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SUMMARY

The strong discontinuity approach to modelling strain localization, combined with an enhanced strain
element, has been used for more than a decade to model strain localization in materials including
geomaterials. Most implementations of enhanced strain elements in the post-localization regime use very
simple constitutive formulations along the discontinuity, such as linear softening or a constant friction
coefficient. However, the softening relations can be much more complex for geomaterials. For rocks this
softening is induced by micro-fractures coalescing into macroscopic cracks during a narrow time interval
called ‘slip weakening.’ During this interval the cohesive resistance on the nucleating crack decays to
zero while the frictional resistance increases. Furthermore, research has shown that the coefficient of
friction for these materials is not constant, but in fact is a function both of the slip speed and the state
of the material, including wear, temperature, and other factors. In this paper we augment the modelling
capabilities of an enhanced strain element by incorporating a cohesive softening law and a popular rate-
and state-dependent friction model commonly used for describing the constitutive properties of rocks and
rock-like materials sliding along the fractured surface. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Strain localization, characterized by intense deformation across a narrow region, plays an important
role in the behaviour of many solid materials. Examples include shear banding and necking in
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metals, necking in polymers, and shear fracturing in bulk metallic glasses. In geomaterials we
observe shear, compaction, and dilation bands in porous rocks; shear and tensile fractures in more
brittle rocks, ceramics, and concrete; shear bands in sands, and cracking in heavily overconsolidated
clays. In addition to potentially significant displacements, an associated rapid loss of strength makes
strain localization an important area of study, as this loss of strength can lead to structural failure
or other unstable behaviours.

Traditional geotechnical analyses of localized deformation are typically conducted by limit
equilibrium methods such as those based on the method of slices for the analysis of slope stability.
These methods assume to some degree the shape of the failure surface, and, since they are based
on statics, give no information on elastic or plastic deformations before or after localization.
Another limitation of the limit equilibrium methods is that they impart no information on the post-
localization state of the structures being analysed. These methods do seem to provide reasonable,
if conservative, results for standard geotechnical engineering problems such as slope stability
analysis. However, for more complex geometries the predictive capabilities of these methods are
likely inadequate.

An alternative is to employ a numerical technique, such as the finite element method, to capture
the localization. However, while standard finite element methods have proven useful for a wide
variety of geometries, loading, and deformation patterns, modelling localized deformation using
standard elements is difficult and can lead to inaccurate results. Classical associative and non-
associative plasticity models could lead to non-unique strain rate fields [1, 2], requiring a special
treatment of the local bifurcation and accompanying strain localization. Where the path of the
localization is easily predicted, such as along a weak interface between two existing rock layers,
the mesh can be aligned with along the discontinuity, and contact elements [3, 4], cohesive surface
elements [5, 6], or similar techniques may be employed.

In general, however, the location and propagation direction of the localized region may not
be known a priori, and can greatly influence the response. A variety of methods have been
developed to attempt to capture localization in this case. One broad class of techniques involves
adding additional information to governing equations to keep their character constant. These
techniques include viscous regularization [7, 8], non-local [9, 10] and gradient plasticity [11–13],
and micropolar (Cosserat) continua [14, 15]. All of these techniques can regularize the solution, but
require additional parameters to be determined. While some of these techniques were developed
primarily to regularize the equations, much recent work has linked these parameters to physically
based phenomena such as grain size. As the bands develop naturally from the governing equations,
these techniques hold significant promise for modelling the deformation bands. A major drawback
of these methods, however, is that they require several elements across the thickness of the band
to accurately resolve the deformation. When the location of the localized region is not initially
known, this requirement can result in meshes too fine to be computationally tractable. The expense
may be particularly acute in geotechnical and geological problems where the difference in length
scales between the localized region (millimeters to centimeters) and the problem of interest (meters
or kilometers) is several orders of magnitude.

To this end a second set of techniques has been developed that incorporate a deformation band
within an element. These methods model the band with either a jump in the strain field, termed
a ‘weak discontinuity’, or in the displacement field, a ‘strong discontinuity’. Weak discontinuity
methods include [16–18]. Many deformation bands have finite width, including shear bands in
soils, and even fractures in concrete and many rocks have fracture process zone that leave a finite
width of gouge material. To avoid spurious mesh dependency, these methods must include a length
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scale, the width of the band, which does not come from the governing equations and must be
determined as an additional material parameter.

In contrast, strong discontinuity methods [16, 19–48], while giving up some physical significance
of the band width, do not require a length scale (or more properly set that length scale to zero).
The two methods are quite closely related, and if the element size is significantly larger than the
band width, behave very similarly. Formulations of both methods allow for the insertion of the
band at arbitrary orientation and locations within the element, tracking of the band continuously
across a mesh, and condensation of the extra degree of freedom at the element level. Armero [19]
demonstrated that weak discontinuity response may be approximated by a strong discontinuity
formulation, provided that the dissipation across the band is properly captured. Oliver and coworkers
[49] formulated a model that proceeds from intact continuum to weak discontinuity, to strong
discontinuity.

The formulation in this paper follows the strong discontinuity formulation of Simo and
co-workers [20, 21], and more closely the reformulation of Borja and Regueiro [33–38], which is
described in more detail in Section 3. Other sub-classes of this element type have been described
and differ primarily in the way the extra degrees of freedom are condensed; see [30, 39] for reviews
of the various types of these elements. The amount of slip along the surface is determined by a
surface constitutive law. The main body of this paper is dedicated to the numerical formulation
and implementation of this constitutive response into the enhanced strain element. We will discuss
both a generic implementation, and a specific implementation for a combined slip weakening and
frictional response applicable to rocks and rock-like materials.

For geomaterials and other quasi-brittle materials undergoing strain localization, the constitutive
behaviour can be approximately broken into two phases. The first phase is slip weakening, where the
cohesive strength of the material degrades as a coherent macrocrack forms. During slip weakening
a frictional response along the surface of discontinuity also develops. The coefficient of friction
has been shown to vary with slip speed and state of the material, including factors such as
wear, gouge material between the surfaces, and temperature. To capture this behaviour, we use a
rate- and state-dependent friction model developed by Ruina, Dieterich, and Rice, among others
[50–52].

The main contribution of this paper is the incorporation of a variable coefficient of friction into
the strong discontinuity formulation. A variable coefficient of friction is atypical in computational
mechanics literature where a constant coefficient of friction is almost always assumed. However,
it is widely recognized in geophysics and in many branches of geoscience that the coefficient of
friction may depend not only on slip speed but also on a state parameter representing the maturity
of contact. Thus, it cannot be assumed to be constant for important applications such as earthquake
fault rupture processes. In this paper we focus on a velocity- and state-dependent coefficient of
friction applicable to slow slip velocities and laboratory-derived state and friction laws, along with
the strong discontinuity finite element formulation.

The remainder of the paper is structured as follows: we briefly review in Section 2 the kinematical
assumptions for a strong discontinuity in the context of small strain deformation and the resulting
bifurcation condition. Then we present in Section 3 the proposed framework for enhanced strain
element and its implementation. Section 4 discusses the constitutive laws, the friction model, and
the slip weakening algorithm (which may be coupled with a general friction law). We present
the numerical formulation for determining the slip in Section 5, and the resulting consistent
stiffness formulation in Section 6. Numerical examples and concluding remarks close out the
paper.
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2. KINEMATICS

As a point of departure, we examine kinematics that include a strong discontinuity. For the
purposes of this paper, we will use small strain assumptions. Strong discontinuity kinematics in a
finite deformation setting are described in more detail in [22, 38].

