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Abstract—Model-driven and component-oriented development is increasingly being 

used in the development of embedded systems. When combined, both paradigms 

provide several advantages, such as higher reuse rates, and improved system quality. 

Performing model-driven and component-oriented development should be accompanied 

by a component model and a method that prescribes how the component model is used. 

This article provides an overview on the MARMOT method, which consists of an abstract 

component model and a methodology for the development of embedded systems. 

The paper describes a feasibility study that demonstrates MARMOT's capability to 

alleviate system design, verification, implementation, and reuse. Results indicate that 

model-driven and component-based development following the MARMOT method 

outperforms Agile development for embedded systems, leads to maintainable systems, 

and higher than normal reuse rates. 
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1. INTRODUCTION 

Embedded systems are increasingly being built by following the model-driven and compo-

nent-based development (CBD) paradigms. The motivation is to move reuse onto levels of ab-

straction higher than the code level, and to be able to reason about a system without having to 

compose and implement it. Components should be described in a way that they can be com-

posed independently of a specific underlying runtime platform. Additionally, they should be 

organized in a way that they can be easily deployed in different execution, and hardware con-

texts. Model-Driven techniques are often part of an entire development framework, providing a 

component model, as part of general product and a process models. Example methods are 

KobrA [2] or the Rational Unified Process (RUP) [23]. 

In general, a component model is a wiring standard [34] provided with an execution environ-

ment, and it determines how components are composed and executed. Examples of such com-

ponent models are J2EE, JavaBeans, CORBA, DCOM, .NET, Koala, etc., and they require spe-

cific implementation technologies, such as programming and interface definition languages, and 
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specific bindings for supporting specific programming languages.  

In contrast, this paper makes use of an abstract component model in order to abstract concrete 

bindings, focusing on abstract component descriptions rather than on concrete component im-

plementations. Abstract component models deal with system design at a higher level of abstrac-

tion than executable units, and they enable engineers to plan and reason about a system architec-

ture or its behavior, without having to implement it. 

This paper presents an evaluation of the MARMOT method and its abstract component model 

[9] with respect to its capability to support component reuse, and to alleviate verification and 

implementation/composition. It demonstrates how an abstract component model facilitates early 

verification and assessment of composition. It also compares the effects of higher-level model-

ing with the Agile approach often used in the industry. A primary concern of this article is to 

demonstrate how an abstract component model facilitates the reuse of concepts and models, 

rather than merely executable assets, so that the abstract system design can be instantiated for 

verification, and, at the same time, realized in terms of concrete executable components. That 

way, an abstract component model can be used to detach the system design from the implemen-

tation, so that the system can be refined and realized in a range of platforms, using various im-

plementation technologies.  

The article is structured as follows: Section 2 gives a short overview on the Agile method 

used throughout the context of this paper. Section 3 briefly introduces the MARMOT methodol-

ogy including its abstract component model and its process model. Section 4 outlines a system 

used as demonstrator case study. Section 5 presents the evaluation of the MARTMOT method in 

comparison with the Agile development approach. Section 6 presents related work about com-

ponent-based development methods that apply modeling techniques for system design. Finally, 

Section 7 summarizes and concludes this paper. 

 

 

2. AGILE DEVELOPMENT OF EMBEDDED SYSTEMS 

In principle, Agile software development is a method that accumulates a set of software de-

velopment methods, based on iterative and incremental strategies. According to [3], the key of 

Agile development is that requirements and solutions evolve through collaboration between self-

organizing, cross-functional teams. A typical representative of this group is an approach known 

as Extreme Programming (XP) that was developed by Kent Beck, Ward Cunningham and Ron 

Jeffries. XP is based on a formal set of rules about how one develops functionality such as defin-

ing a test before writing the code or to never design more than is needed to support the code that 

is written. Other core practices are simple design, pair programming and delivering small releas-

es frequently.  

