
Embedded System DesignEmbedded System Design
Modeling, Synthesis, Verification

Daniel D. Gajski, Samar Abdi, Andreas Gerstlauer, Gunar Schirner

7/8/2009

Chapter 7: Verification

7/8/2009 2Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 7: Verification

Overview

• Simulation and debugging methods

• Formal verification methods

• Comparative analysis of verification techniques

• Model formalization for SoC verification

• Conclusions

7/8/2009 3Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 7: Verification

Design Verification Methods

• Simulation based methods
• Specify input test vector, output test vector pair

• Run simulation and compare output against expected output

• Semi-formal Methods
• Specify inputs and outputs as symbolic expressions

• Check simulation output against expected expression

• Formal Methods
• Check equivalence of design models or parts of models

• Check specified properties on models

7/8/2009 4Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 7: Verification

Simulation

• Task : Create test vectors and simulate model
• Inputs

• Specification
– Typically natural language, incomplete and informal
– Used to create interesting stimuli and monitors

• Model of DUT
– Typically written in HDL or C or both

• Output
• Failed test vectors

– Pointed out in different design representations by debugging tools

Typical simulation environment

DUT

S
tim

ul
us

M
on

ito
rs

Specification

7/8/2009 5Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 7: Verification

Improvements to Simulation Environment

• Main drawback is coverage
• Several coverage metrics

– HDL statements, conditional branches, signal toggle, FSM states

• Each metric is incomplete by itself
• Exhaustive simulation for each coverage type is impractical

• Possible Improvements
• Stimulus optimizations

– Language to specify tests concisely vs. exhaustive enumeration
– Write tests for uncovered parts of the model

• Monitor optimizations
– Assertions within design to point to simulation failures
– Better debugging aids (correlation of code, waveforms and netlist)

• Speedup techniques
– Cycle simulation vs. event driven
– Hardware prototyping on FPGA

• Modeling techniques
– Models at higher abstraction level simulate faster

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

67/8/2009Chapter 7: Verification

Stimulus optimizations

• Testbench Authoring Languages
• Generate test vectors instead of writing them down

– Pseudo random, constrained and directed tests

• Several commercial and public domain “verification languages”
– e, Vera, Jeda, TestBuilder

• Coverage Feedback
• Identify design parts that are not covered

• Create new tests to cover those parts
– controllability is a problem !

x y z x y z

1
1

1
0

coverage analysis

7/8/2009 7Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 7: Verification

• Assertions in the model
• Properties written as assertions in design

− Example : signals a and b are never ‘1’ at the same time
− Errors detected before reaching primary output (helps debugging)

• Several methods of inserting assertions
− Assertion languages, e.g. PSL, SystemVerilog, e

− assert always !(a & b)

− Pragmas

• Debugging aids
• Correlation between different design representations

− Waveforms, schematic, code, state machines

Monitor optimizations

…….
c = a and b
…….

a
b

c

a
b
c

Spec

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

87/8/2009Chapter 7: Verification

Speedup techniques

• Cycle simulation
• Observe signals once per clock cycle
• Cannot observe glitches within a clock cycle

• Emulation
• Prototype hardware model on FPGAs
• Much faster than software simulation
• In-circuit emulation

– FPGA is inserted on board instead of real component

• Simulation acceleration
– Emulate parts of hardware by interfacing with software simulator

Spec

Non-
synthesizable

synthesizable

SW

FPGA ISS / HDL simulator

7/8/2009 9Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 7: Verification

Modeling techniques

• Use higher abstraction for faster simulation
• Untimed functional / Specification model

– Executable specification to check functional correctness
– Simulates at the speed of C program execution but no timing

• Timed architecture model
– Used to evaluate HW/SW partitioning
– Computation distributed onto system components

• Transaction level model
– Used to evaluate system with abstract communication
– Transactions vs. bit toggling (data abstraction)

• Bus functional model
– Communication modeled at pin-accurate / time accurate level
– Computation modeled at functional level

• Cycle accurate model
– HW and SW at cycle accurate level
– Communication at cycle accurate level

7/8/2009 10Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 7: Verification

Overview

• Simulation and debugging methods

• Formal verification methods

• Comparative analysis of verification techniques

• Model formalization for SoC verification

• Conclusions

7/8/2009 11Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 7: Verification

Formal Verification Methods

• Equivalence Checking
• Compare optimized/synthesized model against original model

• Model Checking
• Check if a model satisfies a given property

• Theorem Proving
• Prove implementation is equivalent to specification in given

formalism

7/8/2009 12Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 7: Verification

Logic Equivalence Checking

• Inputs
• Reference (golden) design
• Optimized (synthesized) design
• Logic segments between registers, ports or black boxes

