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Summary

In this paper we investigate the existence of embedded trapped modes for symmetric obstacles
which are placed on the centreline of a two-dimensional acoustic waveguide. Modes are sought
which are antisymmetric about the centreline of the channel but which have frequencies that are
above the first cut-off for antisymmetric wave propagation down the guide. In the terminology
of spectral theory this means that the eigenvalue associated with the trapped mode is embedded
in the continuous spectrum of the relevant operator.

A numerical procedure based on a boundary integral technique is developed to search for
embedded trapped modes for bodies of general shape. In addition two approximate solutions
for trapped modes are found; the first is for long plates on the centreline of the channel and
the second is for slender bodies which are perturbations of plates perpendicular to the guide
walls. It is found that embedded trapped modes do not exist for arbitrary symmetric bodies but
if an obstacle is defined by two geometrical parameters then branches of trapped modes may
be obtained by varying both of these parameters simultaneously. One such branch is found for
a family of ellipses of varying aspect ratio and size. The thin plates which are parallel and
perpendicular to the guide walls are found to correspond to the end points of this branch.

1. Introduction

The existence of trapped modes in acoustic waveguides, water-wave channels and in the vicinity of
electromagnetic gratings is now well established. Although physically distinct, the mathematical
representations of these modes in their different contexts have many similarities. For example,
once the depth and time dependence have been removed from the problem, a trapped mode in a
water-wave channel of constant depth which contains a vertical cylinder of uniform cross-section
is mathematically equivalent to an acoustic trapped mode in a two-dimensional waveguide with
rigid walls which contains an obstacle whose shape is given by the cross-section of the cylinder.
Both correspond to non-zero solutions of the two-dimensional Helmholtz equation which satisfy
homogeneous Neumann conditions on the walls and body boundary and have finite energy. Such
modes have been proven to exist by Evans et al. (1) for a fairly general class of cylinders which have
a line of symmetry and are symmetrically placed about the centreline of the channel. More recently
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Khallaf et al. (2) proved that a symmetrically placed, rectangular obstacle with sides of length 2a
parallel to the guide and 2b perpendicular to the guide may support more than one trapped mode,
and that the number of trapped modes increases with a.

If no restrictions are placed on the symmetry of the solutions then the trapped modes occur at
frequencies that correspond to eigenvalues which are embedded in the continuous spectrum of the
relevant operator. However, if the structure is symmetric about the centreline of the channel and
the motion is split into symmetric and antisymmetric parts then the operator may be decomposed
so that the essential spectrum of the antisymmetric part has a non-zero lower limit and the trapped
mode corresponds to an eigenvalue which is below this value. (The square root of this lower limit is
called the ‘cut-off’ because it represents the value of the non-dimensional wave number below which
waves that are antisymmetric about the channel centreline cannot propagate down the guide.) In this
case standard variational methods may be used to prove the existence of an antisymmetric trapped
mode. However, Evans et al. (3) also found that trapped modes exist for flat plates which are parallel
to the guide walls, irrespective of whether the plate is on the centreline of the guide. In the latter case
it is not possible to decompose the operator into symmetric and antisymmetric parts, but Davies and
Parnovski (4) and Groves (5) independently showed that it is possible to decompose the operator in
an alternative fashion so that the trapped mode corresponds to an eigenvalue below the cut-off of
an appropriate operator. Their results also prove the existence of trapped modes for thin obstacles
aligned with the guide walls in higher dimensions. Further extensions to higher dimensions have
been made by Linton and McIver (6), who showed that trapped modes exist for axisymmetric bodies
in cylindrical waveguides by exploiting the symmetry of the problem and looking for modes which
have a specific azimuthal variation.

Recently Evans and Porter (7) have provided numerical evidence for the existence of an isolated
trapped mode in the presence of a circular obstacle on the centreline of a two-dimensional guide,
above the cut-off for antisymmetric wave propagation in the guide. The trapped mode exists
only for one circle with a particular radius and it is embedded in the continuous spectrum of the
antisymmetric operator. The purpose of the present work is to show numerically that rather than
being isolated, this mode is one of a continuous branch which exists for ellipses of varying aspect
ratio. The branch of modes begins with a trapped mode for a flat plate aligned parallel to the walls
of the guide and ends with a standing wave for a flat plate which is perpendicular to the guide
walls. Approximate and exact expressions are derived in section 3 and section 4 respectively for
the lengths of these plates and the trapped mode frequencies associated with them. In addition the
mode found by Evans and Porter (7) is shown to be a point on a branch of modes which exists for
hypercircles, that is, obstacles with shape |x/a|ν + |y/a|ν = 1, −a � x � a, where x is measured
along the guide, y is measured across the guide and a and ν vary along the branch. Theoretically
ν may take any positive value but in practice calculations were not performed for ν < 1 because
of numerical difficulties. The other end of the branch (ν → ∞) corresponds to a square and the
trapped mode will be shown to tend to a standing wave in this limit.

Although computations are performed only for ellipses and hypercircles, it is expected that a
curve of trapped modes exists at wave numbers above the first cut-off for any two-parameter family
of sufficiently smooth obstacles which are symmetric in both x and y and which contain the Evans
and Porter circle. This is in contrast to the situation below the cut-off where trapped modes exist
for all (sufficiently smooth) bodies which are symmetric in y, irrespective of any symmetry in x .
In the latter case symmetry in x is not required, as there can be no propagation of waves to either
infinity. In the former case, however, the wave field is different at either infinity if the body has no
symmetry in x . In this situation it is anticipated that an extra geometrical parameter needs to be
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varied to ensure that the wave field decays at both infinities and a trapped mode exists. At wave
numbers both above and below the cut-off symmetry of the geometry in y is necessary to allow
motion which is only antisymmetric in y to be considered.

