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Abstract Compared to traditional point load forecasting,

probabilistic load forecasting (PLF) has great significance

in advanced system scheduling and planning with higher

reliability. Medium term probabilistic load forecasting with

a resolution to an hour has turned out to be practical

especially in medium term energy trading and can enhance

the performance of forecasting compared to those only

utilizing daily information. Two main uncertainties exist

when PLF is implemented: the first is the temperature

fluctuation at the same time of each year; the second is the

load variation which means that even if observed indicators

are fixed since other observed external indicators can be

responsible for the variation. Therefore, we propose a

hybrid model considering both temperature uncertainty and

load variation to generate medium term probabilistic

forecasting with hourly resolution. An innovative quantile

regression neural network with parameter embedding is

established to capture the load variation, and a temperature

scenario based technique is utilized to generate temperature

forecasting in a probabilistic manner. It turns out that the

proposed method overrides commonly used benchmark

models in the case study.

Keywords Probabilistic load forecasting, Feature

embedding, Artificial neural network, Quantile regression,

Machine learning

1 Introduction

Power load forecasting plays a core role in planning and

scheduling of power system, for it not only reduces the

costs of mismatching between generated power and actual

demand, but also enhance the reliability of the whole

system by eliminating the inadequate dispatching of

energy. Among all literature introducing load forecasting

techniques, most of them focus on point forecasting by

generating fixed forecasting point at a specific moment in

the future. Nevertheless, the power load is becoming

cumulatively volatile with the growing fluctuation and

uncertainty caused by natural and manual variation such as

distributed renewable energy integration. As a result,

forecasting approaches reflecting uncertainty on load are

required by increasing number of decision-makers in the

energy industry. Apparently, single-point prediction cannot

represent the randomness appearing in load, and may

sometimes invalidate the investment on power supply

because of the sporadic gap between real and predicted

values [1, 2].

Compared with point forecasting, probabilistic load

forecasting describes the variation of the load by providing

outputs in form of probability density function (PDF),

confidential intervals, or quantiles of the distribution. It can

be more suitable to confirm objective demands in system
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planning and energy trading, therefore being utilized in a

wider range.

Literature on probabilistic load forecasting are relatively

limited compare to traditional point forecasting. According

to Hong and Fan [3], the combination of two or three of the

following component can be utilized to generate proba-

bilistic load forecasts: creating input scenario simulation,

designing probabilistic models, and transforming point

forecasts to probabilistic forecasts through post-processing.

References [4–6] mainly utilized input scenario simulation,

therefore, creating probabilistic forecasts. In [7], three basic

input scenario generation methods, fix-date, shifted-date,

bootstrap, were discussed, and an empirical study on these

methods was established, measured by pinball loss.

Besides, more efforts have been devoted to generating

probabilistic forecastingmodels. They can be summarized in

following aspects: time series based, statistical regression

based, sequence operation theory-based, and other machine

learning method based. Fang [8] proposed a model based on

chaotic time series. Sequence operation theory (SOT) was

established by Kang [9], aiming to handle complicated

probabilistic modeling. It has been utilized in modeling

correlated stochastic variables [10] that can be used in gen-

erating probabilistic forecasts together with other statistic

models. Statistical and other machine learning models were

even more widely adopted in probabilistic forecasting like

multiple linear regression [5, 11], quantile regression [12],

gradient boosting [13], general addictivemodel (GAM) [14],

kernel density estimation (KDE) [15], etc.

In addition, probabilistic forecasts according to post-

processing are also proved to be effective. In Xie’s [6] and

Mcsharry’s [16] studies, residual simulation was used to

convert point forecasts to probabilistic forecasts. Liu [12]

applied forecasting combination to optimize results, which

tended to manifest a great boost in performance.

It can be concluded from the literature that probabilistic

forecasting has a wide time scope from short-term to long

term. Some of the works focused on short term proba-

bilistic load forecasting [1, 17], whereas even more works

were keen on medium and long term probabilistic load

forecasting [4–7, 14, 15], because there is great signifi-

cance in energy trading and system planning [3].

