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Design Verification Methods

• Simulation based methods
• Specify input test vector, output test vector pair

• Run simulation and compare output against expected output

• Semi-formal Methods
• Specify inputs and outputs as symbolic expressions

• Check simulation output against expected expression

• Formal Methods
• Check equivalence of design models or parts of models

• Check specified properties on models
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Simulation

• Task : Create test vectors and simulate model
• Inputs

• Specification
– Typically natural language, incomplete and informal
– Used to create interesting stimuli and monitors

• Model of DUT
– Typically written in HDL or C or both

• Output
• Failed test vectors

– Pointed out in different design representations by debugging tools

Typical simulation environment
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Improvements to Simulation Environment

• Main drawback is coverage
• Several coverage metrics

– HDL statements, conditional branches, signal toggle, FSM states

• Each metric is incomplete by itself
• Exhaustive simulation for each coverage type is impractical

• Possible Improvements
• Stimulus optimizations

– Language to specify tests concisely vs. exhaustive enumeration
– Write tests for uncovered parts of the model

• Monitor optimizations
– Assertions within design to point to simulation failures
– Better debugging aids (correlation of code, waveforms and netlist)

• Speedup techniques
– Cycle simulation vs. event driven
– Hardware prototyping on FPGA

• Modeling techniques
– Models at higher abstraction level simulate faster
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Stimulus optimizations

• Testbench Authoring Languages
• Generate test vectors instead of writing them down

– Pseudo random, constrained and directed tests

• Several commercial and public domain “verification languages”
– e, Vera, Jeda, TestBuilder

• Coverage Feedback
• Identify design parts that are not covered

• Create new tests to cover those parts
– controllability is a problem !
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• Assertions in the model
• Properties written as assertions in design

− Example : signals a and b are never ‘1’ at the same time
− Errors detected before reaching primary output (helps debugging)

• Several methods of inserting assertions
− Assertion languages, e.g. PSL, SystemVerilog, e

− assert always !(a & b)

− Pragmas

• Debugging aids
• Correlation between different design representations

− Waveforms, schematic, code, state machines

Monitor optimizations

…….
c = a and b
…….
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Speedup techniques

• Cycle simulation
• Observe signals once per clock cycle
• Cannot observe glitches within a clock cycle

• Emulation
• Prototype hardware model on FPGAs
• Much faster than software simulation
• In-circuit emulation

– FPGA is inserted on board instead of real component 

• Simulation acceleration
– Emulate parts of hardware by interfacing with software simulator

Spec

Non-
synthesizable

synthesizable

SW

FPGA ISS / HDL simulator
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Modeling techniques

• Use higher abstraction for faster simulation
• Untimed functional / Specification model

– Executable specification to check functional correctness
– Simulates at the speed of C program execution but no timing

• Timed architecture model
– Used to evaluate HW/SW partitioning
– Computation distributed onto system components

• Transaction level model
– Used to evaluate system with abstract communication
– Transactions vs. bit toggling (data abstraction)

• Bus functional model
– Communication modeled at pin-accurate / time accurate level
– Computation modeled at functional level

• Cycle accurate model
– HW and SW at cycle accurate level
– Communication at cycle accurate level

7/8/2009 10Embedded System Design 
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 7: Verification

Overview

• Simulation and debugging methods

• Formal verification methods

• Comparative analysis of verification techniques

• Model formalization for SoC verification

• Conclusions



7/8/2009 11Embedded System Design 
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 7: Verification

Formal Verification Methods

• Equivalence Checking
• Compare optimized/synthesized model against original model 

• Model Checking
• Check if a model satisfies a given property

• Theorem Proving
• Prove implementation is equivalent to specification in given 

formalism
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Logic Equivalence Checking

• Inputs
• Reference (golden) design
• Optimized (synthesized) design
• Logic segments between registers, ports or black boxes

• Output
• Matched logic segment equivalent/not equivalent

• Use canonical BDDs to match segments
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2= 2’ ?
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FSM Equivalence Checking (1/2)

• Finite State Machine
• M : < I, O, Q, Q0, F, H >

– I is the set of inputs
– O is the set of outputs
– Q is the set of states
– Q0 is the set of initial states
– F is the state transition function Q × I  Q
– H is the output function Q  O

• FSM as a language acceptor
• Define Qf to be the set of final states
• M accepts string S of symbols in I if 

– applying symbols of S to a state in Q0 leads to a state in Qf

• Set of strings accepted by M is its language
• Product FSM

• Define product FSM as a parallel composition of two 
machines

– M1: < I, O1, Q1, Q01, F1, H1 > , M2: < I, O2, Q2, Q02, F2, H2 > 
– M1×M2 : <I, O1×O2, Q1×Q2, Q01×Q02, F1× F2, H1×H2 >
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FSM Equivalence Checking (2/2)

• Inputs
• FSM for specification (Ms)
• FSM for implementation (Mi)

• Output
• Do Mi and Ms give same outputs for same inputs ?