• Output
• Matched logic segment equivalent/not equivalent

• Use canonical BDDs to match segments

1 = 1’ ?
2= 2’ ?

in
pu

ts

ou
tp

ut
s1’

2’

Equivalence
result

Reference design

Optimized design

in
pu

ts

ou
tp

ut
s1

2

7/8/2009 13Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 7: Verification

FSM Equivalence Checking (1/2)

• Finite State Machine
• M : < I, O, Q, Q0, F, H >

– I is the set of inputs
– O is the set of outputs
– Q is the set of states
– Q0 is the set of initial states
– F is the state transition function Q × I  Q
– H is the output function Q  O

• FSM as a language acceptor
• Define Qf to be the set of final states
• M accepts string S of symbols in I if

– applying symbols of S to a state in Q0 leads to a state in Qf

• Set of strings accepted by M is its language
• Product FSM

• Define product FSM as a parallel composition of two
machines

– M1: < I, O1, Q1, Q01, F1, H1 > , M2: < I, O2, Q2, Q02, F2, H2 >
– M1×M2 : <I, O1×O2, Q1×Q2, Q01×Q02, F1× F2, H1×H2 >

7/8/2009 14Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 7: Verification

FSM Equivalence Checking (2/2)

• Inputs
• FSM for specification (Ms)
• FSM for implementation (Mi)

• Output
• Do Mi and Ms give same outputs for same inputs ?

• Idea (Devadas, Ma, Newton ’87)
• Compute Mi×Ms
• Qf(Mi×Ms) = States which have different outputs for Mi and

Ms
• Check if any state in Mi×Ms is reachable

p

q

x

y

a

b

r

s

x

y

a

b

ty

b

pr

qr

ps pt

qs qt

xx

yx

xy
xy

yy

yy

aa

bb

bb

× =

7/8/2009 15Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 7: Verification

Model Checking (1/2)

• Inputs
• Transition system representation of M

– States, transitions, labels representing atomic properties on states

• Temporal property P to be proved on M
– Expected values of variables over time
– Causal relationship between variables

• Output
• True (property holds)
• False + counter-example (property does not hold)

– Provides test case for debugging

True /
False + counter-exampleModel

Checker

P = P2 always leads to P4
s1

s4 s3

s2P1

P3P4

P2

M

7/8/2009 16Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 7: Verification

Model Checking (2/2)

• Idea (Clarke, Emerson ’81)
• Unroll transition system to an

infinite computation tree
– Start state is the root (S1)

• Define properties using
– On all paths (A)

– On some path (E)

– Always / Globally (G)

– Eventually (F)

• Some examples
– EG p

– AG p

– EF p

– AF p

• State space explosion
• What next ?

s1

s4 s3

s2

Transition system

s1

s2 s4

s3 s4 s4

s4s4s2 s4

Computation Tree

7/8/2009 17Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 7: Verification

Theorem Proving (1/2)

• Inputs
• Formula for specification in given logic (spec)
• Formula for implementation in given logic (impl)
• Assumptions about the problem domain

– Example : Vdd is logic value 1, Gnd is logic value 0

• Background theory
– Axioms, inference rules, already proven theorems

• Output
• Proof for spec = impl

AutomatedManual

Proof
Goal

Assumptions /
Background

theories /
Inference

rules

decomposition |proof

T
h

eo
re

m
 P

ro
ve

r

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

187/8/2009Chapter 7: Verification

Theorem Proving (2/2)

• Example

• CMOS inverter (Gordon’92)

• Using higher order logic

• Assumptions
• Vdd(y) := (y=T)

• Gnd(y) := (y=F)

• Ntran(x,y1,y2) := (x->(y1=y2))

• Ptran(x,y1,y2) := (┐x->(y1=y2))

• Impl(x,y) := w1, w2. Vdd(w1) Λ
Ptran(x,w1,y) Λ Ntran(x,y,w2) Λ Gnd(w2)

• Spec(x,y) := (y=┐x)

• Proof
• Impl(x,y) = ….. (assumption / thm / axiom)

= ….. (assumption / thm / axiom)

= ….. (assumption / thm / axiom)

= Spec(x,y)

ш

Vdd

Gnd

x y

w1

w2

CMOS inverter

7/8/2009 19Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 7: Verification

Drawbacks of formal methods

• Equivalence checking
• Designs to be compared must be similar for LEC

– Correlated logic segments are identified by design structure
– Drastic transformations may force manual identification of segments

• FSM EC requires spec and implementation to
– Be represented as finite state machines
– Have same input and output symbols

• Model Checking
• State explosion problem

– Insufficient memory for designs with > 200 state variables

• Limited types of designs
– Design should be represented as a finite transition system

