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Abstract. We consider Secure Function Evaluation (SFE) in the client-
server setting where the server issues a secure token to the client. The
token is not trusted by the client and is not a trusted third party.

We show how to take advantage of the token to drastically reduce the
communication complexity of SFE and computation load of the server.

Our main contribution is the detailed consideration of design deci-
sions, optimizations, and trade-offs, associated with the setting and its
strict hardware requirements for practical deployment. In particular, we
model the token as a computationally weak device with small constant-
size memory and limit communication between client and server.

We consider semi-honest, covert, and malicious adversaries. We show
the feasibility of our protocols based on a FPGA implementation.

1 Introduction

Secure and efficient evaluation of arbitrary functions on private inputs has been
subject of cryptographic research for decades. In particular, the following sce-
nario appears in a variety of practical applications: a service provider (server
S) and user (client C) wish to compute a function f on their respective private
data, without incurring the expense of a trusted third party. This can be solved
interactively using Secure Function Evaluation (SFE) protocols, for example us-
ing the very efficient garbled circuit (GC) approach [26]. However, GC protocols
potentially require a large amount of data to be transferred between S and C.
This is because f needs to be encrypted (garbled) as ˜f and transferred from S
to C. In fact, the communication complexity of GC-based SFE protocols is dom-
inated by the size of the GC, which can reach Megabytes or Gigabytes even for
relatively small and simple functions (e.g., the GC for AES has size 0.5 MBytes
[23]). Further, if security against more powerful adversaries is required, the use
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of the standard cut-and-choose technique implies transfer of multiple GCs. (For
covert adversaries, the transfer of only one GC is sufficient [7].)

While transmission of this large amount of data is possible for exceptional
occurrences, in most cases, the network will not be able to sustain the resulting
traffic. This holds especially for larger-scale deployment of secure computations,
e.g., by banks or service providers, with a large number of customers. Additional
obstacles include energy consumption required to transmit/receive the data, and
the resulting reduced battery life in mobile clients, such as smartphones.1

Further, computational load on S (computing ˜f) is also a significant problem,
especially in the case of large-scale deployment of SFE.

Our setting, goals and approach. Motivated by the possibility of large-scale
and decentralized SFE deployment we aim to remove the expensive communica-
tion requirement, and to shift some of S’s computation to C. To this end, we note
that in SFE protocols, and, in particular, in GC, the role of the server can be
split between two entities, with the introduction of a new entity – secure token
T , which is placed in client C’s possession, but executes S’s code thus offload-
ing S. Further, it is possible to eliminate most of the communication between C
and S and replace this with local communication between C and T . A number
of technical issues arises in this setting, which we address in this work.

More specifically, we discuss and analyze hardware-supported SFE, where
the service provider S issues a secure (see below) hardware token T to C. C
communicates locally with T , and remotely with S. There is no direct channel
between T and S, but of course C can pass (and potentially interfere with)
messages between T and S. T is created by S, so S trusts T ; however, as C does
not trust S, she also does not trust the token T to behave honestly.2

Attack model. We consider all three standard types of adversaries: semi-honest
(follows protocol but analyzes the transcript), malicious (arbitrary behavior,
cheating is always caught), and covert (cheating is caught with a certain deter-
rence probability, e.g., 1/2).

Hardware assumption. We assume T is tamper-proof or tamper-resistant. We
argue that this assumption is reasonable. Indeed, while every token can likely
be broken into, given sufficient resources, we are motivated by the scenarios
where the payoff of the break is far below the cost of the break. This holds
for relatively low-value transactions such as cell phone or TV service, where
the potential benefit of the attack (e.g., free TV for one user) is not worth the
investment of thousands or tens of thousands of dollars to break into the card.
For higher-value applications one could raise the cost of the attack by using a
high-end token T , e.g., a smart card certified at FIPS 140-2, level 3 or 4.

1 In some cases, the impact can be mitigated by creating and transferring GCs in the
precomputation phase. However, this is not fully satisfactory. Firstly, even more data
needs to be transferred since demand cannot be perfectly predicted. Further, this
creates other problems, such as requiring large long-term storage on client devices.

