent sensor recording were 

changed to zero. Normalisation takes place after the sensor failure check process is 

finished. 

 

5.1.2 Basic PCA Algorithm Performance under SFoI 

 

In this section, each pattern represents a one-row vector, which is the same 

methodology used in the basic PCA algorithm in Chapter 4. The only difference is 

that the training and testing data were pre-processed by the sensor failure check. In 

this way, a new database is created for each pattern (testing and training datasets). In 

addition, a new set of rules is derived from the principal components using the new 

testing datasets to classify the collapse patterns (see Figure 5.2). 

 

From the decision rules, it is clear that more than one principal component was used 

to assign one decision rule in most categories. This means that there is a high 

probability of confusion between patterns, especially if the number of sensors that 

malfunctioning before the end of the collapse are increased in the testing data. The 

outcome of the basic PCA algorithm implementation in this scenario (see Table 5.1) 

shows that algorithm accuracy drops by around 11% in comparison with the 

theoretical results presented in Chapter 4. 
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Figure 5.2: Basic PCA decision rules. 

 

In addition, the confusion matrix in Table 5.1 shows a sharp decrease in FC collapse 

pattern accuracy and a significant rise in PCK collapse pattern accuracy. The FC 

results open the door for questions regarding basic PCA algorithm implementation 

reliability for building collapse pattern classifications. However, the basic PCA 

algorithm scored the lowest accuracy among the three ways to implement the PCA 

algorithm, as stated in Chapter 4. This leads to an conclusion that PCA by itself is 

not effective enough to be considered a suitable classification algorithm for a 

building collapse pattern. 
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Table 5.1: Basic PCA results and confusion matrix under SFoI. 

 

 

It is worth mentioning that the unclassified pattern jumped from two patterns in basic 

PCA in ideal result to 21 patterns in the current experiment. This indicates that 

sensor failure can mislead the classification algorithm by creating another category 

(unclassified patterns). 

 

5.1.3 Two-level PCA under SFoI 

 

To improve basic PCA algorithm outcome, two main issues need to be solved: (1) 

confusion between FC and MS and (2) confusion between PCK and UC collapse 

patterns (see Table 5.1). This means that the basic PCA algorithm can only correctly 

classify FS collapse patterns, and the remaining collapse patterns can be escalated to 

two-level PCA algorithms (see Table 5.1). New two-decision rule sets are used a set 

for each confusion (see Figure 5.3). 

 

It is clear from the decision rules in the second level of the two-level PCA algorithm 

that the PCA algorithm clearly distinguishes between each collapse pattern by using  
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Figure 5.3: Two-level PCA methodology. 

 

only one principal component for each rule. This will reflect positively on the 

algorithm outcome (see Table 5.2). 

There is an increase of 20% in accuracy in this method when compared with the 

basic PCA, while a decrease of around 5% is in comparison with the theoretical 

results for a two-level PCA algorithm (see Table 5.2). A major improvement in the 

FC pattern in the two-level method appeared in comparison with the previous 

method (see Table 5.1). In addition, Table 5.2 reflects a clear picture of how the two-  
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Table 5.2: Two-level PCA results and confusion matrix under SFoI. 

 

 

level PCA solved the confusion problem between patterns such as FC and MS (see 

Table 5.1). However, there is no indication of any improvement in unclassified when 

a two-level PCA was used to improve the outcome of the basic PCA algorithm 

results in Chapter 4, it solved the confusion between patterns and classified the 

unclassified patterns that appeared in the basic PCA method. Conversely, in this 

experiment, a two-level PCA could not place unclassified patterns into any class. 

This reinforces the idea that sensor failure on impact can significantly affect 

classification using PCA, by creating an unclassified class. 

 

5.1.4 Sensor-by-sensor PCA under SFoI 

 

As mentioned in Chapter 4, this method is heavily sensor-based rather than pattern-

based. Therefore, in this scenario, sensor-by-sensor based analysis can be a high 

advantage for a PCA algorithm if the majority of sensors stop sending data after 

hitting the ground. From our observation, sensors collision with objects during a 

building collapse were most likely to occur short time before the sensors hit the 
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ground, but other sensors malfunctioning earlier in a building collapse based on the 

nature of a progressive collapse. This means that the amount of missing information 

is not significant. In addition, sensor-by-sensor based analysis can ignore early 

malfunctioning sensors by not including them in the decision-making process (see 

Figure 5.4). This process of ignoring early malfunctioning sensors improved the final 

results in regards to the confusion issue created by the similarity between sensors. 

 

 

Figure 5.4: Number of sensors that can generate a reliable rule for each collapse 

pattern under SFoI. 

 



 

86 

 

Only one principal component was needed from each sensor involved in the decision 

rules. Figure 5.4 shows the decision rules in terms of the sensor number used to 

classify the collapse pattern type. This method shows the ability to generate a clear 

rule from more than one sensor for each collapse pattern class. An increase in the 

number of rules for each collapse pattern led to an increase in the flexibility and 

robustness of the decision-making process by offering a range of rules that fit many 

cases in the same collapse category. As a result, a sensor-by-sensor PCA algorithm 

scored around a 7% improvement compared with a two-level PCA algorithm at 1.6% 

in comparison with theoretical sensor-by-sensor PCA (see Table 5.3). 