Consider a body with an otherwise smooth displacement field that contains a displacement jump
across the surface S in the body. In other words

u= ū + [[u]]HS

= ū + �mHS (1)

where HS is a Heaviside function across S. The vector ū is referred to as the regular part of the
displacement, while [[u]] is the displacement jump. The magnitude of the jump is �, in the direction
m. In granular materials, dilation on cracks is observed due to asperity mismatch and the formation
of gouge material, and has been shown to have important impacts on crack behaviour [53]. Hence,
the slip direction is expected to not be exactly perpendicular to the normal to the slip surface. As
slip continues, however, there is less further dilation, and m becomes closer to being parallel to
the band.

In the infinitesimal regime, the strain field becomes

e=∇su=∇sū + ∇s(�m)HS + �(m ⊗ n)s�S (2)

with n as the normal to S, �S the Dirac delta distribution across S, and (•)s denoting the symmetric
part of the tensor (•). The spatial gradient of the jump will generally be quite small compared to
the jump itself. In the finite element approximation, we consider the jumps to be constant within
a given element, so the second term disappears, leaving

e=∇su= ∇sū + �(m ⊗ n)s�S (3)

For the finite element formulation, it is convenient to reformulate the displacement field as

u= ũ + û

= ũ + [[u]]MS

= (ū + f h[[u]]) + [[u]](HS − f h) (4)

Here f h is an arbitrary smooth function that is equal to zero at all the element nodes on the
‘passive’ side of the element, where HS = 0, and unity at all the nodes on the ‘active’ side, where
HS = 1.
We use a convenient and typical form for f h , the sum of the shape functions of the active

nodes

f h =
nen∑
A=1

NAHS(xA) (5)

where nen is the number of nodes for a particular element, and NA are the standard finite ele-
ment shape functions. This form is useful because now ũ can be written in the standard finite

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 72:549–581
DOI: 10.1002/nme



EMBEDDED STRONG DISCONTINUITY FINITE ELEMENTS 553

element form

ũh =
nen∑
A=1

NAxA (6)

Thus, with this choice of f h , the component ũ of the displacement is referred to as the conforming
displacement, since it conforms to the standard finite element shape functions. The vector û is
referred to as the displacement enhancement.

2.1. Localization condition

Given the above kinematics, it is possible to derive the conditions for localization from principles
of continuum mechanics.

Consider a material undergoing standard bulk plasticity, which may follow a non-associative
flow rule. Without reviewing specific plasticity models, the model is described by a yield func-
tion F = F(r, q), where q is a vector of internal state variables, a plastic potential function
G =G(r,q), which may be different from F , and a hardening/softening law. If F =G, the flow
rule is associative.

To form or propagate a discontinuity on a given surface, the traction and traction rate must be
continuous across that surface. The traction rate may be written

ṫ= n · ṙ=n · ce : ėe

= n · ce :
(
ė− �̇

�G
�r

)

= n · ce : ∇s ˙̄u + n · cep : ([[u̇]] ⊗ n)s�S (7)

where cep is the elastic–perfectly plastic modulus as shown in [33]. To ensure that the tractions
are bounded, the quantity n · cep : ([[u̇]]⊗n)s must be zero. Exploiting the minor symmetry of cep,
this condition may be rewritten as

Q · [[u̇]] = 0 (8)

where Q=n · cep ·n is the elastic–perfectly plastic acoustic tensor. Hence a bifurcation of the type
described by the kinematics in the previous section may occur only when

detQ= 0 (9)

for some normal n. If we let [[u̇]] = �̇m, where m is a unit vector in the direction of the jump,
then m becomes the normalized zero eigenvector for Q. Hence, the localization condition returns
the direction of the jump at bifurcation. This condition is similar to the weak discontinuity (strain
jump) condition formulated in [1].

Localization may occur for any normal n. To determine a critical normal, a numerical search
algorithm in three dimensions as described in [16, 46] is employed. A reduced version of the same
algorithm has also been developed for two-dimensional problems. These algorithms are modified
somewhat from the original form, as plasticity models for geomaterials often have non-associative
or kinematically hardening components. These features destroy the major symmetry of the tangent
modulus assumed in the above formulations. Fortunately, the patch is relatively simple and can be
accomplished simply by symmeterizing the matrix referred to as J in [16].
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3. BACKGROUND ON ENHANCED STRAIN ELEMENT

The element used is adapted from [36, 37]. The reader is referred to those papers for more detailed
formulation of the element. The idea is that a jump in the displacement field is allowed across
the element at arbitrary location, and with a slip direction m, as shown in Figure 1. Some of the
relevant details to our discussion are included below.

The Galerkin form of the equations with the enhanced strain field [36] may be written∫
�h

∇sg̃h : rh d� =
∫

�h
g̃h · bh d� +

∫
�h
t

g̃h : th d� (10)

∫
�h
loc

ĉ · rh d� = 0 (11)

where �h
loc is the domain of localized elements, b is the body force vector, and the surface traction

t may be specified over some part of the boundary �h
t . The weighting functions are decomposed

gh = �uh = g̃h + ĝ (12)

∇sgh = �eh = ∇sg̃h + ∇sĝ

= ∇sg̃h + ĉ (13)

where g̃h is the conforming part of the virtual displacement, and has the same shape functions
as the conforming displacements, i.e. the standard finite element shape functions. The enhanced
part of the virtual displacement, ĝ, has a slightly different form from the enhanced displacement
to ensure compatibility, as discussed below. To ensure stability, it is necessary for these spaces to
have a null intersection [54]. Since the enhancement, as discussed below, has a delta distribution,
this requirement is satisfied trivially.

The first of these equations is the standard balance of linear momentum for the quasi-static,
small strain kinematics. The second equation arises from the strong discontinuity and the choice
of shape functions, and allows us to determine the tractions on the discontinuity surface.

(a) (b)

Figure 1. (a) Quadrilateral element showing potential slip surface and (b) localized element with un-
deformed shape (fine lines), total deformed shape (bold lines), regular deformation (dotted lines), and

conforming deformation (dash-dotted lines).
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3.1. The stress on the band

Since the slip direction is prescribed and the amount of the slip is considered spatially constant
across the element, there is a single extra degree of freedom, the slip, in each element. The slip
rate is a function of the stress along the slip surface and the constitutive traction–displacement
relationship along the surface. These constitutive models are discussed in later sections. It is
Equation (11), the second equation of the Galerkin form, that allows us to determine the stress
on the band. In particular, we are interested the average stress along the slip surface, which we
denote rband.

