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EMBEDDING COVERS 
AND THE THEORY OF FROBENIUS FIELDS 

BY 

DAN HARAN* AND A L E X A N D E R  LUBOTZKY 

ABSTRACT 

We show that the theory of Frobenius fields is decidable. This is conjectured in 
[4], [8] and [13], and we prove it by solving a group theoretic problem to which 
this question is reduced there. To do this we present and develop the notion of 
embedding covers of finite and pro-finite groups. We also answer two other 
problems from [8], again by solving a corresponding group theoretic problem: A 
finite extension of a Frobenius field need not be Frobenius and there are PAC 
fields which are not Frobenius fields. 

Introduction 

A field K is called pseudo-algebraically closed (abbreviated: PAC) if every 

absolutely irreducible variety defined over K has a K-rational point. This 

notion, which generalizes the concept of algebraically closed fields, is originally 

due to Ax ([1], [2]), who has also given the first examples of PAC fields. Other 

interesting examples and most of the known PAC fields have been given by 

Jarden ([11], [12]). Contrary to the theory of algebraically closed fields, it has 

been recently shown by Cherlin-van den Dries-Macintyre ([3], [4]) and indepen- 

dently by Ershov ([6]), that the theory of PAC fields is undecidable. Thus 

attention is drawn to a subclass of PAC fields, which has been investigated in [8] 

- -  the Frobenius fields ( =  Iwasawa fields in [4]): 

A PAC field K is called a Frobenius field if its absolute Gaiois group 

G = G ( K )  has the embedding property, i.e., whenever q~:G--~B and 

H : A ~ B are continuous epimorphisms, where A is a finite quotient of G, then 

there exists an epimorphism $ : G  ~ A such that IIo qj = q~. (Actually, in [8] 

another, more natural definition isgiven; but this turns out - -  [8], theorem 1.2 - -  

to be equivalent to the above definition.) 

* Portions of this work will be incorporated in the doctoral dissertation of the first author done in 
Tel Aviv University under the supervision of Prof. Moshe Jarden. 
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The discussion on Frobenius fields in [8] has posed a few questions: 

(A) Is this a proper subclass of the class of PAC fields? (See [8], problem 1.9.) 

(B) Is a finite extension of a Frobenius field also a Frobenius field? (See [8], 

problem 1.8.) 

(C) Is the theory of perfect Frobenius fields primitive recursively decidable, 

or, at least, decidable? (See Problem 4.10.) 

The last question is also the main problem left in [4]. 

Problem (A) has been affirmatively answered by Ershov and Fried ([7]) and 

also in [4]. In this paper we extend and simplify their proofs and answer the 

problems (B) and (C) as well. 

As noted in [14] the groups which appear as absolute Galois groups of PAC 

fields are exactly the projective profinite groups. Thus (A), (B) are equivalent to 

the following questions: 

(A') Is every projective profinite group also superprojective (i.e. projective 
with the embedding property)? 

(B') Is every open subgroup of a superprojective group also superprojective? 

Less evident but also true is the fact that (C) is equivalent to a group-theoretic 

decision problem (see [4] for the case of decidability and [13] for the case of 

primitive recursive decidability): 

(C') Given finite groups A1, . . . ,  Am, BI , . . . ,  B,, decide whether there exists a 

superprojective group G such that A , .  �9 Am are quotients of G and B~,. �9 B, 
are not. 

The answer to (A') is negative, the answer to (B') and hence also to (B) is 

negative. The problem (C') is primitive recursively decidable, hence the answer 

to (C) is attirmative, in the stronger sense. 

These results are based on two group-theoretic concepts. 

First, we define the notion of the universal embedding cover E(G) of a finite 

group G: this is the "smallest" cover of G which has the embedding property. In 

Section 1 we prove its existence and show that it is a finite group, which can be 

computed from G. 

Secondly, we use the notion of the universal Frattini cover t~ of a finite group 

G; this has been suggested by Ershov and Fried in [7] and by Cherlin, van den 

Dries and Macintyre in [3] (called there the minimal projective cover). The main 

result of Section 2 asserts that if G has the embedding property, then G has it 
too. 

The solutions to the problems (A'), (B'), (C') are relatively easily derived in 

Sections 3 and 4 from the above-mentioned preparations. 
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Notation and conventions 

This paper deals with the category of profinite groups. Hence "group" means 

"profinite group", "subgroup H of G "  means "closed subgroup H of G "  

(denoted H =< G, and H <~ G, if H is normal); homomorphism (epimorphism) is 

meant as continuous, it is denoted by ~ (--~). For example, we write "there is a 

~p : H--~ G "  to shorten the phrase "there is an epimorphism ~ : H ~ G " .  

Im(G) = the family of all finite homomorphic images of a group G. 

(T) = the smallest (closed) subgroup generated by a subset T of a group G. If 

there exists a finite subset T_C G such that (T) = G, then G is called finitely 

generated (f.g. group, for short) and the rank rk(G) of G is the minimal number 

of elements of such a subset. 

The supernatural order of G (cf. [15], definition 4.3) is denoted by [GI. 
�9 (H)  = the Frattini subgroup of H = the intersection of all maximal open 

subgroups of H. 

A ~ B denotes the semidirect product of a group B acting on a group A. 

If 9 : H ~ G, we call the couple (H, q~) a cover of G. By abuse of language we 

use this term also for H or ~ alone. Two covers q ~ i : H ~  G~, ~2:H2--* G are 

isomorphic, if there is an isomorphism 0 : Hi ~ / / 2  such that ~l = 92 ~ 0. 

We tacitly use the fact that an epimorphism of a f.g. group onto itself is an 

automorphism (cf. [15], proposition 7.6). 

I. Embedding property 

The aim of this section is to show the existence of the universal embedding 

cover of a finite group (Theorem 1.12). We begin with some technical lemmas 

which will also be used in later sections. 