 

Table 5.3: Sensor-by-sensor PCA results and confusion matrix under SFoI. 

 

 

 

From the number of sensors used to create the decision rules and the outcome, we 

conclude that, based on a sensor-by-sensor analysis, sensor failure on impact actually 

improved the PCA algorithm. In addition, the sensor-by-sensor based method did not 

record any unclassified patterns. Unclassified patterns class is a feature of sensor-by-



 

87 

 

sensor PCA that caused by the large number and clear decision rules involved in the 

decision-making process that created no place for unwanted classes. Nevertheless, 

the complete failure of random sensors (CFoRS) holds us back from giving sensor-

by-sensor based analysis high credit in reliability, despite high accuracy results. A 

PCA algorithm using sensor-by-sensor based analysis results under CFoRS will 

clarify our final judgement. 

 

To summarise, the sensor failure on impact scenario positively affects the sensor-by-

sensor PCA algorithm and negatively affects both the basic and two-level PCA 

algorithms (see Table 5.4). 

Some trends can drive the PCA algorithm‟s performance under the SFoI scenario: 

 The complete failure to classify FC patterns using a basic PCA algorithm 

puts the method out of competition with other classification algorithms. 

 Despite its inability to solve unclassified pattern issues with a basic PCA 

algorithm, a two-level PCA algorithm is still considered an effective solution 

for class confusion, and it can still be used in the hybrid method. 

 Avoiding sensor data that create confusion is still a powerful tool for the 

sensor-based PCA algorithm. 

Table 5.4: Final results of the PCA algorithm under SFoI. 
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5.1.5  Vector Quantisation Histogram under SFoI 

 

As mentioned previously, sensor failure caused by collision with an object can have 

positive and negative effects regarding noise reduction and data loss, respectively. In 

addition, it can affect sensor location in VQH by improving the histograms of the 

majority of sensors reach the ground or by negatively affecting the histograms if a 

reasonable number of sensors are early malfunctioning sensors. 

 

Table 5.5 shows that VQH results improved by 0.6% in comparison with ideal VQH 

results. Moreover, slightly positive improvements were presented by removing 

confusion between FS and PCK and between MS and PCK collapse patterns (see 

Table 5.5 and Table 4.7). However, there appeared to be no change in the confusion 

between the UC and FC collapse patterns. Despite fallen sensors having a high  

 

Table 5.5: VQH results and confusion matrix under SFoI 
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impact (in regards to distinguish between patterns signatures) in this scenario 

compared to unmoved sensors, the majority of sensors in both collapse patterns were 

unmoved, which creates a similarity between the FC and UC collapse patterns. 

 

In summary, the VQH technique produces a slight improvement under sensor failure 

during a building collapse scenario. Therefore, VQH can be considered another step 

towards improving method robustness under natural catastrophe challenges. 

However, the VQH technique still suffers from the confusion between UC and FC 

collapse patterns, which has high costs in implementation during normal operation, 

causing a significant amount of false-positives. 

 

5.1.6  Hidden Markov Model under SFoI 

 

As mentioned in Chapter 4, the PAA algorithm is used in three different settings 

based on a number of breaking points (see Figure 4.6). The PAA algorithm with two 

breaking points achieved the best results with the HMM. As a result, a PAA 

algorithm with two breaking points and a HMM were examined under sensor failure 

during a building collapse. The experimental results show that the HMM performed 

with 100% accuracy (see Table 5.6), which is considered the highest classification 

accuracy for an individual algorithm thus far. 

 

To understand how this optimum result was achieved, a clear explanation of how 

PAA and HMM work together is needed. The main idea behind using only two 

breaking points in a PAA algorithm is to create two states in HMM: one for a low-

velocity range, which is represented by unmoved sensors, vibration and noise, and 

one for a high-velocity range, which represents the fallen sensors. For example, 
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sensor failure in scenario one (SFoI) reduced noise in the sensor data, which gave 

more credit to the low-velocity state in each sensor and reduced credit in the high-

velocity state. The effect of noise created a level of similarity that affected the 

classification results of the HMM in Chapter 4. For instance, major confusion in the 

Table 5.6: HMM results and confusion matrix under SFoI. 

 

HMM ideal results was between patterns that had a close number of fallen sensors, 

such as the confusion between the MS and PCK collapse patterns. Noise level 

dropped sharply in the sensor failure on impact scenario, which gave the HMM 

method a greater chance to draw a sharp border between collapse patterns. 

 

In summary, most classification algorithms‟ performance improved under the sensor 

failure on impact scenario, primarily due to noise reduction and declining data that 

would not exist in real-life. However, not every sensor failure on impact can have a 

positive effect on algorithms‟ performance. As mentioned, early malfunctioning 

sensors can cause performance degradation due to an amount of missing data.The 

hybrid method could be used to improve the HMM results. However, in this 
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scenario, there is no need to use it because the HMM method achieved 100% 

accuracy. 

