
Embedding Algorithm for Virtualizing

Content-Centric Networks in a Shared Substrate

Shengquan Liao∗, Xiaoyan Hong†, Chunming Wu∗, Ming Jiang ‡

∗College of Computer Science and Technology, Zhejiang University, P.R. China
†Department of Computer Science, University of Alabama, Tuscaloosa, AL 35487

‡Institute of Software and Intelligent Technology, Hangzhou Dianzi University, P.R. China

shengquan-liao@163.com, hxy@cs.ua.edu, wuchunming@zju.edu.cn, jmzju@163.com

Abstract—Network virtualization enables diversified network
architectures to coexist in a substrate network. Content-centric
network (CCN), as one of the major proposals for the future
network, can be deployed in the virtualized environment. How-
ever, the recent work that has attempted in this direction has
not addressed issues concerning the unique resource usage of
CCN in resource allocations during the embedding procedure
when instantiating a virtual CCN (VCCN). The unique problem
is the cache component, i.e., the content store, in CCN. This
paper will develop a VCCN Mapping Algorithm (VCCNMA) that
optimizes the performances of VCCN considering the content
store request in addition to CPU and bandwidth. Since the
resource allocation problem is NP-hard, this paper thus proposes
a heuristic algorithm. Several sets of simulation experiments are
performed to evaluate the acceptance ratio, the network cost, the
storage utilization ratio and load balance. Results show that the
algorithm can achieve better performances. Moreover, the paper
also studies the tradeoffs between the network cost and the load
balance.

Keywords - virtual network mapping; content-centric
networking; network virtualization; distributed storage allo-
cation; storage load balance

I. INTRODUCTION

Content-Centric Networking (CCN) [1] is one of the main
clean-slate architecture for the future Internet [2]. Under
this communication architecture, consumers broadcast interest
packets and those who have the content chunks serve the data
packets. During the transmission, routers can comprehend the
content name and cache the content chunk in their content
stores. Therefore, it is possible for any routers to satisfy
an interest packet, if the content name matches a cached
chunk, without further forwarding the interest packet to the
data source. The CCN architecture has many benefits, for
example, improving performances [3] and lowering network
costs [4]. On the other hand, network virtualization allows
different network services and experiments to coexist in a
shared substrate network [5, 6 and 7]. It is regarded as
a technology that is able to become a long-term solution
for reconciling the co-existence issue for Today’s Internet
and multiple future network innovations [8]. As such, we
believe that CCN, a popular future network proposal, can be
embedded as a sliced instance in the virtualized environment.
In addition, we also believe that embedding CCN is beneficial
both for its real production uses and experimental validations.
It can be expected that the large-scale network testbeds (e.g.

Prof. Chunming Wu is the corresponding author.

GENI [6] and PlanetLab [9]) can be fully utilized to validate
performances of innovations in CCN.

This paper is to address the resource allocation problem in
the VCCN embedding procedure that instantiates a VCCN onto
the substrate network. The major problem is how to allocate
resources of the substrate network to support the request of
slicing a VCCN request. Usually, CPU and bandwidth are
considered in general virtual network embedding modules [10,
11 and 12]. However, CCN has its unique cache component,
i.e., the content store [1]. No existing work has considered the
storage demands in the embedding issue. Yet, as shown in this
paper, such a consideration can lead to efficient algorithms that
improve the performance of a sliced CCN.

In this paper, we will develop an efficient VCCN Mapping
Algorithm (VCCNMA) to optimize the performance of CCN
when running in the network virtualization environment by
considering its unique content store allocation needs. The key
idea we propose in VCCNMA is to distribute the requested
storages along the routing paths in the substrate network,
whilst assigning CPU and bandwidth resources in a greedy
way. However, the storage allocation optimization problem
is proven to be a Integer Linear Program (ILP) which is a
typical NP-hard problem [11]. As such, we relax the ILP to a
convex programming, and introduce a heuristic solution (SAA)
for the distributed storage allocation issue. Several simulation
experiments are then performed to evaluate VCCNMA in term
of the acceptance ratio, the network cost, the storage utilization
ratio and load balance. The results show our algorithm can
achieve better performances.