The approximate theory developed in section 3 predicts that there are a countably infinite number
of plates aligned parallel to the walls which can support trapped modes and a proof of this result
for sufficiently long plates is given in the appendix. Each one of these plates may be deformed into
an ellipse or a body of different shape for which trapped modes exist. Future work will investigate
the structure of these branches in detail for the case where the deformed obstacles are rectangular
blocks.

2. Formulation

The problem is formulated for an arbitrary, doubly-symmetric body on the centreline of a two-
dimensional channel. As has already been discussed, the symmetry of the body in both x and y is
crucial for what follows. A quarter-section of the guide is illustrated in Fig. 1. As the body has
two lines of symmetry a trapped mode potential φ may be sought which is symmetric in x and
antisymmetric in y. Thus φ satisfies

(∇2 + k2)φ = 0 (1)

in the guide exterior to the body and is subject to the boundary conditions

φ = 0 on y = 0, x > a, (2)

∂φ

∂y
= 0 on y = d, x > 0, (3)

∂φ

∂x
= 0 on x = 0, b < y < d, (4)

∂φ

∂n
= 0 on ∂ D, (5)

and

φ → 0 as x → ∞. (6)
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In the above, ∂/∂n denotes differentiation in the direction normal to the body boundary ∂ D. The
work of Evans et al. (1) proves that at least one trapped mode exists for a large class of obstacles
provided that kd < π/2. The aim here is to seek obstacles which support trapped modes for values
of kd in the range π/2 < kd < 3π/2, the upper limit being the infimum of the set of values of kd
for which antisymmetric waves of the form eiαx sin 3πy/2d, 9π2/4d2 + α2 = k2 can propagate
down the guide. In particular it will be shown numerically that trapped modes exist for elliptical
obstacles of the form (x/a)2 + (y/b)2 = 1. Modes will be found for a range of values of b/d, but
for each value of b/d modes will only be found for a discrete set of values of a/d. The values of
kd for all the modes lie in the range π < kd < 3π/2 and a physical explanation of this last result
is given in the next section. In addition to the ellipses, embedded trapped modes will be found for
shapes of the form |x/a|ν + |y/a|ν = 1 for values of ν � 1.

The numerical method employed to determine the trapped mode frequencies uses ideas of Evans
and Porter (7). A complex, homogeneous integral equation is set up for the trapped mode potential φ

under the assumption that φ satisfies (6). This is split into real and imaginary parts and the resulting
equations are discretized numerically. A non-zero solution for φ which decays at infinity is possible
if the determinant of the real matrix is zero and if the eigenvector of this matrix which corresponds
to the zero eigenvalue satisfies the imaginary part of the equation. The latter is regarded as a side
condition which φ must satisfy.

The Green’s function, G(x, y; ξ, η), which represents the potential at (x, y) due to a source at
(ξ, η) in an empty quarter-guide and which is symmetric in y and antisymmetric in x satisfies

(∇2 + k2)G = −δ(x − ξ)δ(y − η) (7)

in the guide,

G = 0 on y = 0, (8)

∂G

∂y
= 0 on y = d (9)

and

∂G

∂x
= 0 on x = 0, (10)

where δ(·) is the Dirac delta function. Furthermore G is required to behave like outgoing waves as
|x − ξ | → ∞. Linton and Evans (8) showed that one representation of G is given by

G = 1
4 [Y0(kr) + Y0(kr1) + Y0(kr2) + Y0(kr3)]

+ 2

π
Re

∫ ∞

0
− e−kγ d

γ cosh kγ d
cosh kγ (d − y) cos kxt cos kξ t dt

− 2i

kd

ja∑
n=1

1

τn
sin(n − 1

2 )
πy

d
sin(n − 1

2 )
πη

d
cos kxτn cos kξτn, (11)
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where

r = [(x − ξ)2 + (y − η)2]1/2, (12)

r1 = [(x − ξ)2 + (y + η − 2d)2]1/2, (13)

r2 = [(x + ξ)2 + (y − η)2]1/2, (14)

r3 = [(x + ξ)2 + (y + η − 2d)2]1/2, (15)

γ (t) =
{

−i(1 − t2)1/2, t � 1,

(t2 − 1)1/2, t > 1,
(16)

τn = [1 − ((n − 1
2 )π/kd)2]1/2 (17)

and ja is the integer chosen to satisfy

( ja − 1
2 )π < kd < ( ja + 1

2 )π . (18)

If kd < π/2 then from (18) ja = 0 and it follows from (11) that the Green’s function is purely
real and decays at infinity. This means that a real integral equation may be developed to search
for trapped modes in this frequency range and this was the method used by Linton and Evans (8).
However, if π/2 < kd < 3π/2 then ja = 1 and there is one term in the series part of G. In this case
the Green’s function is complex and behaves like outgoing waves as |x − ξ | → ∞. In particular

Im[G] = − 2

kdτ1
sin

πy

2d
sin

πη

2d
cos kξτ1 cos kxτ1 = G1(x, y)G1(ξ, η). (19)

Application of Green’s theorem to the trapped mode potential φ and G yields the integral equation

1
2φ(x, y) =

∫
∂ D

φ(ξ, η)
∂G

∂n
(x, y; ξ, η) ds, (20)

where ∂ D is the boundary of the body in the region x � 0, y � 0, (x, y) is a point on the cylinder
surface and ∂G/∂n is the inward normal derivative of G to the body with respect to the variables
(ξ, η).