 

5.2 Scenario 2: Complete Failure of Random Sensors (CFoRS) 

 

This sensor failure scenario is applied upon the SFoI scenario. The sensor failure in 

this scenario is complete throughout and can be caused by a manufacturer‟s error, 

failure in power supply, communication issue or any sudden interruption caused by 

an earthquake. This chapter investigates the robustness of classification algorithms 

when presented with random missing data. 

 

It is helpful to define least and most dependent sensors or cases terminology that 

used often in this section. 

 Least dependent sensor means the sensor has lowest impact on classification 

algorithm performance when that sensor‟s data is missing. Least impact on 

accuracy (LIoA) case (or result) is a combination of number of least 

dependent sensors that has the least impact on the classification algorithm 

performance when sensors‟ data are missing. 

  Most dependent sensor means the sensor has high impact on the 

classification algorithm performance when that sensor‟s data is missing, 

while most impact on accuracy (MIoA) case (or result) is a combination of 

most dependent sensors that has one of the highest impacts on classification 

algorithm performance.   

 

The main objective of this scenario is to examine the limit of each classification 

algorithm. For this reason, two levels stress-testing were examined. The first level 
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examines each classification algorithm with a maximum of six sensors failure. Each 

sensor from the 48 sensors in the training datasets was examined to find the six LIoA 

and six MIoA failed sensors. Then, from the six LIoA and MIoA sensors, each 

combination was examined to find the LIoA and MIoA case of each classification 

algorithm when the sensors failure were between one and six. However, in the HMM 

algorithm, a random number of sensor numbers was chosen to assemble the 

combinations starting from two sensors to six sensors for the LIoA and MIoA cases. 

This methodology was used due to time limitations and because almost all sensors 

gave the same outcome when tested individually. 

 

If the classification algorithms passed the first level of stress-testing with greater 

than, or equal to 60%, the algorithm will input to the second level of stress-testing. 

Level two was the row and column failure test, which meant that all sensors in a 

tested column or row would fail completely during a building collapse. It was 

considered the most difficult test for classification algorithms used in this research. 

Each section contained the LIoA and MIoA cases from the level one test and the 

MIoA case of the level two test. The remainder of the results can be found in 

Appendix B. 

 

5.2.1 Basic PCA under CFoRS 

 

This method scored 74.8% with least impact on accuracy, regardless of the number 

of failed sensors (see Table 5.7). It is clear that the major effect appeared in the FC 

collapse pattern. The majority of FC patterns were classified as MS collapse patterns, 

while the PCA algorithm could not classify the rest of the FC testing patterns (see 
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table 5.7). In the MIoA case, the results were 53.2–60%; a result of 53.2% was 

obtained when four sensors failed. 

 

Table 5.7: Basic PCA results (LIoA) and confusion matrix under CFoRS. 

 

 

By achieving this level of accuracy (see Table 5.8), the basic PCA algorithm failed in 

the level one test, thus there was no need for a level two test. In addition, this method 

failed to classify the FC collapse pattern from the LIoA results and to classify PCK 

collapse patterns in the MIoA case. This failure could be because the four sensors 

were based in the third storey, which is the main feature of the PCK collapse pattern. 

 

It is worth mentioning that the basic PCA LIoA and MIoA results indicate that a 

complete failure of some sensors can improve the results by removing some 

confusion. This method scored 74.8 % when six sensors failed, and it achieved 

71.6% under the SFoI scenario. 
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Table 5.8: Basic PCA results (MIoA) and confusion matrix under CFoRS. 

  

 

5.2.2 Two-level PCA under CFoRS 

 
This method scored 93.2% as LIoA result, regardless of the number of failed sensors 

(see Table 5.9). The main effect appears to be in relation to the FC collapse pattern. 

In the MIoA case, the results were between 60% and 84.8%, where 60% appears 

when four to six sensors failed (see Table 5.10). The main failure in this method 

appears in classifying the FC and PCK collapse patterns. 

 

The majority of miss-classified patterns appear under the unclassified class, which 

highlights the link between the flexibility of the PCA decision rules and the number 

of unclassified patterns. Scoring 60% in a level one test means that the method is not 

qualified to progress through to the second test. 
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A sign of improvement caused by complete sensor failure is shown in this method in 

comparison with LIoA case (93.2%) of this method and the result of this method 

under the SFoI scenario (91.6%). Therefore, randomised sensor failure has less of an 

impact on the results. 

 

Table 5.9: Two-level PCA results (LIoA) and confusion matrix under CFoRS. 

 

Table 5.10: Two-level PCA results (MIoA) and confusion matrix under CFoRS. 
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5.2.3 Sensor-by-sensor PCA under CFoRS 

 

Thus far, the sensor-by-sensor based PCA algorithm was the highly accurate method 

using PCA algorithm in relation to overall PCA algorithm results. However, relying 

completely on sensors without considering the dataset as a pattern in general was 

always under debate of this work researches. In a LIoA case, this method shows 

almost no effect on accuracy, regardless of the number of failed sensors. It scored 

99.6% accuracy with only one dataset of FS collapse pattern misclassified as MS 

collapse pattern. Conversely, in the MIoA case, the results ranged from 55.8% to 

99.2%, where 55.8% occurred when four to six sensors failed (see Table 5.11). The 

complete failure in classifying FC and UC patterns appears when the sensor failure 

occurs in sensors that are involved in the decision-making rules. In addition, based 

on building prototype and sensor distribution in the building, only two sensors that  

 

Table 5.11: Sensor-by-sensor based PCA results (MIoA) and confusion matrix 

under CFoRS. 
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are involved in decision making can degrade the results from 99.2% to 78.8% using a 

sensor-by-sensor based PCA algorithm. The 58.8% accuracy terminated the last hope 

on one of the PCA algorithm methods can make it to the level two test. 