2 Note, if C in fact trusts T to behave honestly, then there exists a trivial solution,
where C would let T compute the function on her inputs [11].
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Hardware restrictions. As we assume the token to be produced in large quan-
tities, we try to minimize its costs (e.g., chip surface) and make the assumptions
on it as weak as possible. In particular our token requires only restricted compu-
tational capabilities (no public-key operations) and small constant secure RAM.
We consider T with and without small constant secure non-volatile storage.

Envisioned Applications. As mentioned above, we aim to bring SFE closer
to a large-scale deployment. The need to minimize communication forces us
to rely on tokens, the issuance of which requires certain logistical capabilities.
Therefore, we believe client-server applications are most likely to be the early
adopters of SFE. Further, the natural trust model (semi-honest or covert server
and malicious client) allow for efficient GC protocols. Finally, many client-server
application scenarios naturally include financial and other transactions which
involve sensitive, in particular privacy-sensitive, information.

Today, many service providers already distribute trusted tokens to their users.
Examples include SIM cards in users’ cell phones, and smart cards in users’ TV
set-top boxes. Bank- and credit cards often contain embedded secure chips. Spe-
cial purpose (e.g., diagnostic) medical devices, which need to be monitored and
controlled, are often issued to users at home. In these settings, it is natural to
use the existing infrastructure to enhance the security and privacy guarantees
of the offered products, and to offer new products previously impossible due to
privacy violation concerns. We expand this discussion and consider other appli-
cations, such as privacy protection in targeted advertisement, content delivery,
and remote medical diagnostics, in the full version [13].

1.1 Our Contributions and Outline

Our main contribution is architecture design, implementation, a number of op-
timizations, and detailed analysis of two-party SFE aided by a server-issued
low-cost tamper-proof token. The communication complexity of our protocols is
linear in the size of the input, and is independent of the size of the evaluated
functionality. Further, most of the work of S can be offloaded to T .

We use GC techniques of [15] and offer no-cost XOR gates. We rely on cheap
hardware – the token T only executes symmetric-key operations (e.g., SHA and
AES). T has small constant-size RAM (much smaller than the size of the circuit),
but we do not resort to implementing expensive secure external RAM.

We provide two solutions; in one, T keeps state in secure non-volatile storage
(a monotonic counter), while in the other, T maintains no long-term state.

We consider semi-honest, covert [7], and malicious [16] adversaries; our corre-
sponding communication improvements are shown in Table 1.

Outline. We start with outlining our model and architecture in §3. We describe
the protocols for both stateful and stateless T , and state the security claim in
§4. In §5, we discuss technical details of our FPGA prototype implementation,
present timings and measurements, and show practicality of our solution.
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Table 1. Communication between server S and client C for secure evaluation of func-
tion f with n inputs, statistical security parameter s, and deterrence probability 1−1/r

Security Previous Work This Work

semi-honest [26] O(|f | + n) O(n)

covert [7] O(|f | + sn + r) O(sn + r)

malicious [16] O(s|f | + s2n) O(s2n)

1.2 Related Work

Related work on using tokens for secure computations falls in the following three
categories, summarized in Table 2.

Table 2. Secure Protocols using Hardware Tokens. Columns denote the number of
tokens, who trusts the token(s), if token(s) are stateful or stateless, and perform public-
key operations. Properties more desired for practical applications in bold font.

Type Reference Functionality # Tokens Trusted by Stateful PK ops

A) [10] UC commitment 2 both yes yes
[14,4] UC commitment 2 issuer yes yes
[3] UC commitment 2 issuer no yes
[19] UC commitment 1 issuer yes no

B) [9] Set Intersection, ODBS 1 both yes no
[8] Non-Interact. OT 1 both yes yes
[25] Verif. Enc., Fair Exch. 1 both yes yes

C) [6] SFE 2 both yes yes
[11] SFE 1 both yes yes

This Work SFE 1 issuer yes / no no

A) Setup assumptions for the universal composability (UC) framework. As
shown in [1], UC SFE protocols can be constructed from UC commitments. In
turn, UC commitments can be constructed from signature cards trusted by both
parties [10], or from tamper-proof tokens created and trusted only by the issuing
party [14,19,3,4]. Here, [3] consider stateless tokens, and [19] require only one
party to issue a token. This line of research mainly addresses the feasibility of UC
computation based on tamper-proof hardware and relies on expensive primitives
such as generic zero-knowledge proofs. Our protocols are far more practical.