When it comes to embedded and real-time systems, Agile practices are not always the best 

choice due to the focus on software development and the neglecting of documentation and up-

front-design. One solution is hybrid approaches that adapt Agile practices to the development of 

embedded systems. The approach presented in [18] aims at mitigating this problem by defining 

a process that is based on XP but that also contains modeling aspects using the UML profile for 

real-time systems (e.g., regarding timing and precision) as well as activities for specifying hard-

ware-related aspects and requirements (e.g., interfaces, distribution, etc. ). In contrast, to other 

Agile processes, such as XP [3], Agile development for embedded systems has a significant 
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modeling proportion. It makes use of structural and dynamic UML diagrams in order to address 

the specific needs of embedded and real-time system. In detail, the method is divided into three 

stages: 

1. The Product & System Development Phase organizes all of the activities that are done in 

preparing the development of a product. The goal is the specification of hardware and 

software requirements as well as of boundary conditions. Based on these the phase con-

cludes by sketching and deciding upon the initial system architecture. Since the phases 

address a system as a whole, this phase is typically carried out by joint teams of hardware 

and software developers. 

2. The Software Development Phase is exclusively addressing the software parts of the final 

system. Within this phase software requirements and boundary conditions are specified 

and are then refined to a functional (system structure) and a technical (integration into 

larger frameworks, etc.) software architecture. 

3. The Integration, Test, and Deployment Development Phase focuses on the development of 

hardware and software artifacts. In contrast to the prior two phases that are largely based 

onto specification and modeling, this phase aims at mapping those artifacts to physical or 

software artifacts. 

 

 

3. MARMOT METHOD 

The MARMOT method [9] provides an abstract component model and a process for compos-

ing and integrating embedded systems on an abstract level. The MARMOT builds on the princi-

ples of KobrA [2]. It assumes KobrA's abstract component model, and extends it towards the 

development of embedded systems. In contrasts to the more lightweight Agile method, the 

MARMOT method proposes for the end-to-end use of the Unified Modeling Language (UML) 

as a modeling notation and it prescribes how models should be ideally used in the development 

of embedded systems. Whereas in Agile development methods, engineers quickly aim at low-

level designs in the form of executable code, the MARMOT method prescribes how high-level 

designs in the form of UML diagrams, representing different views and concerns of a system, 

can alleviate the reuse of artifacts in other, related development projects. 

The MARMOT method advocates the principles of encapsulation, modularity and unique 

identity that most component definitions put forward [2, 6]. Component communication relies 

on interface contracts, which are realized through software abstractions for hardware components. 

A hardware wrapper turns the hardware communication protocol into a software component com-

munication contract. Encapsulation separates the description of what a software unit does (specifi-

cation), from how it does it (realization). The specification is a collection of (UML) models that 

defines the external interface of a component so that it can be assembled into or be used by a sys-

tem. The realization is a set of models that define a component's realization in terms of sub-

component specifications and implementation. Following these principles, each component is de-

scribed through a suite of models as if it was an independent system in its own right. 

 

3.1 Abstract Component Model 

Each artifact of the abstract component model
1
 represents a distinct view on the subject, and 

                                                           
1 In contrast to the standard definition of a component model providing rules about component semantics or intercon-
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thus only concentrates on a particular aspect of what a component can do, or what it is. Fig. 1 

illustrates the concept of abstract components in the MARMOT method with an example. The 

abstract component Alarm may be implemented using the existing abstract components AlarmA 

and Counter, which can be implemented using TimerA, TimerB, and CounterA. Each abstract 

component (e.g., Counter) is organized into the two parts of specification and realization, acting 

as if it is an independent system. The top level abstract component, Alarm, is implemented 

through the successive decomposition and realization process.  

 

Component Specification A specification contains everything necessary to fully use a com-

ponent and for understanding its externally visible behavior. It defines the provided and required 

interfaces, including the contract through UML diagrams and other specification elements, such 

as natural language, or Object Constraint Language (OCL). The specification comprises struc-

tural elements (through UML class and object diagrams and other associated components that 

the subject component requires), its provided and required functionality, and its external behav-

ior (through state diagrams, with pre and post conditions and observable transitions).  

Component Realization While the externally visible behavior of a component can be unique-

ly specified according to the functionality provided and required by the component, there may 

be various ways of realizing this functionality depending on the design decisions and the availa-

ble (hardware) components to be used. A component realization is a specification of the design 

of a component through decomposition and collaboration among the sub-components contained, 

e.g., underlying runtime middleware, or hardware drivers implementing the communication with 

hardware components.  