In addition, the embedding algorithm needs to consider
the tradeoff between the access cost and the balance of the
storage load. The access cost can be lowered if more storage
resources are assigned closer to the destination node. However,
this strategy can threaten the storage load balance needed by
the Internet Service Providers (ISPs). To tackle the conflict, we
introduce a weight factor in the proposed heuristic algorithm.
The desired trade-off between the load balance and the access
profit can be achieved by adjusting the weight. Simulations are
performed to show how the weight influences the tradeoff.

The rest of the paper is organized as follows: In Section
II, we present the embedding model and problem formulation.
Section III describes VCCNMA in detail. Section IV gives
simulation results validating our proposed algorithm. Finally,
a conclusion is presented in Section V.

II. CONSIDERATION OF STORAGE ALLOCATIONS

A. Models for Virtual and Substrate Networks

Current researches on embedding a virtual network to a
substrate focus on improving the acceptance ratio and reducing
the network cost, where constraints are usually the CPU
capacity and bandwidth in virtual nodes and links. Hence,
corresponding solutions are mostly heuristic so as to reduce
the computational complexity [10, 11 and 12]. There are
other works trying to implement CCNs in the virtualized
environment [13, 14]. However, issues concerning the unique
resource usage of CCNs during the embedding procedure,
specifically, the storage resource for content store, remain
open.

Here we present a virtual network to physical network
(V2P) model that captures the VCCNs’ mapping. The model
includes adding the “storage” attribute for virtual/physical
nodes and the direct routing constraint for virtual links in
comparison to the general model in Ref. [10, 11 and 12]. The
proposed core strategy is to distribute the requested storage to
several physical nodes along the substrate path which carries a
virtual link. Thus, we use a directed graph to denote the virtual
network, and an undirected graph for the physical network.
Under this model, the traditional undirected virtual link can
be viewed as two overlaid directed ones. Further, we treat the
forwarding behavior of interest packets to be bi-directional in
the substrate network to ease the modeling of locating chunks
in CCN. This treatment is reasonable because the interest
packets are small and consume little bandwidth. Such a model
has reduced complexities in the resource allocation, but it
keeps CCN protocol behavior intact.

B. Benefit analysis of distributed storage allocation

A

The available CPU and Storage resources

B C D

a b
30 10 30 25 20

50 10 20 25 15 20 30 20

The CPU and Storage request

(a) Traditional Virtual Network Embedding

A

B C D

a b

30 10 5 20

50 10 20 25 15 20 30 20

(b) Virtual Network Embedding with Distributed Storage Allocation

10

f1 f2

f4

f3

10 10

Fail

30 2
Succeed

f2

f1

f3

f4

Fig. 1: Mapping CCN using two virtual network models

The acceptance ratio is the main metric to gauge the
successfulness of a mapping algorithm. It can be enhanced
when the storage capacities of all nodes along the substrate
path are cultivated for distributed storage allocations. In our
model, the locations and the capacities of the storage nodes

are both considered. Fig.1 depicts the CCN mapping under
the traditional and proposed virtual network embedding model,
respectively. The virtual network (VN) has only two nodes
and one link (b→a), and the physical network (PN) has four
nodes on a line (D↔C↔B↔A). The number in the square
box indicates the requested or available CPU resources on the
virtual/physical nodes, and the number in round box indicates
the requested or available storage resources. In this case, we
assume the requested bandwidth of (b→a) can be satisfied by
the substrate network.

A traditional forwarding mapping creates a tunnel for the
virtual link onto the substrate path. As shown in Fig.1.a,
the virtual link (b→a) is mapped onto the substrate path
(D→C→B→A), where the bandwidth resources are reserved
for data packets and the virtual node a and b are embedded
onto the substrate A and D, respectively. If the requested
storage of the virtual node b is 30, the embedding of b to
D would fail because the substrate node D does not have
enough storage resources to host b’s need in the traditional
way. In contrast, the requested storage of 30 can be satisfied
in distributed storage allocations. As shown in Fig.1.b, the
requested storage 30 is distributed to nodes {B, C, D}, and the
virtual network embedding can succeeds. Hence, the distribut-
ed storage allocation has enhanced the VCCNs embedding
acceptance ratio.

