
 Open access Journal Article DOI:10.1017/S026988890000031X

Embedding critics in design environments — Source link

Gerhard Fischer, Kumiyo Nakakoji, Jonathan Ostwald, Gerry Stahl ...+1 more authors

Institutions: University of Colorado Boulder

Published on: 01 Jun 1998 - Knowledge Engineering Review (Morgan Kaufmann Publishers Inc.)

Topics: Design knowledge, Design specification and Engineering design process

Related papers:

 The Reflective Practitioner: How Professionals Think in Action

 The Sciences of the Artificial

 Domain-oriented design environments

 Second-generation design methods

 Transcending the individual human mind—creating shared understanding through collaborative design

Share this paper:

View more about this paper here: https://typeset.io/papers/embedding-critics-in-design-environments-
4xganhpcva

https://typeset.io/
https://www.doi.org/10.1017/S026988890000031X
https://typeset.io/papers/embedding-critics-in-design-environments-4xganhpcva
https://typeset.io/authors/gerhard-fischer-16d3r7ze6c
https://typeset.io/authors/kumiyo-nakakoji-3re7gz86wk
https://typeset.io/authors/jonathan-ostwald-arbnf1hdrb
https://typeset.io/authors/gerry-stahl-oat3z200sc
https://typeset.io/institutions/university-of-colorado-boulder-23y9hx76
https://typeset.io/journals/knowledge-engineering-review-kfplxslb
https://typeset.io/topics/design-knowledge-ngpsi14q
https://typeset.io/topics/design-specification-9vunrfl6
https://typeset.io/topics/engineering-design-process-19y3llku
https://typeset.io/papers/the-reflective-practitioner-how-professionals-think-in-28a8lz1n50
https://typeset.io/papers/the-sciences-of-the-artificial-4bs0gh7zgg
https://typeset.io/papers/domain-oriented-design-environments-1r0fjq5pav
https://typeset.io/papers/second-generation-design-methods-6c5j5ikzlv
https://typeset.io/papers/transcending-the-individual-human-mind-creating-shared-59wb2omz5x
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/embedding-critics-in-design-environments-4xganhpcva
https://twitter.com/intent/tweet?text=Embedding%20critics%20in%20design%20environments&url=https://typeset.io/papers/embedding-critics-in-design-environments-4xganhpcva
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/embedding-critics-in-design-environments-4xganhpcva
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/embedding-critics-in-design-environments-4xganhpcva
https://typeset.io/papers/embedding-critics-in-design-environments-4xganhpcva

~universitY of Colorado at Boulder

Center for lifeLong Learning and Design (13D)

Department of Computer Science

ECOT 717 Engmeenng Center
Campus Box 430
Boulder, Colorado 80309-0430
(303) 492-1592, FAX: (303) 492-2844

Embedding Critics in Design Environments

Gerhard Fischer\ Kumiyo Nakakojil,2 , Jonathan Ostwald1

Gerry Stahl1 and Tamara Sumner1

lCenter for LifeLong Learning and Design (L3D)

Department of Computer Science and Institute of Cognitive Science
University of Colorado
Boulder, CO 80309-0430

gerhard@cs.colorado.edu

2Software Engineering Laboratory

Software Research Associates, Inc.
1-1-1 Hirakawa-cho, Chiyoda-ku, Tokyo 102, Japan

The Knowledge Engineering Review, Vol. 8:4, 1993, pp. 285-307

The Knowledge Engineering Review, Vol. 8:4, 1993,285-307

Embedding critics in design environments

GERHARD FISCHER, KUMIYO NAKAKOJI,l JONATHAN OSTWALD,2

GERRY STAHL3 and TAMARA SUMNER

University of Colorado, Boulder, Colorado 80309-0430, USA (email: gerhard@cs.colorado.edu)

Abstract

Human understanding in design evolves through a process of critiquing existing knowledge and

consequently expanding the store of design knowledge. Critiquing is a dialogue in which the

interjection of a reasoned opinion about a product or action triggers further reflection on or

changes to the artifact being designed. Our work has focused on applying this successful human

critiquing paradigm to human-computer interaction. We argue that computer-based critiquing

systems are most effective when they are embedded in domain-oriented design environments,

which are knowledge-based computer systems that support designers in specifying a problem and

constructing a solution. Embedded critics playa number of important roles in such design

environments: (1) they increase the designer's understanding of design situations by pointing out

problematic situations early in the design process; (2) they support the integration of problem

framing and problem solving by providing a linkage between the design specification and the design

construction; and (3) they help designers access relevant information in the large information

spaces provided by the design environment. Three embedded critiquing mechanisms-generic,

specific, and interpretive critics-are presented, and their complementary roles within the design

environment architecture are described.