LEMMA 1.1. 

(1) 

Consider a commutative diagram of groups with epimorphisms 

B -~- B 2  

p~ II2 

BI ~> A 
II~ 

and put p = II~ o p~ = 1-I2 o p2. The following statements are equivalent: 

(a) B is isomorphic to the fibred product of B~, Bz over A (w.r.t. the maps in 

(1)), i.e., there is an isomorphism 
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B --~ B, x B2 = {(b,, b2) E B, x B~ J I-I,(b,) = Flz(b:)} 
A 

and pr ~ 0-'(bt,  b2) = b~, for i = 1, 2 and (b,, b2) ~ B, xAB2. 

(b) B with p,, p2 is a pullback of the pair ( H ,  r12), i.e., given homomorphisms 

~b~ : C ~ B~, i = 1,2, such that rl~ o ~bt = II2o tk2, there is a unique homomorphism 

~b : C ~ B such that p, o ~ = ~,, i = 1 , 2 .  

BI ~ A 
If, 

(c) kerp~ n kerp2 = 1 and A with II~, FI2 is a pushout o[the  pair (P~,p2), i.e., 

given homomorphisms ~ :B~--~ G, i = 1,2, such that ~z op~ = ~o2op2, there is a 

unique homomorphism ~ : A --~ G such that ~ o IL = ~ ,  i = 1,2. 

(d) k e r p  = kerp~ x kerp2. 

B ~ B2 

Bi !1, ~ A 

PROOF. We only show (a) r (b) r162 (d); (c) will never be used in the sequel. 

(a) :::> (b): with no loss 0 is identity; let 0~, @2, C be as in (b). Clearly, if ~b 

exists, then necessarily ~b(c)= (~b~(c),~b2(c)); one verifies that this defines a 

continuous homorphism,  hence (b). 

(b) ::), (a) follows from (a) ~ (b) and the uniqueness of a pullback (up to an 

isomorphism). 
(a) ~ (d) follows from the definition of B~ • B2. 

(d) ~ (a): define 0 : B ~ Bt xA B2 by O(b) = (p~(b),p2(b)). 

This is a well-defined homomorphism,  and ker 0 = kerp~ n kerp2 = 1. To an 

e lement  (b~, b2) E B~ • B2 we may choose a/~i E B such that p~ (/~) = b~, i = 1,2. 
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Now p(/~0 = p(/~2), hence by (d), /~ =/~2mod(kerpl) • (kerp2). Thus there are 

a~ E kerpt,  a2 E kerp2 such that /~tat--t)2a2. We get 

O(l~za~) = (p,(f~a~), p2(/~2a2))= (p~(/~,), p2(/~z))= (b~, b2); 

hence 0 is surjective, whence (a). [] 

DEFINITION. A commutative diagram (1) satisfying one - -  and hence all - -  of 

the conditions of Lemma 1.1 is called a cartesian diagram, or a cartesian square: 

LEMMA 1.2. Let ~b, : C--~ B,, i = 1,2, be two epimorphisms. Then there is a 

commutative diagram, unique up to an isomorphism; 

C ~, q~ 

Bz ~ A 
II, 

where the square (1) is cartesian and ~J is surjective. 

PROOF. If such a diagram exists, then with no loss B~ = C/Kz, B2 = C/K2, 

B = C/L,  A = C/K,  where K_C K~, K2C_ L are normal subgroups of C. By 

Lemma 1.1 (d) 

(3) L = Kl fq K2, K = KIK2, 

hence the uniqueness of (2). 

The equations (3) also suggest the definitions of groups B and A satisfying the 

conditions of the Lemma. [] 

We now concentrate on the embedding property (which is the extension 
property in [7]) of profinite groups. 

Let us fix a group G. A pair of groups (A ,B)  may satisfy the following, 

so-called embedding condition Embo (A, B): 

If A is a quotient group of G then for every pair of epimorphisms II : A --~ B, 

: G --~ B there exists an epimorphism ~b : G --~ A such that II o ~b = ~. 

DEFINITION. We say that G has the embedding property if Embo (A, B) is 

satisfied for all pairs (A, B) of finite groups. 

A cover p : H - ~  G is called an embedding cover, if H has the embedding 
property. 
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LEMMA 1.3. A free profinite group has the embedding property. 

PROOF. See [8], lemma 1.3. 

LEMMA 1.4. The'following conditions on an f.g. group G are equivalent: 

(i) G has the embedding property; 
(ii) E m b o ( A , B )  holds ]:or every B finite and every A ;  

(iii) Embo (G, B) holds for every B finite; 
(iv) E m b c ( A , B )  holds for every A, B; 

(v) Embo(G,B)  holds for every B. 

PROOF. 

[] 

(i) => (iv): Let A be a quotient group of G and let I J : A  ~ B ,  

: G --* B be epimorphisms. With no loss II is the canonical map A ~ A / K  
with a K .~ A. Let {N,},~I be the directed family of all open normal subgroups in 

A and denote A, = A/N, ,  B, = A/N,K.  Then 

A = l im A, ,  B = l im B, 
i E I  , E l  

and we may define for every i E I  and for every i>=j canonical maps 
p, : A --~ A,, p',: B --*, B,, II, : A, --~ B,, p,j : A, --~ Aj-, p,'j : B, --~ Bj, such that the 

following diagram is commutative 

G 

I1 
A ~ L  e ~ ~ , ' ,  

Ai ,, Bj 

Let r k ( G ) =  e and let G = ( g , ' " , g , ) .  For every i E I  let 

Y, ={q~, : G--~ A, IFI, o~b, = p;o,p}. 