B) Efficiency Improvements for Specific Functionalities. Efficient protocols
with a tamper-proof token trusted by both players have been proposed for
specific functionalities such as set intersection and oblivious database search
(ODBS) [9], non-interactive oblivious transfer (OT) [8], and verifiable encryp-
tion and fair exchange [25]. In contrast, we solve the general SFE problem.

C) Efficiency Improvements for Arbitrary Functionalities. Clearly, SFE is effi-
cient if aided by a trusted third party (TTP), who simply computes the function.
SFE aided by hardware TTP was considered, e.g., in [6,11]. In contrast, we do
not use TTP; our token is only trusted by its issuer.
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2 Preliminaries

Notation. We denote symmetric security parameter by t (e.g., t = 128), and
pseudo-random function (PRF) keyed with k and evaluated on x by PRFk(x).
PRF can be instantiated with a block cipher, e.g., AES, or a cryptographic hash
function H, e.g., SHA-256, which we model as a Random Oracle (RO). AES is
preferable if PRF is run repeatedly with same k as AES’s key schedule amortizes.
Message authentication code (MAC) keyed with k and evaluated on message m
is denoted by MACk(m). We use a MAC that does not need to store the entire
message, but can operate “online” on small blocks, e.g., AES-CMAC [24].

2.1 Garbled Circuits (GC)

Yao’s Garbled Circuit approach [26] is the most efficient method for secure eval-
uation of a boolean circuit C. We summarize its ideas in the following. The
circuit constructor (server S) creates a garbled circuit ˜C: for each wire wi of the
circuit, he randomly chooses two garblings w̃0

i , w̃1
i , where w̃j

i is the garbled value
of wi’s value j. (Note: w̃j

i does not reveal j.) Further, for each gate Gi, S creates
a garbled table ˜Ti with the following property: given a set of garbled values of
Gi’s inputs, ˜Ti allows to recover the garbled value of the corresponding Gi’s out-
put, but nothing else. S sends these garbled tables, called garbled circuit ˜C to
the evaluator (client C). Additionally, C obliviously obtains the garbled inputs w̃i

corresponding to inputs of both parties: the garbled inputs ỹ corresponding to
the inputs y of S are sent directly and x̃ are obtained with a parallel 1-out-of-2
oblivious transfer (OT) protocol [20]. Now, C can evaluate the garbled circuit ˜C

on the garbled inputs to obtain the garbled outputs by evaluating ˜C gate by gate,
using the garbled tables ˜Ti. Finally, C determines the plain values corresponding
to the obtained garbled output values using an output translation table received
by S. Correctness of GC follows from the way garbled tables ˜Ti are constructed.

Improved Garbled Circuit with free XOR [15]. An efficient method for
creating garbled circuits which allows “free” evaluation of XOR gates was pre-
sented in [15]. More specifically, a garbled XOR gate has no garbled table (no
communication) and its evaluation consists of XORing the its garbled input val-
ues (negligible computation) – details below. The other gates, called non-XOR
gates, are evaluated as in Yao’s GC construction [26] with a point-and-permute
technique (as used in [18]): The garbled values w̃i = 〈ki, πi〉 ∈ {0, 1}t′ consist of a
symmetric key ki ∈ {0, 1}t and a random permutation bit πi ∈ {0, 1} (recall, t is
the symmetric security parameter). The entries of the garbled table are permuted
such that the permutation bits πi of a gate’s garbled input wires can be used
as index into the garbled table to directly point to the entry to be decrypted.
After decrypting this entry using the garbled input wires’ t-bit keys ki, evaluator
obtains the garbled output value of the gate. The encryption is done with the
symmetric encryption function Encs

k1,...,kd
(m), where d is the number of inputs

of the gate and s is a unique identifier used once. Enc can be instantiated with
m⊕H(k1|| . . . ||kd||s), where H is a RO. We note that the RO assumption can be