The integral equation in (20) is known to be singular at certain values of kd, called ‘irregular
values’. These are values at which there are non-zero solutions of the Helmholtz equation in the
interior of the body, which satisfy Dirichlet conditions on ∂ D and y = 0 and a Neumann condition
on x = 0. The irregular values do not correspond to trapped modes but are merely an artefact of the
mathematical formulation of the problem. However, they can give rise to spurious indications of
trapped modes and need to be avoided in any computational scheme. For a body which is contained
within a rectangle of depth 2b and width 2a Courant and Hilbert (9, Chapter VI, section 2) showed
that the lowest such value satisfies

kd � πd

(
1

4a2
+ 1

b2

)1/2

� πd

b
. (21)

It will be shown in section 5 that all of the ellipses for which trapped modes were found satisfy
b/d < 1

2 and so from (21) any irregular value for this geometry satisfies kd > 2π which is outside
the range of interest. Furthermore any obstacle of the form |x/a|ν + |y/a|ν = 1 which supports
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trapped modes was found to have a/d = b/d � 1
2 for ν � 1. In this case the same bound on the

irregular frequencies applies.
Without loss of generality the function φ is assumed to be real and so (20) reduces to the two

equations

1
2φ(x, y) =

∫
∂ D

φ(ξ, η)
∂

∂n
[Re[G(x, y; ξ, η))]] ds (22)

and ∫
∂ D

φ(ξ, η)
∂

∂n
[Im[G(x, y; ξ, η))]] ds = 0. (23)

The boundary of the body is described in terms of the angle θ which is measured anticlockwise
from the x-axis and so 0 � θ � π/2 for the quarter-body. The normal derivative of the Green’s
function is well behaved at all points on the body except when (x, y) = (ξ, η), where it is undefined.
However, the limiting values of the derivative on either side of this point exist and are equal, and so
it is the limit that is used in the computational scheme where necessary. The integration in (22) and
(23) is performed using Gauss–Legendre quadrature and the expression in (22) is evaluated at the
corresponding quadrature points. This yields the matrix system of equations

M∑
j=1

Ai jφ j = 0, (24)

where

Ai j = 1
2δi j − w j

∂

∂n
[Re[G(x(θi ), y(θi ); ξ(θ j ), η(θ j ))]]

(
ds

dθ

)
θ=θ j

, (25)

δi j is the Kronecker delta, φ j = φ(x(θ j ), y(θ j )) and θi and wi , i = 1, . . . , M are the Gauss–
Legendre quadrature points and weight functions respectively given by Abramowitz and Stegun (10,
equation 25.4.29). The elements Ai j need to be calculated numerically and this involves many
computations of the Green’s function. Linton (11) has developed analytical representations for G
which lead to numerical algorithms that are much more efficient than an algorithm which computes
G directly from (11) and these efficient algorithms were used in the present calculations. From (19)
and (23) the imaginary part of the equation may be discretized to give the side condition

S =
M∑

j=1

φ jw j
∂

∂n

[
sin

πη

2d
cos kξτ1

]
(η,ξ)=(η(θ j ),ξ(θ j ))

(
ds

dθ

)
θ=θ j

= 0. (26)

The system of equations in (24) has a non-trivial solution for φ when det(A) = 0. However, this
solution only corresponds to a trapped mode if the resulting function φ satisfies the side condition
(26). If the geometry were symmetric in y but not in x then the resulting Green’s function would
not be symmetric in x and the far-field form of its imaginary part would not be expressible as the
product of a function of (x, y) and a function of (ξ, η) as in (19) but would be the sum of two
separable terms instead. This would lead to two side conditions which need to be satisfied rather
than one and in general an additional geometrical parameter would have to be varied in the search
for trapped modes.
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The numerical procedure used to determine where a trapped mode exists is as follows. For a
fixed geometrical parameter (for example, b/d or ν) the curve on which det(A) = 0 is plotted is the
(a/d, kd)-plane. A normalized eigenfunction {φ j } and the corresponding value of S are calculated
from (24) and (26) at each point on the curve in such a way that they vary smoothly along the curve.
Points at which S changes sign correspond to trapped modes. (In principle either det(A) or S could
equal zero without changing sign but it would be impossible to demonstrate this numerically. In
practice, however, both quantities changed sign near any zero.) This method is based on that used
by Evans and Porter (7) and although it does not require the introduction of the function S̃ used
in their paper, it is believed to be as robust numerically. The equivalent function S̃ to that used by
Evans and Porter (7) is

S̃ =
M∑

j=1

e jw j
∂

∂n

[
sin

πη

2d
cos kξτ1

]
(η,ξ)=(η(θ j ),ξ(θ j ))

(
ds

dθ

)
θ=θ j

, (27)

where {e j } is a normalized eigenfunction which corresponds to the eigenvalue of A which has
smallest magnitude. Clearly S̃ is defined everywhere in the (a/d, kd)-plane and {e j } may be chosen
so that S = S̃ on the line det(A) = 0. The trapped mode is identified as the point where the line
S̃ = 0 crosses the line det(A) = 0, provided that S̃ is real and varies smoothly in the vicinity of
this point. (In principle S̃ could be complex if the eigenvalues of A with smallest magnitude are a
complex conjugate pair, or S̃ could vary discontinuously if the lowest two eigenvalues of A change
order.) However the identification of the line on which S̃ = 0 requires the determination of the
places at which S̃ changes sign and as S = S̃ on the line det(A) = 0, the location of the point which
corresponds to a trapped mode is equivalent to that obtained by using S directly. This technique
for finding trapped modes is more robust numerically than that of looking for zeros of the complex
determinant of the matrix which is obtained by discretizing (20) directly, because it is found that the
curves on which the real and imaginary part of the determinant are zero touch rather than cross in
the (a/d, kd)-plane.

