
Embedded Vision Systems: A Review of the Literature

Deepayan Bhowmik and Kofi Appiah

Department of Computing, Sheffield Hallam University, Sheffield, S1 1WB, United Kingdom.

{deepayan.bhowmik, k.e.appiah}@shu.ac.uk

Abstract. Over the past two decades, the use of low power Field Programmable

Gate Arrays (FPGA) for the acceleration of various vision systems mainly on

embedded devices have become widespread. The reconfigurable and parallel na-

ture of the FPGA opens up new opportunities to speed-up computationally in-

tensive vision and neural algorithms on embedded and portable devices. This

paper presents a comprehensive review of embedded vision algorithms and ap-

plications over the past decade. The review will discuss vision based systems and

approaches, and how they have been implemented on embedded devices. Topics

covered include image acquisition, preprocessing, object detection and tracking,

recognition as well as high-level classification. This is followed by an outline of

the advantages and disadvantages of the various embedded implementations. Fi-

nally, an overview of the challenges in the field and future research trends are

presented. This review is expected to serve as a tutorial and reference source for

embedded computer vision systems.

1 Introduction

Scene understanding and prompt reaction to an event is a critical feature for any time

critical computer vision system. The deployment scenarios include a range of applica-

tions such as mobile robotics, autonomous cars, mobile and wearable devices or public

space surveillance (airport / railway station). Modern vision systems which play a sig-

nificant role in such interaction process require higher level scene understanding with

ultra-fast processing capabilities operating at extremely low power. Currently, such sys-

tems rely on traditional computer vision techniques which often follow compute inten-

sive brute-force approaches (slower response time) and prone to fail in environments

with limited power, bandwidth and computing resources. The aim of this paper is to

review state-of-the-art embedded vision systems available from the literature and in the

industry; and therefore to aid researchers for future development.

Research into computer vision has made steady and significant progress in the past

two decades. The tremendous progress, coupled with cheap computational power has

enabled many portable and embedded devices to operate with vision capabilities. Digi-

tal Signal Processing and for that matter Digital Image Processing (DIP) is an exciting

area to be involved in today. Having been around for over two decades, it is typically

used in application areas where cost and performance are key [7], including the enter-

tainment industry, security surveillance systems, medical systems, automotive industry

and defence. DIP systems are often implemented using the ubiquitous general purpose

processors (GPPs). The increasing demand for high-speed has resulted in the use of
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Fig. 1. Vision system pipeline.

dedicated Digital Signal Processors (DSPs) and General Purpose Graphics Processing

Units (GPGPU); special types of GPP optimised for signal processing algorithms. How-

ever, power dissipation is important in almost all DSP-based consumer electronic de-

vices; hence the high-speed, power-hungry GPPs become unattractive. Battery-powered

products are highly sensitive to energy consumption, and even line-powered products

are often sensitive to power consumption [41]. For hardware acceleration and low power

consumption, DIP designers have opted for alternatives like the Field Programmable

Gate Array (FPGA) and Application Specific Integrated Circuits (ASIC).

The use of FPGAs in application areas like communication, image processing and

control engineering has increased significantly over the past decade [54]. Computer

vision and image processing algorithms often perform a large number of inherently

parallel operations, and are not good candidates for implementation on machines de-

signed around the von Neumann architecture. Some image processing algorithms have

successfully been implemented on embedded system architectures running in real-time

on portable devices [35] [45], and relatively small literature has been dedicated to the

development of high-level algorithms for embedded hardware [39] [63]. The demand

for real-time processing in the design of any practical imaging system has led to the

development of the Intel Open source Computer Vision library (OpenCV) for the ac-

celeration of various image processing tasks on GPPs [46]. Many imaging systems rely

heavily on the increasing processing speed of today’s GPPs to run in real-time.

2 Application specific vision systems

Every embedded vision systems follows a common pipeline of image processing func-

tional blocks as depicted in Fig. 1. The image sensor or camera is the starting point of

this pipeline followed by a frame grabber that controls the frame synchronization and

frame rate. The raw pixels are then passed for further processing which includes image

pre-processing, feature extraction and classification. Within this higher level abstraction

various vision systems implemented required functionalities as shown in the figure. Im-

age preprocessing functions are often pixel processing and offer stream computations.

However features extraction and classification tasks are complex in nature and usually
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Table 1. Embedded vision application areas. UAV: unmanned aerial vehicle; AUV: autonomous

underwater vehicle.