212 K. Järvinen et al.

avoided or weakened at small additional computation cost – see full version [13].
The main observation of [15] is, that the constructor S chooses a global key
difference Δ ∈R {0, 1}t which remains unknown to evaluator C and relates the
garbled values as k0

i = k1
i ⊕ Δ. Clearly, the usage of such garbled values allows

for free evaluation of XOR gates with input wires w1, w2 and output wire w3 by
computing w̃3 = w̃1 ⊕ w̃2 (no communication and negligible computation).

3 Architecture, System and Trust Model

We present in detail our setting, players, and hardware and trust assumptions.
As shown in Fig. 1, there are three parties – client C, server S and tamper-

resistant token T , issued and trusted by S. Our goal is to let C and S securely
evaluate a public function f on their respective private inputs x and y.

T C S

k

f

k

x y

z = f(x, y)

Fig. 1. Model Overview

Communication. C ↔ S: We view this as an expensive channel. Communica-
tion C ↔ S flows over the Internet, and may include a wireless or cellular link.
This implies small link bandwidth and power consumption concerns of mobile
devices. We wish to minimize the utilization of this channel.

T ↔ C: As T is held locally by C, this is a cheap channel (both in terms of
bandwidth and power consumption), suitable for transmission of data linear in
the size of f , or even greater.

T ↔ S: There is no direct channel between T and S, but, of course, C can
pass (and potentially interfere with) messages between T and S.
Trust. C ↔ S: As in the standard SFE scenario, C and S don’t trust each other.
We address semi-honest, covert, and malicious C and S.

S ↔ T : T is fully trusted by S, since T is tamper-resistant. S and T share a
secret key k, used to establish a secure channel and to derive joint randomness.

T ↔ C: C does not trust T , as T is the agent of S, and may communicate
with S through covert channels.

Storage, computation and execution. C and S are computationally strong
devices which can perform both symmetric- and asymmetric-key operations.3

Both have sufficient memory, linear in the size of f . C has control over T , and
can reset it, e.g., by interrupting its power supply. As justified in §1, T is a cheap

3 If needed, C’s capabilities may be enhanced by using a trusted hardware accelerator.
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special purpose hardware with minimum chip surface: T has circuitry only for
evaluating symmetric-key primitives in hardware (no public-key or true random
number generator) and has a small secure RAM. It may (§4.3) or may not (§4.4)
have small non-volatile secure storage4, unaffected by the resets by C.

4 Token-Assisted Garbled Circuit Protocols

In our presentation, we assume reader’s familiarity with the GC technique, in-
cluding free XORs of [15] (cf. §2.1), and concentrate on the aspects specific to
the token setting. We start with a high-level description of our protocol. Then, in
§4.2 - §4.4, we present the technical details of our construction – efficient circuit
representation, and GC generation by stateful and stateless tokens.

4.1 Protocols Overview, Security Intuition and Claim

Our constructions are a natural (but technically involved) modification of stan-
dard GC protocols, so as to split the actions of the server into two parts – now
executed by S and T – while maintaining provable security. We offload most of
the work (notably, GC generation and output) to T , thus achieving important
communication savings, and partially offloading S’s computation to T .

We start our discussion with the solution in the semi-honest model. However,
our modification of the basic GC is secure against malicious actions, and our
protocols are easily and efficiently extendible to covert and malicious settings.

At the high level, our protocols work as shown in Fig. 2: C obtains the garbled
inputs x̃, ỹ from S, and the garbled circuit ˜f corresponding to the function f
from T . Then, C evaluates ˜f on x̃, ỹ and obtains the result z = f(x, y).