We choose as our shape function for the enhancement on an element e

ĉhe =
(

�S − leS
ae

)
(be ⊗ n)s (14)

where leS is the length of the shear band in the element, ae is the element area, be ∈ Rnsd is the
vector of weights. This function is chosen in part because it passes the patch test for piecewise
constant stress fields, i.e. ∫

�h
loc

ĉ d�= 0 (15)

Substituting (14) into (11), we obtain

∫
�e

r :
(

�S − leS
ae

)
(be ⊗ n)s d�= be ·

(∫
S
r · n dS − leS

ae

∫
�e

r · n d�
)

= 0 (16)

This implies

1

ae

∫
�e

r · n d�= 1

leS

∫
S
r · n dS = rband · n (17)

Hence the tractions on the band can be found by averaging those components of the stress over the
element. This approximation arises from our choice of shape functions. As a mesh is refined and
the element stresses approach a constant value, this approximation approaches the exact value of
the stress on the element. For constant stress elements, the finite element stress is exactly recovered.

The above formulation is the small strain version of the formulation in [22]. As noted in that
paper, the length of the band is never actually needed in the implementation. It is worth noting
that this formulation differs slightly from [6, 36], in which

ĉhe = �e
(

�S − leS
ae

)
��

�r
(18)

where � is the yield function on the surface. This formulation is also adequate, but only ensures
that the stress component in the direction of ��/�r is equal to the average value over the element.
The vector-based formulation is slightly more general, allowing for future implementation of
more complex models that may have both open and sliding degrees of freedom. The numerical
implementation, however, is the same for both cases.
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4. SURFACE CONSTITUTIVE MODEL

4.1. Modelling of slip weakening

Upon localization, the nature of the material changes. Instead of bulk plasticity, the inelastic slip
occurs on a surface, while typically the bulk material unloads elastically. The yield condition
should change to capture the weakening and the restriction of plasticity to the band. A typical
model for the constitutive behaviour on the slip surface is a cohesive-frictional, or Mohr-Coulomb,
form. That is, for sliding on the surface

� = c − �� (19)

where � = l · r · n is the shear stress, l the direction of the shear traction, c the cohesion, � the
coefficient of friction, and �=n · r · n the normal stress on the surface. In the language of the
mathematical theory of plasticity, this can be rewritten in terms of yield function

�= � + �� − c (20)

where �<0 implies no slip on the surface, �= 0 is required for plastic slip, and �>0 is inadmis-
sible.

The coefficient of friction may vary over the course of sliding by the friction law discussed in
Section 4.2 or by some other formulation. Experimental evidence and intuition both suggest that
the cohesion along the surfaces rapidly degrades to zero over a short sliding distance. Exactly over
what distance it degrades varies for different materials, but for quasi-brittle geomaterials this is
typically on the order of 0.5mm [55, 56].

Experiments show a shear stress drop that is approximately linear over that characteristic sliding
distance, although there is some oscillation as a coherent macrocrack forms around and through
the grains of the structure. A model has been developed to capture this stress drop, and is presented
in [56]. Two versions of the law are presented in that paper. The first version replicates this linear
drop, but requires the knowledge of ��/�� in the body as a function of the boundary conditions.
For a finite element problem, this value is unknown, so a simplified version of the law is developed.
The yield function on the surface takes the form

�=
{

� + ���/�+ − �0(1 − �/�+) if 0����+

� + �� if �>�+ (21)

where �+ is the characteristic sliding distance over which the resistance becomes purely frictional,
and �0 is the shear stress at localization. Hence, the initial shear strength at localization is degraded
over time as the rock fractures, and is replaced by a purely frictional resistance. The frictional
strength increases over that same distance as a coherent macrocrack forms and begins slipping. If
the friction is constant, then the weakening is exactly a linear function of the slip displacement. In
general, however, the friction will vary during the course of slip weakening, as either the normal
stress, the coefficient friction, or both change over time. The deviation from the linear law is, in
most cases, rather mild.

From the above formulas, the cohesion can written as

c=
(
1 − �

�+
)

(�0 − ��) (22)
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This quantity is not a ‘cohesion’ in the traditional sense, as it varies with changing normal stress
and friction coefficient. However, it is still a useful quantity in the computational setting, and is
still applied.

4.2. Friction model

The functional form of the friction model used is that introduced by Ben-Zion and Rice [57]. This
is a slight modification of the model presented by Dieterich and Linker [51, 58]. This latter model
is based in turn on earlier work by Ruina [50], Rice and others, and has several variations by
many researchers. For purposes of this discussion, however, we start with the model as presented
by Dieterich and Linker.

The model is based on experimental observations that as the slip speed along two surfaces is
increased instantaneously, the coefficient of friction initially increases, but then decreases to a
steady-state value less than the original. A reverse process occurs when the slip speed along the
two surfaces is decreased (Figure 2). The governing equation for the friction coefficient is

� = �∗ + A ln(V/V ∗) + B ln(�/�∗) (23)

where V is the slip speed, � is a state variable, and the other parameters A, B, �∗, V ∗, and �∗ are
material parameters. It is worth noting that only three of the materials are independent. In other
words, two of the material parameters, typically V ∗ and �∗, can be assigned arbitrarily and the
others determined using these values.

The state variable � has been linked to the changing set of frictional contacts and wear on the
materials [59]. Two separate evolution equations have been proposed for �,

�̇ = 1 − �V

Dc
(24)

�̇ = −�V

Dc
ln

(
�V

Dc

)
(25)

The first law allows for friction hardening of the material over time and is known as the healing
form of the evolution equation. There is some justification for this as random movements tend
to allow contacting surfaces to settle into each other over time, and experimental evidence that

Figure 2. Coefficient of friction of the rate- and state-dependent friction model as it undergoes an
instantaneous velocity increase, and then an instantaneous decrease.
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the contact area between two surfaces not in motion increases over time, even at constant normal
stress [59]. Over longer time scales chemical processes may also strengthen the crack. The second
equation assumes that the material does not heal in stationary contact. The material parameter Dc
is referred to as the ‘characteristic sliding distance.’ This is the distance at which the coefficient of
friction returns its former value after a velocity jump (see Figure 2). Hence, the larger the value
of Dc, the more slowly the friction coefficient approaches steady state. Our implementation will
focus on the healing form of the law.

For both evolution laws

�ss = Dc

V
(26)

and hence

�ss(V2) = �ss(V1) + (A − B) ln(V2/V1) (27)

Since it is observed that steady-state friction decreases with increased velocity, we choose material
parameters such that A<B.

While this model captures the varying friction coefficient under different motions well, it has
the drawback that the coefficient of friction is singular at zero velocity. This difficulty can be
alleviated by modifying the functional form slightly. One way to do this is to view the friction as a
rate process [56, 60–62]. The details of this solution are discussed [56], but essentially one solves
for the slip rate, adds in a term to account for the possibility of backward slips, and resolves for
the friction coefficient. The result is

�= A arcsinh

[
�̇

2V ∗ exp

(
�∗ + B ln(�/�∗)

A

)]
(28)

Even for mildly positive velocities, Equations (23) and (28) are nearly identical (Figure 3). The
only significant difference is at zero velocity, where the coefficient of friction for the first equation

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

TIME, s

C
O

E
F

F
IC

IE
N

T
 O

F
 F

R
IC

T
IO

N

0 1 2 3

x 10-23

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

TIME, s

C
O

E
F

F
IC

IE
N

T
 O

F
 F

R
IC

T
IO

N

logarithmic form
arcsinh form

logarithmic form
arcsinh form

Figure 3. Comparison of friction model for typical material parameters (see Table III) for a slip rate
linearly increasing from 0 at t = 0 s to 1 �m/s at 1000 s and then held at that speed. The models are nearly

identical except for very close to the beginning (b).
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is singular while for the second equation it is zero. While even this result may seem unphysical,
the slightest velocity will create a rapid movement towards a steady-state friction coefficient that
is significant. In fact, the slower that velocity is, the higher the steady-state coefficient. In other
words, while at zero velocity there is no resistance to movement once any motion begins, the
resistance develops rapidly. Generally, then, stationary contact is replaced by almost unmeasurably
slow movement.