Context Realization The context realization is a specific component realization that repre-

sents the specification of the physical context in which the system is going to operate. It contains 

information about the environment in which the system will be embedded, and how the system 

affects this environment, in terms of sensors and actuators.  

 

3.2 Process Model 

At its core, the MARMOT method is based on a tree shaped containment hierarchy with nest-

ed abstract component representations. The composite pattern defines that the group of objects 

                                                           
nection rules at the implementation level, an abstract component model defines the concepts, rules and constraints that 

underpin the method, on a meta-model level. [2] provides a detailed overview on the KobrA/MARMOT component 

meta-models. 

Fig. 1.  Conceptual view of MARMOT components 
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shall be treated in the same manner, as a single instance of an object. Within the MARMOT 

method any component can be a containment tree in its own right (through realization), and any 

system can be a component within another system. Thus, MARMOT follows a divide-and-

conquer strategy by decomposing a system into smaller parts. In the end, a system is represented 

by a tree of components (containment tree). Whether these components are hardware or software 

is irrelevant in the abstract component model, since all components are treated in a uniform way. 

In addition to the top-down orientation of divide-and-conquer strategies, the MARMOT method 

offers a bottom-up composition to actively support the reuse of components. A system can thus, 

be assembled according to the containment model. 

The final implementation of the system, which involves developing components and integrat-

ing them together with reused ones in the final system, is supported in two ways. First, the 

MARMOT method uses refinement and translation patterns for mapping abstract models to the 

source-code, following the basic ideas of the MDA paradigm. Second, it supports validation to 

check whether the concrete representations are in line with the abstract ones. The MARMOT 

method advocates testing as being the single most important technique for validation [14] and 

uses model checking for the verification of composition behaviors [9]. 

 

3.3 Verification Framework 

One goal of verification is the correct coordination of the component containment relation-

ships in order to maintain a correct component containment graph. Every MARMOT component 

is realized by specifying its internal structure and internal behavior (component realization in the 

meta-model). The internal structure is reflected in the external structure of its contained sub-

components, whose collective behaviors realize the services provided by the super-ordinate 

component (component specifications in the meta-model). The coordination of the models can 

then be assessed by model checking tools [31]. The MARMOT iterative verification framework 

focuses on verifying that subcomponents are coordinated correctly. In this framework, the in-

formation contained in the models is extracted using XMI-export, which is provided by model-

ing tools, is then transformed into the formal language of the model checker SPIN for verifica-

tion [9]. 

 

 

4. DESCRIPTION OF THE CASE STUDY 

An exterior mirror control system [9] (automotive domain) has been used for our case study 

to evaluate the usability of the MARMOT abstract component model, and to demonstrate reuse 

at a higher level of abstraction. 

The system is composed of electrical and mechanical components and software control logic, 

allowing the mirror to be adjusted horizontally and vertically into the desired position. Cars sup-

porting different driver profiles can store and recall the mirror position as soon as the profile is 

activated. The system is comprised of a microcontroller, a button, two potentiometers, and two 

servos. The micro controller accesses the two servo-drives via two potentiometers, and shows 

their movement on a small LCD panel. It reads values from the potentiometers, converts them to 

degrees, and generates the needed servo control signals.  

Figs. 2 to 5 show the primary specification artifacts that have been created according to 

MARMOT's abstract component model.  
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Requirements Modeling Use cases describe the requirements in a graphical (Fig. 3) and a 

textual representation (not shown). The actor User initiates control of the mirror aptitude rota-

tion, and stores and recalls positions through the button. Activity diagrams describe the general 

flow of control and component diagrams show the UML representation of the target platform, as 

displayed in Fig. 2. 

System Architecture The models shown in Fig. 3 represent part of the context realization of 

the mirror system. The context is like a pseudo component realization at the root of the devel-

opment tree that embeds the system as a regular component.  