Then Y, is a finite set (every tp, : G ~ A, is determined by r (g0," " ", ~, (g,)); by 

(i) we have Y, ~ 0 .  
For i => j we define a map Y, ~ Yj by ~, ~ Pii o ~b, and thus convert { Y, } into an 

inverse system of non-empty finite sets. Hence Y = lim,~1 Y, is not empty and it <-..- 
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is easy to see that an element of Y defines a ~b : G ~ A such that II o ~b = ~ ; 

hence (iv). 

(iv) ~ (v) ::~ (iii): are clear. 

(iii) f f  (ii): Let p : G --~ A, II : A --~ B, ~p : G --~ B be epimorphisms. By (iii) 

there is a ~b': G --~ G such that (Hop)~ ~b'= ~. Thus ~b=p o ~b' satisfies 7r o ~b =q~. 

(ii) ~ (i): is clear. [] 

REMARK. The condition that G be finitely generated is essential: the free 

profinite group F~ on to ={sl, s2 , " -}  has by Lemma 1.3 the embedding 

property. However, as Ershov [6] has pointed out, the map f : to --> F,o defined by 

f(s~) = 1, f(s,+,) = s,, i = 1,2, 3 , " ' ,  extends to an epimorphism II : /~  -~/7~ with 

k e r l I ~ l .  Clearly there is no O:F,--*ff',o such that I Io~  =id ,  i.e., 

Emb~. (F,o, F , )  fails to be satisfied. 

Clearly the implications (i) ~ (ii) r (iii) ~ (iv) ~ (v) are valid for all groups. 

One can show that (i) ~ (ii) is true for groups of countable rank (i.e. generated 

by a countable set converging to 1). However, we do not know whether (i) f f  (ii) 

is true for all profinite groups. 

LEMMA 1.5. Let G be an fig. group and N a characteristic subgroup of G. If  G 

has the embedding property then so does G/N. 

PROOF. Let p : G --~ G I N  be the canonical map and let H, q~ : G/N--~ B be 

two epimorphisms. By Lemma 1.4(v) there is a ~ ' :  G--~ G such that (Hop)~ ~b' = 

~0 op. But ~, 'E Aut(G),  hence f f ' (N)=  N, whence ~ '  induces a ~ E A u t ( G / N )  

such that ff o p = p  o if'. Clearly H o ~b = q~, which by Lemma 1.4(v) ends the 

proof. [] 

COROLLARY 1.6. Let G be a finite group of rank e. Let N be the intersection of 

all open normal subgroups M of the free profinite group on e generators F,, which 

satisfy F',/M = G. Then Eo ~ f 7 / N  is a finite group of rank e and it is an 

embedding cover of G. 

Moreover, lEvi <= I G I I~ 

PROOF. The embedding property of Eo follows from Lemmas 1.3 and 1.5. 

Clearly I EoI_-<IG P, where n is the number of open M ' ~  if',, for which 

P,/M-~ G. But there are at most I G I" epimorphisms of F, onto G;  hence 

n_-<lOI [] 

Besides the group Eo of Cor. 16 there are other embedding covers of G. 

However, among all such covers there is a universal one; to show this we need 

the material developed below. 
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Let G~, G2 be two f.g. groups. Consider the class of pairs of epimorphisms 

with common images 

= ~ ( G | ,  G2) = {(II|,II2)I H~ : G1---~ A and 112 : G2--~ A} 

and define a pre-order relation on ~ : (H|, H2) =< (H'~, Hi) iff there is an epimor- 

phism II such that the following diagram is commutative 

Furthermore, write (II|,112)-(11'|,11;) itt II is an isomorphism: this is an 

equivalence relation on ~ and _--- defines a partial order relation on the quotient 

set ~ / - .  By abuse of notation we identity ~ / -  with ~. 

We also define the dual notion to ~. 

Let p~ : G| x G 2 ~  G~, i = 1,2 be the canonical (coordinate) projections. 

Define 

= ~ ( a j ,  G2) = {H 1 H < G, x G2 and p~ (H) = G~, i = 1,2}; 

is partially ordered by inclusion. 

For a pair (H|, H2)E ~ with A = ImII~ = Im H2 let 

(5) T ( H , ,  I]2) = O |  x A O 2 = {(gl, g2) E O |  x G2 I Hl (g l )  = 1-I2(g2)}. 

Clearly T(H1, H2) C Y(. 

LEMMA ].7. The map  T : ~ ~ Y( is an order-reversing bijection between 

and Y(. 

PROOF. Let (H,, 112), (H~, H~) E ~', Im H, = Im H2 = A, Im 11~ = I m  II~ = A '. If 

(H't,11~)_- > (H,,H2), then T(II'~,H~)C T(II,,112) by the definitions (4) and (5). 

Conversely, if T(rI'|,IL') C T(II,, II2), define a II : A '--~ A by II(II'~g 0 = II~(g~), 

gl E G|. Then H is well-defined and establishes the relation (H't, [I~) _-> (H~, II2). 

This also proves that T is injective. To show its surjectivity let H E Y( and 

denote p'~ = Res,p~, i = 1,2. By Lemma 1.2 there is a commutative diagram 
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where /~  = Res6,• i =  1,2. But for every (g , ,g2)E H we have 

~(p(g, ,g2))=p;(g~,g2)=g,,  i = 1,2, 

hence p(g,, g2) = (gl, g2); hence H = G~ XA G2 = T(H~, I12). [] 

LEMMA 1.8. For every (H~,H2) E ~ there is a maximal element ( IE ,H ' )  C 

such that (H~,H2) =< (H',H~). 

PROOF. By Zorn ' s  Lemma it suffices to show that a chain {(H~, I12.)}.~ in 

has a supremum. For /3  --- a E I there is a unique I I ~  : Im H~ --~ Im IIz~ such 

that H ~  o H~ = H~, i = 1,2. Thus {(Im H ~ ) } ~  is an inverse system and its limit 

defines the supremum. (One may also carry out the dual proof in ~ ,  using the 

intersection property of compact  subsets of G t • G._.) [] 

An element  (H~,I12)E ~ is called trivial, if II, is an isomorphism. This is 

equivalent to: Resr~,,..~)p2 is an isomorphism. 