Another advantage of distributed storage allocations is that
the routing efficiency would not be reduced in CCNs, rather,
be often increased. Take b’s requested storages being 20 and
its cached chunks being {f1, f2, f3, f4} as an example. In
the traditional mapping, all the requested storage of b would
be mapped onto D, and node A can get “f1” from D in three
hops (Fig.1.a). By the distributed storage allocation, “f1” can
be stored in B. Routing from D to B is in two hops, and A
gets “f1” from B in one hop. As a result, the total access cost
is three hops which is the same as that in traditional mapping,
when the access frequency F is 1.

More benefits can be achieved when F is bigger (F≫1).
According to the current usage of CCN, it is reasonalbe to
assume that F is much bigger than 1 because popular content
chunks are cached in routers [13]. Thus, in Fig.1.a, if A
requests content “f1” from D F times, the total network cost
is 3F. However, in distributed storage allocation (Fig.1.b), the
first visit has a cost of 3. For the rest F-1 requests, only 1*(F-
1) hops are needed because “f1” has been cached in B after
the first request. Thus, the total cost reduces to F+2. The
cost reduction is 2(F-1). In general, with distributed storage
allocations, the cost reduction is

∑

0≤i≤length ici(F − 1) in

average, where length is the total hops of the substrate path
and ci is the size of cache which is allocated to the ith node
away from the source node on the substrate path.

C. Whose requested storage can be divided?

Here we analyze how to distribute the requested storages
of virtual nodes. Although distributing requested storages of
source nodes has potential to achieve higher access profits.
Not all the virtual source nodes’ requested storages could be
partitioned. Further work of transformation of the input virtual
network graph is needed. Using the term of graph theories,
virtual source nodes could be classified according to their out-
degrees. For instance, the set {a} and {b,c,d} in Fig.3.a contain

8 10

G
V

,
c

a b

d

e

10
5 6

(a) Original Virtual Network Request

7

7 5

4 2

9 4
36

5

8 10

G
V c

a b

d

e

10
5 0

(b) Modified Virtual Network Request

7

7 0

4 2

9 0
36

5

5

6

4

Transfer requested storage

0

0

Fig. 2: Preprocessing virtual network inputs

nodes of out-degree of two and one, respectively. Fairness
consideration speaks against find dividing and distributing the
requested storage of virtual nodes with two or more out-
degrees. As the example in Fig.2.a shows, if we assign the
requested storage of a on the substrate path of the virtual
link(a→b), the virtual node c will suffer unfair treatment,
because more hops to access the cached contents in b would be
needed. Hence, we suggest to distribute the requested storage
of the source nodes whose out-degree is 1 in the virtual
network.

With the above analysis, each input virtual network can
be transformed to a new graph. The requested storage of the
source nodes which meet the afore-mentioned requirements
can be transferred to its adjacent virtual link and so the virtual
link has the “storage” attribute. Hence, the original input
(Fig.2.a) can be transformed to Fig.2.b.

D. Problem Formulation

It is noted that the storage distribution along the substrate
path does not have to be uniform. There are cases that one
wanting more cost reductions tends to assign more storage to
substrate nodes that are closer to the destination. For example,
if we transfer C’s allocated storages (10 units) to B in Fig.1.b,
10*(F-1) more benefits could be achieved under the average F
accesses for each unit. Doing this would, however, jeopardize
the storage load balance in the substrate network, because a
balanced storage load distribution is needed to increase the
acceptance ratio [10]. There is obviously a trade-off between
the contradictory requirements and we found that VCCN
mapping with Balancing the Access Profit and the storage Load
Balance (VCCN-BAPLB) is equivalent to the traditional virtual
network embedding problem, where the storage load and the
access benefit from distributed storage allocations under any
mapping can be viewed as 0 when the requested storage of all
virtual nodes is 0. It has been proven that the virtual network
embedding problem can be reduced to a NP-hard problem
[15]. Therefore, VCCN-BAPLB is also NP.

III. ALGORITHM DESIGN

In this section, we formulate our object which seeks for
a trade-off between the access benefit and the storage load
balance during the storage allocation. After the issue is proven
to be NP, a heuristic algorithm (SAA) is proposed for the
solution. VCCNMA starts with a greedy node embedding,
and then uses the K-shortest algorithm to find substrate paths
for virtual links, followed by distributing requested storage of
virtual links to nodes along the substrate path with SAA.