Component Modeling Component modeling creates the specification and realization of all 

software components by using class, state, interaction, and activity diagrams. Modeling starts at 

the root of the containment hierarchy, and the top-level component is specified by using the 

various diagrams that the MARMOT method defines in its abstract component model. For ex-

ample, Fig. 4 shows excerpts from structural and behavioral models of an exterior mirror control 

application. This top-level abstract component is then successively refined into sub-abstract 

 

Fig. 2.  Model of the deployment platform (ATMega8) 

 

Fig. 3.  Context realization use case model and sequence diagram 
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components while their interaction consistency is verified at each refinement step. For example, 

the left side of Fig. 5 displays the structure of the hardware driver component that is used to 

realize the main component of the exterior car mirror control system. In addition, on the right 

side of Fig. 5, how the lower-level components interact to achieve the functionality defined in 

the component specification is shown.  

Implementation Iteratively devising specifications and realizations is continued until an ex-

isting component is found, thereby targeting existing abstractions (for increasing reuse), or until 

it can be implemented (no reuse). Coming to a concrete implementation from the models re-

quires the reduction of the level of abstraction of the descriptions. First, the containment hierar-

chy is simplified according to the technical restrictions of the implementation technology used, 

i.e., through refinement and mapping it to a UML model with the source code structure of the 

resulting system. Second, the models are mapped to the source code, either through a code gen-

erator, or manually as described in [22]. 

 

Fig. 4.  Structural (class diagram) and behavioral (state diagram) model 

 

Fig. 5.  Realization: structural and interaction model 
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5. EVALUATION 

This section describes an empirical case study for evaluating the efficiency of the abstract 

component model, w.r.t. composition and reuse, and a qualitative evaluation of the MARMOT 

formal verification framework w.r.t. reusability and reliability of composition. A more detailed 

description of this evaluation can be found in [7].  

 

5.1 Empirical Evaluation 

The research questions focus on two key sets of properties of model-driven development with 

components. 

 

1.Questions in the first category are related to the process and decision: 

Q1.1  Which process was used to develop the system? 

Q1.2  Which specification artifacts have been used? 

Q1.3  Are all UML diagram types required, or is there possibly a specific subset sufficient 

for this domain? 

Q1.4  How are models transferred to the source code? 

 

2.Questions in the second category are more toward specifics of development: 

Q2.1  What is the model-size of the systems? 

Q2.2  What is the defect density of the code? 

Q2.3  How long did it take to develop the systems? 

Q2.4  How is this effort distributed over the requirements, design, implementation, and test 

phases? 

Q2.5  What is the system footprint? 

Q2.6  How much reuse can be achieved? 

 

Model size follows the metrics as defined in [25]. Effort saving (a promise of MDD and 

CBD) is measured for all development phases. Memory footprint is considered, which is an im-

portant issue for embedded systems, and so is reuse, which is the central property of CBD. 

Since it is expected that the benefits of MDD and CBD are only visible during follow-up pro-

jects [10], one initial system was specified and used as basis. There were five follow-up projects 

(R1-R5), namely: 

1. R1/R2: Ports to different hardware platforms while keeping functionality. Ports were per-

formed within (i.e., ATMega32) and to a different processor family (i.e., PICF). Imple-

menting a port within the same family might be automated at the code level, whereas, a 

port to a different family might affect the models. 

2. R3/R4: Evolving system requirements by (1) removing the recall position functionality, 

and (2) adding a defreeze/defog function with a humidity sensor and a heater. 

3. R5: The mirror system was reused in a door control unit that incorporates the control of the 

mirror, power windows, and interior illumination. 

 

In the first experiment
2
, the MARMOT method is used, whereby students received an upfront 

                                                           
2  The experiment was performed two times (once for each methodology), whereby every experiment was comprised of 

several runs (i.e., R1-R5) that represent different typical reuse situations 
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training in its correct application. The second experiment follows an Agile process (based on 

Extreme Programming) [18], adapted for embedded software development. Experimental sub-

jects were trained in applying the approach prior to the experiment run. The experimental run 

was comprised of steps such as preparing system requirements by defining user stories and case 

studies. This also included the definition of hardware requirements and a specification of the 

physical context. The next step was modeling the system architecture in order to identify subsys-

tems, etc. Based on requirements and the architecture system, production was started. This com-

posed the modeling of selected system properties (processes, behavior, deployment, etc.), the 

definition of test-cases and programming. 