Note that a trivial element is always maximal. 

The elements of ~ may be seen as embedding problems. In fact we have: 

LEMMA 1.9. Let (II~,H2)E ~(G~,G2) .  Then there is a 4, : G._--~ G~ such that 

II~o~b = H2 iff there is a trivial (H',,H~)E ~ such that (H, ,H2)= < (l-I;,H'2). 

PROOF. If such a tp exists, then (Hz,H2)_ -< (id, t~), as follows from the 

diagram: 

G~ id ~/G2 

Conversely, if there is a commutat ive diagram (4) with H'I an isomorphism, let 

r = (n' ,)- '  o n~. [] 

COROLLARY 1.10. An  f.g. group G has the embedding property if] every 

maximal element in ~ ( G, G) is trivial. 

To simplify the formulation let us make a definition: 

DEFINITION. A cover  p : H - - ~  G of an f.g. group G is called a quasi- 

embedding cover, q.e.c., for short, if for every embedding cover ,p : E ~ G the 

group H is a quotient of E, i.e., there is a 6 : E ~ H such that p o qj = ~. 
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LEMMA 1.11. Let G and A be two f.g. groups. 

(i) If  p : H - - ~ G  is a q.e.c., then r k ( H ) = r k ( G ) .  

(ii) Let p : H--~ G, Ii : G --~ A be two epimorphisms, then II o p is a q.e.c, iff both 

p and II are q.e.c.'s. 

(iii) Let I I , :G~--~A and II2:G2--~A be two q.e.c.'s. Then there are q.e.c.'s 

p :H--~ A,  p ~ : H - - ~ G ,  p,_ :H--~G2 such that l-I, op, = p  = Iq2op2. 

(iv) If  G does not have the embedding property, there exits a q.e.c, p~ : H--~ G 

with a non-trivial kernel. 

PROOF. (i) Let e = rk(G); clearly rk(H)_- > e. By Lemma 1.3 the group Fe is an 

embedding cover of G, hence H is a quotient of if'e, whence rk(H)_-< e. 

(ii) Clear. 

(iii) By (ii) and by Lemma 1.8 we may assume that (Iq,,IJ,) is maximal in 

~ ( G , ,  G2). We form a cartesian square 

(6) 

H .~- G2 

G, '~ A 
11, 

with H = G~ XAG2 and put p = l'I~op~ =H2op2. By symmetry and by (ii) it 

suffices to show that p~ is a q.e.c. Now let ~b~ : E --~ G, be an embedding cover. 

Then so is II, O~bl; hence G2 is a quotient of E, since H2 is a q.e.c. By the 

embedding property of E there is a ~b2 : E --~ G2 such that II, o ~ = 1-I2 o 62. By 

Lemma 1.1 (b) there is a homomorphism ~b:E- -~H satisfying p~otp = ~ ,  

p2 o ~b = ~b2. Thus ~b(E) E ~(G~, G2) and ~b(E) C H;  but it follows from Lemma 

1.7 that H is minimal in ~(G~, G2), hence H = ~b(E) is a quotient of E. 

(iv) By Corollary 1.10 there exists a non-trivial maximal pair (II,,H2) in 

~ (G ,  G). Thus in the cartesian square (6), where now G, = G2 = G, we have 

kerpl # 1. We show that pl is a q.e.c, as in the proof of (iii) (omitting the 

sentence: "Then . . .  q.e.c."). 

THEOREM 1.12. Let G be an f.g. group. Then there is a cover p : E ( G ) - ~  G, 

unique up to an isomorphism, satisfying 

(a) p is an embedding cover, i.e., E ( G )  has the embedding property. 

(b) p is a q.e.c. 

Moreover, 

(c) rk(E(G))  = rk(G). 
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(d) When G is a given finite group, then E(G) is also finite and E(G) and p 
may be effectively (= primitive recursively ) computed. 

PROOF. Let {Go = 1, Ge,  G 3 , " "  } be the set of the finite quotients of the 

q.e.c.'s of G. Then we may form a sequence 

Ho = G <~ H~ tt H3 t~ " " " 
Oi 02 03 

of q.e.c.'s such that for every n ~ 0 the groups Go, Gz," �9 ", Gn are quotients of 

Hn. Indeed, suppose we have constructed 0z," �9 ", 0,-I with these properties; then 

111 = 0n-I . . . . .  01 is by Lemma 1.11 (ii) a q.e.c. There is a q.e.c. I]2 : H ' ~  G such 

that Gn is a quotient of H' .  Hence by Lemma 1.11 (iii) there are q.e.c.'s 

p~ = On : Hn --~ Hn_~ and p2 : Hn --~ H' .  In particular, Gn is a quotient of H,.  

Now let E(G) = li_m, Hi and let p : E ( G ) ~  G be the induced map. We claim 

that p is a q.e.c. For let q~o:E ~ G be an embedding cover. Then we may 

inductively choose ~o~:E--~ Hi such that 0~ o ~0~ = ~-1, i = 1 , 2 , . . .  (since ~0~_~ is 

an embedding cover and 0~ is a q.e.c.). These define the desired map 

: E ~ E(G) ;  hence (b). By Lemma 1.11 (i) follows also (c). 

But E(G) also satisfies (a). Otherwise there is, by Lemma 1.11 (iv), a q.e.c. 

O : H ~ E ( G )  with k e r 0 r  By construction of E(G) we have I m ( H ) =  

Im(E(G))={Go, GI , ' "} ;  by Lemma 1.11 (i) both groups are f.g., hence 

H ~-E(G). Thus 0 is, a fortiori, an isomorphism; a contradiction. 