A. Trade-off between the access benefit and the load balance

We denote the substrate network by an undirected graph
GS=(NS , ES , AS

N , AS
E), where NS and ES are the set

of substrate nodes and links, respectively. Substrate nodes
and links are associated with their attributes AS

N and AS
E ,

which accounts for CPU, storage and bandwidth. On the other
hand, the virtual network is described by a directed graph
GV =(NV , EV , CV

N , CV
E), where NV and EV refer to the

set of virtual nodes and links, respectively, and CV
N and CV

E

are constraints for virtual nodes and links in terms of CPU,
storage and bandwidth. The nodes in NV which satisfy the
requirements for distributed storage allocations are put into
the set Φ. Thus, the VCCN embedding can be defined as the
following mapping:

M: GV �−→ (N
′

, P
′

, RN , RL),
where N

′

⊂NS , P
′

is a loop-free path in the substrate network.
RN and RL are the resources of substrate nodes and links
allocated to the virtual network GV . The mapping is feasible
when the following conditions are satisfied:

bwres(p
′

)≥bw(ev), for ev �−→p
′

(1)

cpures(n
′

)≥cpu(nv), for nv �−→n
′

(2)

storageres(n
′

)≥storage(nv), for nv �−→n
′

, iff n
′

/∈Φ (3.1)
∑

n
′∈p

′

storageres(n
′

)≥storage(nv), for nv �−→n
′

, iff n
′

∈Φ (3.2)

n
′

and p
′

are elements in N
′

and P
′

, respectively. nv

and ev are virtual nodes and links in GV . It means the
requested bandwidth should be fulfilled in the substrate path.
That also requires the requested CPU and storage resources of
virtual nodes must be satisfied by the residual resources of its
host nodes, if the virtual nodes’ requested storages cannot be
divisible. Otherwise, we distributed the requested storages of
divisible nodes to the physical nodes along the substrate path.

If the requested storages of v1 is divisible and the virtual
link −−→v1v2 is mapped onto the substrate path −→p =(ns

0, ns
2, ...,

ns
t), we should distribute the requested storages of v1 to its

physical path {ns
0, ns

2, ..., ns
t} for maximizing access profits

and minimizing load differences in the storage mapping.

Define 1: We use L= max{

∑

nv↑ns
storage(nv)

storage(nv) }, ns∈{ns
0,

ns
1, ..., ns

t} to denote the storage’s load balance on the substrate
path.

∑

nv↑ns storage(nv) is the sum of requested storages of
virtual nodes mapped onto ns. We can see that L is the largest
storage utilization ratio among nodes on the substrate path.

Define 2: If the size of a content chunk is 1, the requested
storage Ctotal of the virtual node v1 is distributed to nodes
{ns

0, ns
1, ns

2, ..., ns
t} as the vector {cs

0, cs
1, cs

2, ..., cs
t}, where

t is the length of the substrate path and ci is the cache size
allocated to the ith node away from the source node in the
path. As is analyzed in Section II, we can define the access
profits of distributed storage allocations as:

B =
∑

0≤i≤t i · ci · (F − 1) (4)

The more storages are allocated for substrate nodes closer
to the destination node, the more benefits could be achieved.
However, it would break the load balance constraint. Hence,
we introduce a integer linear program to describe this problem.

objective: minimize α·K·L - B (5)
s.t.

ci ≤ storageres(ns
i), 0 ≤ i ≤ t (6)

∑

0≤i≤t

ci = Ctotal (7)

ci ∈ N, 0 ≤ i ≤ t (8)

The objective (Eq.5) is to guarantee the storage’s load
balance (Define 1) of substrate nodes, whilst maximizing the
access benefits (Define 2) in distributed storage allocations.
Constraint (6) says that the substrate nodes must have enough
capability to accept those allocated storages; while constraint
(7) guarantees that the sum of distributed storage resources is
equal to the total requested storage of the virtual source node.
In Eq.8, the allocated storages for all nodes along the path
should be a multiple of the content chunk size, assuming the
size of a content chunk is 1.