Subjects were graduate students from the Department of Computer Science at the University 

of Kaiserslautern (1st experiment) and the School of IT at the International University (2nd ex-

periment). Subjects knew that data would be collected and that an analysis would be performed, 

but were unaware of the hypotheses that were being tested. 

All projects were organized according to typical reuse situations in component-based devel-

opment, and a number of measures were taken to address the study questions: Model-size was 

measured with the absolute and relative size measures proposed in [25]. Relative size measures 

(i.e., ratios of absolute measures) addresses the UML's multi diagram structure and it deals with 

completeness. Absolute measures are the Number of Classes in a Model (NCM), Number of 

COmponents in a Model (NCOM), Number of Diagrams (ND), and the normalized LOC for 

code size. NCOM describes the number of hardware/software components, while NCM repre-

sents the number of software components. System size is measured in KBytes of the binary code. 

The number of reused elements is described as the proportion of the system which can be reused 

without any changes or with small adaptations (i.e., (re-)configuration but no model change). 

Defect density is measured in defects per 100 LOC (collected via inspection and testing). De-

velopment effort and its distribution over development phases are measured in hours by daily 

effort sheets. 

 

Overall When reviewing the resulting documentation of the MARMOT method, as well as of 

the Agile approach, it appears that the amount of modeling naturally differs significantly be-

tween these two. However, it shows that both make use of a comparable subset of the UML alt-

hough the level of detail and refinement differs: Both approaches make use of UML class-, ob-

ject-, state-, sequence-, collaboration-, component- (package), and timing diagrams while others 

such as the composite structure diagram remain unused. Thus, as a response to research ques-

tions Q1.2 and Q1.3 one immediate conclusion is that the modeling subset for embedded sys-

tems might be limited to the aforementioned selection. Interestingly, although the approaches 

make use of a comparable set of models their strategy for implementing them differs significant-

ly (Q1.4). While the MARMOT method makes use of a code generators and the SORT tech-

nique [5], Agile approaches depend on the experience of developers when transferring models in 

an ad-hoc manner to code. This might also be the reason for the lower overall quality of the Ag-

ile system. 

The MARMOT method Porting the system (R1) requires only minimal changes to the mod-

els, because the MARMOT method supports the idea of platform-independent modeling through 

the abstract component model of the method (see Fig. 6). Platform specific models are created in 

the embodiment step. Ports to different processor families (R2) are supported by MARMOT's 

reuse mechanisms [2]. Concerning the adaptation of existing systems (R3 and R4), data show 
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that large portions of the system could be reused. Compared with the initial development project, 

the effort for adaptations is quite low (26hrs vs. 3hrs and 10hrs). The quality of the system prof-

its from the quality assurance activities of the initial project. The promises of CBD concerning 

time-to-market and quality can be confirmed. Interestingly, the effort for the original system 

corresponds to standardized effort distributions over development phases, whereby the effort of 

follow-up projects is significantly lower. This supports the assumption that CBD saves on effort 

for subsequent projects. Porting and adapting an existing system (R1-R4) implies that the result-

ing variants are highly similar, which explains why reuse works well. It is interesting to look at 

larger systems that reuse (components of) the original system (i.e., R5). 60% of the R5-system 

can be reused without requiring major adaptations of the reused system. Effort and defect densi-

ty are higher than those for R1-R4, due to the additional functionality and hardware extensions 

that are required. When directly compared to the initial effort and quality, a positive trend can be 

seen that supports the assumption that the MARMOT method allows embedded systems devel-

opment at a low cost but with high quality (Fig. 6).  

The Agile method Although, the amount of modeling is limited in the Agile approach (Fig. 

7), the original system is developed quickly and with a high quality. This observation does not 

hold for follow-up projects. Reuse with the Agile approach requires a substantially higher effort 

than the effort required for the first experiment of applying the MARMOT method, which is 

attributable to the fact that the development team was different. Due to missing documentation 

and abstractions, reuse rates were low. It is worth noting that the source-code is of a high quality. 