This paper offers a solution for long term probabilistic

forecasting in terms of hourly loads, applying the combi-

nation of input variable scenario simulation and a proba-

bilistic model to generate forecasts. Concretely, artificial

neural network (ANN) is utilized as the basic structure

capturing nonlinear relationships of variables. Although

ANN was mentioned in some literature related to proba-

bilistic load forecasting [7, 18], it was simply treated as

model generating point forecasts, yet the uncertainty of

outputs which can be described by the model itself was

ignored. Thus, we innovatively refined the traditional ANN

to an intricate model that can generate probabilistic fore-

casts. We first fed the model with multiple inputs generated

by the scenario-based method. Then regularized loss

resembling quantile regression as loss function to be opti-

mized by ANN, and advanced optimization algorithms to

avoid local minimum are adopted to describe the ran-

domness of the load in an annual scope.

Besides, we also use the embedding, a technique map-

ping low dimensional variables into high dimensional

space, which has been widely adopted in handling cate-

gorical variables in other neural-network scenarios

[19, 20]. It is proved to achieve better results than other

common techniques utilized in previous literature, like

one-hot encoding. Altogether, It turns out that the proposed

method overrides state-of-art benchmarks in medium term

probabilistic load forecasting in the dataset described in the

section of the case study.

It should be pointed out that some literature have

already considered both uncertainties in the input scenarios

and output variations. However, they either combined input

scenarios and output residual simulation based on rela-

tively statistical methodology [21], or traditional proba-

bilistic statistical model [14]. Compared to these efforts,

our method stands out in the fusing probabilistic outputs

into a malleable non-linear network, which does not require

setting up an extra combination of input variables and can

capture the non-linear dependencies between input and

output variables better due to its complex structure.

Our key original contributions can be summarized in

two aspects compared to previous researchers:

1) An ANN-based probabilistic forecasting model with

regularized quantile optimization objective is proposed,

considering both the randomness of inputs and the

output variation described by a solid non-linear model.

2) A novel embedding method is utilized to handle

categorical input variables, manifesting potential

effectiveness in enhancing the performance of load

forecasting. It has strong malleability in other

machine-learning related scenarios in the field of

scheduling and operation for the power system.

3) Dual uncertainties are considered based on the input

fluctuation and load variation described by a robust

non-linear model, which is relatively less considered

in previous studies.

The rest of the paper is organized as follows: Sect. 2

introduces the overall objection and procedure of the

proposed probabilistic load forecasting. Section 3, the core

methodology in generating temperature scenario and

describing load variation is proposed. Section 4 illustrates

the evaluation criterion to qualify the performance of

probabilistic forecasting and proposes several benchmark

models for comparison. In Sect. 5, case study with data
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from ISO New England is established to verify the

superiority of the proposed model. Finally, conclusions

are drawn in Sect. 6.

2 Framework

The objection of probabilistic forecasting proposed in

this paper is to generate hourly quantiles of probability

density function (PDF) of annual hourly load utilizing

information of one year and before. The overall procedure

of probabilistic load forecasting can be summarized as

follows. Figure 1 illustrates the procedure in a flow chart. It

consists of five main steps: outliers detection, trend anal-

ysis, data normalization, probabilistic forecasting models

training, and load variation and temperature uncertainty

combination.

2.1 Outliers detection

Two steps are designed for outliers detection. The first

step is a nave continuity-based method. It is hypothesized

that the hourly load should not have a dual-side salutation

at each point. So the anomalous criteria is set as:

Et is anomalous point, if only

j
Et�1 � Et

Et

j[ 50%

j
Etþ1 � Et

Et

j[ 50%

8
>><
>>:

ð1Þ

where Et�1 and Etþ1 denote the load one hour before and

after the time when Et�1 is recorded. This method can

effectively capture temporary misreporting caused by error

in auto measurement.

However, this nave method cannot capture outliers

beyond the temporary false record. Thus, the multiple linear

regression model (also Vanilla Model in [11]) is utilized as

an outliers detector in the second stage. This method is firstly

proposed and proved to be effective in [21]. The absolute

percentage error (APE) is calculated after fitting the histor-

ical hourly load for each hourly load in training set. The

original load observations in training set with APE values

higher than 50% are considered as outliers and are replaced

by values estimated by the outliers detector.

Besides, it should be stated that it is of great significance to

apply nave outliers detection in the first place. Granted, the

baselinemodel can be a panacea to detect andmodify relatively

sparse outliers, yet the model based method can be detrimen-

tally affected when the amount anomalous load points increa-

ses. For example, in bus load forecasting, the amount of outliers

appearing in the bus load data cannot be neglectable, therefore

researchers have to utilize a navemethod to clean the data in the

first place. It can be concluded that applying nave outlier

detection before other more advanced anomalous modification

method is quite necessary, bringing robustness to the process of

load forecasting as a whole.