In the next section an approximate trapped mode solution for a long plate on the centreline of the
guide (b/d = 0, a/d � 1) is developed and in section 4 asymptotic expressions for the trapped
mode parameters for slender bodies (a/d � 1) are obtained. The values of kd and the geometric
parameters predicted for these approximate trapped modes will then be compared with the full
numerical solutions in section 5.

3. A wide-spacing approximation for thin plates

For the case of a thin plate aligned with the waveguide we can derive an approximate solution based
on the assumption that the plate is long compared to the wavelength, that is, ka � 1. (As kd is
bounded this means that a/d � 1 also.) This technique was used by Evans (12) to investigate
trapped modes below the continuous spectrum for exactly the same geometry. The basic idea is to
assume that the two ends of the plate are sufficiently far apart so that the solution near to one of
them is not affected by the other and then to utilize the fact that the scattering problem involving a
semi-infinite thin plate can be solved explicitly.

More specifically, consider the three scattering problems illustrated schematically in Fig. 2. In
each of the three pictures the heavier lines represent boundaries on which Neumann conditions
are applied and the thin lines represent Dirichlet boundaries. Separation of variables shows that
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solutions in x < 0 and x > 0 can be written as linear combinations of the terms exp(±kn x)ψn(y),
n � 0, and exp(±κn x)�n(y), n � 1, respectively, where

ψn(y) = ε
1/2
n cos λn y/d, knd = (λ2

n − k2d2)1/2, λn = nπ, (28)

�n(y) = 21/2 sin µn y/d, κnd = (µ2
n − k2d2)1/2, µn = (n − 1

2 )π, (29)

and ε0 = 1, εn = 2, n � 1. If we assume that the wave number kd lies in the range π < kd < 3π/2,
then k0, k1 and κ1 are purely imaginary whereas kn , κn , n � 2, are real and we can define k, α and
β (all real and positive) as follows:

k0d = −ikd, k1d = −i(k2d2 − π2)1/2 = −iαd, κ1d = −i(k2d2 − π2/4)1/2 = −iβd. (30)

Imaginary values of kn and κn correspond to wave modes and so two such modes can exist in the
region x < 0 whilst only one such mode is possible in x > 0. The two upper pictures illustrate
scattering problems where the incident wave is one of the two possible modes that can approach
from x = −∞ and these problems can each be characterized by two reflection and one transmission
coefficient. Both of these scattering problems can be solved explicitly using the residue calculus
technique (see Mittra and Lee (13) for a detailed description of this technique), but before this is
done we will show how the solutions can be related to trapped modes.

It is possible to construct a third scattering problem, illustrated in the lowest picture, by taking
a linear combination of the first two in such a way that there are no waves as x → ∞. In other
words this third problem has the property that its solution decays to zero as x → ∞. If we imagine
a trapped mode in the vicinity of a long plate situated along y = 0, −2a < x < 0, then near to
the right-hand end the solution would look like this third problem, with wave motion between the
plate and the waveguide wall but no waves to the right of the plate. For the solution, φ, to this third
problem to correspond to a trapped mode which is symmetric about the midpoint of the plate we
would require ∂φ/∂x = 0 on x = −a, and this condition, together with the orthogonality of the set
of functions {ψn(y)} on (0, y), gives rise to the two conditions

e−2ika = R0 − T1 R̃0

T̃1
, (31)

e−2iαa = R̃1 − T̃1 R1

T1
. (32)

It can be shown, using judicious applications of Green’s theorem, that the combinations of reflection
and transmission coefficients that appear on the right-hand side of these conditions have unit
modulus for all values of kd in the range (π, 3π/2). The question is, can we find pairs of values
(a/d, kd) for which both (31) and (32) are satisfied simultaneously?

Whilst there is no guarantee that such an approximate solution corresponds to a trapped mode
for the full problem, previous results suggest that the correspondence is extremely close, even for
relatively small values of a/d , and moreover the wide-spacing approximation can be used as the
basis for an existence proof for sufficiently large a/d (see the Appendix).

Let us examine in detail the solution of the problem illustrated uppermost in Fig. 2 and the
determination of R0, R1 and T1. In x < 0 we expand the solution, φ, as

φ = (e−k0x + ek0x )ψ0(y) +
∞∑

n=0

U (1)
n

knd
ekn x ψn(y), (33)
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T1 R0
∼

y = 0

y = 0

y = d

ei   x

R0 e
–i  x + R1 e

–i   xα ψ1(y)

α

κ
T1 e

i   x Ψ1(y)β

y = d

y = 0

y = d

ei   x

R0 e
–i  x + R1 e

–i   xα ψ1(y)

T1 e
i   x Ψ1(y)β

κ

κ

ψ1(y)

∼ ∼
∼

T1 e
i   x Ψ1(y)κ∼

– T1 e
i   xα

( – T1 R0
∼

) e–i  xκ

T1 R1
∼

( – T1 R1
∼

) e–i  xα+ ψ1(y)

x = 0

Fig. 2 Three scattering problems

where U (1)
n , n � 0 are complex constants to be determined, U (1)

0 = k0d(R0 −1) and U (1)
1 = k1d R1.