 

5.2.4 VQH under CFoRS 

 

In the VQH technique, complete sensor failure is interpreted as an unmoved sensor, 

as VQH assigns the sensor failure record to the closest vector word in a codebook. 

When the failure is recorded as zeros, this is similar to the static sensor‟s vector 

word.  In addition, all failed sensor records will go under only one vector word in the 

codebook, which can change unmoved sensor distribution in a histogram and create 

confusion between collapse patterns. 

 

The LIoA case in this scenario is when one or two sensors failed. VQH achieved 

90.4%, which is classify one unknown pattern correctly more than the SFoI scenario. 

In the MIoA case, the lowest accuracy appeared when a combination of five sensors 

failed, with all of them located in the second storey (see Table 5.12).  

Table 5.12: VQH results (MIoA) and confusion matrix under CFoRS. 
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From the MIoA case result, the VQH technique still showed an acceptable result, 

regardless of the fact that six sensors malfunctioning. This result was encouraging to 

put the VQH technique through the level-two test, which was a row-column failure. 

Moreover, the second test will explain in more detail why the main confusion 

appears between the FC and MS collapse patterns when five sensors failed. 

 

Surprisingly, the results fluctuated between 76% and 80.4% when all sensors in a 

column failed at the same time. However, it was not the case when all sensors were 

malfunctioning in a storey at the same time. The VQH technique obtained 36.4% 

accuracy when all sensors in the mid-storey were malfunctioning at the same time 

(see Table 5.13), demonstrating a difficult degradation in the classification algorithm 

in response to storey-wide sensor failure. 

 

Table 5.13: VQH results (MS sensors failure) and confusion matrix under 

CFoRS. 
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As shown in Table 5.13, all collapse pattern results were affected by the mid-storey 

sensor malfunctioning, except for the FC collapse pattern. Two collapse patterns 

created this similarity, which led to catastrophic results in the MS and FC collapse 

patterns. Major confusion with MS comes from the FS and PCK collapse patterns. 

FS and PCK have a common feature, which is that all sensors are moved during a 

building collapse, and MS came second after FS and PCK in terms of the number of 

moved sensors. This means that mid-storey malfunctioning sensors in FS and PCK 

created a similarity by creating an unmoved storey, and the MS collapse pattern had 

one. It is the same case concerning the confusion between the FC and MS collapse 

patterns. The number of unmoved sensors increases in MS datasets because of mid-

storey malfunctioning sensors that create a similarity with FC patterns with the 

closest number of unmoved sensors.  

 

To understand why all UC testing datasets were misclassified as an FC collapse 

pattern, an investigation is required into the histograms‟ features of both UC and FC 

patterns (see Table 5.14). Earthquakes cause vibrations for all buildings, regardless 

of whether they collapse. This vibration created a reading in all UC pattern sensors. 

This type of record caused wide sensor distribution in the UC pattern‟s histogram 

(see Table 5.14). Conversely, the moved sensors in the FC collapse pattern were 

distributed from number 1 to 12 codeword in the histogram, while the unmoved were 

distributed through the rest with an accumulation of two or three codewords in the 

FC histogram (see Table 5.14). After understanding how the histograms were 

organised in both the FC and UC patterns, another investigation was carried out on 

how mid-storey malfunctioning sensors changed the distribution of codewords in UC 

test patterns‟ histograms. Firstly, an investigation of codewords distribution in the 
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UC histogram that generated by the trained codebook was carried out. Three to four 

codewords in the generated histogram were accumulating most of the sensors‟ 

records, which created an increase in the distance between histogram from the test 

data and histogram from the training data (see Table 5.14). 

Table 5.14: An example of two misclassified unknown patterns.  
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Secondly, when UC test datasets went through FC trained codebook, the generated 

histograms carried a major similarity with the major areas in histograms from the 

training FC patterns. Despite there being no match between the FC histogram and 

UC–FC histograms in regard to moved sensors codewords in FC histogram, the 

distance between them was still less than the distance between the UC training data 

histogram and the UC–UC histograms (see Table 5.14). 

 

Similar results were obtained when malfunctioning sensors appeared in the third 

storey. However, it was not the case with the first storey. An accuracy of 74.8% was 

obtained when malfunctioning sensors appeared in the first storey using the VQH 

technique. The major improvement was in the disappearance of the MS–FC 

confusion and a reduction in the UC–FC confusion. Moreover, there was a slight 

enhancement in the PCK–MS confusion results.  

 

From the overall results of the VQH technique, VQH shows the ability to survive 

when 25% of sensors have failed, when those sensors are arranged in columns. 