Robotics
Face Media Autonomous Assisted

UAV Mobile Robot AUV Detection Compression Driving Living

Cesetti et al. [15] X

Humenberger et al. [31] X

Yang et al. [70] X

Chen et al. [17] X

Velez et al. [65] X

Yang et al. [69] X

Lin et al. [42] X

Oleynikova et al. [50] X

Flores et al. [22] X X

Xu et al. [68] X

Wang et al. [67] X

Abeydeera et al. [1] X

He et al. [28] X

Basha et al. [10] X

involves non-deterministic loop conditions. Analysis and optimisations [59] of such

complexity with respect to performance and power [13] is an emerging topic of interest

and often seen as a trade-off including the choice of the hardware.

Embedded vision systems are usually developed either to accelerate complex algo-

rithms that handles large stream of image data, e.g., stereo matching, video compression

etc.; or to minimize power at resource constraint systems including unmanned aerial

vehicle (UAV) or autonomous driver assistant systems. While a large number of appli-

cations of embedded vision systems can be found in the literature, they can be grouped

to major application areas including robotics, face detection applications, multimedia

compression, autonomous driving and assisted living as shown in Table 1. Various im-

plementation techniques are proposed in the literature that considers a range of image

processing algorithms. Efforts were made either to parallelize the algorithms, or to ap-

proximate computing to reduce computational complexities.

While the first approach has implications in performance improvement, the latter

ones are more suitable for low power applications. Popular higher level complex image

processing algorithms that are used in embedded computer vision literature includes

stereo vision, feature extraction and tracking, motion estimation, object detection, scene

segmentation and more recent convolutional neural network (CNN). These categories

and corresponding literature are captured in Table 2.

3 Embedded vision systems

3.1 Central Processing Unit (CPU)

The widespread adoption of imaging and vision applications in industrial automation,

robotics and surveillance calls for a better way of implementing such techniques for
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Table 2. Common high level algorithms used in embedded vision systems.

Feature point Stereo Motion Object Scene
CNN

extraction vision estimation detection segmentation

Park et al. [51] X

Jin et al. [36] X

Chen et al. [17] X X

Belbachir et al. [11] X

Banz et al. [8] X

Cesetti et al. [15] X

Humenberger et al. [32] X

Lin et al. [42] X X X

Oleynikova et al. [50] X

Flores et al. [22] X

Ttofis et al. [64] X

He et al. [28] X

Basha et al. [10] X

Liu et al. [43] X X

Zhao et al. [74] X X

real-time purposes. The need to address the gap in knowledge for students who have

either studied computer vision or microelectronics to fill positions in the industry re-

quiring both expertise has been address with the introduction of various CPU based

platforms like Beagleboard [47] and Raspberry-Pi [48]. Hashmi et al. [27] used a

beagleboard-xM low-power open-source hardware to prototype a real-time copyright

protection algorithm. A human tracking system which reliably detect and track hu-

man motion has been implemented on a beagleboard-xM [24]. In [5], a LeopardBoard

has been used to implement an efficient edge-detection algorithm for tracking activ-

ity level in an indoor environment. Similarly, Sharma and Kumar [56] presented an

image enhancement algorithm on a beagleboard, mainly for monitoring the health con-

dition of an individual. To demonstrate the efficiency of embedded image processing

Sahani and Mohanty [55] showcased various computer vision applications developed

on Raspberry-Pi. The system uses a camera powered by the raspberry-pi with a resolu-

tion of 1280×720 to detect text and images in real-time. Various other computer vision

algorithm have been implemented on small dedicated platforms using Raspberry-Pi.

In [30], a robot with on-board camera for carrying lightweight objects is presented and

uses raspberry-pi to process the camera data in aid of navigation. Other robotic systems

like [37] [44] have all implemented some vision based algorithms on a Raspberry-Pi

because of its portability and ease of programmability.

3.2 Graphic Processing Unit (GPU)

The parallel nature of GPUs have made them a choice for the acceleration of many

computer vision algorithms [66]. Coupled with the emerging heterogeneous program-

ming models like OpenCL, GPGPU has been enabled on mobile devices. To explore the

capabilities of mobile GPU for the acceleration of computer vision algorithms, Wang et
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al. [66] presented and exemplar-based inpainting algorithm for object removal. Rister et

al. [53] presented an implementation of the Scale-Invariant Feature Transform feature

detection algorithm on a mobile based GPU to achieved 7× speed-up over optimised

GPP implementation. A face detection and recognition system implementation on two

GPU architectures are presented in [71] with reported speed-up of approximately 3.7×.