It is easy to see that the introduction of T and offloading to it some of the
computation does not strengthen S, and thus does not bring security concerns
for C (as compared to standard two-party GC). On the other hand, separating

sid,mac, ỹ

x

z = f(x, y)

C

decrypt

eval
z̃ = f̃(x̃, ỹ)

k
sid, f

f̃

mac

d

T

mac′

check

S

k

f
y

OT: x̃

Fig. 2. Protocols Overview

4 T ’s key k is a fixed part of its circuit, and is kept even without non-volatile storage.
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the states of S and T , placing C in control of their communication, and C’s
ability to reset T introduces attack opportunities for C. We show how to address
these issues with the proper synchronization and checks performed by S and T .

Our main tool is the use of a unique session id sid for each GC evaluation.
From sid and the shared secret key k, S and T securely derive a session key K,
which is then used to derive the randomness used in GC generation. Jumping
ahead (details in §4.3), we note that sid uniqueness is easily achieved if T is
stateful simply by setting sid equal to the value of the strictly monotonic session
counter ctr maintained by T . However, if T is stateless, C can always replay S’s
messages. In §4.4 we show how to ensure that replays do not help C.

Since S and T derive the same randomness for each session, the (same) garbled
circuit ˜f can be generated by T . Unfortunately, the weak T cannot store the
entire f . Instead, C provides the circuit corresponding to function f gate-by-
gate to T , and obtains the corresponding garbled gate of ˜f . The garbled gate
can immediately be evaluated by C and needs not to be stored. C is prevented
from providing a wrong f to T , as follows. First, S issues a MAC of f , e.g.,
mac = MACk(sid, f), where f is the agreed circuit representation of the evaluated
function (cf. §4.2). Further, T computes its version of the above MAC, mac′, as it
answers C’s queries in computing ˜f . Finally, T reveals the decryption information
d that allows C to decrypt the output wires only if C provides the matching mac.

Garbled Inputs. The garbled input ỹ of S can be computed by S and sent
to C, requiring |y| · t bits communication, where t is the security parameter.
Alternatively, if T is stateful, S can establish a secure channel with T , e.g.,
based on session key K, send y over the channel, and have T output ỹ to C. This
achieves the optimal communication between S and C of |y| bits.

The garbling x̃ of C’s input can be transferred from S to C with a parallel
OT protocol which requires O(|x|t) bits of communication. Alternatively, the
efficient OT extension of [12] which reduces many OTs to a small number of
OTs (depending on security parameter t) can be adopted to our token-based
scenario as described in the full version [13, §C]. This reduces the communication
between S and C to O(t2) which is independent of the size of the input x.

Extension to Covert and Malicious Parties. Standard GC protocols for
covert [7] or malicious [16] adversaries rely on the following cut-and-choose tech-
nique. S creates multiple GCs ˜Ci, deterministically derived from random seeds
si, and commits to each, e.g., by sending ˜Ci or H( ˜Ci) to C. In covert case, C asks
S to open all but one garbled circuit I by revealing the corresponding si�=I . For
all opened circuits, C computes ˜Ci and checks that they match the commitments.
The malicious case is similar, but C asks S to open half of the circuits, evaluates
the remaining ones and chooses the majority of their results.

These protocols similarly benefit from our token-based separation of the server
into S and T . As in the semi-honest protocol, the GC generation can be nat-
urally offloaded to T , achieving corresponding computation and communica-
tion relief on the server and network resources. GC correctness verification is
achieved by requesting S to reveal the generator seeds si�=I . (Of course, these
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”opened” circuits are not evaluated.) Note that requirements on T are the same
as in the semi-honest setting. Further, in both covert and malicious cases, the
communication between C and S is independent of the size of f . The resulting
communication complexity of these protocols is summarized in Table 1.

Security Claim. For the lack of space, in this work we present our protocols
implicitly, by describing the modifications to the base protocols of [15]. We in-
formally argue the security of the modifications as they are described. Formal
proofs can be naturally built from proofs of [15] and our security arguments.
At the very high level, security against S/T follows from the underlying GC
protocols, since S is not stronger here than in the two-party SFE setting. The
additional power of C to control the channel between S and stateful T is negated
by establishing a secure channel (§4.3). C’s power to reset stateless T is addressed
by ensuring that by replaying old messages C gets either what he already knows,
or completely unrelated data (§4.4).