However, when a storey of sensors failed, the impact was more devastating. In 

addition, VQH shows that some sensors‟ combinations have higher classification 

value than the others. That is, VQH shows that storeys two and three are more 

valuable than the ground storey, which could relate to the building design (not part of 

this research). In general, if one-third of sensors are malfunctioning, VQH will fail to 

classify building collapse patterns. 
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5.2.5 HMM under CFoRS 

 

As mentioned in scenario one, the HMM algorithm results show an improvement 

compared to the HMM results in Chapter 4. In the LIoA case scenario, the HMM is 

not affected by the failure of six sensors and still scored 100% accuracy. Conversely, 

in the MIoA case scenario, the HMM results accuracy decreased to 80.8% when five 

to six sensors failed (see Table 5.15). This primarily occurred when most of the MS 

collapse patterns were classified as FS collapse patterns. This type of confusion 

occurs in the HMM when three breaking points were used in PAA algorithm, but it 

does not mean that they share the same cause. However, the overall results are 

acceptable and this type of confusion can be resolved by using the hybrid method 

(see Section 5.2.5). By scoring over 60% accuracy, the second level of stress-test was 

applied. In the column collapse case, the MIoA result (65.2%) was achieved when 

 

Table 5.15: HMM results and confusion matrix under CFoRS. 
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the first column sensor malfunctioning and the majority of the FC collapse patterns 

were classified as UC patterns (see Appendix B). when storey of sensors 

malfunctioning, the PCK collapse patterns were misclassified when any of the storey 

sensors failed (see Appendix B). In addition, the HMM algorithm reached 60% with 

the failure of either the first- or second-storey sensors. The common feature between 

the first- and second-storey sensors‟ results was that the algorithm misclassified two 

classes completely (see Table 5.16). For instance, the first-storey case missed the FS 

and PCK collapse patterns completely, while the MS and PCK collapse patterns were 

misclassified in the second-storey case. However, the confusions between patterns  

Table 5.16: Confusion matrices of first- and second-storey cases using the HMM 

algorithm. 

 

occurred between different patterns in the first- and second-storey case. For example, 

the PCK collapse patterns were classified as MS collapse patterns in the first-storey 

case, while they were classified as FS collapse patterns in the second-storey case. 

 

In general, confusion between patterns that appeared in the first- and second-storey 

cases is different to the confusion between the patterns created by the columns‟ 



 

104 

 

cases. This point can be considered as a weakness in the HMM‟s performance. 

Nevertheless, uncollapsed patterns were classified as 100% accurate in both the 

LIoA and MIoA cases of the HMM algorithm. 

 

In summary, the HMM algorithm‟s performance was reasonable, considering the 

algorithm failure that occurred in the level two stress test. Algorithm failure and the 

randomness confusion between different types of patterns were caused by the large 

number of early malfunctioning sensors, which reached one-third of the total sensors 

in some cases. A highly accurate classification rate of UC patterns can be a useful 

feature of the HMM algorithm in normal operation when no natural disaster strikes. 

 

5.2.6 HMM–PCA Hybrid Algorithm under CFoRS 

 

The main trend in the HMM results shows that the MS–FS collapse patterns‟ 

confusion appears in many tested scenarios, such as the MIoA six malfunctioning 

sensors and first-column malfunctioning sensors. For this reason, we chose the same 

methodology that was used in Section 4.6, which was represented by two steps in the 

classification process: the HMM algorithm applied in the first step to classify FC, 

PCK and UC collapse patterns, and the PCA sensor-by-sensor based method to 

classify FS and MS collapse patterns. 

 

The hybrid method improved the MIoA six sensors failed case from 80.8% to 100% 

and the MIoA column case from 65.2% to 80% (see Appendix B). However, this 

method did not have any influence on the MIoA row case, which was represented by 

storey one and two. The main reason was that each row case had its own confusion 
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type, which was considered different to other tested case scenarios, and it was not 

efficient to design a rule for every confusion. For example, in the first-storey case, 

the main confusion was between the FS–FC and the PCK–MS collapse patterns, 

while the MS–FC and PCK–FS collapse patterns were the main confusion of the 

second-storey case. The hybrid method still has a positive effect on the classification 

algorithm despite having no effect on the MIoA case scenario. 

 

 

5.3 Chapter Summary 
 

Real-case scenarios were simulated in two main scenarios; sensor failure on impact 

and random sensor failure. Each scenario reflected the classification algorithms‟ 

performance in different ways. The sensor failure on impact scenario indicated how 

sensor failure could contribute positively if failure occurred when the sensor hit the 

ground. These are the datasets that more accurately mimic real-life (destruction of 

sensor upon impact). This was clearly represented in the VQ and HMM results. The 

second scenario was designed to target the classification algorithms‟ capabilities and 

limitations. The VQ and HMM algorithms went further than the PCA algorithm in 

this test; one-third of total sensors was the limit of both the VQ and HMM algorithms 

with respect to performance diversity. The hybrid method showed some 

improvements in the overall results, but it failed to extend the limitation of the HMM 

algorithm.  
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Chapter 6: Conclusion 

 

 

Three classification algorithms were used to classify five building patterns: four 

collapse patterns and an uncollapsed building pattern. The algorithms were used in 

various scenarios and tests to examine their robustness and reliability under various 

simulated cases, inspired by real-world scenarios.  