2.2 Trend analysis

We extract the linear trend by simply adding linear

variables ranging from 0 to 1 as inputs of the following

regression model. The experiment results turn out that the

forecasting model performs better considering linear trend

than that without linear trend inputs.

2.3 Data normalization

Due to the scaling sensitivity of inputs fed into the

neural network, we set the inputs in the same scale by

normalizing temperature with a min-max scaler. The nor-

malized features fall in the range of [0, 1], and is calculated

with the following equation:

Inorm ¼
I � Imin

Imax � Imin

ð2Þ

where Inorm denotes the normalized value of numerical

input features; Imin, Imax denote the lowest and highest

values of all input features in this data set, respectively.

2.4 Training probabilistic forecasting models

considering load cariation

The first stage of forecasting is training a regression

model considering load variation, which is proposed as a

quantile regression neural network (QRNN) in this paper,

generating probabilistic results in the form of quantiles.

Normalized hourly variables (temperature, day types etc.)

Start

Normalization

Validation loss reaches opimum?

Generation of temperature scenarios

Load forecasting considering dual uncertainty

End

Training quantile regression neural network (QRNN)

Nave outliers dectection Model-based outliers detection

Fine tuning

N

Y

Fig. 1 Overall procedure of probabilistic load forecasting
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act as training features whereas corresponding hourly loads

are training labels, supervising the training process of

QRNN. The training process iterates with fine tuning the

parameters of the model, and it is terminated as long as the

validation loss no longer decreases.

2.5 Combining temperature uncertainty in load

forecasting on the basis of QRNN

Since QRNN is trained based on temporally simultane-

ous features, it cannot be utilized directly in forecasting

one year ahead because some features, like hourly tem-

perature in the next year, cannot be foreseen. So temper-

ature uncertainty should be considered in real forecasting

stage. The final results of load forecasting are generated by

replacing the simultaneous temperature fed into QRNN

with historical temperature scenarios.

3 Probabilistic load forecasting considering load

variation and temperature uncertainty

In this section, formulation of the forecasting problem is

illustrated, following the detailed description of the pro-

posed model in this paper.

3.1 Problem formulation

As is mentioned in Sect. 2, to implement a probabilistic

forecasting, we need to generate the PDF of the load for each

hour. The distribution can be discretely manifested by a

vector consisting of several quantiles of the PDF vector.

Thus, the forecasting problem can be formulated as follows:

Et ¼ hðTt; Trendt; MtÞ ð3Þ

where Et 2 R
Ns is the hourly power load vector at time t; Ns

is the dimension of vector, which also means the number of

quantiles s; hð�Þ denotes the general function mapping input

variables to the output load, which in this paper hð�Þ is

established by QRNN; Tt refers to hourly temperature;

Trendt stands for the linear trend, ascending linearly from the

first point to the last in the whole dataset; Mt (time mode)

consists of four components, which can be formulated as:

Mt ¼ fHourt;Weekdayt;Holidayt;Monthtg

where Hourt;Weekdayt;Holidayt;Montht are categorical

variables corresponding to time t.

3.2 Embedding technique for categorical variables

In a forecasting problem, categorical variables like the

day type at moment t should be converted to numeric

representations in order to fit the most numerical solved

formulas. Most common techniques are direct numbering

and one-hot encoding. Generally speaking, embedding is

technique mapping 1-dimensional categorical variables to

numerical features into high dimensional space. It is turned

out that the categorical variables mapped by embedding

technique capture more information of categorical vari-

ables than other common techniques due to its flexibility in

output vector dimensions and the complexity of embedding

parameters.

As is mentioned earlier, Mt contains several categorical

variables, each of which can be represented in higher-di-

mensional vectors. Concretely, in the first place, Mt is

converted directly to numerical vector mtT 2 R4. For

example, Mt contains {23:00, Tuesday, Not a Holiday,

January} can be expressed as ½23; 2; 0; 1�T in form of Mt.