A mobile GPU based object detection algorithm with twofold speed-up compared to a

similar implementation on a mobile GPP is presented in [3]. The implementation also

reported energy savings of up to 84% compared to a smartphone GPP. A GPU enabled

architecture for scaling up convolutional networks have been presented in [62]. The

explored networks [62] are trained with stochastic gradient distributed machine learn-

ing system using 50 replicas on a NVidia Kepler GPU. Deep learning or Convolutional

Neural Network (CNN) has become popular in the fields of machine learning and com-

puter vision, because of it’s high performance in object detection [33]. Using only GPP,

a complex CNN may require more than one month to train [19]. GPUs offer approx-

imately ten fold speed-up compared to GPP, which is demonstrated in [33] for faster

training and testing. A number of other computer vision and image processing algo-

rithms [57] [34] [9] have been implemented on GPU mainly to accelerate them for real

time needs.

3.3 Field Programmable Gate Array (FPGA)

FPGAs are successfully used in many application areas, including embedded computer

vision and image processing. The key advantage of FPGAs over conventional CPUs or

GPUs is configurability. Resource allocation and memory hierarchy on general purpose

processors must perform well across a range of applications, whereas FPGA designs

leave many of those decisions to the application designer to optimally use logic gates

to implement one specific application. Moreover, they can be significantly faster as

their nature supports fine-grained, massively parallel and pipelined execution. FPGAs

allows stream processing from camera input and offers parallel execution of processing

blocks that resembles the vision system pipeline as depicted in Fig. 1. Various forms

of parallelism, e.g., pipeline, task or data parallelism were exploited in FPGA based vi-

sion systems [59]. Additionally FPGAs are known for low power execution and vision

system designers often exploit this characteristics by using multi-clock domain design

paradigm [13]. However on the downside, FPGAs are blamed on programmability as-

pect as FPGAs are most often specified directly in low level less expressive hardware

description languages such as Verilog or VHDL.

The intrinsic parallel architecture of FPGAs have also been exploited in a number

of application areas including high level feature classification with conventional neu-

ral networks [60] [29], convolutional neural networks [52] [18] [12] and architecture

specific neural networks [49] [4]. A variant of self-oganising map designed specifically

for FPGA is presented in [4] and tested on two computer vision applications; charac-

ter recognition and appearance-based object identification. The implementation in [4]

was achieved using Xilinx Virtex-4 XC4VLX160 and capable being trained with ap-

proximately 25,000 patterns every second. Embedded vision systems, implemented on

FPGAs are usually evaluated on a few objective measurements including 1) perfor-

mance measured in throughput (e.g., frames per second or fps); 2) clock frequency; 3)
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Table 3. A comparative overview of the FPGA metrics used in embedded computer vision.

Frame size Frame Rate Max. Clock Frequency Target Devices

Jin et al. [36] 640×480 230 fps 93 MHz Xilinx Virtex-4

Appiah et al. [6] 640×480 35 fps 65 MHz Xilinx Virtex-4

Banz et al. [8] 640×480 30 fps 39 MHz Xilinx Virtex-5

Oleynikova et al. [50] 640×480 60 fps - Xilinx Artix-7

Ttofis et al. [64] 1280×720 60 fps 103 MHz Xilinx Kintex-7

He et al. [28] 7680×4320 30 fps 188 MHz Altera Stratix II

Abeydeera et al. [1] 4096×2160 30 fps 150 MHz Xilinx Zynq 7045

Tanabe et al. [63] 640×480 349 fps 228 MHz Xilinx Virtex-6

Albo-Canals et al. [2] 177×144 1562 fps 30 MHz Actel IGLOO

Bhowmik et al. [13] 320×240 52 fps 85 MHz Xilinx Zynq 7020

input image frame size; 4) FPGA resource usage (e.g., DSP, BRAM, FF/LUTs) and 5)

power consumption. Power consumption on FPGAs consists of a) static power, which

is directly proportional to the amount of used logic; and b) dynamic power, which is

a weighted sum of several components (these include clock signal propagation power,

proportional to clock frequency; signals power, proportional to signal switching rates,

among others). The implementation relies on available programmable logic gates avail-

able on different FPGA boards from handful of manufacturers, including Xilinx and

Altera (now Intel). Table 3 provides a comparative overview of these measurements

metrics reported in the literature that are referred earlier in Section 2.

3.4 ASIC

Vision based applications and systems are typically associated with high computational

cost, slow when implemented on general purpose processors and not very useful in real-

time applications. To address some of theses problems, mainly the real-time require-

ments, most researchers have resulted to the use of dedicated and application specific

systems. In [61], Sugiura et al used an application specific instruction-set processor to

execute a lossless data compression method as part of a visual prosthesis systems. Deep

networks, models for understanding the content of images, videos and audio have been

used successfully in various application [40] with relatively high computational cost.