 

A summary of the ideas and results of this thesis will be presented in Section 6.1. 

Section 6.2 provides the discussion and conclusion. The discussion will present the 

most important trends that appeared during the research, supported by the 

experimental statistical results. Conclusion is presented and supported by evidence 

derived from the results. Finally, Section 6.3 will discuss the next stage for this 

research and other ideas that could be implemented to improve the classification 

algorithms‟ performance.  

 

6.1 Thesis Summary 
 

Extensive research has been conducted to understand information gathering in the 

field of disaster aid, as well as rescue teams‟ operations and procedures during 

earthquakes. Aerial and satellite images represent one of the main research areas that 

provide rescue teams with useful information regarding stricken-zone situations. 

These research areas covered building collapse classification in various manners. 

Some researchers classified buildings as damaged or undamaged, while others 

classified them as collapsed or uncollapsed. This type of crisis aid has its costs and 

challenges. Processing time, which is a crucial factor in a time of crisis, is considered 



 

107 

 

one of the main challenges for most of the aerial or satellite image-processing 

approaches, while weather conditions can be a major challenge to collecting high-

quality images for the stricken-zone. Conversely, there is no need for robust 

infrastructure to implement this type of research, as the information resource will not 

be directly affected by the crisis or the damaged infrastructure in the stricken area. 

 

We derived a novel approach to classifying building collapse patterns by using 

WSNs and classification algorithms. The aim of this approach was to classify 

building collapse patterns in more detail than just “collapsed” or “uncollapsed”, so 

that additional useful information could be obtained in order to help emergency 

management teams during rescue operations. The main achievement of this research 

was successfully obtaining highly accurate classifications in the shortest time for 

rescue operations. In addition, datasets that can simulate real-life situations were 

designed, to examine the classification algorithms‟ performance and reliability. The 

following steps were conducted during this research: 

 We simulated building collapse patterns using the Blender Game Engine. 

Four collapse patterns were the subject of this work, as well as an 

uncollapsed building pattern. Capturing behaviour pattern during an 

earthquake was conducted using simulated WSNs with the assistance of 

Python and Blender Game Engine. In addition, simulated earthquake forces 

were used according to the literature. 

 Three classification algorithms (PCA, VQH and HMM) were chosen to 

extract the signatures of each collapse pattern type from a training dataset and 

to classify a larger testing dataset. The first test for the classification 

algorithms was classifying the test data without any external or 



 

108 

 

environmental effects, which is called the theoretical case. In this stage, the 

hybrid method from the HMM–PCA was used to achieve 100% classification 

accuracy. 

 To be more realistic, a new test scenario was simulated to deal with real 

conditions that WSNs could face during a building collapse. This test was 

called sensor failure on impact (SFoI) and it targeted sensor failure when 

collision with an object or hitting the ground during a building collapse. 

Highly accurate results were achieved, with the HMM algorithm reaching 

100%. 

 To test the performance limit of each classification algorithm, another test 

was designed to find the highest number of early sensor failures before the 

classification algorithm fell below 60% accuracy. The first stage of this test 

chose the MIoA combination from six sensors with MIoA. The HMM and 

VQ algorithms passed this stage, while the PCA algorithm achieved lower 

than 60% accuracy. The second stage was the row–storey early sensor 

malfunctioning case. The HMM and VQ algorithms‟ performance was tested 

when 25% to 33.3% of total sensors failed at the same time. Both algorithms 

achieved 60% or lower when 33.3% of sensors failed to function during a 

building collapse. 

 

6.2 Conclusion 
 

The three classification algorithms were subjected to various types of experiments 

and tests, and each algorithm displayed a trend (see Figure 6.1). The PCA algorithm 

was implemented in three different ways to achieve the best results. There are two 

main trends in a PCA algorithm: a pattern-based trend, which is represented by basic 
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PCA and two-level PCA methods; and a sensor-by-sensor based trend, which is 

represented by sensor-by-sensor based PCA method. The best results achieved using 

the pattern trend in the PCA algorithm by using a two-level PCA, which obtained 

91.4% accuracy in the SFoI scenario. Nevertheless, the method failed in the first-

stage test in the CFoRS scenario, which indicated that the pattern recognition in the 

PCA algorithm relied heavily on rich information coming from a collapsed building, 

and any missing information could result in crucial degradation to the algorithm‟s 

performance. 

 

 

Figure 6.1 shows classification algorithms results under different case 

scenarios. 

 

The sensor-by-sensor based trend in the PCA algorithm was the only method among 

the PCA implementation methods that scored an improvement (1.6%) when the SFoI 

scenario was tested. Less noise improved this method in terms of extracting clearer 

rules from principal components (PCs). In addition, this method was the most 

accurate method among the other PCA methods. However, it scored the lowest 

accuracy (36.4%) among other PCA methods when the first-stage test (CFoRS) was 
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implemented (see Figure 6.1). The sensor-by-sensor based PCA result depends on 

individual sensors to recognise the building collapse pattern, which can include a 

high risk in terms of classification accuracy, as any sensor malfunctioning at any 

time during a building collapse. 