Theorem 1. Assuming T is tamper-proof, protocols described throughout this
section are secure in the semi-honest, covert, and malicious models respectively.

4.2 Circuit Representation

We now describe our circuit representation format. Our criteria are compactness,
the ability to accommodate free XOR gates of [15], and ability of T to process
the encoding “online”, i.e., with small constant memory. Recall, our T operates
in request-response fashion. C incrementally, gate-by-gate, “feeds” the circuit
description to T which responds with the corresponding garbled tables.

We consider circuits with two-input boolean gates. We note that our tech-
niques can be naturally generalized to general circuits.

Our format is derived from standard representations, such as that of Fairplay
[18], with the necessary changes to support our requirements. For readability, we
describe the format using a simple example circuit shown in Fig. 3. This circuit
computes z1 = x1 ∧ (y1 ⊕ y2), where x1 is the input bit of C and y1, y2 are two
input bits of S. The corresponding circuit representation shown on the right is
composed from the description of the inputs, gates, and outputs as follows.

Inputs and wires: The wires wi of the circuit are labeled with their index
i = {0, 1, ...} (wires with a larger fan-out are viewed as a single wire). The first X
wires are associated with the input of C, the following Y wires are associated with
the input of S, and the internal wires are labeled in topological order starting

Circuit Representation:
1 2
3 [0] [1 2] [0001]
3

w0

w1

w2

x1

y1

y2

∧
z1

w3

Fig. 3. Example for Circuit Representation
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from index X + Y (output wires of XOR gates are not labeled, as XOR gates
are incorporated into their successor gates as described in the next paragraph).
The first line of the circuit description specifies X and Y (Fig. 3: X = 1, Y = 2).

Gates are labeled with the index of their outgoing wire; each gate description
specifies its input wires. XOR gates do not have gate tables and are omitted from
the description. Rather, non-XOR gates, instead of pointing to two input wires,
include two input wire lists. If the input list contains more than one wire, these
wire values are to be XORed to obtain the corresponding gate input. Gate’s
description concludes with its truth table. In Fig. 3, the second line describes
the AND gate, which has index 3, and inputs w0 and w1 ⊕ w2.

Outputs: The circuit description concludes with Z lines which contain the
indices of the Z output wires (Fig. 3: the only (Z = 1) output wire is w3).

Large XOR sub-circuits. In this representation, XOR gates with fan-out > 1
occur multiple times in the description of their successor gates. In the worst case,
this results in a quadratic increase of the circuit description. To avoid this cost,
we insert an identity gate after each XOR gate with a large fan-out.

4.3 GC Creation with Stateful Token Using Secure Counter

The main idea of our small-RAM-footprint GC generation is having T generate
garbled tables “on the fly”. This is possible, since each garbled table can be
generated only given the garblings of input and output wires. In our implemen-
tation, we pseudorandomly derive the wire garbling from the session key and
wire index. The rest of this section contains relevant details.

Session Initialization. SFE proceeds in sessions, where one session is used to
securely evaluate a function once. T has a secure monotonic session counter ctr
which is (irreversibly) incremented at the beginning of each session. The session
id sid is set to the incremented state of ctr. (We omit the discussion of synchro-
nization of ctr between T and S which may happen due to communication and
other errors.) Then, the session key is computed by S and T as K = PRFk(sid)
and subsequently used to provide fresh randomness to create the GC.

As required by the construction of [15] (cf. §2.1), the two garbled values of
the same wire differ by a global difference offset Δ. This offset is derived from
K at session initialization and kept in RAM throughout the session.

Subsequently, garbled wire values wi are derived on-the-fly from K as

w̃0
i = PRFK(i), w̃1

i = w̃0
i ⊕ Δ. (1)

Garbled Gates. T receives the description of the circuit, line by line, in the format
described in §4.2, and generates and outputs to C corresponding garbled gates,
using only small constant memory. T first verifies that the gate with the same
label had not been processed before. (Otherwise, by submitting multiple gate
tables for the same gate, C may learn the real wire values). This is achieved by
keeping the monotonically increasing processed gate counter gctr, verifying that
gate’s label glabel > gctr, and setting gctr = glabel. T then derives and stores
garblings of the gate’s input and output wires according to (1). (For input lists,
the wire’s garbling w̃0 is computed as the XOR of garblings of the listed wires,
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and w̃1 is set to w̃0 ⊕Δ. Note that this requires constant RAM.) Finally, based
on these garblings, gate’s garbled table is computed and output to C.