4.3. Plastic potential

In addition to the yield function, the plastic potential must also change on localization. As
shown in [33], the post-localization plastic potential, �, exists such that plastic strain ep evolves
according to

ėp = �
��

�r
(29)

This is similar to bulk plasticity, but the plastic strain now takes a different form. If we assume that
at post-localization all plasticity occurs on the band while the bulk material unloads elastically,
then the plastic consistency parameter � can as be written as

� = ���S (30)

Regueiro and Borja [33] show that any slip on the band is rigidly plastic. Hence, the stress rate
can be written

ṙ= ce : (ė− ėp)

= ce:
[
∇s ˙̄u + ([[u̇]] ⊗ n)s�S − ���S

��

�r

]

= ce:∇s ˙̄u + ce :
[
([[u̇]] ⊗ n)s − ��

��

�r

]
�S (31)

Since the stress rate must be bounded, this implies that

��
��

�r
= ([[u̇]] ⊗ n)s

= �̇(m ⊗ n)s (32)

If we examine this equation more closely, we see that �̇∝ ��, and therefore it can be used as
an alternative plastic consistency parameter for the band, with ��/�r= (m ⊗ n)s. This will be
convenient later, since the plastic consistency parameter now has a physical significance, and
slip rate and slip distance are important parameters in many models of frictional resistance with
cohesion softening. Note that this also implies

ṙ= ce : ∇s ˙̄u (33)

In other words, the stress in the bulk material depends only on the regular part of the strain, and
the slip does not affect it directly.
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5. DETERMINING THE SLIP ON THE BAND

Given the element technology discussed, and a surface constitutive model such as the one presented
in Section 4, we now have the background to solve for the slip rate on the band as well as the
evolution of the internal state variables. Since this solution occurs at the element level for a
given global iteration, for this determination we can consider the displacements, and hence the
conforming strains, as fixed. The displacements come back into play in determining the stiffness
matrix for the global iteration, discussed in the next section.

Solving for the evolution of the band exactly is a difficult task. Much like bulk plasticity, the
task of finding a closed-form solution is difficult if not impossible for many models. So instead we
rely on numerical time integration. In this paper the approach is based on a generalized trapezoidal
scheme. We will look at the numerical time integration scheme in two parts: first for a general-
friction model; and second for the particular model of interest. We have found for the latter case
that some simplifications can be made. In each case, we follow the spirit of the plasticity-like
formulation in [33–37].

5.1. Slip on the band for a general model

Assume that at some time tn a solution is known. We wish to solve for the condition of the band
at some later time tn+1. Consider a general yield condition on the band at that time

�n+1 = �(�n+1, �̇n+1, hn+1, ḣn+1) = 0 (34)

where (·)n represents the numerical solution of the variable (·) at time tn , and h is a vector of
internal state variables, each with its own well-defined evolution laws

�̇
i = �̇

i
(�, �̇, h, ḣ) (35)

We approach the problem using a generalized trapezoidal scheme. Given �n , �̇n , hn , and ḣn , we
approximate the time integration as

��n+1 = �t[(1 − ��)�̇n + ���̇n+1] (36)

�in+1 = �in + �t[(1 − �i�)�̇
i
n + �i��̇

i
n+1] (37)

�� and �i� are integration parameters, generally chosen between 0 and 1. If all these parameters
are set to zero, the scheme is equivalent to explicit (forward) Euler and first-order accurate; if they
are all 1 the scheme is implicit (backward) Euler and is first-order accurate; and if they are all
1
2 the scheme is Crank–Nicolson and is second-order accurate. For generality, we let each variable
have its own time integration parameter. This strategy may be useful, for example, if one of the
variables exhibited little non-linearity and could be treated explicitly without seriously affecting
the convergence of the solution. However, for second-order accuracy, �� and each �i� would need

to be equal to 1
2 , and all would need to be at least 1

2 to guarantee unconditional stability. It is
expected that in most cases, all the time integration parameters would be set to the same value.

Whatever the values of the time integration parameters, we normally expect that � and h are
easily written in terms of the other variables, and hence they can be eliminated from an iterative
solution. To solve the system of equations, first we check for yielding, i.e. whether

�(�trn+1, 0, h
tr
n+1, ḣ

tr
n+1)>0 (38)
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where �trn+1 and h
tr
n+1, and ḣ

tr
n+1 are the values if there is no yielding at time tn+1, i.e. of �̇n+1 = 0.

Clearly, �trn+1 = �n + (1 − ��)�̇n�tn+1. For a traditional plasticity-type model, where the internal

state variables remain constant if there is no yielding, ḣ
tr
n+1 = 0, and �i,trn+1 = �in + (1−�i�)�̇

i
n�tn+1.

However, in the model discussed previously, the internal state variables do evolve even when no
yielding exists.

If yielding is detected, then we must iterate to determine the final state. This can be accomplished
by a standard Newton–Raphson technique. For a given set of displacements, then, we have a set
of unknowns

Xn+1 =
{
ḣn+1

�̇n+1

}
(39)

and a corresponding number of equations

Z=
{
Ḣ

i
(�n+1, �̇n+1, hn+1, ḣn+1) − ḣn+1

�n+1

}
= 0 (40)

with an initial guess

X0
n+1 =

{
ḣ
tr
n+1

0

}
(41)

We iterate by the standard formula

Xk+1
n+1 =Xk

n+1 −
(
DZ
DX

)−1

Zk
n+1 (42)

until there is convergence to within some relative tolerance. The inverse here is symbolic. In the
implementation a linear equation solver is used.

5.2. Slip for combined weakening and frictional model

In the case of the rate- and state-friction model of interest, we find we can use the properties of
the friction model to make some simplifications, and thus reduce the computational cost of the
algorithm.

The velocity on the band is unknownwhen checking for yielding. For zero velocity, the coefficient
of friction is zero, and can go no lower (the coefficient becomes negative for negative velocities,
but this is equivalent to yielding in the opposite direction). Hence, yielding occurs when

�= (n ⊗ l)s : r− �0

(
1 − �n

�+
)

�0 if 0��n��+ (43)

For simplicity in this section, r will refer to the stress on the band, rband in previous sections. The
direction of l is chosen such that the shear stress (n ⊗ l)s:r is positive. Hence, once the residual
cohesion disappears, the band yields automatically. Low shear stresses will result in far lower
velocities, giving the appearance of minimal slip. It is a property of the friction model, however,
that slip will occur under any condition with non-zero shear stress.