• Idea (Devadas, Ma, Newton ’87)
• Compute Mi×Ms
• Qf(Mi×Ms) = States which have different outputs for Mi and 

Ms
• Check if any state in Mi×Ms is reachable 
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Model Checking (1/2)

• Inputs
• Transition system representation of M

– States, transitions, labels representing atomic properties on states

• Temporal property P to be proved on M
– Expected values of variables over time
– Causal relationship between variables

• Output
• True (property holds)
• False + counter-example (property does not hold)

– Provides test case for debugging

True /
False + counter-exampleModel

Checker

P = P2 always leads to P4
s1

s4 s3

s2P1

P3P4

P2

M
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Model Checking (2/2)

• Idea (Clarke, Emerson ’81)
• Unroll transition system to an 

infinite computation tree
– Start state is the root (S1)

• Define properties using 
– On all paths (A)

– On some path (E)

– Always / Globally (G)

– Eventually (F)

• Some examples
– EG p

– AG p

– EF p

– AF p

• State space explosion
• What next ?

s1

s4 s3

s2

Transition system
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s2 s4

s3 s4 s4
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Theorem Proving (1/2)

• Inputs
• Formula for specification in given logic (spec)
• Formula for implementation in given logic (impl)
• Assumptions about the problem domain

– Example : Vdd is logic value 1, Gnd is logic value 0

• Background theory
– Axioms, inference rules, already proven theorems

• Output
• Proof for spec = impl

AutomatedManual

Proof
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Theorem Proving (2/2)

• Example

• CMOS inverter (Gordon’92)

• Using higher order logic

• Assumptions
• Vdd(y) := (y=T)

• Gnd(y) := (y=F)

• Ntran(x,y1,y2) := (x->(y1=y2))

• Ptran(x,y1,y2) := (┐x->(y1=y2))

• Impl(x,y) :=        w1, w2. Vdd(w1) Λ
Ptran(x,w1,y) Λ Ntran(x,y,w2) Λ Gnd(w2)

• Spec(x,y) := (y=┐x)

• Proof
• Impl(x,y) = ….. (assumption / thm / axiom)                   

= ….. (assumption / thm / axiom)

= ….. (assumption / thm / axiom)

= Spec(x,y)

ш

Vdd

Gnd

x y

w1

w2

CMOS inverter
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Drawbacks of formal methods

• Equivalence checking
• Designs to be compared must be similar for LEC

– Correlated logic segments are identified by design structure
– Drastic transformations may force manual identification of segments 

• FSM EC requires spec and implementation to
– Be represented as finite state machines
– Have same input  and output symbols

• Model Checking
• State explosion problem

– Insufficient memory for designs with > 200 state variables

• Limited types of designs
– Design should be represented as a finite transition system

• Theorem Proving
• Not easy to deploy in industry

– Most designers don’t have background in math logic (esp. HOL)
– Models must be expressed as logic formulas

• Limited automation
– Extensive manual guidance to derive proof sub-goals
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Improvements to Formal Methods

• Symbolic Model Checking (McMillan ’93)
• Represent states and transitions as BDDs

– Allows many more states (~10^20) to be stored
– Compare sets of states for equality using SAT solver

• Bounded Model Checking (Biere et.al. ’99)
• Restricted to bugs that appear in first K cycles of model execution

– Unfolded model and property are written as propositional formula
– SAT solver or BDD equivalence used to check model for property

• Partial Order Reduction (Peled ’97)
• Reduces model size for concurrent asynchronous systems

– Concurrent tasks are interleaved in asynchronous models
– Check only for 1 arbitrary order of tasks

• Abstraction (Long, Grumberg, Clarke ’93)
• Cone of influence reduction

– Eliminate variables that do not influence variables in spec
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Semi-formal Methods (Symbolic Simulation)

• Inputs
• Simulation model of the circuit

• Specification of expected behavior (as boolean expressions)

• Output
• Expression for the signals in design

• Idea (Bryant ’90)
• Encode set of inputs symbolically (using BDD)

• Evaluate output expressions during simulation

• Compare simulation output with expected output 
− using BDD canonical form

Simulation 
model

a
b
c
d

f(a,b,c,d)
?
= g(a,b,c,d) Specification
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Evaluation Metrics

• Coverage
• How exhaustive is the technique ?

– % of statements covered

– % of branches taken

– % of states visited / state transitions taken

• Cost and Effort
• How expensive is the technique ?

– Dollars spent per simulation / emulation cycle

– Training time for users

• Scalability
• How well does the technique scale with design size / 

abstraction ?
– Tool capacity

– Tool applicability for various modeling abstraction levels
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Coverage

Equivalence checking

Theorem proving
Model checking

Symbolic simulation

Simulation with Assertions

Pseudo-random simulation

• Formal methods provide 
complete coverage
• For a specified property

• For a reference model

• Simulation with assertions
• Improves understanding of 

design
– White box vs. black box testing

High

Medium

Low
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Cost and Effort

• Pseudo-random simulation
• Writing monitors

• Simulation with assertions
• Identifying properties
• Writing assertions

• Equivalence checking
• Correlating logic segments

• Model checking
• Writing assertions

• Theorem proving
• Training (~ 6 months)
• Identifying assumptions
• Creating sub-goals

Equivalence checking

Theorem proving

Model checking

Symbolic simulation

Simulation with Assertions

Pseudo-random simulation

Low

Medium

High
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Scalability

• Simulation based methods

• Scale easily to large designs

• Any model can be simulated !