• Theorem Proving
• Not easy to deploy in industry

– Most designers don’t have background in math logic (esp. HOL)
– Models must be expressed as logic formulas

• Limited automation
– Extensive manual guidance to derive proof sub-goals

7/8/2009 20Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 7: Verification

Improvements to Formal Methods

• Symbolic Model Checking (McMillan ’93)
• Represent states and transitions as BDDs

– Allows many more states (~10^20) to be stored
– Compare sets of states for equality using SAT solver

• Bounded Model Checking (Biere et.al. ’99)
• Restricted to bugs that appear in first K cycles of model execution

– Unfolded model and property are written as propositional formula
– SAT solver or BDD equivalence used to check model for property

• Partial Order Reduction (Peled ’97)
• Reduces model size for concurrent asynchronous systems

– Concurrent tasks are interleaved in asynchronous models
– Check only for 1 arbitrary order of tasks

• Abstraction (Long, Grumberg, Clarke ’93)
• Cone of influence reduction

– Eliminate variables that do not influence variables in spec

7/8/2009 21Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 7: Verification

Semi-formal Methods (Symbolic Simulation)

• Inputs
• Simulation model of the circuit

• Specification of expected behavior (as boolean expressions)

• Output
• Expression for the signals in design

• Idea (Bryant ’90)
• Encode set of inputs symbolically (using BDD)

• Evaluate output expressions during simulation

• Compare simulation output with expected output
− using BDD canonical form

Simulation
model

a
b
c
d

f(a,b,c,d)
?
= g(a,b,c,d) Specification

7/8/2009 22Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 7: Verification

Overview

• Simulation and debugging methods

• Formal verification methods

• Comparative analysis of verification techniques

• Model formalization for SoC verification

• Conclusions

7/8/2009 23Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 7: Verification

Evaluation Metrics

• Coverage
• How exhaustive is the technique ?

– % of statements covered

– % of branches taken

– % of states visited / state transitions taken

• Cost and Effort
• How expensive is the technique ?

– Dollars spent per simulation / emulation cycle

– Training time for users

• Scalability
• How well does the technique scale with design size /

abstraction ?
– Tool capacity

– Tool applicability for various modeling abstraction levels

7/8/2009 24Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 7: Verification

Coverage

Equivalence checking

Theorem proving
Model checking

Symbolic simulation

Simulation with Assertions

Pseudo-random simulation

• Formal methods provide
complete coverage
• For a specified property

• For a reference model

• Simulation with assertions
• Improves understanding of

design
– White box vs. black box testing

High

Medium

Low

7/8/2009 25Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 7: Verification

Cost and Effort

• Pseudo-random simulation
• Writing monitors

• Simulation with assertions
• Identifying properties
• Writing assertions

• Equivalence checking
• Correlating logic segments

• Model checking
• Writing assertions

• Theorem proving
• Training (~ 6 months)
• Identifying assumptions
• Creating sub-goals

Equivalence checking

Theorem proving

Model checking

Symbolic simulation

Simulation with Assertions

Pseudo-random simulation

Low

Medium

High

7/8/2009 26Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 7: Verification

Scalability

• Simulation based methods

• Scale easily to large designs

• Any model can be simulated !

• Theorem proving

• Any type of design

• Symbolic simulation

• BDD blowup for large designs

• Limited to RTL and below

• Model checking

• State space explosion

Equivalence checking
Theorem proving

Model checking
Symbolic simulation

Simulation with Assertions

Pseudo-random simulation

High

Medium

Low

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

277/8/2009Chapter 7: Verification

Evaluating Verification Techniques

Metric

Technique

Coverage Cost and Effort Scalability

Pseudo random simulation L L H

Simulation w/ assertions M M H

Symbolic simulation M L L

Equivalence checking H M M

Model checking H M L

Theorem proving H H M

• Well accepted techniques in industry
• Simulation with assertions

• Equivalence checking

7/8/2009 28Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 7: Verification

Overview

• Simulation and debugging methods

• Formal verification methods

• Comparative analysis of verification techniques

• Model formalization for SoC verification

• Conclusions

7/8/2009 29Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 7: Verification

New Verification Challenges for SoC Design

• Design complexity

• Size
– Verification either takes unreasonable time (eg. Logic simulation)

– Or takes unreasonable memory (eg. Model Checking)