Once slip is detected, the magnitude of the slip must be determined. Since the integration over a
time step is complicated, we will implement an approximate integration scheme of the generalized
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trapezoidal form. The incremental consistency condition becomes

0= �n+1

= [(n ⊗ l)s + �n+1(n ⊗ n)] : rn+1 − cn+1 (44)

where

�n+1 = A arcsinh

[
�̇n+1

2V ∗ exp

(
�∗ + B ln(�n+1/�

∗)
A

)]
(45)

cn+1 =
{

(1 − �n+1/�
+)(�0 − �n+1�n+1) if 0��n+1��+

0 if �n+1>�+ (46)

rn+1 = rn + ce : 1

ae

∫
�e

[�ẽ− ��n+1(∇ f h ⊗ m)s] d� (47)

After a given global iteration the displacements, and hence the conforming strains, are given.
This will differ from the determination of the consistent stiffness matrix, which will be discussed
later. Hence, the remaining equations become

��n+1 = �t[(1 − ��)�̇n + ���̇n+1] (48)

�̇n+1 = 1 − �n+1�̇n+1

Dc
(49)

�n+1 = �n + �t[(1 − ��)�̇n + ���̇n+1] (50)

Here again, the time integration parameters �� and �� may be different if one wishes to treat the
time evolution of the slip and internal variable in a different manner.

For this model it is not difficult to simplify the formulation and consider only a single independent
variable. In this case, it is easiest to choose the slip rate �̇n+1. To start, let us combine Equations (49)
and (50)

�n+1 = �n + �t

[
(1 − ��)�̇n + ��

(
1 − �n+1�̇n+1

Dc

)]
(
1 + ���̇n+1�t

Dc

)
�n+1 = �n + �t[(1 − ��)�̇n + ��]

(Dc + ���̇n+1�t)�n+1 = Dc{�n + �t[(1 − ��)�̇n + ��]} (51)

�n+1 = Dc{�n + �t[(1 − ��)�̇n + ��]}
Dc + ���̇n+1�t

(52)

The remaining variables in (44) are then functions only of �̇n+1. Hence we can set up a single-
variable Newton–Raphson iteration. To do this we need only derivative ��n+1/��̇n+1, which is
given in Appendix A.
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There are two differences from the traditional implicit Euler implementation for bulk plasticity
that are worth noting. First, if at time tn+1 there is no yielding (�̇= 0), there may still be plastic
slip over the step if there was yielding in the previous step and �� �= 1. This property may be seen
by examining Equation (48). For �̇ = 0, this becomes

��n+1 = �t (1 − ��)�̇n (53)

The conforming strain increment used to check for yielding at tn+1 may then be different from
the regular strain increment at that time.

The second note is that, since we have chosen the healing form of the evolution equations, the
internal state variables evolve even over a fully elastic step. The equations for evolution for the
state variable become

�̇n+1 = 1 (54)

�n+1 = �n + �t[(1 − ��)�̇n + ��] (55)

Note that the state variable evolves even if there is no yielding over several steps. This formulation
could cause numerical problems were it not for the fact that the actual yield condition (43) is
independent of �. If this were not the case, one may have to verify convexity over stress space ×
loading space, which would likely be non-trivial.

We have now reduced the problem to a single-variable Newton–Raphson iteration. A summary
of the algorithm appears in Box 1.

Box 1. Summary of incremental jump algorithm.

Step 1: Compute rtrn+1 = rn + ce : �econf

Step 2: Check yielding: is rtr : (n ⊗ l)>�0(1 − �n/�
+)?

If no, band is inactive. Set
rn+1 = rtrn+1,

�̇n+1 = 0,

��n+1 =�t (1 − ��)�̇n ,

�̇n+1 = 1,

�n+1 = �n + �t[(1 − ��)�̇n + ��],
and exit.

Step 3: Set �̇
0
n+1 = V ∗,

Step 4: Iterate

��kn+1 =�t[(1 − ��)�̇n + ���̇
k
n+1]

�kn+1 = Dc{�n + �t[(1 − ��)�̇n + ��]}/(Dc + ���̇
k
n+1�t)

�̇
k+1
n+1 = �̇

k
n+1 − �(�̇

k
n+1, ��kn+1, �

k
n+1)/[��(�̇

k
n+1, ��kn+1, �

k
n+1)/��̇]

until |�k
n+1|/|�0

n+1|<tol

Step 5: Store �̇n+1, ��n+1, �n+1 and �̇n+1 = 1 − �n+1�̇n+1/Dc exit.
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Remark
Although the friction model varies smoothly, the equations can be non-smooth at certain points,
specifically at the yield check before the cohesion is completely degraded, and the transition
from slip weakening to purely frictional response. Because of this character, a more sophisticated
equation solver such as those described in [63, 64] and references cited therein may improve the
efficiency and robustness of the algorithm. While the authors have not noticed any particular
problems using a standard Newton iteration, the difficulties may become more pronounced if
the formulation is extended to include opening degrees of freedom, creating a more contact-like
scenario.

6. CONSISTENT STIFFNESS MATRIX

To solve the global finite element problem, we must form a stiffness matrix for this element. Since
we have performed a numerical time integration scheme, this tangent stiffness should be consistent
with the time stepping for quadratic convergence. This consistency is analogous to the consistent
or algorithmic tangent modulus for continuum algorithms.

Similar to [37], we will see that the slip rate and internal state variables can be eliminated at the
element level by modifying the element stiffness matrix. Hence the other element-level variables
need not be added to the global solution routine, and the finite element program can solve for the
displacements without modification.

6.1. Stiffness matrix for a general model

Following the implementation of a general-friction model in the previous section, we discuss here
how to modify the stiffness matrix for the case of yielding. The governing equations are similar,
but we now consider that the element nodes may also move, so we add the balance of linear
momentum for the small strain quasi-static loading. The equations become:

re =
∫

�e
Bt : r d� −

∫
�e

Ntb d� −
∫

�e
Nt t d�= 0 (56)

W = Ḣi
(�n+1, �̇n+1, hn+1, ḣn+1) − ḣn+1 = 0 (57)

�n+1 = 0 (58)

where N is the standard matrix of finite element shape functions, and we consider B here as the
third-order strain–displacement tensor, i.e. Bi jkdk = 	i j . In the implementation, the corresponding
matrix forms are used for computational efficiency.

Taking variations of these quantities, we arrive at

�re =Ke
dd�d

e + Ke
d�̇

�ḣ+ Ke
d �̇

��̇ (59)

�W =Ke
�̇d

�de + Ke
�̇�̇

�ḣ+ Ke
�̇�̇

��̇ (60)

��=Ke
�̇d

�de + Ke
�̇�̇

�ḣ+ Ke
�̇�̇

��̇ (61)

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 72:549–581
DOI: 10.1002/nme



EMBEDDED STRONG DISCONTINUITY FINITE ELEMENTS 565

The first quantity, Ke
dd , is the standard element stiffness matrix. The four parts of the stiffness

comprising the lower right-hand portion

Ke
�̇�̇

= �W
�ḣ

(62)

Ke
�̇�̇

= �W
��̇

(63)

Ke
�̇�̇

= ��

�ḣ
(64)

Ke
�̇�̇

= ��

��̇
(65)

are the same quantities used to determine the slip on the band, and the same code can be reused.
The final four quantities are

Ke
d�̇

= �re

�ḣ
(66)

Ke
d �̇

= �re

��̇
=−

∫
�e

Bt :ce:(∇ f he ⊗ m)s d����t (67)

Ke
�̇d

= �W
�de

(68)

Ke
�̇d

= ��

��̇
(69)

Most of the quantities above depend on the constitutive response and cannot be specified further
in this section. In some cases, we can provide more information. For example, if the state variables
are only affected by the nodal displacements through the stress, then

Ke
�̇d

= �ḣ
�r

: �r
�de

= 1

ae

∫
�e

�ḣ
�r

: ce : Be d� (70)

Finally, we note that, since the state variables and the slip rate are element quantities that do
not affect surrounding elements, we can statically condense the stiffness matrix, following Borja
and Regueiro [37]

Ke =Ke
dd − [Ke

d�̇
Ke

d �̇
]
⎡
⎣Ke

�̇�̇
Ke

�̇�̇

Ke
�̇�̇

Ke
�̇�̇

⎤
⎦

−1⎡
⎣Ke

�̇d

Ke
�̇d

⎤
⎦ (71)
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The great advantage of this strategy is that all variables except the nodal displacements are
condensed out at the element level, so the global solution algorithm can simply input the element
stiffness matrix (71) with no modification.