The uniqueness of p is trivial. When G is finite, then E(G) is by (b) a quotient 

of the group Eo from Corollary 1.6, hence finite. 

In fact E(G) has the smallest order among all quotients of Eo which cover G 
and have the embedding property, and thus may be computed. [] 

DEFINITION. The cover p : E ( G ) ~  G of Theorem 1.12 is called the universal 
embedding cover. 

2. Frattini covers 

Frattini cover is the concept which links the embedding property with 

projective groups. Some recent papers ([5], [7], [3]) deal with this notion from 

different points of view. To be self-contained we develop this theory from the 

beginning; however, proofs which have already appeared will be only referred 

to .  

DEFINITION. A group homomorphism ~p : H--> G is a Frattini cover of G if it 

satisfies one of the following equivalent conditions: 
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(i) tp is surjective and ker ~ C qb(H); 

(ii) if H'<=H then: H ' = H C ~ ( H ' ) = G ;  

(iii) if T_C H is a set then: (T) = H r (~T) = G. 

The equivalence is a profinite analogue of [7], lemma 1.2. 

Note that by (iii) a group G and its Frattini cover H have the same rank. 

Some immediate properties of Frattini covers are summed-up in 

LEMMA 2.1. Let H~ *-~ H2-~ G be two homomorphisms. We have: 

(i) if ~o, tO are Ft. covers, then ~o o tO is a Ft. cover; 

(ii) I f  q~ is a Fr. cover and ~o o tO is surjective, then tO is surjective ; 

(iii) if ~o o tO is a Ft. cover, then 

tO is surjective r tO is a Fr. cover r ~o is a Fr. cover. 

PROOF. An exercise (cf. also [5] 3.2, 3.3). [] 

LEMMA 2.2. Let p : A ~ B be a group epimorphism. Then : 

(a) p ~ ( A )  C_ ~ ( B ) ,  i.e., 4~(A ) C p - ~ ( B ) ;  

(b) l i p  is a Fr. cover, then Cb(A ) = p - t ~ ( B  ). 

PROOF. Let ~t, N be the families of open maximal subgroups of A, B, 

respectively. There is a 1-1 map N ~  ~ defined by 

N , p-~N; 

if p is a Fr. cover, this map is obviously surjective. Hence 

cP(A)= ("1 M C  ('~ p - I N = p - ' ( f ' )  N ) = p - l * ( B ) ,  
ME.g~ N E N  ~ N E . g  

and if p is a Fr. cover, the inclusion is equality, hence (a) and (b). 

LEMMA 2.3. Consider a cartesian square (see Lemma 1.1) 

B ~ B2 Ip, P21[12 
B 1 - - - - - ~ A  

HI 

I f  p~ is a Ft. cooer, then so is H2. 

PROOF. By 1.1 (d) we have 

p2(ker p~) = p2(ker p,-  ker p2) = p2(ker II2 o p2) = ker H2. 
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Now p, is a Fr. cover, thus kerp~ _C @(B), and by Lemma 2.2(a) 

ker I12 = pdker  p,) C_ pdb(B ) C_ Cb(B2). [] 

LEMMA 2.4. Let ~o : H ~ G be an epimorphism. Then there is an H '  <-<_ H such 

that the restriction Res , ,~  : H'---~ G is a Frattini cover. 

PROOF. H '  is a minimal closed subgroup of H such that ~o(H')= G. Its 

existence is proved in [5], 4.1. [] 

LEMMA 2.5. (a) Let IL:B~--~ A, i = 1,2 be two epimorphisms. Then there 

exists a commutative diagram 

p2 
B " B2 

B l  ~ A 
II, 

in which p is a Frattini cover; 

(b) under the same assumption there exists a commutative diagram (1) in which 

p~ is a Fr. cover; 

(c) if 11, : B, -~ A ,  i = 1,2 are Ft. cover, there exists a commutative diagram 

(1) in which p~, p2, p are Ft. covers. 

PROOF. By Lemma 1..l(a) we construct a diagram (1) in which p,, p2, p are 

epimorphisms. If B is replaced by a suitable subgroup and pl, p2, p by their 

restrictions, we obtain (a) (or (b)) by Lemma 2.4. But if II~, II2, p are Fr. covers, 

then so are p~, p2 by Lemma 2.1. [] 

We now fix some terminology. 

We recall that a group P is projective iff for every pair of epimorphisms 

~o:P--~B, I I : A - - ~ B  there exists a homomorphism ~ 0 : P ~ A  such that 

H o qs = q~. An epimorphism P--~ G is called a projective cover of G iff P is 

projective. 

Let G be an f.g. group. For two epimorphisms q~, : Hi --* G, i = 1,2 we shall 

write ~0~ => ~o2 iff there is an epimorphism 0 : H ~ / - / 2  such that q~, = ~02o 0. One 

readily sees that this pre-order relation defines a partial order on the family of all 

isomorphism classes of covers of G ,  however, by abuse of language we employ 

this notation rather for the covers of G. In this sense we use the words "largest" 

and "smallest". 

Finally, a projective group which has the embedding property is called 

superprojective. 
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THEOREM 2.6. Let G be an f.g. group. Then there exists a cover (o : G ~ G, 

unique up to an isomorphism, satisfying the following equivalent conditions: 

(i) (o is a projective Frattini cover of G; 

(ii) ff is the largest Frattini cover of G; 

(iii) ff is the smallest projective cover of G. 

Such a cover q5 is called the universal Frattini cover of G. 

The condition (ii) is taken as the definition of ff in [7], while the condit ion (i) is 

taken as the definition of ff in [3]. 