1 Introduction

Human understanding in design evolves through a process of critiquing (Fischer et aI., 1991)

existing knowledge and consequently expanding and refining the state of knowledge. Our work has

focused on applying this human critiquing paradigm to human-computer interaction. Our experi

ence with this approach is based on several years of system prototyping, the integration of cognitive

and design theories, and empirical evaluation of these systems. Based on these experiences, we

conclude that computational critiquing systems are most effective at supporting human designers

when embedded in domain-oriented design environments (Fischer, 1992).

In section 2, we explain why the critiquing paradigm is essential for supporting the complex

activity of design. Using illustrations from critiquing systems we have built, we demonstrate in

section 3 how embedding in design environments enhances the computational critiquing process.

Examples of our embedded critiquing system are drawn from HYDRA-KITCHEN, a residential kitchen

design environment we have built. Section 4 explains three embedded critiquing mechanisms we

have designed, implemented, and studied, called generic. specific and interpretive critics. Finally,

in section 5 we assess some of the benefits of these embedded critiquing mechanisms.

1 Also at: Software Engineering Laboratory, Software Re~earch Associates. Inc .. 1-1-1 Hirakawa-cho.

Chiyoda-ku, Tokyo 102, Japan.

2 Also at: Nynex Science and Technology Center, White Plains. New York. USA.

3 Also at: School of Environmental Design, University of Colorado, Boulder. Colorado 80309, USA.

G. FISCHER ET AL. 286

2 The critiquing approach

Critiquing is a dialogue in which the interjection of a reasoned opinion about a product or action

triggers further reflection on or changes to the artifact being designed. For example, a kitchen

designer might critique a kitchen floor plan in terms of building code violations, efficiency, safety

concerns, or eventual resale value. An agent-human or machine--capable of critiquing in this

sense is a critic. Computer-based critics are made up of sets of rules or procedures for evaluating

different aspects of a product; sometimes each individual rule or procedure is referred to as a critic

(Fischer et aI., 1991).

2.1 Importance of human critiquing

Human critiquing plays an important role in design both in the growth of human knowledge and in

terms of error elimination. By "human critiquing" we mean subjecting our designs and products to

the scrutiny of other people, be they peers, domain specialists, or society in general.

Complex design activities prohibit an individual from knowing everything that is relevant; in

addition, expertise is frequently controversial. Complex design situations can therefore be

characterized by a "symmetry of ignorance" (Rittel, 1984), and the knowledge needed to solve a

design problem is distributed among designers and their clients (Rittel & Webber, 1984).

Critiquing is an important method for working within such a framework of distributed knowledge

because it fosters a maximum of participation to activate as much of the distributed design

knowledge as possible. In kitchen design, the designer and the homeowner take turns proposing

ideas and criticizing each other's suggestions. In this way, the often tacit knowledge (Polanyi, 1966)

that each party has can come into play and complement the other's partial grasp of the design

problem.

Critiquing is ubiquitous. It is, for example, at the heart of the scientific method. Popper (1965)

theorized that science advances through a cycle of conjectures and refutations. Scientists formulate

hypotheses and put forth these conjectures for scrutiny and refutation by the scientific community.

Besides contributing to the growth of knowledge, this critiquing cycle of conjectures and

refutations is essential for creating a shared understanding within the scientific community and

providing a stable base for future growth in scientific knowledge.