• Heterogeneity
– HW / SW components on the same chip

– Interface problems

– Interdependence of both design teams

• Possible directions

• Methodology
– Unified HW/SW models

– Model formalization

– Automatic model transformations

7/8/2009 30Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 7: Verification

System Level Methodology

• Well defined specification
• Complete

• Just another model

• Well defined system models
• Several possible models

• Well defined semantics

• Formal representation

• Model verification
• Design decisions => transformations

• Formally defined transformations

• Automatic model generation possible

• Equivalence by construction

System Specification
model

Intermediate models

Cycle accurate
implementation model

7/8/2009 31Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 7: Verification

System Level Models

• Based on accuracy of computation and communication

• A system level design methodology is a path from A to F

Computation

Communication

A B

C

D F

Un-
timed

Approximate-
timed

Cycle-
timed

Un-
timed

Approximate-
timed

A. System specification model
B. Component model
C. Bus-arbitration model
D. Bus-functional model
E. Cycle-accurate computation model

F. Implementation model

E

Cycle-
timed

Source: Lukai Cai, D. Gajski. “Transaction level modeling: An overview”, ISSS 2003

7/8/2009 32Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 7: Verification

Model Definition

• Model = < {objects}, {composition rules} >
• Objects

• Behaviors
– tasks / computation / function

• Channels
– communication between behaviors

• Composition rules
• Sequential, parallel, FSM
• Behavior / channel hierarchy
• Behavior composition also creates execution

order
– Relationship between behaviors in the context

of the formalism

• Relations amongst objects
• Connectivity between behaviors and

channels

B2 B3

B1

7/8/2009 33Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 7: Verification

Model Transformations (1/2)

• Design Decision
• Map behaviors to PEs

• Model Transformations
• Rearrange object composition

– Distribute computation over PEs

• Replace objects
– Import IP components

• Add / Remove synchronization
– Transform sequential composition to

parallel and vice-versa
a*(b+c) = a*b + a*c

Distributivity of multiplication
over addition

analogous to……

B1

B2
B3=

Distribution of behaviors (tasks)
over components

PE IP

B2 B3

B1

7/8/2009 34Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 7: Verification

Model Transformations (2/2)

• Design Decision
• Map channels to buses

• Model Transformations
• Rearrange object composition

– Group channels according to bus
mapping

– Slice complex data into bus words

• Replace objects
– Import bus protocol channels

a+b+c+d = (a+b) + (c+d)

Associativity of addition

analogous to……

=

Mapping of channels to buses

P
E IP P
E IP

7/8/2009 35Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 7: Verification

Model Refinement

• Definition
• Ordered set of transformations < tm, … , t2, t1 > is a refinement

– model B = tm(… (t2(t1(model A))) …)

• Equivalence verification
• Each transformation maintains functional equivalence

• The refinement is thus correct by construction

• Derives a more detailed model from an abstract one
• Specific sequence for each model refinement

• Not all sequences are relevant

• Refinement based system level methodology
• Methodology := < {models}, {refinements} >

7/8/2009 36Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 7: Verification

System Verification through Refinement

• Design Decisions  Transformations
• Select components / connections

– Import behaviors / protocols

• Map behaviors / channels
– Synchronize behaviors / slice data

• Transformations preserve function
• Same partial order of tasks

• Same input/output data for each task

• Same partial order of data transactions

• Equivalent replacements

• All refined models will be
“equivalent” to input model

Still need to verify
First model

Correctness of replacements

Refinement
Tool
t1
t2
…
tm

Model A

Model B

Designer
Decisions

Library of
objects

7/8/2009 37Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 7: Verification

Conclusion

• Variety of verification techniques available
• Several tools from industry and academia
• Each technique works well for specific kind / level of models

• Challenges for verification of large system designs
• Simulation based techniques take way too long

– Time to market issues

• Most formal techniques cannot scale
– Memory requirement explosion
– Too much manual effort required

• Modeling is pushed to system level
• Future design and verification

• Complete and executable functional specification model
• Well defined semantics for models at different abstraction levels
• Well defined transformations for design decisions

– Verify transformations
– Automate refinements

• Formalism helps system verification !

7/8/2009 38Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 7: Verification

References

1. Devadas, Ma, Newton, “On the verification of sequential machines at different
levels of abstraction”, 24th DAC, pp.271-276, June 1987

2. Clarke, Grumberg, Peled, “Model Checking” , MIT Press

3. K.L. McMillan, “Symbolic Model Checking: An approach to the State Explosion
Problem” , Kluwer Academic 1993

4. McFarland, “Formal Verification of Sequential Hardware: A tutorial”, IEEE
Transaction on CAD, pp. 633-653, May 1993

5. Thomas Kropf, “Introduction to Formal Hardware Verification” Springer, 1999

6. Gordon, “Specification and Verification of Hardware”, University of Cambridge,
October 1992

7. Lionel Bening, Harry Foster, “Principles of Verifiable RTL Design”, Kluwer 2000