PROOF. Assume r k ( G ) =  e;  then there is an epimorphism if:f ie ~ G. By 

Lemma 2.4 there is an H _-< ff'e such that p = Resnt5 is a Frattini cover. Now fie is 

projective, hence H is projective (see [5], theorem 2.5). Thus p is a projective 

Frattini cover. 

We now show the equivalence of the conditions. 

(i) ~ (ii): Let  ~0 : H--~ G be a Frattini cover; since (~ is projective, there is a 

homomorphism 6 : (~ --~ H such that ~0 o ~b = ft. By Lemma 2.1(iii) ~b is surjec- 

tive, hence ff _-> ~o. 

(ii) ::), (i): Let H~ : A --~ B, H2 : (~--~ B be two epimorphisms. By Lemma 

2.5(b) there exists a commutat ive  diagram 

H P2 ~) 

A ~ B 

) G  

where P2 is a Frattini cover. By Lemma 2.1(i) so is ff op2; hence ff _-> ff ~ i.e., H 

is a quotient  group of the finitely generated group (~ ( rk( (~)= rk(G)).  This 

implies that p2 is an isomorphism, hence H, o p~ o p2 t = r12, which shows that (~ is 

projective. 

(i) =)(iii): Let ~o :P - -~G be a projective cover of G. Then there is a 

homomorphism 0 : P  ~ (~ such that ff o 0 = ~o. By Lemma 2.1(ii) ~ is surjective, 

hence ~o _-> ft. 

(iii) f f  (i): Let p : H ~ G be a projective Frattini cover. Since ff _-< p, there is 

an epimorphism ~ : H--~ (~ such that ff o ~ = p. By Lemma 2.1(iii) ff is a Frattini 

cover. 

The uniqueness of ~ is clear from (ii) or (iii). [] 

COROLLARY 2.7. Let (o : G ~ G be the universal Frattini cover. Then H is a 

quotient group of CJ iff H is a Frattini cover of a quotient group of G. 
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PROOF. Assume that there exists an epimorphism ~b~ : G ~ H;  by Lemma 1.2 

there is a commutative diagram of epimorphisms 

~ G 

H ~ A  
II, 

where the square (*) is cartesian; by Lemma 2.3, H is a Frattini cover of the 

quotient group A of G. 

Conversely, assume that H is a Fr. cover of a quotient A of G, i.e., there are 

epimorphisms F I : G ~ A ,  ~ : H ~ A .  By the projectivity of t~ there is a 

homomorphism ~b:t~---~H such that ~ o ~ = F l o ~ ;  by Lemma 2.1(ii), ~b is 

surjective, hence H is a quotient of (~. [] 

Some other properties of the universal Fr. cover are contained in the next 

PROPOSITION 2.8. (i) The group K = ker ff is pro-nilpotent. Its p-Sylow sub- 

groups Sp are free pro-p-groups and K = lip Sp. Moreover, K is superprojective. 

(ii) p I I G I r162 P I I t~l, for every prime p. 
(iii) t~ ~ (G/cb(G)) . 

PROOF. (i) From the finite analogue it is easily seen that the Frattini subgroup 
of a profinite group is pro-nilpotent. But K C_~((~), hence K is also pro- 

nilpotent. Therefore K = lip Sp. Now (~ is a projective, hence (cf. [5], 2.5) every 

Sp is projective and thus even a free pro-p-group (cf. [10], theorem 4 and [15], 

theorem 6.5). By Lemma 1.3, Sp is even superprojective. It is now a straight- 

forward exercise to show from this fact that llpSp is also superprojective. 

(ii) ~ clear; ~ :  Assume that p ,~ I GI .  Then Sp is the unique p-Sylow 

subgroup of (~. Clearly Sp is a characteristic subgroup of K and K is normal in 

t~; hence Sp is normal in t~. By the Schur-Zassenhaus Theorem Sp has a 

complement H in t~. Clearly ~3(H)= G, and as ff is a Frattini cover, H -- t~. 

Hence Sp = 1, whence p Y I OI .  

(iil) By Lemma 2.10) the composed map G ~-~ G --* G / ~ ( G )  is a Fr. cover; t~ 
is projective hence this cover satisfies condition (i) of Theorem 2.6. 

We now come to the main result of this section. 
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THEOREM 2.10. Let G be an fig. pro]inite group. If  G has the embedding 

property, so does t~, i.e., (~ is superprojective. 

PROOF. Let A and B be quotient groups of (~ and let q~ : (~ --~ B, II : A -o B, 

be two epimorphisms; we have to show that there is a ~ : (~- -~  A such that 

l-lo~ = ~. 

I. Assume first that A = G. By Lemma 1.2 the maps r and ff define.a 

commutative diagram 

B ,~C 
II~ 

in which (*) is a cartesian square. By Lemma 2.1(iii) p2 is a Fr. cover, hence for 

every H '  < H : p2(H') = G f f  H '  = H. This means that H is a minimal element 

in ~ ( B ,  G). Thus by Lemma 1.7, (Ill,II2) is a maximal pair in ~ (B ,  G). But G 

has the embedding property, hence by Lemma 1.10, (FI~, 112) is trivial. Therefore  

FI~, p2 are isomorphisms. 

By a'ssumption there is an a E A u t ( G ) s u c h  that p~op2~=Ilocc Put ~b = 

a o ~ ; then 

Ho~b = ( H o a ) o ~  = (p~op~)o(pzo 0)= p~ o 0 = ~o. 

II. Assume that A = t~. By Lemma 1.2 the maps ff and H define a 

commutative diagram 

< 

G ~ B '  

in which the square (.') is cartesian. By 1.1(iii) p[ and 0' are Fr. covers. 

By part I of this proof there exists a 6 : ( ~  ~ G such that 11'1o 6 = (Fifo ~0). 