The distributed storage allocation is a integer linear pro-
gram which is a well-known NP-hard problem [11]. However,
the constraint (8) could be relaxed as the following constraint:

ci ≥ 0 (9)
After the relaxation, we name the new linear program as
Storage LP RELAX. It is based on a convex optimization as
formulated in the following:

We suppose that the current storage load vector of all nodes
along the substrate path is S=(s0,s1,s2,...,st) and the solution
vector is C=(c0,c1,c2,...,ct). If the storage capacity vector for
these nodes is R=(r0,r1,r2,...,rt), our objective (Eq.5) could be
rewritten as follows:

F(C)=α·K·max{ si+ci

ri
}-P·CT ·(F-1), i ∈ {0, 1, 2, ..., t}

where P=(0,1,2,...,t) is coefficient vector to calculate access
benefits. Then we prove that our objective is convex.

To simplify our description, we replace max{ si+ci

ri
}(i ∈

{0,1,2, ..., t}) with max {S+C
R

}. Also, we assume the solution

space of Storage LP RELAX is Θ. X and Y are the two
solution vectors in Θ. If θ ∈ (0, 1) and (1-θ)·X+θ·Y ∈ Θ:

F((1-θ)·X+θ·Y)

= α·K·max{S+(1−θ)·X+θ·Y
R

} + P·((1-θ)·XT +θ·Y T)·(F-1)

≤α·K·max{ 2S+(1−θ)·X+θ·Y
R

} + P·((1-θ)·XT)·(F-1)

+ P·(θ·Y T)·(F-1)

≤ α·K·max{S+(1−θ)·X
R

} + P·((1-θ)·XT)·(F-1)

+ α·K·max{S+θ·Y
R

} + P·(θ·Y T)·(F-1)
≤ F((1-θ)·X) + F(θ·Y)

Therefore, the objective function F(C) is convex, and this con-
vex optimization (linear program) can be solved in polynomial
time with the interior-point polynomial algorithm or ellipsoid
algorithm [16].

B. VCCN Mapping Algorithm

When the requested storage of all virtual nodes is set as
0, the VCCN mapping issue is equal to the traditional virtual
network embedding which is NP. Hence, we can conclude the
VCCN mapping is a NP problem, and a heuristic algorithm
(VCCNMA) is then proposed for the problem. Initially, we pre-
process the input virtual network with discussions in Sec.II.C.
After that, we give the following formula:

rank(ns) = storage(ns)·cpu(ns)·
∑

l∈Neighbor(ns)

bw(l) (10)

to compute the weight for virtual/substrate nodes. Then, virtual
nodes are mapped onto substrate nodes one to one according
to their ranks in values calculated with formula (10), followed

with the link mapping. In the link mapping phase, K-shortest-
path algorithm is utilized to find substrate paths for those
virtual links. Finally, we call SAA algorithm to distribute the
requested storages of virtual links to all nodes along the path.
If the link/node mapping and SAA succeed, we accept this
virtual network.

In SAA (Algorithm 1), for each virtual link in the modified

virtual network GV ′

, we choose the shortest path which met
the requested storages from its candidate path set to support
the virtual link for the reason that it consumes least band-
width resources. Then, we solve the relaxed linear program
(Storage LP RELAX) so as to distribute requested storages
to all nodes along the substrate path. Since the solution vector
is real, we then apply the branch-and-cut algorithm to get the
final integer assignment.

TABLE I: P-code of SAA

Algorithm 1: Storage Allocation Algorithm (SAA)

Input: the virtual network GV ′
, and the path set P S=

⋃

1≤i≤|EV ′
|
P s

i . (P s
i is

the K-path set including k candidate substrate paths for the virtual link ev
i in GV ′

)

Begin:

1. For each ev′

i ∈ Gv′

2. Sort elements in P s
i according to their lengths.

3. BOOL Flag = 0.

4. For each ps
i ∈ P s

i // ps
i =(ns

0, ns
1, ns

2, ..., ns
t)

5. if
∑

0≤i≤t

storageres(ns
i) ≥ storage(ev′

i)

6. Flag = 1, p = ps
i //Save the path

7. Break

8. end if

9. End for

10. if Flag = 0, then reject the request.