6.2. Stiffness matrix for combined weakening and frictional model

Once the jump increment and internal state variable � have been solved for a given set of dis-
placements, the tangent stiffness matrix consistent with this algorithm falls out with relatively little
modification if we follow [37]. Two conditions must be met

re =
∫

�e
Bt : r d� −

∫
�e

Ntb d� −
∫

�e
Nt t d�= 0 (72)

�n+1 = 0 (73)

Since we now have only the variables d and �̇ as independent, taking a variation on these equations
results in

�re = Ke
dd�d

e + Ke
d �̇

��̇
e

(74)

�� = Ke
�̇d

�de + Ke
�̇�̇

��̇
e

(75)

where

Ke
dd =

∫
�e

Bt : ce : B d� (76)

Ke
d �̇

= −
∫

�e
Bt : ce : (∇ f he ⊗ m)s d����t (77)

Ke
�̇d

= ��

�d
(78)

Ke
�̇�̇

= ��

��̇
(79)

The last quantity we already have. The third quantity is

��

�d
= 1

ae

∫
�e

��

�r
: ce :B d� (80)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(ae)−1
∫

�e

[
(n ⊗ l)s + �

�+ �(n ⊗ n)

]
: ce : B d� if ���+

(ae)−1
∫

�e
[(n ⊗ l)s + �(n ⊗ n)] : ce : B d� if �>�+

(81)
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where the subscripts n + 1 have been omitted for convenience. As before, the slip rate can be
statically condensed out, and the resulting element stiffness matrix is

Ke =Ke
dd − Ke

d �̇
Ke

�̇�̇
−1Ke

�̇d
(82)

7. BAND TRACKING ALGORITHM

The band tracking strategy employed is of the type that Oliver and coworkers have termed a local
strategy. This method is in contrast to a global strategy described in [30, 31] or level set methods
employed in [44]. The idea is to track the band as it propagates from element to element, explicitly
keeping track of the co-ordinates where the band intersects an element edge.

Prior to the onset of localization, the bifurcation condition is checked at the end of each time
step. Once localization is detected in at least one element, the band tracking begins. First, a root
element must be determined. Usually, we specify the element that has the least value of detQ as the
first root element. However, for special cases such as homogeneous deformation, we choose a root
element or elements. For homogeneous deformation, all the elements bifurcate at the same time.
In reality though, some perturbation will trigger earlier localization in some location or locations,
which for the sake of those problems we choose.

Once a root element is detected, that element is traced through the centroid using the critical
normal, and the endpoints of the band are calculated and recorded. To determine the points of
intersection, we note that the edges intersected by the discontinuity are those with an active node at
one end and an inactive node at the other. Since the active nodes are already needed to determine the
function f h , it is computationally trivial to loop over the edges to find the edges of intersection.
Assuming the element edges are straight, the intersection point x can be determined from the
system of equations

x= xes + 
l (83)

x= �(xea − xeb) (84)

where xea and xeb are the co-ordinates end nodes of that edge, xes are the co-ordinates of a point on
discontinuity surface, and 
 and � are initially undetermined scalars. the vector xes is taken to be
the centroid of the element for a root element, otherwise it is the point of intersection of the edge
and failure surface from the adjacent element. By substituting the value of x from (84) into (83),
and then solving that system of two equations for 
, we get


 = ‖(xea − xeb) × (xes − xea)‖
‖l× (xea − xeb)‖

(85)

Once 
 is determined, we can use Equation (83) to solve for the point of intersection.
The next elements we check are those that are adjacent to the root element at the end of the

band. If these elements have localized, we want to ensure that the band is continuous across
element boundaries. To find these elements, we construct an element neighbours (EN) array from
the standard internal entry number (IEN), or element nodes array [65]. This array is constructed
such that EN(i, j) is the number of the element adjacent to element i at local face j . If there is
no neighbour there, i.e. that face is at the boundary of the body, then −1 is returned.

We use active and passive nodes of the element to locate the local edge that contains the band.
Looping over the edges of an element i , if we find an edge j between an active and a passive
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node, then we check that

(1) the EN array does not return −1;
(2) the element number is not already in the edge-of-band-elements array, and
(3) the element is not already traced.

If all these criteria are satisfied, we add the element number EN(i, j) to a variable length
edge-of-band-elements array along with the co-ordinates of the end of the band.

We then go to the first element in the edge-of-band-elements array and check for localization.
If localization is detected we trace that element, find the new neighbour, and add it to the end of
the array. We then proceed to the next element, and so forth until we reach the end of the array,
which may be growing throughout the tracking process.

If we are fairly certain that one band will form, we can stop there, and at subsequent time steps
only check the elements in the edge-of-band-elements array. If we allow for the possibility of
multiple bands, however, we now check the remaining elements for localization. If other elements
have been localized, we determine a new root element, and propagate a new band in the same
way. We can use a single edge-of-band-elements array for this process.

At subsequent time steps, it is important to check for elements in the edge-of-band-elements
array before proceeding to check for new root elements. This ensures that newly localized elements
are added to existing bands. The algorithm is summarized in Box 2.

Box 2. Summary of band tracking algorithm, performed at the end of each time step.

Step 1: If localization has not begun, check for localization, of all elements. If localization
is detected, choose element with the least value of det Q, and perform localize subroutine.
If not, exit.

Step 2: Move to first element of edge-of-band-elements array. If the array is empty, exit.
Otherwise, go to step 3.

Step 3: Check for localization of element in array. If localization detected, perform localize
subroutine and delete from array.

Step 4: Move to next element in array. If at the end, exit. Otherwise, go to step 3.

Step 5: If allowing for multiple bands: check for remaining, untraced elements that may have
localized. If localization is detected, choose element with least value of detQ, and perform
localize subroutine and go to step 3. If not, exit.

localize subroutine
Step 1: Trace element according to normal and co-ordinate (either from information in
edge-of-band-elements array or centroid)

Step 2: Go to first element edge.

Step 3: If current edge has one active and one inactive end node and neighbour element exists
and that element has not yet been traced and that element is not already in the edge-of-band
elements array, determine co-ordinates of intersection of band and element edge, and add to
edge-of-band-elements array.