Therefore  by Lemma 1.1 (b) there is a homomorphism ~ ' :  (~ ~ H '  such that (i) 
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p'~oO ' =  t~ and ( i i ) p ; o t b ' =  ~. From (i)i t  follows by Lemma 2.1(ii) that if' is 

surjective. Since t~ is a projective group, there is a homomorphism ~ �9 t~ ~ t)  

such that O'o& = 6'.  Again by Lemma 2.100 ~b is surjective. Finally by (ii) 

I Io~  = p'~oO' oO = p ; o O ' =  ~ p. 

This ends the proof by Lemma 1.4. 

COROLLARY 2.11. Let G be an f,g. group with a trivial Frattini subgroup. Then 

has the embedding property i f /G  has it. 

PROOF. By Lemma 2.2(b) it follows that qb((~)= ~5-~qb(G)=ker~,, hence 

G ~- (~/qb((~). Thus one implication follows by Lemma 1.5 and the other one by 

Theorem 2.10. [] 

REMARK. The condition ~ ( G ) =  1 in the Corollary is essential: if G is the 

direct product of the cyciic groups Cp and Cp~ of orders p, p2, respectively, G 

does not have the embedding property, as one readily sees. But G / ~ ( G ) =  

Cp x Cp has the embedding property and so by Proposition 2.8(iii) and Theorem 

2.10 G has it as well. (In fact G is the free pro-p-group on 2 elements F'2(p).) 

Combining the universal properties of the universal embedding cover and of 

the universal Frattini cover one easily obtains 

COROLLARY 2.12. Let G be an fig. group. Then E ( G ) =  E ( G ) .  

3. Applications to Frobenius fields 

Frobenius fields have been defined and studied in [8]; a decision procedure for 

certain subclasses of Frobenius fields has been given there. For our purposes it is 

convenient to take instead of the definition of a Frobenius field (see [8], section 
1) the following equivalent characterization ([8], theorem 1.2): 

PROPOSITION 3.1. A field M is a Frobenius field iff 

(i) M is PAC, i.e., every (non-empty)  absolutely irreducible variety defined 

over M has an M-rational point; and 

(ii) the absolute Galois group G ( M )  of M has the embedding property. 

REMARK. In [4] this characterization serves as a definition of an Iwasawa 

field. 

For some time it was not known whether every PAC field is a Frobenius field 

or not. As observed in [14], (4.8) the class {G(K)I  K is a PAC field} and the class 
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of projective (profinite) groups coincide. Thus the above-mentioned problem is 

equivalent to the question, whether every projective group is superprojective 

(i.e., projective with the embedding property). First counter-examples were 

given by Ershov and Fried ([7], section 2) and by Cherlin, van den Dries and 

Macintyre ([4], 6.2). Our Corollary 2.11 generalizes (and simplifies the proof of 

validity of) these examples: 

Take a finite group G which does not have the embedding property and for 

which qb(G) = 1. Then (~ is projective but not superprojective. (Note that we do 

not use Theorem 2.10 here!) Construction of such a group G may be facilitated 

by the following Lemma. 

LEMMA 3.2. (i) Let G be a finite group, with N~, N2 "~ G such that N~ ~ N2 and 

G/N1 ~- G/N2, then G does not have the embedding property. 

(ii) Let A ~ B be a semidirect product of finite groups A,  B, not isomorphic to 

A x B. Then G = (A ~ B )  • B does not have the embedding property. 

PROOF. (i) Otherwise there is a @ E Aut(G)  such that (0 op)o tk = q where 

p : G --~ G/NI ,  ,p : G --~ G/N2 are the canonical maps and 0 : G/Nz ~ G/N2; 

hence N2 = ker,p = ker(0 op)o ~b = ~b tN~, a contradiction to N~ ~ N2. 

(ii) Let N~ = A ~ B, N2 = A x B and apply (i). [] 

EXAMPLES. I. The example of [7], theorem 2.1 is just G = $ 3 x C 2 =  

(C3 ~ (?2)x Ca, where C, denotes the cyclic group of order n. 

II. The example in [4], (6.2) is actually G = Dq x C2 = (Cq ~ C2) x C2, where q 
is an odd prime. 

III. Let S be a finite simple non-abelian group, and let n -> 5. Denote 

A = S "  = S  x . . . x S .  

n 

The alternating group B = A,  of degree n =>5 acts on A, permuting the 

coordinates. One easily sees that a semidirect product of two groups with no 

non-trivial normal nilpotent subgroups has again no non-trivial normal nilpotent 

subgroups. Thus N = A ~ B has this property too. 

For n sufficiently large (say, such that IA.[ # IS[") N ~ A  x B .  Indeed, 

otherwise there is a B' ,~ N such that B ' ~  B. Let H:N--~  B be the canonical 

projection; then II(B') ,~ B, B is simple, hence H(B') = 1 or II(B') = B. The first 

possibility yields B'C_ kerII = A, hence [B Il iA [, a contradiction. The other 

possibility implies B ' N A  =1 ,  hence N = A  x B ' .  But then B'C_CN(A) ,  

whence B = I I ( N ) = I I ( B ' ) _ C H ( C N ( A ) ) - - - { b E B I b  acts as an inner au- 
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tomorphism on A }. This is a contradiction, since every b ~  1 in B acts as an 

outer automorphism. 

Thus by Lemma 3.2(ii) C = N • B does not have the embedding property; 

also, C has no non-trivial normal nilpotent subgroups; in particular qb(C) = 1. 

Ax ([2], p. 268) and Roquet te  (unpublished) have shown that a finite extension 

of a PAC field is PAC. The material developed in Section 2 and the last example 

enable us to show that this property is not true for Frobenius fields, thereby 

answering problem 1.8 in [8]. 

PROPOSITION 3.3. (i) There exists a tower of finite field extensions K C L C M 
such that K and M are Frobenius fields and L is not. 