 

The VQH algorithm was tested using sensor-by-sensor based analysis. Histograms 

represent a signature for each building collapse pattern, and sensors distributed 

through histograms are based on trained codebooks. VQH suffered from low 

classification accuracy in the uncollapsed building class due to the high similarity 

between unmoved sensors in both the FC and UC pattern histograms. This type of 

confusion can be a major weakness in algorithm reliability in terms of day-to-day 

function, regardless of the overall accuracy results. Conversely, regardless of the UC 

pattern issue, VQH passed the first stage (CFoRS) with a MIoA case of 86.8%, 

which means that failure in six sensors had little affect on the algorithm‟s 

performance (see Figure 6.1). Moreover, the algorithm passed column sensor failure 

when 25% of the total sensors had early malfunctioning (see Appendix B) and scored 

36.4% when one-third of the total sensors in one storey failed to function during a 

building collapse (see Table 5.14). The similarity issue that caused the UC–FC 

confusion in the theoretical test was escalated in the CFoRS scenario and created 

wider confusion with other collapse patterns, resulting in classification accuracy 

reaching less than 60%. 

 

The HMM algorithm extracted building collapse pattern signatures from the time-

series of each class. Based on sensor velocity in each collapse pattern, the HMM 

reached the optimum results by achieving 100% in the SFoI scenario. In addition, the 

HMM passed the first stage in the CFoRS scenario and scored just 60% accuracy in 
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the stage two (CFoRS) scenario. Despite confusion appearing between different 

patterns in the stage two test, the HMM managed to keep the UC pattern 

classification rate at 100% all the time and, as mentioned previously, this point can 

be considered an advantage for this algorithm. Conversely, the HMM had the highest 

processing time compared with the PCA and VQH algorithms, but it is still 

acceptable when compared with the crisis aid systems that are currently used 

(classifying building collapse only) and image processing approaches that investigate 

the collapse patterns hours or even days after the crisis. 

 

In conclusion, every pattern recognition algorithm has limitations, based on how 

much information is missing compared with the theoretical pattern. The HMM 

scored the highest classification accuracy in terms of LIoA- and MIoA-case 

scenarios. Additionally, in comparison with other algorithms tested in this thesis, the 

classification rate of the UC pattern in all scenarios gave the HMM high credibility 

in terms of reliability. The hybrid method proved that the HMM classification rate 

could be enhanced when malfunctioning sensors not more that 25% of all sensors. 

However, the processing time of the HMM could be an issue if the number of 

sensors inside buildings increased. 

 

6.3 Future Work 
 

A novel approach to building collapse pattern classification was examined in this 

thesis. This opens a new research area that needs further investigation to advance 

knowledge. Creating a prototype building and using real sensors could be one of the 

next stages of this research. A comparison could be drawn between simulated results 

and prototype results and gives more validity to this approach. In addition, the hybrid 
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method could be further investigated by using various combinations of classification 

algorithms to achieve better results. Finally, examining various collapse scenarios for 

the same collapse pattern could also lead to the investigation of unsupervised 

algorithms in order to increase the number of subclasses in the same class and gain 

more reliability. 
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Consequences of Failure for Importance Levels [74] 

 

 

Annual Probability of Exceedance [74] 
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Importance Levels for Building Type- New Zealand Structures [74] 
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Probability Factor (  ) [74] 

 

Maximum Depth limits for Site Sub-Soil Class C [74] 
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Selection of Earthquake Design Categories [74] 

 

 

Values of    for Structures not Exceeding 15m. [74]
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Structural Ductility Factor (µ) and Structural Performance Factor (  )- Basic 

Structures [74] 
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Spectral Shape Factor (   (T)) [74] 
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(Python code to capture sensors velocity in three axis (X,Y, and Z)) 

 

import bge 
import time 
from bge import logic 
 
def Player(): 
 
        # appending in existing file  
        store_file = open ('/Python27/Database/11.txt', 'a') 
         
        # Capture the object 
        cont = logic.getCurrentController() 
        obj = cont.owner 
         
                 
        # chaptureing sensor Velocity 
        Xspeed, Yspeed, Zspeed = obj.getLinearVelocity(False) 
                    
        xs=Xspeed 
        ys = Yspeed 
        zs = Zspeed 
                            
        #Get time 
         
        from time import gmtime, strftime 
        ticks_m = strftime("%M", gmtime()) 
        ticks_s = strftime("%S", gmtime()) 
           
         

# procudure to check if the sensor went through the ground. if yes, program 
will locate the sensor close to the ground. 

         
        if zz < 0 : 
                xs =0.0005026459693908691 
                ys =0.0005026459693908691 
                zs =0.0005026459693908691 
 
        # Saving sensor velocity in file 
        xspeed =  str(xs) 
        yspeed = str (ys) 
        zspeed = str (zs) 
        store_file.write(xspeed) 
        store_file.write(',') 
        store_file.write(yspeed) 
        store_file.write(',') 
        store_file.write(zspeed) 
        store_file.write(',') 
         
        # write in the csv. file         
        store_file.write('\n') 
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        #Close the csv file  
        store_file.close() 
          
 
 
 

(MATLAB Code to convert .csv files to .xls files and generate plot for each 

sensor) 