Then, the embedded feature, which can also be called

latent vector is defined by:

Mem
t ¼ Mone�hot

t Q ð4Þ

where Mem
t 2 R4�Nem is the latent vector of time mode at

moment t; Mone�hot
t 2 R4�Nmax is one-hot representation of

mtT , where Nmax denotes the largest number of categories

in elements of Mt; Q 2 RNmax�Nem denotes the embedding

parameter matrix, containing Nmax � Nem individual

parameters, which can be learned and updated in the

training process together with other parts of the neural

network.

In order to connect to other parts of the network being

discussed in following paragraph, Mem
t should be flattened

to a vector by a flattening layer, then the final representa-

tion of categorical variables can be defined as:

mem
t ¼ flattenðMem

t Þ ð5Þ

where mem
t is a vector of R4Nem .

3.3 Quantile regression neural network

Artificial neutral network (ANN) has been proved to be

suitable for regression problem with multiple features due

to its complicated connection of variables and non-linear

transformation through activation function [22]. Most

commonly used ANN for regression problems utilize back

propagation (BP) algorithm to update parameters by min-

imizing the loss between outputs of ANN ŷ and real value

y, such as mean square error (MSE).

However, conventional neural network can only raise

single output at a time, which is incompatible with the aim

to forecast load in a probabilistic manner. Therefore, a

neural network for probabilistic forecasting is proposed

based on the fundamental structure of ANN. We name the

proposed model as QRNN (quantile regression neural
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network). The idea is that QRNN can generate vectors

consisting of quantiles of aimed PDF of hourly load by

adjusting parameters in defined loss function. Three layers

are constructed as the basic structure of QRNN. The first

layer is the concatenation of flattened embedding feature

mem
t , hourly temperature Tt, and linear trend Trendt. The

second layer is a fully connected layer with ReLU (Rec-

tified Linear Units) as activation function, connecting to

the third layer, with one hidden units as output. QRNN can

be formulated as:

Xt ¼ ConcatenateðTt; Trendt; mem
t Þ

Ês
t ¼ f ðWXt þ bÞ s ¼ 1; 2; . . .;Ns

�
ð6Þ

where f ð�Þ denotes the activation function; W and b are

weights and bias to be learned; Ês
t stands for sth quantile of

the estimated load distribution.

Figure 2 demonstrates the overall structure of QRNN.

The parameters of the neutral network are learned by

minimizing the loss function with back propagation. The

loss function for training the neural network is defined as:

L ¼
k1

2N
kQk2 þ

k2

2N
kWk2 þ

k3

2N
kbk2�

1

N

XN

t¼1

maxðEt � Ês
t ; 0ÞsþmaxðÊs

t � Et; 0Þð1� sÞ
� �

ð7Þ

It consists of two parts. The first part of the lost function act

as regularization preventing the QRNN from from over-

fitting. k � k is the Frobenius norm. k1, k2, k3 are parameters

controlling the power of regularization to each parameters

in the neural network. It shares the same idea with linear

regression with regularization such as ridge regression

[23], which is shown to achieve better performance than

regression without adequate regularization. The second

part accounts for minimizing the loss between real value

and predicted value with respect to different given quan-

tiles s, where N stands for the number of samples fed into

the network each time, Et and Ês
t are real value and pre-

dicted value corresponding to quantile s respectively.

By setting s as 1, 2, ..., Ns, Ns forecasting results at time

t, Ê1
t , Ê

2
t , ..., Ê

Ns
t are obtained through Ns QRNNs with

different loss function. By concatenating these results, the

estimation of Et is obtained as eEt.

3.4 Combining temperature uncertainty

on the basis of QRNN

It should be noted that eEt indicates the variation of load

knowing the exact simultaneous temperature beforehand.

However, in a medium term forecasting problem, we

cannot foresee the excessive annual horizon. As is

acknowledged that temperature in a specific zone does not

have similar pattern at the same moment for each year, the

hourly temperature can be forecasted by the stacking

temperatures at nearby moments in years before. Temper-

ature scenario generation for temperature forecasting is

proposed based on the aforementioned hypothesis and is

proved to be effective in modeling the uncertainty of

medium term hourly temperature [7].

To formulate the process, let Th
y;d be the real temperature

at hour h on the dth day of year y, then the temperature

scenario can be represented as:

Tshy;d ¼ f Th
y�y0;d�d0

j y0 2 ½1;m�; d0 2 ½�n; n� g ð8Þ

where Tshy;d is the temperature scenario containing ð2nþ
1Þm historical temperatures.