Threats to Validity The authors view this study as exploratory, thereby limiting generaliza-

tion of the research. Reuse is a problematic concept to measure, but it is argued that the defined 

metrics are intuitively reasonable. In a single controlled study it is unlikely that every single 

aspect of that concept can be captured. A maturation effect may be caused by subjects learning 

as the study proceeds. So, the threat is that subjects learned enough from the single runs to bias 

their performance in the following ones. An instrumentation effect may result from differences 

in the materials which may have caused differences in the results. However, this can be ad-

dressed by keeping the differences to those caused by the applied method. The subjects were 

 

Fig. 6.  Results following the MARMOT method 
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students, who are unlikely to be representatives for software professionals. However, the results 

can be useful in an industrial context if one considers that industrial employees often do not 

have more experiences in MDD and CBD. Laboratory settings allow the investigation of a larger 

number of hypotheses at a lower cost than field studies. The hypotheses supported in the labora-

tory setting can be further tested in industrial settings. 

 

5.2 Assessment of Quality Improvement 

The MARMOT verification framework and its prototype implementation introduced in [9] is 

applied to assess the coordination of the mirror control system design in its refinements process. 

Although it is a long-term project for quantitatively measuring the impact of using the 

MARMOT verification framework, the 3 major potential improvements that are listed below are 

anticipated through this case study:  

 

Early detection of problems Fig. 8 illustrates a representative counterexample generated by 

the SPIN model checker, showing a potential interaction error in the early design model. The 

counterexample trace shows that the environment of the application model generates signals 

button_pressed, butten_released, poti_tuned, and poti_tuned in that exact order. All of which go 

through the input channels of the application process. After receiving the button_released signal, 

the application sends the store signal to its output channel and waits for the result from its envi-

ronment. At that moment, the environment sends the poti_tuned signal, which cannot be pro-

cessed by the application since it is busy waiting. Then, the environment tries to send another 

poti_tuned signal which cannot be processed since the channel is already occupied. This is a 

potential process-deadlock situation where both input and output channels are occupied but can-

not proceed. Using the MARMOT verification framework, such communication-related errors 

are identified before they are implemented. 

Reliability Being able to verify the behavioral consistency between a super-ordinate compo-

nent and its sub-components, the reliability of an abstract component is assured early in the de-

sign process. The MARMOT verification framework is currently focused on checking for the 

 

Fig. 7.  Results following the Agile method 
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absence of the process-deadlock which is a major concern in embedded software. An extension 

to general property checking is technically possible, but its usability depends on the level of 

support for property specifications and analysis for verification results. 

Reusability The use of the MARMOT verification framework improves the reusability of ex-

isting verified abstract components. Once a coordination of an abstraction component with its 

subcomponents is verified, reuse of the abstract component only requires one time verification 

between the specification behavior of the abstract component and the realization behavior of its 

super-ordinate component. This enhances the reliability of reusable components at a low cost. 

 

 

6. RELATED WORK 

6.1 Empirical Studies 

This work relies on research that is linked to both quality measurement [15] and empirical 

software engineering. Good references for empirical software engineering are [21, 36], and our 

studies were conducted according to common empirical principles, [4, 36]. A detailed descrip-

tion of the chosen empirical approach, experimental design, dependent and independent varia-

bles, etc. can be found in [7]. 

Quality assessment benefited from models such as McCall's, Boehm's or Dromey's. Unfortu-

nately, design- or model-related quality is not explicitly addressed. Software design quality still 

benefits from its own research. For instance, [4] summarizes many object-oriented design 

measures and studies the relationships between them and software quality. Nevertheless, we still 

identified difficulties when conducting empirical studies in software engineering in general, and 

more particularly in Model-Driven Engineering. This situation even gets worse when it comes to 

embedded systems [20] that only have a few published studies. 