Critics play an important role in making designers aware of breakdown situations (Fischer,

1993). Petroski (1985) noted the importance of failure in the growth of engineering knowledge. For

instance, when an airplane crashes, the Federal Aviation Adminstration sends a team of specialists

to the site to determine the cause of the accident. In essence, these specialists are critiquing the

plane's design and const'ruction and current aviation practices. Over the years, this practice has

contributed much to the growth of aviation knowledge in terms of both airplane design and

improved safety regulations (Chambers & Nagel, 1985). In turn, this growth in knowledge

contributes toward future error elimination; that is, planes with the same defect are repaired and

aviation regulations are improved to prcvent similar crashes.

The activity of critiquing plays an important role in engineering, science, and design in general.

It produces many benefits, including the growth of knowledge, error elimination and the

promotion of mutual understanding of all participants. Through the critiquing process, designers

gain a better understanding of the design problem by hearing the different points of view of other

design participants. In our work, we have taken this successful human critiquing paradigm and

shown how it can be effectively applied to enhance human-computer interaction. In the remainder

of this paper, the term "critiquing" will refer to computer-based critiquing systems.

2.2 Applying computer-based critiquing 10 design

Our design environments are cooperatil'c problem-solving systems (Fischer, 1990) in which the

computer system helps users design solutions themselves as opposed to having an expert system

Embedding critics in design environments

Problem

Create My Solution

Design a kitchen for

a left-handed cook

~gl 1001 00 I I

c

~ '-------'

RC~ ~ue
[

Critic Rule:

The dishwasher should be on the left side

of the sink if the cook is left-handed. 1

287

Figure 1 A cooperative problem-solving system has two agents~a human designer and a

computer-based critic. Both agents contribute what they know about the domain to solving some

problem. For the critiquing systems discussed in this paper, the human's primary role is to generate

and modify solutions; the computer's role is to analyse these solutions and produce a critique for the

human to consider in the next iteration of this process

design solutions for them. As illustrated in Figure 1, critiquing is integral to cooperative problem

solving systems. The core task of critics is to recognize and communicate debatable issues

concerning a product. Critics point out problematic situations that might otherwise remain

unnoticed. Many critics also advise users on how to improve the product and explain their

reasoning. Critics thus help designers avoid problems and learn different views and opinions.

Critiquing systems augment the ability of human designers to evaluate their solutions; decisions

concerning whether or not to follow the critic suggestions are left up to the designers.

Critiquing systems are well suited for design tasks in complex problem domains in which the

traditional expert systems or automated design approaches have proven inadequate. Such design

tasks have the following characteristics: (a) knowledge about the design domain is incomplete and

evolving; (b) the problem requirements can be specified only partially; and (c) necessary design

knowledge is distributed among many design participants.

2.2.1 Knowledge about the design domain is incomplete and evolving

Some domains, such as user interface design (Lemke & Fischer, 1990) and lunar habitat design

(Stahl, 1993), are not sufficiently understood; that is. creating a complete set of principles that

exhaustively captures their domain knowledge is impossible. Complex problem domains are

continually changing as new design knowledge is gained and old design knowledge becomes

obsolete. For example, user interface design principles have certainly changed to accommodate the

shift from primarily character-based user interfaces to sophisticated graphical user interfaces. Any

system supporting design in complex domains must be able to evolve with the domain.

Expert systems and automated design approaches are infeasible in these complex situations in

which all the potential relevant background knowledge cannot be articulated (Winograd & Flores,

1986). Because autonomous expert systems leave the human out of the decision process and all

"intelligent" decisions are made by the computer, these systems require a priori a comprehensive

knowledge base covering all aspects of the tasks being performed. Most expert systems also fail to

adequately support the evolution of domain knowledge. First, expert systems typically do not

G. FISCHER ET AL. 288

support the addition of knowledge by domain experts, and instead rely on knowledge engineers to

acquire this knowledge from domain experts and subsequently codify it for the specific system.

Second, expert systems have shown themselves to be brittle (Rittel & Webber, 1984); that is, a

small shift in the problem domain can render an expert system's knowledge base obsolete and

inoperative (Buchanan & Shortliffe, 1984).