11. Solve Storage LP RELAX(storage(ev′

i), p)

12. Apply the branch-and-bound search for the final integer assignment.

13. End for

End

C. Complexity Analysis

In VCCNMA, the time complexity of the node mapping
is O(N2) for the greedy algorithm. The time complexity of
the link mapping is O(logN · N3) owe to the k-shortest-path
algorithm’s (O(logN · N + k · N)) (k ≪ logN) and the maxi-
mal number of links O(N2). Also, the Storage LP RELAX
could be solved in polynomial time by the ellipsoid algorithm
or Karmarkars interior point algorithm [16]. Although the
complexity of the branch-and-cut algorithm is exponential, we
can limit the iteration number for a approximate solution in
polynomial time.

IV. PERFORMANCE EVALUATION

The purpose of our evaluation is to validate that our heuris-
tic algorithm can achieve better performances in the acceptance
ratio, the access cost, the storage utilization ratio and load
balance. The comparisons are made to a baseline algorithm and
a random algorithm as no direct related work exists. Further,
the simulations also show that the tradeoff between the load
balance and the access profit can be controlled by a weight
factor.

A. Simulation settings

In this paper, the simulation environment is the same as that
in Ref.[12]. We use the brite tool [17] to generate a substrate

network with 100 nodes. Each pair of nodes in the network is
connected with a link with a probability 0.5. The available
CPU and storage resources for a physical node follow an
uniform distribution between 50 and 100. Also, the bandwidth
resource for a link is uniformly distributed in the range from
50 to 100.

In contrast, the number of VN nodes follows a unique
distribution between 2 and 10. Also, each pair of virtual
nodes is randomly connected with probability 0.5. The CPU,
Storage and bandwidth for a virtual node/link are all uniquely
distributed from 10 to 20. The virtual network requests (VNRs)
arrive following a Poisson process with an average rate of 4
VNs per 10 time units. Each VNR’s lifetime is 50 units. We run
for about 5000 time units, which corresponds to 2000 VNRs
on average in one instance of simulation.

We compare our algorithm with a baseline algorithm (BL-
VNE) [12] and a random algorithm (RVNE) [18]. BL-VNE and
RVNE both do not distribute the requested storages along the
substrate path. The difference between them is that BL-VNE
choses the host nodes according to their ranks in resources
in the node mapping phase, while RVNE randomly select the
mapping nodes.

B. Metrics

1) Acceptance ratio: We define our acceptance ratio as
formula (11), which is the division of the number of accepted
virtual networks and the total VNRs.

acceptance ratio =

∑

T

i=0
M(GV

i)
∑

T

i=0
GV

i

(11)

2) Average network cost: The total network cost is the
sum of expenses to access those requested storages via the

virtual link ev′

with an average frequency F ev′

. We can get
the Average Network Cost (ANC) by dividing the total cost
with the number of virtual links.

ANC1 =

∑

ev′
∈Ev′

length
ev′ ·

∑

0≤i≤length
ev′

cev′

i

|Ev′ |
iff: Fev′ =1 (12)

ANCF
ev′

=

∑

ev′
∈EV ′

∑

0≤i≤length

(F ev′

−1)(length−i)cev′

i

|Ev′ |
+ AVC1

iff: Fev′ > 1 (13)

cev′

i is the requested storage of the virtual link ev′

allocated
for the ith node away from the source node on the path. length

is the total hops of the substrate path of ev′

, and F ev′

is the

average access frequency for ev′

’s requested storages.

3) Average storage utilization ratio and standard deviation
of the storage resources in the substrate network: The
average storage utilization ratio is a quotient of the sum of
current substrate nodes’s storage utilization ratio divided by
the number of nodes. It is presented in formula (14):

Ustorage =

∑

ns∈NS

∑

nv∈NV ∧nv↑ns

storage(nv)

storage(ns)

|NS |
(14)

As for the standard deviation of the storage resources, we
defined as formula (15):

Uσ=

√

√

√

√

√

∑

ns∈NS

(

∑

nv∈NV ∧nv↑ns

storage(nv)

storage(ns)
−Ustorage)2

|NS |
(15)

C. Simulation results and analysis

Initially, α is assigned as 1, while K is set as 100 to balance
the magnitude of the two values. After that, we solve the
integer linear program with ILOG CPLEX [19] and get the
statistical results in the acceptance ratio, the network cost,
the average storage utilization and load balance (standard
deviation). Then, we observe the relation between the access
frequency and the access benefits. Finally, we discuss how α
influences the storage load balance and the network cost.