Similarly, in x > 0, we write

φ = −
∞∑

n=1

U (2)
n

κnd
e−κn x �n(y) (34)

with U (2)
1 = −κ1dT1 and then we enforce continuity of φ and ∂φ/∂x across x = 0. If we use the

orthogonality of the functions ψn and then eliminate U (1)
n we obtain

∞∑
n=1

Un

κnd − kmd
= −δ0m, m � 0, (35)

where

Un = U (2)
n µn√

2k0dκnd
. (36)

Note that the unknowns U (2)
n are the coefficients in the expansion of the horizontal velocity and so
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we can determine their behaviour as n → ∞. In order that the energy of the trapped mode is finite
the form of the velocity at the end of the plate must be ∂φ/∂r = O(r−1/2) as r = (x2 + y2)1/2 → 0,
and it follows from the fact that for 0 < ν < 1

∞∑
n=1

nν−1 e−nx ∼ x−ν�(ν) as x → 0+ (37)

(see, for example, Martin (14)) that U (2)
n = O(n−1/2) as n → ∞. The system of equations (35)

is exactly the same as in Evans (12, equation (2.22)) (apart from the fact that here k1 and κ1 are
imaginary, whereas in Evans (12) they were real) and hence we find that Un is the residue of f (z)
at z = κnd and U (1)

n = −√
2k0d f (−knd), where

f (z) = h
∞∏

m=1

1 − z/kmd

1 − z/κmd
, h =

∞∏
m=1

1 − k0/κm

1 − k0/km
· (38)

The solution can be shown to have the approximate behaviour as n → ∞ to model the singularity
at the plate tip correctly. We thus obtain

R0 = −h
∞∏

m=1

1 + k0/km

1 + k0/κm
, (39)

R1 = −√
2

k0

k1
h

∞∏
m=1

1 + k1/km

1 + k1/κm
, (40)

T1 = 2
√

2

π
k0d κ1d (1 − κ1/k1)h

∞∏
m=2

1 − κ1/km

1 − κ1/κm
· (41)

For the scattering problem involving R̃0, R̃1 and T̃1 the solution is expanded in x < 0 as

φ = (e−k1x + ek1x )ψ1(y) +
∞∑

n=0

Ũ (1)
n

knd
ekn x ψn(y), (42)

where Ũ (1)
0 = k0d R̃0 and Ũ (1)

1 = k1d(R̃1 − 1), whereas in x > 0 we write

φ = −
∞∑

n=1

Ũ (2)
n

κnd
e−κn x �n(y) (43)

with Ũ (2)
1 = −κ1dT̃1. If we impose continuity of φ and ∂φ/∂x across x = 0 and then use the

orthogonality of the functions ψn we obtain

2δm1 + Ũ (1)
m

kmd
= −

∞∑
n=1

Ũ (2)
n

κnd
cmn, m � 0, (44)

Ũ (1)
m =

∞∑
n=1

Ũ (2)
n cmn, m � 0, (45)
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where

cmn = (2εm)1/2µn

κ2
n d2 − k2

md2
. (46)

The elimination of Ũ (1)
m between (44) and (45) results in the system of equations

∞∑
n=1

Ũn

κnd − kmd
= −δm1, m � 0, (47)

where

Ũn = Ũ (2)
n µn

k1dκnd
(48)

and again we must have Un = O(n−1/2) as n → ∞.
The method of solution follows closely that in Evans (12). Consider the function

f̃ (z) = h̃
1 − z/k0d

1 − z/κ1d

∞∏
m=2

1 − z/kmd

1 − z/κmd
, where h̃ = 1 − k1/κ1

1 − k1/k0

∞∏
m=2

1 − k1/κm

1 − k1/km
, (49)

and the integrals

Im = lim
N→∞

1

2π i

∫
CN

f̃ (z)

z − kmd
dz, m � 0, (50)

where CN are circles centred on the origin with radius (N − 1
4 )π . It can be shown that f̃ (z) =

O(z−1/2) as |z| → ∞ on the circles CN (details of how to do this can be found in Evans (12,
Appendix A)), and hence it follows that Im = 0. Cauchy’s residue theorem then gives

∞∑
n=1

Res( f̃ : κnd)

κnd − kmd
= −δm1, m � 0. (51)

A comparison of (47) and (51) shows that Ũn = Res( f̃ : κnd) and this can be shown to be O(n−1/2)

as n → ∞. We thus obtain

T̃1 = −Ũ (2)
1

κ1d
= − 2

π
k1d Ũ1 = 2

π
k1d κ1d (1 − κ1/k0)̃h

∞∏
m=2

1 − κ1/km

1 − κ1/κm
. (52)

To determine R̃0 and R̃1 we consider the integrals

lim
N→∞

1

2π i

∫
CN

f̃ (z)

z + kmd
dz, m � 0, (53)

which are all zero, and hence

∞∑
n=1

Res( f̃ : κnd)

κnd + kmd
= − f̃ (−kmd), m � 0. (54)
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Now if we divide (45) by kmd and add the result to (44) we obtain

δm1 + Ũ (1)
m

kmd
=

(
εm

2

)1/2 k1

km

∞∑
n=1

Ũn

κnd + kmd
= −

(
εm

2

)1/2 k1

km
f̃ (−kmd), (55)

using (54). Thus

R̃0 = Ũ (1)
0

k0d
= −h̃

√
2k1/k0

1 + k0/κ1

∞∏
m=2

1 + k0/km

1 + k0/κm
, (56)

R̃1 = Ũ (1)
1

k1d
+ 1 = −h̃

1 + k1/k0

1 + k1/κ1

∞∏
m=2

1 + k1/km

1 + k1/κm
· (57)

These solutions can then be substituted into the conditions for trapped modes, (31) and (32).
Considerable simplification results and our final condition for trapped modes is that both equations

ka = (n + 1
2 )π − χ1, (58)

αa = (m + 1
2 )π − χ2, (59)

where

χ1 =
∞∑

m=2

(
tan−1 k

κm
− tan−1 k

km

)
, (60)