Gokhale et al [26] presented a scalable, low-power co-processor for enabling real-time

execution of deep neural networks on mobile devices. This was implemented using a

large number of parallel operators, optimised to process multiple streams of informa-

tion. The implementation presented in [26] shows that image understanding with deep

networks can be accelerated on custom hardware to achieve better performance per

watt. Chen et al. [16] presented an application specific integrated circuit accelerator on

a 65nm scale technology, for large-scale convolutional and deep neural networks capa-

ble of performing 452 GOP/s of key neural network operations in a small footprint. A

convolution chip built on 0.35 µm CMOS technology for event-driven vision sensing

and processing is presented in [14].
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4 Future trends and conclusions

In this paper we made a modest effort to review embedded computer vision systems

that satisfy application specific constraints e.g., performance or power. The literature is

scattered and covers a range of application areas, vision algorithms and target hardware.

This paper made an effort to categorize them in an orderly fashion. We identified two

emerging trends (described below) in this domain namely, heterogeneous computing

and bi-inspired computing for efficient vision systems.

4.1 Heterogeneous computing for vision systems

Current computer vision algorithms are highly complex and consist of different func-

tional blocks that are suitable for a variety of targets i.e., CPUs, GPUs or FPGAs.

Therefore, designing computer vision systems for single target hardware platform is

inefficient and does not necessarily meet performance and power budgets especially for

embedded and remote operations. A heterogeneous architecture is a natural alternative

but manifests new challenges:

– design choices to dissect the algorithm according to their suitability for the target

hardware,

– interoperability and data flow synchronisations between functional units as differ-

ent blocks may have different timing constraints.

– programmability and coordination between different hardware platforms. There is

a need for unified programming environment.

Although recently hardware manufacturers launched new heterogeneous products, e.g.,

Xilinx Zynq Ultrascale+ MPSoC1 (CPU, GPU and FPGA) and Altera SoC products2

(CPU and FPGA), these are not fully exploited in computer vision domain (except

handful of recent work, e.g., Zhang et al. [73]) as majority of the existing algorithms

are not designed to target heterogeneous platforms. Consideration of target hardware

during the algorithmic development cycle is not always necessary and the domain ex-

perts often prototype new algorithms using library-rich languages such as MATLAB.

However, efficient deployment of these prototypes on a heterogeneous hardware is chal-

lenging. Asynchronous data process network [20] may provide a plausible solution to

this problem, however requires further research.

4.2 Biologically inspired vision systems

The ability to detect moving objects in a scene is a fundamental problem in computer

vision. This is a baseline problem that requires detection accuracy as well as computa-

tional efficiency to guarantee a successful high level processing in behavioural or event

analysis [72]. Various background subtraction methods [25] have been proposed and

1 https://www.xilinx.com/products/silicon-devices/soc/

zynq-ultrascale-mpsoc.html
2 https://www.altera.com/products/soc/overview.html

https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
https://www.altera.com/products/soc/overview.html
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proven to be successful for detecting moving objects with the use of stationary cam-

eras. These methods build statistical background models and extract moving objects by

finding regions which do not have similar characteristics to the background model. Hu-

man visual systems processes a very high volume of data and hence it is often selective

and activity driven (responsive to the scene event).

The high volume data problem is also faced by many modern technical systems like

computer vision systems which need to deal with a multitude of image pixels at any

point in time. Physiological research has illustrated that biological vision systems use

neuronal circuits to extract movement in the visual scenes [38]. Biological visual sys-

tems are intrinsically complex hierarchical processing systems with diverse specialised

neurons, displaying very powerful specific biological processing functionalities that tra-

ditional computer vision techniques have not yet fully emulated [38]. Another important

finding during the last decades, that most neuromorphic designers may overlook is the

fact that processing of the visual information is not serial but rather highly parallel [23]

and hence such implementations should target parallel architectures.

A concept proposed and implemented in [21], shows that motion information can

be capture with the use of one retina sheet and two LGN sheets (one ON and one

OFF). Orientation preference has successfully been modelled using a Gain Control,

Adaptation, Laterally (GCAL) model consisting of four two-dimensional sheets. Solari

et al. [58], presented a feed-forward model based on the biological visual system to

solve motion estimation problem. The model integrates media temporal (MT) neurons

for estimation of optical flow by extending it into a scalable framework. What is missing

from their model is the feedback capabilities as perceived in the visual pathway, but the

results are very promising and acts as a good starting point for building bio-inspired

scalable computer vision algorithms.
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