 

6.2 Model-Driven Development of Embedded Systems 

The growing complexity and short release cycles of embedded systems stimulated the transfer 

of model-driven development techniques to the domain of embedded systems. There are two 

research routes: formal modeling languages for embedded system design, and non-formal ap-

proaches using notations, such as UML. Initially, formal languages such as [26], functional de-

composition [32], or state-based notations [16] were used, but these approaches lack reuse 

mechanisms on higher levels of abstraction. Newer developments such as MATLAB or 

MODELICA provide tool and (additional) methodological support, but they lack effective reuse 

strategies and adaptation mechanisms. Recently, the Unified Modeling Language (UML) was 

 

Fig. 8.  A counter example trace 
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adapted for modeling embedded and real-time systems, but it still lacks precise semantics, and 

guidelines about its usage. OMEGA [37], HIDOORS [35], FLEXICON [28], or the works pre-

sented in [10, 11, 27, 30, 33] define the development methods for real-time and embedded sys-

tems using the UML. Although this is a step in the right direction, they often do not use the en-

hanced features of UML 2.0, nor do they address complexity and reuse issues. In contrast, the 

MARMOT method fully supports (applies) UML 2.0 and its process and product model (e.g., 

uniformly and encapsulated components) specifically address the problem of software (compo-

nent) reuse. Another problem is the inadequate support for mapping UML (2.0) models to code 

[22] for code generation. 

The development of embedded systems would benefit from the advantages of model-driven 

component-based development as demonstrated in this article if the technologies could be inte-

grated into existing development processes (i.e., keep C as a target language). Most approaches 

and tools map models to sophisticated languages (e.g., Java, which results in runtime perfor-

mance, memory, or timing problems [22]), or they use straightforward mapping strategies (UML 

to C) that neglect concepts such as inheritance or dynamic binding. The MARMOT method uses 

a pattern-based and MDA-related mapping approach [2] that specifically addresses the relation-

ship between model transformations and non-functional requirements. 

There are approaches that aim to combine the two previously mentioned routes. They follow 

the idea of translating component models to formal specifications so that formal checking can be 

performed on the translated component models (e.g., [8, 13, 19, 38]). Nevertheless, most exist-

ing approaches are limited to language-to-language or artifact-to-artifact translation, and lack the 

systematic integration of verification activities into the development process. With the 

MARMOT method, verification is systematically integrated into the process model, due to the 

iterative nature of MARMOT's abstract component model.  

Further, [12] provides a good overview on model-driven development approaches. 

 

 

7. SUMMARY AND CONCLUSIONS 

Developing software for embedded systems with prefabricated components is appealing, and 

often, companies have no alternative but to reuse existing assets or they must purchase third 

party units. The vision of developing once, and reusing often, as well as the possiblility of 

achieving projected savings in development effort and quality assurance, allows organizations 

not only to quickly react to changing market requirements but to also manage the inherent com-

plexity of modern systems.  

This paper introduced the abstract component model of the MARMOT method, and its pro-

cess model, and it demonstrated how a meta model supports the reuse of concepts and models 

on a high level of abstraction. The advantage of using an abstract component is that system 

specification and design can be devised in models and then instantiated in different formalisms 

according to the requirements of a project. These formalisms can be specific component models 

of execution platforms, distinct programming languages, or verification notations.  

The paper presents a case study in which MARMOT's abstract component model has been 

applied according to typical reuse scenarios for the development of an exterior rear-view mirror 

system. The results of the case study indicate that using an abstract component model in tandem 

with component-based development has a positive impact on reuse, development efforts, and 
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quality.  

In summary, the MARMOT method provides an easy-to-use development framework for em-

bedded systems, facilitates the development of high-quality components or systems, and fosters 

systematic reuse by supporting high-level modeling and the instantiation of components. Alt-

hough, the MARMOT method requires significant upfront investments (similar to product line 

engineering approaches) and training, it provides a positive return on the investment as soon as 

follow-up projects are conducted. The MARMOT method is not suited for systems that will not 

be reused in the future, though, this is unlikely in the embedded systems world.  

Our greatest concern for the future is the application and evaluation of this work when it is 

presented in a larger-scale industrial context. Of particular interest here is the evaluation of the 

cost effectiveness of this method (i.e., initial investment vs. trade-off in reuse) as compared with 

the development approach used in an organization. 
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