χ2 =
∞∑

m=2

(
tan−1 α

κm
− tan−1 α

km

)
(61)

are satisfied simultaneously, for an arbitrary pair of integers n and m.
The terms in the series in (60) and (61) are O(m−2) as m → ∞. For computational purposes we

write

χ1 = k

4π

(
π2

3
− 3 + ζ(3)

)
+

∞∑
m=2

(
tan−1 k

κm
− tan−1 k

km
− k(2m + 1)

4πm3

)
, (62)

χ2 = α

4π

(
π2

3
− 3 + ζ(3)

)
+

∞∑
m=2

(
tan−1 α

κm
− tan−1 α

km
− α(2m + 1)

4πm3

)
(63)

in which ζ(s) is the Riemann zeta function and the terms in the series are O(m−4) as m → ∞.

4. Wave trapping by a slender structure

In this section an asymptotic theory based upon the work of Evans and McIver (15) is developed
for wave trapping by a slender structure. This allows the limiting behaviour to be calculated as the
dimension of a structure measured in the direction along the channel tends to zero. In particular,
it is shown for an ellipse (x/a)2 + (y/b)2 = 1 that as a/d → 0 then b/d → B ≈ 0·392. If the
structure’s width is much less than its depth then its surface in the first quadrant may be described
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by x = ε f (y), 0 � y � d , where ε � 1. The slenderness assumption ε � 1 allows equations (2),
(3) to be replaced by

φ = 0 on y = 0, x > 0, (64)

and

∂φ

∂y
= 0 on y = d, x > 0, (65)

respectively, and (5) and (4) to be replaced by

∂φ

∂x
= ε( f ′(y)φy − f (y)φxx ) + O(ε2) on x = 0, 0 < y < d. (66)

The last equation is obtained by Taylor expansion about x = 0.
The functions �n(y) and variables κn are defined in (29) and so for a trapped mode solution

satisfying (6), separation of variables yields

φ(x, y) = e−κ2x �2(y) + χ(x, y), (67)

where

χ(x, y) =
∞∑

n=3

An e−κn x �n(y) (68)

and the term involving κ1 has been omitted as it does not decay as x → ∞. By construction, for all
x � 0 ∫ d

0
χ(x, y)�n(y) dy = 0, n = 1, 2. (69)

It remains to satisfy the boundary condition (66). A solution for χ is sought in the form

χ(x, y) = χ0(x, y) + εχ1(x, y) + O(ε2) as ε → 0, (70)

where each χn is strictly of order unity in ε. Substitution of this expansion into (66) gives

− κ2�2(y) + ∂χ0

∂x
(0, y) + ε

∂χ1

∂x
(0, y)

= ε

{
f ′(y)

(
� ′

2(y) + ∂χ0

∂y
(0, y)

)
− f (y)

(
κ2

2�2(y) + ∂2χ0

∂x2
(0, y)

)}
+ O(ε2). (71)

Now if κ2 is strictly of order one in ε then (71) gives

∂χ0

∂x
(0, y) = κ2�2(y), 0 < y < d, (72)

to leading order, which contradicts (69) with n = 2. Let κ2 = ε pβ2, where p is a positive integer
and β2 is strictly of order one in ε. The leading-order terms in (71) then give

∂χ0

∂x
(0, y) = 0, 0 < y < d, (73)
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and so, after taking account of the other boundary conditions, it follows that χ0(x, y) ≡ 0. If p > 1,
then to leading order

∂χ1

∂x
(0, y) = f ′(y)� ′

2(y), 0 < y < d, (74)

which contradicts (69) except possibly for special f (y) that satisfy∫ d

0
f ′(y)� ′

2(y)�n(y) dy = 0, n = 1, 2. (75)

Under the assumption that both of these last conditions are not satisfied, it follows that p = 1 and
at order ε equation (71) is

∂χ1

∂x
(0, y) = β2�2(y) + f ′(y)� ′

2(y). (76)

The conditions (69) then yield ∫ d

0
f ′(y)� ′

2(y)�1(y) dy = 0 (77)

and

κ2d = −ε

∫ d

0
f ′(y)� ′

2(y)�2(y) dy. (78)

It is now apparent that if equations (75) are satisfied, then this corresponds to trapped waves having
frequencies within o(ε) of the cut-off as ε → 0. Equation (77) is the condition for the existence of
a trapped mode and equation (78) determines the corresponding trapped mode frequency.

The shape function

x = ε f (y) ≡ a

(
1 − y2

b2

)1/2

, b � d, (79)

describes an ellipse of axes length 2a in the x-direction and 2b in the y-direction. The integrations
in (77) may be carried out using a result given by Gradshteyn and Ryzhik (16, equation 3.753:5)
and it is found that trapped modes exist whenever b/d is a solution of

J1(2πb/d) − J1(πb/d) = 0, (80)

where J1 denotes the first-kind Bessel function of order one. This equation has only one root

b/d = B ≈ 0·392 (81)

for 0 < b/d � 1. The corresponding trapped mode frequency follows from (78) and for this
geometry

kd = 3π

2
− 3π3a2

16d2
[J1(3π B)]2 + O(a4/d4) as a/d → 0. (82)
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Fig. 3 Sizes and aspect ratios of elliptical obstacles that are able to support trapped modes; • circle;
parallel plate; —–: numerical values
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Fig. 4 Wave numbers of trapped modes supported by ellipses, as a function of b/d; • circle; parallel plate;
perpendicular plate; —–: numerical values; - - -: kd = 3π/2