Then we replace Tt in (6) by elements in Tshy;d. As a

result, the outputs of QRNN captures both temperature and

load uncertainty. Final quantiles are generated according to

empirical distribution constructed by these outputs.

4 Comparison and evaluation criteria

In this section, several evaluation criteria in the field of

probabilistic forecasting are reviewed, and benchmark

models for further comparison in case study will be

proposed.

4.1 Evaluation criterion

Generally speaking, PDF of hourly loads provide maxi-

mum information on forecasting, yet it may not be practical

Et
1

Et
2

Et
3

Et
τ

Et

Et
Nt 2

Et
Nt 1

Et
Nt

Loss function 

of quantile τ

ReLU

Real

load

Minimizing

FlatteningTemperature: TtLinear trend: Trendt

Embedding

layer

Concatenating

layer

Hidden layer

Output layer

Activation 

function

One-hot

encoding

Parameter

embeddingTime mode: Mt

Nmax Nembedding

Fig. 2 Overall structure of QRNN model, modeling the load variation

when temperature is known beforehand
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to obtain the real PDFof real-world quantities and formost of

the time, the real PDF are downsampled with sparse empir-

ical results. Therefore, evaluation over simplified results

should be considered to be more practical. As is discussed in

[24], reliability, resolution, and sharpness are commonly

used evaluation criteria for probabilistic forecasting. In [25],

the author utilizes Prediction interval coverage probability

(PICP) as an evaluation criterion, which is described to be a

significant measure for the reliability of prediction intervals

[25]. Nevertheless, PICP only considers the upper and lower

bounds of the forecasting intervals, thus ignoring inner

characteristics of the distribution. To balance the complexity

caused by real PDF and potentially ignored information in

interval-based measures like PICP, pinball loss function is

presented as a sound evaluation criterion for load forecast-

ing. It is defined as:

LsðEt; ÊtÞ ¼
ðEt � ÊtÞs Et � Êt

ðÊt � EtÞð1� sÞ Êt[Et

(
ð9Þ

where Et, Êt stand for real and estimated load at time t

respectively; s is the targeted quantile of forecasting dis-

tribution. Actually, it is a similar representation of loss

function in (7). Pinball loss considers the holistic contri-

bution of forecasting results by integrating quantiles since

quantiles are discrete and can be set to a feasible quantity,

it can, therefore, simplifies the computing process. More-

over, it is obvious that a lower pinball loss indicates a

better forecasting result. This is the criterion being used to

evaluate the proposed method and benchmarks in this

paper.

4.2 Benchmark models

Three benchmark models are discussed and utilized in

performance evaluation. The first benchmark model is the

multiple linear regression model (MLR) appeared as out-

liers detector. It is regarded as nave benchmark models in

several probabilistic forecasting research [12, 14, 15]. The

model is defined by:

Et ¼ b0 þ b1 � Trendt þ b2Tt þ b3T
2
t þ b4T

3
t

þ b5 �Montht þ b6 �Weekdayt

þ b7 � Hourt þ b8 � Hourt �Weekdayt

þ b9Tt �Montht þ b10T
2
t �Montht þ b11T

3
t �Montht

þ b12Tt � Hourt þ b13T
2
t � Hourt þ b14T

3
t � Hourt

ð10Þ

where Et denotes the hourly load; Montht, Weekdayt, Hourt
are one-hot encodings of categorical variables; Trendt
denotes a linear trend component in all training data; Tt is

the dry-bulb temperature.

In addition, a neural-network based model is introduced

with (10) as optimizing target, we denote this model as

MLP (multi-layer perceptron). This model act as a parallel

with MLR since they all take in similar inputs and estimate

parameters by optimizing the same objective (10), and

merely consider temperature uncertainty. MLP has a sim-

ilar structure with QRNN, yet it contains no embedding

layers, only one hidden layer after the inputs are fed into

the network, and ReLU as the activation function.

Except MLR and MLP as benchmark models, another

benchmark model is proposed considering both uncertain-

ties in temperature and load variation when inputs are fixed

with linear quantile regression (LQR). To express load

variation more directly, we train the quantile regression

model separately on each hour and day type in order to

connect hourly load directly with fixed temperature and its

polynomials as the only inputs. For a specific hour and day

type, the LQR model is given as:

Es
t ¼ b0 þ b1Tt þ b2T

2
t þ b3T

3
t ð11Þ

where Es
t is hourly load with quantile s; Tt is corresponding

temperature. The estimation of Yt;s is calculated by mini-

mizing (9).