Step 4: If all edges have been check or both ends of band have been found, exit. Otherwise,
go to step 3.
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8. NUMERICAL EXAMPLES

8.1. Sliding of a pre-fractured block

The first example consists of a 1-meter× 1-meter block, discretized into nine elements, and with a
strong discontinuity inserted horizontally through the centre. The exaggerated conforming defor-
mations are shown in Figure 4. The mesh was then refined to 81 elements. As the sample is pre-
fractured, the initial shear stress is zero. The ability to pre-fracture a sample was added to the code
to test the convergence of the friction algorithm and to verify the properties of the friction model.

The material properties are listed in Table I. These properties are taken to simulate a granite,
with most of the frictional properties taken from [51], except for �∗ and the elastic properties,
which are taken from typical values for granite.

As Figure 5 shows, the finite element model captures the variation in the coefficient of friction
exhibited by the friction model. As motion starts, the friction coefficient rapidly rises and dips to
steady state. We might expect a faster rise in the friction coefficient, but there is comparitively

Figure 4. Deformed shape for example 1 showing conforming displacements, multiplied 100 times. The
failure surface passes horizontally through the centre of the three centre elements. Since the global finite

element needs no information about the band, the postprocessor uses standard nodal interpolations.

Table I. Material properties for granite direct shear test.

Parameter Symbol Value

Young’s modulus E 5500MPa
The Poisson ratio � 0.25
Reference friction coefficient �∗ 0.72
Velocity variation coefficient A 0.0012
State variable variation coefficient B 0.00135
Velocity normalizing constant V ∗ 1.0�m/s
State variable normalizing constant �∗ 2.25
Characteristic sliding distance Dc �m
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Figure 5. Coefficient of friction as a function of time under the prescribed
displacements for direct shear example.

Table II. Error as a function of the number of time steps at 4.2 s.

Number of time steps Explicit Euler Crank–Nicolson Implicit Euler

30 ∗ ∗ 3.0431E−0
300 ∗ 1.1540E−03 6.6593E−04

3000 7.8128E − 05 1.1749E−06 7.1984E−05

Note: Error calculated using an ‘exact’ solution of 30 000 time steps with the Crank–
Nicolson scheme. Entries with a ∗ did not converge.

little shear stress to drive this rise initially. As the slip speed is increased, the characteristic spike
and drop to a lower steady-state value are seen. Similarly, when the velocity is dropped again, the
coefficient of friction dips and then rises to a new, higher value. The elastic parameters are quite
stiff compared to the frictional parameters, and hence the elasticity plays little role in the material
behaviour after the initial rise. The refinement shows results that are quite comparable to the initial
run. The response is initially slightly stiffer, but shows less of a peak in the initial rise. Once the
friction reaches steady state for the first time, the solutions are nearly identical.

Table II shows the convergence rate for the various methods, using the coefficient of friction as
the parameter of interest. We use a time of 4.2 s, when the friction coefficient is still changing, as
our gauge. At the end of the run, the solution is too close to steady state and the convergence rates
tend to look better than the methods would predict. Explicit Euler, Crank–Nicolson, and Implicit
Euler runs were each made with time steps of 0.2, 0.02, and 0.002 s. The ‘exact’ solution was then
obtained by running a Crank–Nicolson simulation with a time step of 0.0002 s.

Not surprisingly, the explicit simulation diverged for large time steps. Only the last run converged,
leaving no comparisons to check the convergence rate. However, the error is of the same order as
the implicit Euler run for that time step, which suggests that the method is behaving as expected.
Implicit Euler shows the expected first-order convergence, while the Crank–Nicolson scheme shows
convergence slightly faster than second-order rate would predict. The Crank–Nicolson simulation
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with a time step of 0.2 s failed to converge in a Newton iteration, which is not related to the
stability of the problem. This problem could have been solved by step cutting, but this process
would affect the error.

8.2. Plane strain compression of a laboratory sample

The second example is a plane strain compression simulation of San Marcos gabbro. This test is
meant to recreate a two-dimensional version of the triaxial test G3 described in Wong [66] in the
slip weakening stage. The simulation was initially reported in [56]. The material parameters are
shown in Table III. The elastic parameters are taken from typical values for gabbro. The plasticity
model is a Drucker–Prager model with linear hardening (here, softening). The parameters are set
to reproduce, to the best of the information given, the forces measured in the experiment. The
reference friction coefficient �∗ is taken to satisfy the recorded strength and failure geometry from
the experiments. The remaining friction parameters are from a granite sample discussed in [51].
A confining pressure of 250MPa is applied to the sides, and then the sample is compressed
vertically.

The results are shown in Figures 6 and 7. The specimen at first behaves elastically, then plastically
until bifurcation is detected. Since the deformation is homogeneous, a seed element is chosen in
the middle and a single band propagates from that element. For these material properties, the
failure surface forms at 60◦ from the horizontal, but could form in either direction. The choice
of band direction is made by an algorithm as described in [34], but in this case both choices are
equally likely. In a physical specimen the direction of propagation would be chosen by flaws or
slight variations in the material properties. Since we do not have information at that level for our
simulation and the direction is not important for our study, we let the algorithm choose the normal
based on machine roundoff error.

Once the surfaces are inserted, the sample unloads under slip weakening. The experimental in-
formation concludes noting only a final friction coefficient. However, to demonstrate the properties
of the friction model at post-weakening, we add a velocity jump to the simulation. Initially, the
vertical compression rate is 0.866 �m/s, which at steady-state slipping would give a slip velocity
of 1 �m/s on the band. However, some unstable slip occurs at first that otherwise would not be

Table III. Material properties for plane strain compression of
San Marcos gabbro.

Parameter Symbol Value

Young’s modulus E 5500MPa
The Poisson ratio � 0.25
Cohesive strength parameter 
 8.034MPa
Friction parameter � 0.633
Dilation parameter b 0.633
Hardening modulus H −10MPa
Reference friction �∗ 0.72
Velocity variation coefficient A 0.0012
State variable variation coefficient B 0.00135
Velocity normalizing constant V ∗ 1.0�m/s
State variable normalizing constant �∗ 2.25
Characteristic sliding distance Dc �m/s
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Figure 6. Deformed shape at the end of simulation for plane strain compression example. Black outline
in background shows initial configuration.
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Figure 7. Force–displacement curve for plane strain compression showing
behaviour in different stages of deformation.

predicted by rigid block models. This slip is a function of the stiffness of the sample and the
friction parameters, and is analogous to the spring-slider examples discussed in [50]. A velocity
step is added at 2mm total vertical displacement, resulting in the jump and subsequent dip of the
friction coefficient. At the higher speed that is 10 times the initial rate, slip rapidly becomes stable,
again as predicted by the model.

This problem was run with 1, 15, and 128 elements. Since the problem is homogeneous, it
is not surprising that the solutions are nearly identical. The relative error in the vertical force
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Figure 8. Relative error in force between 15- and 128-element solution as a function of time. The error is
a result of the tolerance in the iterations, and the solution of the global equations. The error in the plastic

and localized phases is comparable.