5. Results and discussion

Figure 3 illustrates the sizes and aspect ratios of the elliptical obstacles which support embedded
trapped modes and Figs 4 and 5 give the corresponding values of kd as functions of b/d and a/d
respectively. Evans and Porter (7) showed numerically that an embedded trapped mode exists for
the special case of a circle with radius a/d = b/d ≈ 0·352 at a wave number kd ≈ 1·489π . This
point is indicated on each of the three figures by a solid circle. The values of a/d and kd for the
plate on the centreline are calculated from (58) and (59) with n = 1 and m = 0. This trapped
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1·75π

Fig. 5 Wave numbers of trapped modes supported by ellipses, as a function of a/d; • circle; parallel plate;
perpendicular plate; —–: numerical values; - - -: slender body approximation

mode is indicated by a horizontal bar on each of the figures and it forms the end point of each of
the curves, where b/d = 0. In the other limit when the plate becomes perpendicular to the guide
walls, that is a/d → 0, the limiting value of b/d is given by B as defined in (81). This point is
indicated by a vertical bar on the figures. The limiting form of kd is given by (82) and is drawn as
a dashed line in Fig. 5. The remaining points in the figures are obtained from the numerical scheme
described in section 2.

The figures corroborate the findings of Evans and Porter (7) that an embedded trapped mode exists
for a circle and give strong evidence that this mode is not isolated but is a point on a continuous
branch of modes for ellipses of varying aspect ratio. From Fig. 4, kd < 3π/2 for the plate on
the centreline (b/d = 0) and so this plate can support a trapped mode. However from Fig. 5,
kd = 3π/2 for the plate perpendicular to the guide walls (a/d = 0) and so this limiting point does
not correspond to a genuine trapped mode. Instead the limiting form of the motion is the standing
wave sin 3πy/2d , which does not decay as x → ∞. Thus the branch starts with a trapped mode for
a thin plate on the centreline and terminates with a standing wave for a thin plate perpendicular to
the walls.

The embedded trapped mode for a circle was also found numerically to be a point on a branch
of modes for obstacles with shapes of the form |x/a|ν + |y/a|ν = 1, 1 � ν < ∞, the circle
corresponding to ν = 2. Figure 6 gives the values of a/d for which trapped modes exist as a function
of ν and Fig. 7 shows the shape and size of the obstacle for different values of ν. The corresponding
trapped mode wave numbers are presented in Fig. 8. The trapped mode parameter values for the
circle are again designated by solid circles. As ν → ∞ the shape tends to a square with sides of
half-length a/d = 1

3 and the trapped mode tends to the standing wave sin 3πy/2d as this standing
wave satisfies the boundary conditions exactly on the square. Numerical difficulties meant that the
calculations could not be made easily for values of ν less than about 1, but theoretically ν may be
decreased to 0 if the trapped mode is considered to be a mode in a semi-infinite guide with a variably
shaped end, once the body touches the guide.



EMBEDDED TRAPPED MODES 289

0·35

a/d

v
1 2 3 4

0·4

0·45
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Fig. 6 Values of a/d for shapes |x/a|ν + |y/a|ν = 1 which are able to support trapped modes, as a function
of ν; • circle; —–: numerical values; - - -: a/d = 1/3

2
2

4 ∞3–1

Fig. 7 Shapes and sizes of the obstacles |x/a|ν + |y/a|ν = 1 which are able to support trapped modes or in
the case of a square, a standing wave; values of ν are marked on bodies

Calculations reveal that (58) and (59) possess infinitely many solutions corresponding to different
combinations of m and n (m < n). All these other solutions correspond to longer plate lengths than
the one that appears in the figures and in fact a/d → ∞ as n → ∞. These geometries form the
end points of further branches of ellipses for which trapped modes exist. However, there is nothing
special about elliptical obstacles and these plates may be continuously deformed into obstacles of
other shapes, for example rectangular blocks. An extensive investigation into the higher branch
structure for embedded trapped modes for rectangular blocks will form the subject of a further
paper. The rectangular block has the interesting property that the function sin 3πy/2d corresponds
to a standing wave for any block with b/d = 1

3 irrespective of its length. This important property
has significant consequences for the behaviour of the higher branches of trapped modes which will
be investigated in detail in the subsequent paper.

A further natural question to ask is whether any embedded trapped modes exist at wave numbers
above the next cut-off for antisymmetric wave propagation. In general one would expect to have
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1·475
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π

1·5π

1·525π

1·45π

Fig. 8 Wave numbers of trapped modes supported by shapes |x/a|ν + |y/a|ν = 1; • circle; —–: numerical
values; - - -: kd = 3π/2

to vary an additional geometrical parameter every time a new cut-off is exceeded in order to obtain
a trapped mode. This is because an extra wave-like term appears in the Green’s function at every
cut-off and this leads to an additional side condition which needs to be satisfied. If the body has
no symmetry in x then two extra side conditions need to be satisfied every time a new cut-off is
passed which means that two additional geometric parameters must be varied in order to obtain a
trapped mode. Thus trapped modes are expected to become rarer as the wave number increases,
and unstable to more classes of geometric perturbations. For example it is possible that there is a
countable number of ellipses with semi-major and semi-minor axes of specific lengths for which a
trapped mode exists if kd is restricted to the range 3π/2 < kd < 5π/2. This is compared with the
fact that all ellipses support trapped modes when kd < π/2 and in this work, continuous branches of
ellipses were found to support trapped modes when kd is restricted to the range π/2 < kd < 3π/2.
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APPENDIX
Existence proof for long plates

The method used in section 3 can be extended to form an existence proof for trapped modes in the presence
of a plate which is aligned with the guide walls. The procedure is very similar to that described in Evans (12)
and allows us to prove that there is a countably infinite set of plates for which trapped modes exist provided
that a/d is sufficiently large for each plate. As before we assume π < kd < 3π/2 and define ψn(y), kn , λn ,
�n(y), κn and µn by (28) and (29).