(ii) There exists a projective group t~ with open subgroups I C H C G such that 
(~ and I have the embedding property while H does not have it. 

PROOF. In view of the observations preceding Lemma 3.2, (i) follows from 

(ii). 

To show (ii), let C be the group of Example III above. Embed C in a finite 

simple group G. (By Cayley's Theorem C can be embedded in a symmetric 

group S,, ; now define an embedding [ : Sm-+ A,~+2 by 

1 2 m m + l  m + 2  s g r = l  
f ( r )  ( r (1)  r ( 2 ) . . . r ( m )  m + l  m + 2 )  = , r E S,,. 

( 1 2 m m + l  m + 2 )  s g r = _ a  
r(1) r(2)" r(m) m + 2  m + l  .) 

Now let ff : (~ ~ G be the universal Frattini cover of G and let I = ker if, 
H = ,~-1C. By Corollary 2.11 (~ has the embedding property, since the simple 
group G has it; so does / ,  by Proposition 2.8(i). Moreover, by this Proposition I 

is a normal pro-nilpotent subgroup of H. But since H/I-~ C and C has no 

normal nilpotent subgroups (except 1), I is the largest normal pro-nilpotent 

subgroup of H (i.e., the Fitting subgroup), hence I is a characteristic subgroup of 

H. By Lemma 1.5 H does not have the embedding property, since C does not 

have it: [] 

Proposition 3.3 also shows that a finite extension of a non-Frobenius PAC field 

may be Frobenius. Moreover, problem 1.7 in [8] is answered by this, negatively, 

of course. The most important open problem of [8], as well as of [4] and [13], is 

solved in the next section. 
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4. Decidability of Frobenius fields 

In this section we obtain primitive recursive procedures for theories of some 

classes of Frobenius fields, especially the theory of all perfect Frobenius fields 

(see problem 4.10 in [8 and section 7 in [4]). 

Let A~, . . - ,A, , ,  B~ , . . . ,B ,  be finite groups, 1 =< m, 0 < n. Let 

= { A = < A I • 2 1 5  

where p~,.. . ,p,,  are the coordinate projections. Recall that E(A)denotes  the 

universal embedding cover of A defined in Section 1. 

LEMMA 4.1. The following conditions are equivalent: 

(i) there exists a superprojective group F such that 

A j , . . - , A , , E I m ( F )  and B , , . . . , B , ~ I m ( F ) ;  

(ii) there exists an f.g. superprojective group F such that 

A~, ' - ' ,AmEIm(F)  and B~ , . . . ,B ,~Im(F) ;  

(iii) there is an A E ~1 such that none of B~,. �9 B, is a Frattini cover of a 

quotient group of E (~). 

PROOf. (i) ~ (iii): By assumption there are maps ~b~ : F-~ A~, i = 1 , . . . ,  m. 
These define a ~b :F - -~A~x . - . xA , ,  such that p~o~b = ~b~, i = l , . . . , m .  Thus 

A =Im ~b belongs to ~.  By Theorem 1.12(b), E(A ) E Im(F); hence by Theorem 

2.6(iii), /~(A) is a quotient of F. Therefore B j , . - . ,B.  ~ Im(/~(A)), hence by 

Corollary 2.7 they are not Fr. covers of quotients of E(A) .  
(iii) ~ (ii): By Corollary 2.7 B I , . . . , B , ~ I m ( F ) ,  where F = / ~ ( A ) ,  while 

A~, . . . ,A, ,  EIm(F), since they are quotients of A. The group E ( A )  has the 

embedding property, hence by Theorem 2.10 F is superprojective. [] 

By Theorem 1.12 there clearly exists a primitive recursive algorithm to check 

the validity of condition (iii) in Lemma 4.1 for given groups A z , " ' , A , , ,  

B , . . . , B . .  

THEOREM 4.2. Let K be a Hilbertian field with elimination theory. There is a 

primitive recursive decision procedure for the theory T(K) of all perfect Frobenius 

fields containing K. 

[K is a field with elimination theory if the procedures of classical elimination 

theory may be effectively performed over K (see [8], a note following theorem 

2.3). All finitely generated extensions of prime fields fall within this class.] 
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PROOF. Jarden ([13], theorem 1.2) has improved the decision procedure of 

[8] and reduced thereby the problem to Problem (C') in the Introduction. Thus 

our Theorem is now a Corollary of Lemma 4.1 and the remark following it. []  

COROLLARY 4.3. For every p >= 0 there is a primitive recursive decision proce- 

dure for the theory Tp of all perfect Frobenius fields of characteristic p. 

PROOF. For p = 0 apply Theorem 4.2 to K = Q. For p > 0 let K = Fp (t) be 

the field of rational functions over the prime field Fp. We claim that Tp is the set 

of all e lementary sentences which are in T(K).  Indeed, if M is a perfect 

Frobenius field of characteristic p, then M is clearly infinite. Hence a sufficiently 

large ultrapower *M of M will be uncountable. In particular, *M contains a 

transcendental element over FI,, hence we may assume that *M _~ K. Thus *M is 

elementarily equivalent to M and it is a model of T(K).  [] 

THEOREM 4.4. There is a primitive recursive decision procedure for the elemen- 

tar), theory of perfect Frobenius fields. 

A proof of Theorem 4.4 runs along the line of the decision procedures in [8] 

and [13], replacing the Galois covers over fields by Galois covers over rings (as 

they have been originally introduced in [9]). We intend to work out the details, 

which are essentially of an algebro-geometric nature, in a subsequent work. 

Cherlin, van den Dries and Macintyre [4] have shown that the theory of all 

Frobenius fields is (recursively) decidable, if Problem (C') in our Introduction is 

decidable. Thus by Lemma 4.1 we have 

COROLLARY 4.5. The elementary theory of Frobenius fields is decidable. 
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