Garbled Outputs. Recall, T must verify circuit correctness by checking mac gen-
erated by S. Thus, T does not release the output decryption tables to C until
after the successful check. At the same time, the check is not complete until the
entire circuit had been fed to T . To avoid having T store the output decryption
tables or involving S at this stage, T simply encrypts the output tables using a
fresh key K ′, and outputs the key only upon a successful MAC verification.

4.4 GC Creation with Stateless Token (no Counter)

As discussed above, while non-volatile secure storage (the counter ctr) is essential
in our protocol of §4.3, in some cases, it may be desired to avoid its cost. We
now discuss the protocol amendments required to maintain security of SFE with
the support of a token whose state can be reset by, e.g., a power interruption.

First, we observe that S is still able to maintain state, and choose unique
counters. However, T can no longer be assured that sid claimed by C is indeed
fresh. Further, T does not have a source of independent randomness, and thus
cannot establish a secure channel with S, e.g., by running a key exchange.

We begin with briefly describing a replay vulnerability of our protocol of §4.3,
when T is executed with same sid. First, C properly executes SFE. Second time
he runs T with the same sid, but feeds T an incorrect circuit, receiving valid
garbled tables for each of the gates, generated for the same wire garblings. Now,
even though T will not accept mac and will not decrypt the output wires, C had
already received them in the first execution. It is easy to see that C “wins”.

Our solution is to ensure that C does not benefit from replaying T with the
same sid. To achieve this, we require that each wire garblings are derived from
the (hash of the) entire gate description (i.e., id, truth table, and list of inputs),
as described below. If C replays and gives a different gate description, she will
not be able to relate the produced garbled table with a previous output of T .

We associate with each wire wi a (revealed to C) hash value hi. For input wires,
hi is the empty string. For each other wire i, hi is derived (e.g., via Random
Oracle) from the description of the gate i (which includes index, truth table,
and list of inputs; cf. §4.2) that emits that wire: hi = H(〈gate description〉).
The garbled value of wire wi now depends on its hash value hi: w̃0

i = PRFK(hi)
and w̃1

i = w̃0
i ⊕ Δ. Finally, to enable the computation of the garbled tables, C

must feed back to T the hashes hi of the input wires, and receive from T and
keep for future use the hash of the output wire. As noted above, C’s attempts to
feed incorrect values result in the output of garbled tables that are unrelated to
previous outputs of T , and thus do not help C.

5 Proof-of-Concept Implementation

We have designed a proof-of-concept implementation to show the practicabil-
ity of our token-assisted GC protocols of §4. In the following we describe our
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architecture for the stateful token case of §4.3. Extension to the stateless case
is straightforward. We instantiate PRF with AES-128, H and H with SHA-256,
and MAC with AES-CMAC.

5.1 Architecture

Fig. 4 depicts the high level architecture of our design consisting of a two-stage
pipeline and a MAC core. Stage 1 of the pipeline creates the garbled input and
output values of a gate using an AES core and stage 2 computes the garbled table
with a SHA core. The two-stage pipeline increases performance as two gates can
be processed concurrently. The MAC core computes the authentication message
mac′ of the circuit provided by C (cf. §4.1).