The geometry is as shown in Fig. 1, with b = 0. In 0 < x < a we expand the solution, φ, as

φ =
∞∑

n=0

U (1)
n

cosh kn x

knd sinh kna
ψn(y) (A1)

and in x > a we write

φ = −
∞∑

n=2

U (2)
n

e−κn(x−a)

κnd
�n(y). (A2)

Note that the summation here starts from n = 2 so that φ → 0 as x → ∞. If we then impose continuity of φ

and ∂φ/∂x across x = a and eliminate U (1)
n we obtain the infinite system of equations

∞∑
n=2

Un

(
1

κnd − kmd
+ e−2kma

κnd + kmd

)
= 0, m � 0, (A3)
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where Un = µnU (2)
n /κn .

To solve this system we write f (z) = h(z)g(z), where

g(z) =
∞∏

n=2

1 − z/knd

1 − z/κnd
, h(z) = 1 +

∞∑
n=2

An

zd − knd
, (A4)

the coefficients An being undetermined, and consider the integrals

Im = lim
N→∞

1

2π i

∫
CN

f (z)

(
1

z − kmd
+ e−2kma

z + kmd

)
dz m � 0, (A5)

where CN are circles centred on the origin with radius (N − 1
4 )π . Since g(z) = O(z−1/2) as |z| → ∞ on the

circles CN (see, Evans (12, Appendix A)), we have Im = 0. Cauchy’s residue theorem then gives

∞∑
n=2

Res( f : κnd)

(
1

κnd − kmd
+ e−2kma

κnd + kmd

)
+ f (kmd) + e−2kma f (−kmd) = 0, m � 0. (A6)

Thus Un is given by the residue of f (z) at z = κnd provided

f (kmd) + e−2kma f (−kmd) = 0, m � 0 (A7)

and it follows (see, Evans (12, Appendix C)) that Un = O(n−1/2) as n → ∞. This in turn implies that
∂φ/∂r = r−1/2 as r = [(x − a)2 + y2]1/2 → 0 which shows that our solution has the correct behaviour near
the end of the plate.

We begin by considering (A7) with m � 2. These equations are solved if the coefficients Am which appear
in (A4) are the solutions to the infinite systems of real equations

Am + Dm

∞∑
n=2

An

kmd + knd
= Dm , m � 2, (A8)

where

Dm = 2kmd(κm − km)

(κm + km)
e−2kma

∞∏
n=2
n �=m

(1 − km/κn)(1 + km/kn)

(1 + km/κn)(1 − km/kn)
. (A9)

Because of the presence of the factor e−2kma in the expression for Dm , the system of equations (A8) converges
very quickly provided a/d is not too small. A sufficient condition for the infinite system to possess a unique
solution An , with

∑∞
n=1 A2

n < ∞, is that
∑∞

n=1 D2
n < ∞ and

∑ ∑∞
n,m=1 D2

m/(kmd + knd)2 < 1 (see, for
example, Hutson and Pym (17, section 3.6)). That these inequalities are satisfied, provided a/d is sufficiently
large, is easily proved (only minor modifications to the argument of Evans (12, Appendix B), are required).

It remains to satisfy (A7) for m = 0 and 1. Thus the condition for trapped modes is that both equations

ka = (n + 1
2 )π − χ1 + δ1, (A10)

αa = (m + 1
2 )π − χ2 + δ2, (A11)

where χ1 and χ2 are defined in (60) and (61), and

δ1 = arg

(
1 −

∞∑
m=2

Am

ik + km

)
, δ2 = arg

(
1 −

∞∑
m=2

Am

iα + km

)
(A12)

are satisfied simultaneously, for an arbitrary pair of integers n and m.
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Now, as a/d → ∞, Dm → 0 and hence, from (A8), Am → 0 and then from (A12) δi → 0, i = 1, 2.
Thus in this limit we recover the approximate conditions (58) and (59). Moreover, given any ε > 0, we can
choose a/d sufficiently large so that max(|δ1|, |δ2|) < ε. From (60), (61) and the fact that κn < kn < κn+1,
n = 2, 3, . . . , we easily deduce that

0 < χ1 < tan−1(k/κ1) < π/2, 0 < χ2 < tan−1(α/κ1) < π/2 (A13)

and so if we define c1 = π/2 − χ1 + δ1 and c2 = π/2 − χ2 + δ2, then we can choose a/d sufficiently large
so that 0 < c1 < π/2 and 0 < c2 < π/2. If we eliminate a from equations (A10) and (A11) we obtain

αnπ

k
− mπ = c2 − αc1

k
(A14)

and we note that from (A10), since π < kd < 3π/2, the condition a/d sufficiently large is equivalent to the
condition n sufficiently large.

As kd varies between π and 3π/2, α/k varies continuously between 0 and
√

5/3 and so the left-hand side
of this equation varies between −mπ and (

√
5n/3−m)π whilst, provided n is sufficiently large, the right-hand

side varies continuously and always lies in the range (−π/2, π/2). It follows that if we fix m � 1, we can
always choose n large enough so that the infinite system of equations (A8) has a unique solution, both c1 and
c2 lie in the range (0, π/2) and

√
5n/3 − m > 1

2 . It then follows that there must be at least one value of kd in
the range (π, 3π/2) for which (A14) is satisfied. The corresponding value of a/d is then given by (A10).