Figure 9. Deformed shape of the shear example with a hole, 576-element case. (a) when the band is
allowed to propagate in the critical direction, locking effects lead to additional bulk plasticity and new
bands. Note the increased bulk dilation over (b) where the sample unloads elastically after the straight

band propagates. Undeformed shape shown in background in black outline.

between the 15- and 128-element solutions is shown in Figure 8. The error in the localized phase
is similar to that in the plastic phase. This error is due to the convergence tolerance in the local
and element-level solutions, and the solution of the global system of equations.

8.3. Shearing of sample with a hole

As we move to more complex problems, some interesting issues arise. We start by simulating the
shearing of an 80- × 100-cm block with a hole in it as shown in Figure 9 to test the tracking of
multiple bands. In this case the friction coefficient is constant, and material properties are listed
in Table IV.

The initial results show that the band propagates through the sample and initially there is
significant softening (see Figure 10), but this is followed by hardening. This hardening is due to
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Table IV. Material properties for shear example with hole.

Parameter Symbol Value

Young’s modulus E 9000MPa
The Poisson ratio � 0.15
Cohesive strength parameter 
 8.034MPa
Friction parameter � 0.633
Dilation parameter b 0.3165
Hardening modulus H 0 MPa
Friction coefficient � 0.6

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10 3

0

0.5

1

1.5

2

2.5

3

3.5

4

displacement, m

sh
ea

r 
fo

rc
e,

 M
N

576 elements, curved
576 elements, straight
144 elements, straight
144 elements, curved

Figure 10. Force–displacement curve for shearing of example with hole in it. If the band is forced
to propagate in a straight line, the resistance drops to a purely frictional response. If the band
is allowed to propagate in the critical direction, it initially softens, but locking effects due to the

changing direction eventually create hardening.

a locking effect as surfaces in adjacent elements attempt to slip in different directions. To some
extent, this reflects a physical process in that changing directions on surfaces do create an increased
resistance to slip. Elements with opening and perhaps rotational degrees of freedom to the surface,
such as [30, 48], could change the kinematics of slip, allowing for local areas of opening. For
comparison, we also rerun the problem but force the band to propagate in a straight line. In this
case the sample softens to a purely frictional response, and little bulk plasticity is seen in the rest
of the sample. The original simulation shows significant bulk plasticity, including dilation, and
even creates newly localized bands (these new bands do not slip very much and hence are not
visible in the deformed shape).

The problem is run with 144 and 576 elements. The response is slightly softer for the 576-
element case, but similar. The refined mesh naturally detects plasticity and localization earlier, as
there are more points to sample. In the straight band case, the initial angle of the band is slightly
more vertical, resulting in a lower frictional response. In the curved band case, the refinement
shows slightly less softening before the stress locking occurs, but the residual slope is lower.
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Figure 11. Deformed shape for compression of sample with hole in it, 336-element case. (a) Bulk plasticity
increases after the curving band locks up, while (b) the straight band allows for elastic unloading of the

bulk sample. Undeformed shape shown in background in black outline.
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the band is forced to propagate in a straight line, the resistance drops to a purely frictional response. If
the band is allowed to propagate in the critical direction, it initially softens, but locking effects due to the

changing direction eventually create hardening.

8.4. Compression of sample with a hole

We also run a compression test of a 50- × 70-cm sample with a hole in it as shown in Figure 11.
The frictional variation is the same as the San Marcos gabbro sample. When compressed, bands
propagate from the interior corners of the sample. Similar to the shear example, if the band
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Figure 13. Results of mesh refinement for compression example with a hole in it for straight band. The
results appear to converge. The only significant difference between the 336- and 2734-element solutions

is one point in the 336-element solution where the band stops propagating momentarily.
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Figure 14. Results of mesh refinement for compression example with a hole in it for curving band. As the
mesh is refined, locking occurs earlier, but the residual slope of the force–displacement curve decreases.

is allowed to change direction in different elements, there is a locking effect after some initial
softening. The locking results again in significant bulk deformation and plasticity later on in the
deformation process. Again, if the bands are forced to propagate in a straight line, the sample
unloads elastically after bifurcation. A comparison of the force–displacement responses is shown
in Figure 12.
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Mesh refinements show similar responses. The problem was run with 48-, 336-, and 2734-
element meshes. For the straight band case (Figure 13) the only significant difference between the
336- and 2734-element meshes is that band seems to stop propagating for a couple steps in the
336-element case. This behaviour disappears upon refinement. In the curved band case (Figure 14)
locking shows up sooner, as may be expected when the elements are smaller, but the residual slope
of the force–displacement curve is less.

9. CONCLUSIONS

In this paper we have presented a novel algorithm for implementing a general traction–displacement
model into an enhanced strain element. The specific model considered combines slip weakening
during nucleation of a strong discontinuity and frictional response appropriate for geomaterials
and other materials exhibiting velocity- and state-dependent coefficient of friction. The constitutive
model chosen in this paper to represent a variable coefficient of friction applies to slow slip velocities
and laboratory-derived state and friction laws, where variations in the coefficient of friction are
generally small. However, for large slips and slip rates, a much lower coefficient of friction may
be activated by additional weakening mechanisms such as flash heating [62, 67]. The framework
presented in this paper is a first step towards implementing such friction models, including those
encountered in earthquake fault modelling. Work in this area is in progress.

Numerical examples demonstrate that the formulation converges at the rate mathematical analysis
predicts. They also demonstrate some of the advantages of implementing this element into a
continuum framework such as the finite element method. Such a formulation can predict the
direction and timing of crack propagation through a body as the forces redistribute. It also endows
the body with a finite stiffness, which is critical for determining whether the slip along the surface
is stable or unstable. A rigid approximation of the bulk material would be unable to predict these
conditions.

Finally, a locking effect occurs when bands change direction as they propagate. While some of
this may be physical, additional enhancements may be needed to overcome the additional resistance
that the formulation artificially generates, such as that arising from an opening crack mode.

APPENDIX A: DERIVATIVE OF THE YIELD FUNCTION

For completeness, we include the derivative of the time-discretized post-localization yield function
(44) with respect to the slip rate:

��n+1

��̇n+1
=[(n ⊗ l)s + �n+1(n ⊗ n)] : �rn+1

��̇n+1
+ ��n+1

��̇n+1
(n ⊗ n) : rn+1 − �cn+1

��̇n+1
(A1)

where

�cn+1

��̇n+1
=
{−x − y if 0��n+1��+

0 if �n+1>�+ (A2)
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and

x =
(
1 − �n+1

�+
)(

�n+1
��n+1

��̇n+1
+ �n+1

��n+1

��̇n+1

)
(A3)

y = (��n+1/��̇n+1)

�+ (�0 − ��n+1) (A4)

���n+1

��̇n+1
= ���t (A5)

�rn+1

��̇n+1
= −ce : (∇ f h ⊗ m)

���n+1

��̇n+1
(A6)

If we define


 = 1

2V ∗ exp

(
�∗ + B ln(�n+1/�

∗)
A

)
(A7)

then

��n+1

��̇n+1
= A√

1 + (�̇n+1
)2
∗
(


 + �̇n+1

B

A�

��n+1

��̇n+1

)

= A
√
1 + (�̇n+1
)2

∗
(
1 + �̇n+1B

A�n+1

��n+1

��̇n+1

)
(A8)

��n+1

��̇n+1
= −���t Dc{�n + �t[(1 − ��)�̇n + ��]}

(Dc + ���̇n+1�t)2
(A9)
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