Fig.3 shows VCCNMA outperforms BL-VNE (10%) and
RVNE (20%) in term of the acceptance ratio. Without the
distributed storage allocation, virtual nodes in BL-VNE and
RVNE should find physical nodes that concurrently meet CPU
and storage requests as their hosts. In contrast, virtual nodes
only need to find those with enough CPU as their hosts in
VCCNMA. Hence, the node mapping of VCCNMA is easier
to succeed than that of BL-VNE and RVNE, which leads to
a higher acceptance ratio. Correspondingly, this means more
virtual network requests could be successfully mapped onto the
substrate network with VCCNMA. Therefore, each substrate
node would have a higher storage load in average, as has been
confirmed in Fig.4.

Fig.5 describes comparisons of three algorithms on the
standard deviation of the storage utilization. Fig.5 shows that
VCCNMA can keep a higher performance in the storage load
balance in substrate nodes. That is because VCCNMA breaks
big storage requests into multiple caches. Thus, the differences
in the storage utilization among substrate nodes are smaller
than those of the other two schemes. Hence, the storage load
is much more balanced in substrate nodes.

As is shown in Fig.6, the higher the average access fre-
quency is, the more benefits the distributed storage allocation
can gain. More specifically, the network cost is almost the
same when the average access frequency (F) is 1. However,
we can obtain more benefits when F changes from 2 to 6. If
the requested storages are allocated closer to the clients, clients
can access these content chunks via fewer hops. Obviously, the
access benefits is proportional to the access frequency.

Fig.7 and Fig.8 show that α can adjust the tradeoff between
the storage load balance and the network cost. When α
becomes larger, optimizing the storage load balance becomes
more important in our objective function. Hence, the standard
deviation of the storage utilization would be smaller and
smaller. As shown in Fig.7, when α changes from 0.1 to 5,
the storage load is more and more balanced in the substrate
nodes because its standard deviation is becoming smaller. In
contrast, the benefit would decrease and the average network
cost would increase, which has been confirmed in Fig.8 where
the network cost increasingly becomes larger when α becomes
bigger.

V. CONCLUSION

In this paper, we introduced the problem concerning the
storage need when embedding CCNs onto the substrate net-
work, and proved that the problem is NP. As such, we

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Time Unit

A
c
c
e
p
ta

n
c
e
 R

a
ti
o

BL−VNE

RVNE

VCCNMA

a = 1, K = 100

Fig. 3. Comparison on Acceptance Ratio

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time Unit

A
v
e
ra

g
e
 U

ti
liz

a
ti
o
n
 o

f
S

to
ra

g
e

BL−VNE

RVNE

VCCNMA
a = 1, K = 100

Fig. 4. Comparison on Average Storage Utilization

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.05

0.1

0.15

0.2

0.25

Time Unit

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n
 o

f
S

to
ra

g
e
 U

ti
liz

a
ti
o
n

BL−VNE

RVNE

VCCNMA
a = 1, K = 100

Fig. 5. Comparison on Standard Deviation
of Storage Resources

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

50

100

150

200

250

300

Time Unit

A
v
e
ra

g
e
 C

o
s
t

fo
r

A
c
c
e
s
s
in

g
 t

h
e
 S

to
ra

g
e

BL−VNE (F=1)

BL−VNE (F=2)

BL−VNE (F=6)

VCCNMA (F=1)

VCCNMA (F=2)

VCCNMA (F=6)

Benefits of Distributed Storage (F = 6)

Benefits of Distributed Storage (F = 2)

a = 1, K = 100

Fig. 6. Comparison on the average network cost
with different F

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time Unit

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n
 o

f
S

to
ra

g
e
 U

ti
liz

a
ti
o
n

VCCNMA (a=0.1)

VCCNMA (a=1)

VCCNMA (a=2)