Design Principle. To achieve maximum speed with minimum hardware resources,
we followed a general guideline exploiting parallelism as long as it can be done
without using several instances of the same algorithm. For example, we opted
to compute the four entries of a garbled table with a single SHA core instead of
using four parallel SHA cores which would have increased performance, but only
with a significant increase in area. As the only exception, we included a separate
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Fig. 4. Simplified architectural diagram of our proof-of-concept implementation. Selec-
tors of multiplexers and write enables of registers are set by additional control logics.
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MAC core rather than reusing the AES core of stage 1, because it would have
severely complicated the control of the pipeline.
Description of Operation. In the session initialization (cf. §4.4), the SHA core
in stage 2 derives session key K and output encryption key K ′ from key k and
current counter value ctr = sid which is used as key for the AES core. Then,
the key difference Δ is derived with the AES core and stored in a register. The
circuit is provided gate-by-gate into the input buffer in the format described in
§4.2 (gate table denoted by Ti in Fig. 4). Stage 1 starts to process a gate by
deriving the garbled output value w̃0

i . Then, the two garbled inputs of the gate
(˜L0

i ,
˜R1

i in Fig. 4) are derived by XORing the garblings listed in the input wire
lists one-by-one (see §4.3). When all garblings are derived they are forwarded to
stage 2 and stage 1 processes the next gate. Stage 2 computes the garbled table
and the encrypted output decryption tables and writes them into the output
buffer. The MAC core operates independently from the two-stage pipeline.

5.2 Prototype Implementation

We implemented our architecture in VHDL.

Implementation Details. For the AES core we chose an iterative design of AES-
128 with a latency of 10 clock cycles per encryption. The core includes an online
key scheduling unit. The S-boxes are implemented as suggested in [2]; otherwise,
the core is a straightforward implementation of the standard [21]. The SHA core
implements SHA-256 with a latency of 67 clock cycles per 512-bit block. The core
is a straightforward iterative design of the standard [22]. The MAC core includes
an AES core implemented as above; otherwise the core is a straightforward
implementation of AES-CMAC [24]. As the subkeys, k1 and k2, depend only on
the key k they were precomputed and hardwired in the design.

FPGAs. We compiled the VHDL code for a low-end FPGA, the Altera Cyclone II
EP2C20F484C7 FPGA, with Quartus II, version 8.1 (2008). We emphasize that
this FPGA is for prototyping only, as it lacks secure embedded non-volatile
memory for storing ctr (e.g., the Xilinx Spartan-3AN FPGAs has integrated
Flash memory for this). The resulting area and memory requirements are listed
in Table 3. The design occupies 60% of logic cells and 21% of memory blocks
available on the device and runs at 66MHz (the critical path for clock frequency
is in the AES core). These results show that the design is, indeed, feasible for a
low-cost implementation, for example, with low-cost FPGAs which, in turn, is
mandatory for the practicability of the token-based scheme.
Smart Cards. In particular, we note that the requirements are sufficiently low
also for contemporary smart card technologies, because AES-128 and SHA-256
require only about 3,400 and 11,000 gates, respectively [5]. As our protocol
requires no public-key operations on the token, small smart cards are sufficient.

Performance. We determined the latency of our implementation with Model-
Sim, version 6.3g (2008). Overall, the latency is given as #clock cycles = 158G1+
312G2 + 154O + 150, where G1, G2 is the number of 1-input gates respectively
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Table 3. Results on an Altera Cyclone II FPGA (the hierarchy is as shown in Fig. 4)

Entity Stage 1 Stage 2 MAC IO Total

Area (Logic cells) 3317 (30%) 4539 (40 %) 3059 (27%) 263 (3%) 11231 (60 %)

Memory (M4K) 0 (0%) 8 (73 %) 1 (9%) 2 (18%) 11 (21 %)

2-input gates and O is the number of outputs, assuming that each gate has at
most 21 inputs in its input lists (if more, stage 2 needs to wait for stage 1) and
that data I/O does not introduce additional delays.

Example 1. Our implementation generates a GC for 16-bit comparison (G1 =
0, G2 = 16, O = 1) in 5,296 clock cycles (≈80μs with 66MHz clock). In Software,
this takes roughly 0.5 s on an Intel Core 2 6420 at 2.13GHz [17].

Example 2. Generating a GC for AES-128 encryption (G1 = 12614, G2 = 11334,
O = 128) takes 5,549,082 clock cycles (≈84ms with 66MHz clock). In Software,
this takes approximately 1 s on an Intel Core 2 Duo at 3.0GHz [23].
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