Besides, it should be mentioned that Tt should be

replaced by temperature scenarios in final forecasting for

all of the three benchmark models, generating probabilistic

forecasting results.

5 Case study

In this section, we demonstrate an experiment based on

real world dataset. This section will be organized as fol-

lows. The proposed model is built up with Keras, an

advanced deep learning library in Python, and benchmark

models are built up with Scikit-Learn.

5.1 Introduction of dataset and experiment settings

The hourly load and corresponding weather information

are obtained from the official website of ISO New England,

which is accessible to the public. The data consists of 8

different zones in New England, US. We only utilize the

time information (hour, week, month, year), load, and

drybulb temperature in this case study. In our experiment,

the data from 2004 to 2015 are selected as the combination

of our training set, validation set, and test set.

Figure 3 shows load variation and temperature uncer-

tainty appeared in the recorded data. It can be concluded

from Fig. 3a that even the temperature and other input

variables are fixed, the load still appears to fluctuate.

Besides, Fig. 3b indicates that temperature has great
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uncertainty at the same time of each year. Therefore, dual

uncertainties should be considered to generate a more

reasonable probabilistic forecasting intervals.

5.2 Procedures of proposed forecasting approach

in the experiment

Above all, dual stage anomalous detection is imple-

mented. Figure 4a demonstrate a anomalous measure

record captured by the nave outliers detection method.

Figure 4b shows the anomalous drop in load monitored by

the model-based outliers detector.

Then training process on the training set is implemented

by feeding normalized data described by (2) into QRNN.

Concretely, seven years of hourly load and temperature

from 2008 to 2014 serve as the training set, whereas 20%

of the training set is randomly split as the validation set

during each training epoch and stop training in advance by

monitoring the validation loss. Concretely, when the vali-

dation loss does not decrease for 5 epochs, the training

process is terminated. Besides, we tune the parameters:

learning rate of the optimizer lr, the dimension of

embedding layer Nembedding, and regularization factors k1,

k2, k3 by minimizing the validation loss. Hourly data in

2015 are used for test of final forecasting performance. The

outputs of QRNN are 9 quantile values Ês estimated by

minimizing (7), setting s from 0.1 to 0.9. Figure 5 shows

the output intervals by QRNN with real temperature as an

input. The interval implies the variation of the load even if

the temperature is fixed.

In the second stage, as what has been declared in the last

section, the uncertainty of temperature needs to be con-

sidered by giving a probabilistic forecast on the hourly

temperature in 2015.

Temperature scenario based method demonstrated in

Sect. 3 is proved to be more effective than other temper-

ature forecasting techniques such as quantGAM [14] in this

specific case study. Concretely, m and n in (8) are set to be

4 and 10 in the case study for all models. As a result, 90
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temperature scenarios are generated and plugged into (6),

and there will be 810 ultimate forecasting results. Final 9

quantiles are generated from the empirical distribution

based on 810 results. Figure 6 shows the final results

considering both load variation and temperature

uncertainty.

5.3 Comparison and discussion

In this subsection, following crucial questions are about

to be answered by making the corresponding comparison.

Firstly, is a model combining output variation described by

probabilistic model and temperature input uncertainty

performs better than one only taking stochastic temperature

scenarios into account? Secondly, can QRNN out perform

other statistic models considering dual uncertainty?

Thirdly, is embedding of categorical features beneficial for

higher performance compared with traditional techniques

like one-hot encoding? At the end, an overall comparison

of forecasting performance is demonstrated between pro-

posed models and three benchmark models.

Figure 7 shows three forecasting results of the same

horizon. Apparently, three models underestimate the

hourly load concordantly. Since QRNN captures both

temperature uncertainty and load variation, the error is

penalized by a greater forecasting interval, leading to the

decrease in pinball loss, yet MLR without considering on

load variation failed to compensate such error, therefore

leading to a significant variance on this test day.

On the other hand, although LQR considers dual

uncertainty as what has been illustrated in Sect. 4, the final

forecasting results by LQR expressed in Fig. 7c indicates

two main problems by simply modeling hourly load and

temperature separately with nave linear quantile regression.