VCCNMA (a=5)

K = 100

Fig. 7. Comparison on storage load balance
with different α

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
20

40

60

80

100

120

140

160

Time Unit

A
v
e
ra

g
e
 C

o
s
t

fo
r

A
c
c
e
s
s
in

g
 t

h
e
 S

to
ra

g
e

VCCNMA (a=0.1)

VCCNMA (a=1)

VCCNMA (a=2)

VCCNMA (a=5)

K = 100, F = 6

Fig. 8. Comparison on the average network cost
with different α

developed a heuristic algorithm (VCCNMA) to solve for
efficient embedding that yields better VCCN performances.
Several simulation experiments have validated that VCCNMA
can achieve higher performances in the acceptance ratio,
the average storage utilization, the storage load balance and
network cost. The results also show that we can control the
tradeoff between the load balance and the access benefits with
a weight factor.

ACKNOWLEDGMENT

This work is supported by the National Basic Research
Program of China (2012CB315903), the Program for Zhe-
jiang Leading Team of Science and Technology Innovation
(2011R50010-05, 2013TD20), the National Science and Tech-
nology Support Program (2014BAH24F01), 863 Program of
China (2015AA016103), and the National Natural Science
Foundation of China (61379118).

REFERENCES

[1] Van Jacobson, Diana K. Smetters, et al. Networking Named Content,
Proc. of ACM CoNext09, pp. 1-12, 2009.

[2] Pedro Henrique, V. Guimaraes, et al. Experimenting Content-Centric

Networks in the Future Internet Testbed Environment, pp. 1383-1387.

[3] Psaras I, Clegg R G, et al. Modeling and evalutaion of CCN-caching

trees, in Networking 2011, Springer Berlin Heidelberg, pp. 78-91, 2011.

[4] Tyson G, Kaune S, et al. A trace-driven analysis of caching in content-

centric networks, Proc. of IEEE ICCCN 2012, pp. 107, 2012.

[5] Anderson T, Peterson L, et al. Overcoming the Internet impasse through

virtualization, Computer, 2005(4): 34-41.

[6] GENI: www.geni.net

[7] Bavier A, Feamster N, Huang M, et al. In VINI veritas: realistic

and controlled network experimentation, Proc. of ACM SIGCOMM
Computer Communication Review, 36(4): 3-14, 2006.

[8] Nick Feamster, Lixin Gao, et al. How to Lease the Internet in Your Spare

Time, in ACM SIGCOMM Computer Communication Review, 37(1): 61-
64, 2007

[9] PlanetLab: www.planet-lab.org

[10] Zhu Y., Ammar M. H., Algorithms for Assigning Substrate Network

Resources to Virtual Network Components, Proc. of IEEE INFOCOM
2006, pp. 1-12, 2006.

[11] Chowdhury N. M. M. K., Rahman M. R., et al. Vritual Network

embedding with coordinated node and link mapping, Proc. of INFOCOM
2009, pp. 783-791, 2009.

[12] Minlan Yu, Yung Yi, et al., Rethinking virtual network embedding:

substrate support for path splitting and migration, in ACM SIGCOMM
Computer Communication Review, 38(2): 17-29, 2008.

[13] Masato Ohtani, Keiichiro Tsukamoto, et al. VCCN: Virtual Content-

Centric Networking for Realizing Group-Based Communication. In Proc.
of ICC 2013.

[14] S. Salsano, et al. Information centric networking over SDN and Open-

Flow: Architecture aspects and experiments on the OFELIA testbed. Vol.
57, No. 16, pp. 3207-3221, Nov. 2013.

[15] D. G. Andersen. Theoretical approaches to node assignment, Unpub-
lished Manuscript, 2002.

[16] A. Schrijver, Theory of linear and integer programming, John Wiley &
Scons, 1986.

[17] BRITE : Topology Generator, [Online] Available:
http:www.cs.bu.edubrite

[18] S. Zhang, et al. Virtual Network Embedding with Substrate Support for

Parallelization, in Proc. of Globecom 2012, pp. 2615-2620, 2012.

[19] ILOG IBM., Cplex optimization studio, [online:]
http:www-01.ibm.comsoftwarecommerceoptimizationcplex-optimizer