 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% this program does the following processing 
%1. import the .csv file that contain sensor velocity in x y z 
direction 
%2. save sensor velocity in xls file. 
%3. save the sansors reading plots as a image. 
  
global building_sensors;  % save the sensor data in the structure 
called building_sensors 
  
% Eenter the buidling collapse pattern 
disp('please select the Pattern type'); 
strResponse = input('Enter Building Collapse 
Pattern(ST_V,FC_V,FS_V,MS_V,PC_V,UN_V):', 's'); 
N = input('Enter The Pattern Number: ', 's'); 
  
% Import the txt file 
ind = 0; 
for i = 10:10:120 
    for j = 1:4 
        % Create a file name 
        ind =  ind +1; 
        z=i+j; 
        file_name = int2str(z); 
        file_name_txt = strcat ('text_file\',file_name,  '.txt'); 
         
        sensor = importdata (file_name_txt); 
        Velocity = zeros(size(sensor));% the Velocity array 
         
        n = length (sensor); % length of array 
         
         
        % read vleocity for x y z direction 
        sensor_z = sensor(:,3); 
        sensor_y = sensor(:,2); 
        sensor_x = sensor(:,1); 
         
        % Save Velocity 
        Velocity(1:n,3) = sensor_z ; 
        Velocity(1:n,2) = sensor_y ; 
        Velocity(1:n,1) = sensor_x ; 
         
              
        % save the sensor data in the structure called 
building_sensors 
         
        building_sensors(ind).name = file_name; 



 

153 

 

        building_sensors(ind).data = Velocity; 
         
         
        % Save the Velocity in Excel file format (.xls) 
        file_name_xls = strcat ('xls_file\',file_name,  '.xls'); 
        xlswrite (file_name_xls,Velocity); 
    end 
end 
  
% Rename the structure based on the building collapse pattern and 
save the 
% structure in m-file 
switch ( strResponse) 
    case 'FC_V' 
        
         
        assignin('base', strcat ('FC',N,'_V'),  building_sensors) ; 
        save(strcat ('FC',N,'_V.mat'),strcat ('FC',N,'_V')); 
         
         
    case 'FS_V' 
       assignin('base', strcat ('FS',N,'_V'),  building_sensors) ; 
       save(strcat ('FS',N,'_V.mat'),strcat ('FS',N,'_V')); 
         
         
    case 'MS_V' 
        assignin('base', strcat ('MS',N,'_V'),  building_sensors) ; 
        save(strcat ('MS',N,'_V.mat'),strcat ('MS',N,'_V')); 
         
         
    case 'PC_V' 
        assignin('base', strcat ('PC',N,'_V'),  building_sensors) ; 
        save(strcat ('PC',N,'_V.mat'),strcat ('PC',N,'_V')); 
         
         
    case 'UN_V' 
       assignin('base', strcat ('UN',N,'_V'),  building_sensors) ; 
       save(strcat ('UN',N,'_V.mat'),strcat ('UN',N,'_V')); 
         
         
    case 'ST_V' 
         
        assignin('base', strcat ('ST',N,'_V'),  building_sensors) ; 
        save(strcat ('ST',N,'_V.mat'),strcat ('ST',N,'_V')); 
  
         
    otherwise 
        disp('You entered Undefine Pattern'); 
end 
% 
% %save the sensor plotes as an Image files 
h = figure; 
for i = 1:48 
    sensor =  building_sensors(i).name; 
    
plot(building_sensors(1,i).data,'DisplayName','building_sensors(1,1)
.data','YDataSource','building_sensors(1,1).data'); 
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    title(building_sensors(i).name,'FontWeight','bold'); 
    legend('x','y','z'); 
    %print(h) 
    file_name_jpg = strcat ('Images\',sensor,  '.jpeg'); 
    print(h,'-djpeg',file_name_jpg); 
end 
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Table 4.1: Examples of sensor readings from different locations. 

 

First Column Collapse Pattern 

First Storey Sensor 

 

Second Storey Sensor 

 

Third Storey Sensor 

 

Unmoved Sensor 
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First Storey Collapse Pattern 

First Storey Sensor 

 

Second Storey Sensor 

 

Third Storey Sensor 

 

Unmoved Sensor Not applicable 
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Mid-Storey Collapse Pattern 

First Storey Sensor 

 

Second Storey Sensor 

 

Third Storey Sensor 

 

Unmoved Sensor 
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Pancake Collapse Pattern 

First Storey Sensor 

 

Second Storey 

Sensor 

 

Third Storey Sensor 

 

Unmoved Sensor Not applicable 
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Uncollapsed Pattern 

First Storey Sensor 

 

Second Storey 

Sensor 

 

Third Storey 

Sensor 

 

Unmoved Sensor 
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Table 4.8: Example of generated histograms using VQ codebooks. 

 

Collapse patterns General Histogram example 

First Column 

 

First Storey 

 

Mid-Storey 

 

Pancake 

 

Uncollapsed 
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Collapse patterns General Histogram example 

First Column 

 

First Storey 

 

Mid-Storey 

 

Pancake 

 

Uncollapsed 
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Collapse patterns Uncollapsed misclassified patterns 

First Column 

 

First Storey 

 

Mid-Storey 

 

Pancake 

 

Uncollapsed 

 

 