Since the LQR model is trained separately when the hour

and day types are fixed, loads are estimated independently

and concatenated by the hour and dates to the final load

series. This will lead to the discontinuity between hours,

which can be detrimental to forecasting results due to the

lack of smoothness. This argument actually undermines the

‘‘ training in separate hour’’ pattern in [14] since the load

continuity within time is ignored. Besides, the forecasting

interval is conspicuously widened. This can be explained

that LQR only set temperature and its polynomials as

inputs in the case study, which can lead to an overesti-

mating problem because of scarcity in input feature

types.

In addition, MLP is used as another benchmark model in

final comparison. We use RMSprop as an optimizer for

back-propagation of error for MLP. The number of per-

ceptrons in the hidden layer can be treated as hyperpa-

rameter in this model, thus can be finetuned the till

optimum. Only the best forecasting results are reported.

Table 1 shows the final forecasting pinball loss in 8

zones in New England by means of one proposed approach

together with three benchmarks, and the maximum relative

improvement (MaxRI) as well. With the fact that a lower

pinball loss indicates a better probabilistic forecasting,

QRNN overrides three benchmark models in 7 zones of 8

in total, yet it only underperforms 3.8% worser compared

with the best model in this area. We can read the column of

MaxRI that QRNN outperforms the benchmark models

significantly. The relative improvements among all area

reach 20% approximately, indicating the effectiveness of

our proposed method against benchmarks in the case

study.

In addition, MLR and MLP are parallel benchmarks as

representatives of models considering the single uncer-

tainty of temperature. The result turns out that they have

similar performance in the case study, yet MLP performs

slightly better since it has a higher capability in modeling

non-linear effects and interactions between variables.

Although LQR considers both load variation and temper-

ature, the widened forecasting interval and discontinuity in

load series may contribute to the high pinball loss.

To demonstrate the potential effectiveness of embedding

toward categorical parameters, another comparison is

conducted and the final results are shown in Table 2. It

should be mentioned that the results of QRNN with

embedding reported here are finetuned by adjusting

embedding layers to minimize the validation loss. It can be

concluded that compared to one-hot encoding, optimized

parameter embedding can decrease the pinball loss and in

other words, can better captures features of input variables

in probabilistic forecasting.

Apart from that, in order to observe the forecasting

performance in a more detailed time scope, we select a
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zone with QRNN as its best forecaster in 2015 and visu-

alize the pinball loss with a bar chart in Fig. 8. Two main

conclusions can be drawn from this figure. It is observed

that QRNN does not perform best in March, April, May,

September, even if the annual loss is low. However, there is

a significant drop in pinball loss compared with single

uncertainty-based models (MLP, MLR) in temperature

extreme months, like February and August. It can be

inferred that QRNN considering dual uncertainty can

handle forecasting problem better than single uncertainty-

based models because the load variation is more intense

during temperature extreme period, so QRNN captures this

characteristic better, leading to better performance in this

period. On the other hand, the single uncertainty-based

models are presented to achieve better performances when

the temperature is mild since it is enough only taking

temperature into account, while considering dual uncer-

tainty may act as a conservative estimation by widening the

forecasting interval.

6 Conclusion

In this paper, an innovative method on probabilistic load

forecasting is proposed. By considering both input uncer-

tainty and output variation, it turned out that the proposed

QRNN model performs better than commonly used

benchmark models. Besides, embedding techniques have
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Table 1 Annual forecasting pinball loss

Zone QRNN MLR MLP LQR MaxRI

(MW) (MW) (MW) (MW) (%)

CT 104.9 111.8 110.8 133.1 21.2

SEMA 52.0 56.9 54.3 62.3 16.5

NEMA 75.7 84.4 81.2 96.9 21.9

WCMA 51.6 56.8 55.6 69.2 25.4

VT 15.3 14.8 14.7 19.6 21.9

NH 31.1 33.8 33.1 37.8 17.7

RI 25.9 28.1 27.3 31.7 18.3

ME 22.1 25.8 25.1 27.1 18.5

Note: The bold value indicates best performance
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shown potential in handling categorical inputs, which can

enhance the overall performance of forecasting. Further

studies can be conducted from multiple aspects, such as

optimizing network structure with state-of-art techniques

like deep neural networks and utilizing multi-temporal

information to train the model, therefore mining more

hidden information and enhance the performance of load

forecasting.
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