• Theorem proving

• Any type of design

• Symbolic simulation

• BDD blowup for large designs

• Limited to RTL and below

• Model checking

• State space explosion

Equivalence checking
Theorem proving

Model checking
Symbolic simulation

Simulation with Assertions

Pseudo-random simulation

High

Medium

Low
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Evaluating Verification Techniques

Metric

Technique

Coverage Cost and Effort Scalability

Pseudo random simulation L L H

Simulation w/ assertions M M H

Symbolic simulation M L L

Equivalence checking H M M

Model checking H M L

Theorem proving H H M

• Well accepted techniques in industry
• Simulation with assertions

• Equivalence checking
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New Verification Challenges for SoC Design

• Design complexity

• Size
– Verification either takes unreasonable time (eg. Logic simulation)

– Or takes unreasonable memory (eg. Model Checking)

• Heterogeneity
– HW / SW components on the same chip

– Interface problems

– Interdependence of both design teams

• Possible directions

• Methodology
– Unified HW/SW models

– Model formalization

– Automatic model transformations
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System Level Methodology

• Well defined specification
• Complete

• Just another model

• Well defined system models
• Several possible models

• Well defined semantics 

• Formal representation

• Model verification
• Design decisions => transformations

• Formally defined transformations

• Automatic model generation possible

• Equivalence by construction

System Specification 
model

Intermediate models

Cycle accurate 
implementation model
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System Level Models

• Based on accuracy of computation and communication

• A system level design methodology is a path from A to F

Computation

Communication

A B

C

D F

Un-
timed

Approximate-
timed

Cycle-
timed

Un-
timed

Approximate-
timed

A. System specification model
B. Component model
C. Bus-arbitration model
D. Bus-functional model
E. Cycle-accurate computation model

F. Implementation model

E

Cycle-
timed

Source: Lukai Cai, D. Gajski. “Transaction level modeling: An overview”, ISSS 2003
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Model Definition

• Model = < {objects}, {composition rules} >
• Objects

• Behaviors 
– tasks / computation / function

• Channels
– communication between behaviors

• Composition rules
• Sequential, parallel, FSM
• Behavior / channel hierarchy
• Behavior composition also creates execution 

order
– Relationship between behaviors in the context 

of the formalism

• Relations amongst objects
• Connectivity between behaviors and 

channels

B2 B3

B1
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Model Transformations (1/2)

• Design Decision
• Map behaviors to PEs

• Model Transformations
• Rearrange object composition

– Distribute computation over PEs

• Replace objects
– Import IP components

• Add / Remove synchronization
– Transform sequential composition to 

parallel and vice-versa
a*(b+c) = a*b + a*c

Distributivity of multiplication 
over addition

analogous to……

B1

B2
B3=

Distribution of behaviors (tasks)
over components

PE IP

B2 B3

B1
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Model Transformations (2/2)

• Design Decision
• Map channels to buses

• Model Transformations
• Rearrange object composition

– Group channels according to bus 
mapping

– Slice complex data into bus words

• Replace objects
– Import bus protocol channels

a+b+c+d = (a+b) + (c+d)

Associativity of addition

analogous to……

=

Mapping of channels to buses

P
E IP P
E IP
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Model Refinement

• Definition
• Ordered set of transformations < tm, … , t2, t1 > is a refinement

– model B = tm( … ( t2( t1( model A ) ) ) … )

• Equivalence verification
• Each transformation maintains functional equivalence

• The refinement is thus correct by construction

• Derives a more detailed model from an abstract one
• Specific sequence for each model refinement

• Not all sequences are relevant

• Refinement based system level methodology
• Methodology := < {models}, {refinements} >
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System Verification through Refinement

• Design Decisions  Transformations
• Select components / connections

– Import behaviors / protocols

• Map behaviors / channels
– Synchronize behaviors / slice data

• Transformations preserve function
• Same partial order of tasks

• Same input/output data for each task

• Same partial order of data transactions

• Equivalent replacements

• All refined models will be 
“equivalent” to input model

Still need to verify
First model

Correctness of replacements

Refinement
Tool
t1
t2
…
tm

Model A

Model B

Designer
Decisions

Library of
objects
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Conclusion

• Variety of verification techniques available
• Several tools from industry and academia
• Each technique works well for specific kind / level of models

• Challenges for verification of large system designs
• Simulation based techniques take way too long

– Time to market issues

• Most formal techniques cannot scale
– Memory requirement explosion
– Too much manual effort required

• Modeling is pushed to system level
• Future design and verification

• Complete and executable functional specification model
• Well defined semantics for models at different abstraction levels
• Well defined transformations for design decisions

– Verify transformations
– Automate refinements

• Formalism helps system verification !
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