An important aspect of embedded critiquing systems is their incremental nature; they do not

need a large or comprehensive rule-base to be effective. Because critics are structured to be

independent entities, adding or modifying a critic does not affect the behavior of the remaining

critics. Parts of the critiquing system can remain operational and continue to support the design

process while other parts undergo evolutionary change. In the HYDRA-KITCHEN system we have

prototyped a "generic" critiquing mechanism that is knowledgeable about commonly accepted

design principles and standard design practices. These principles are found in textbooks and

training programs and are recognized by professional kitchen designers as being important aspects

of producing a "good" floor plan. Although this general knowledge base is insufficient for

automating the design of kitchen floor plans or for making a detailed analysis of the appropriate

ness of the design for a particular client, the generic critiquing system provides designers with

valuable feedback concerning their floor plan designs. One study involving both amateur and

expert kitchen designers showed that HYDRA'S generic critics helped both categories of designers,

even though its rule-base contained only 24 critic rules (Fischer et al., 1989).

2.2.2 The problem requirements can be specified only partially

Design problems are ill-defined: they cannot be precisely specified before attempting a solution

(Rittel & Webber, 1984). Problem specifications reflect the designer's understanding of the

problem framing and the problem solution. Researchers in situated cognition (Lave, 1988) and

design (Schoen, 1983) have shown that designers arrive at solutions by iteratively reframing the

problem-adjusting and refining their understanding of the problem framing and problem solution

to reflect decisions made, means that may be chosen, materials available, and other changes in the

context. Thus, problem specifications are not only incomplete, they are also dynamic in nature.

The expert system approach is based on the assumption that the problem to be solved can be

fully articulated to the system a priori. The system can return a solution only if given a complete and

accurate problem specification. Furthermore, changes in the problem specification can completely

invalidate the expert system's proposed solution. Thus, expert systems are inadequate in ill

defined domains with partial and evolving problem specifications.

We have constructed a critiquing mechanism that supports design as a process of problem

reframing. This "specific" critiquing mechanism enables only those critics pertinent to the current

partial specification, and as such embodies domain knowledge concerning situation-specific design

characteristics that not every design will share. I n kitchen design, professional designers elicit this

situation-specific knowledge from their customers using predefined questionnaires; the answers to

these questionnaires form part of the kitchen specification. In HYDRA-KITCHEN, as the designer

changes the problem specification. the "specific" critiquing mechanism brings different sets of

critics to bear upon the design. This mechanism supports the coevolution of problem framing and

problem solving by making explicit the relationship between the partial problem specification and

the current design solution.

2.2.3 Necessary design knowledge is disrributed among many design participants

Design domains such as network design are so large and complicated and have so many subdomains

that no single person can know all there is to know (Fischer, 1991). In such complex domains, the

necessary design knowledge is distributed among many participants and most design work is done

by teams whose members have different arcas of expertise (Hackman & Kaplan, 1974; Johansen,

1988). When designing in ill-defined domains, there are no "optimal" solutions (Simon, 1981).

Conflicts in opinion about how to proceed often arise due to differences in the designers' areas of

Embedding critics in design environments 289

expertise, their personal styles, and their particular problem framing. Often, such conflicts are

resolved and design proceeds after designers present reasoned arguments supporting their

opinions for discussion and negotiation.

Our critiquing systems support design as a deliberative and interpretative process. Critiquing

systems contain a collection of critics that embody different areas of domain expertise, different

design styles, and often diverging opinions. Our "interpretive" critiquing mechanism supports

designers with varying interests and differing areas of expertise to work together by allowing design

knowledge to be defined and bundled into personal or topical groupings. Using this mechanism,

designers can examine their design from many different perspectives in which each perspective

brings different design knowledge and critics to bear upon the current design.

All of our critiquing mechanisms-generic, specific and interpretive-support design as a

deliberative process. Besides simply pointing out a potential flaw in the design, these critics offer a

reasoned opinion as to why their suggestion should or should not be followed. This interaction style

typifies cooperative problem-solving systems: it is the role of the critiquing system to bring relevant

design knowledge to the designer's attention; it is the role of the designer to evaluate the trade-offs

and make the final decisions.

3 Embedding critics in integrated design environments

Our early research focused on building and evaluating general purpose (i.e., not domain-oriented)

critiquing mechanisms (Fischer et aI., 1991). During later work, we became interested in building

domain-oriented design environments (Fischer, 1992). In the last few years, we have merged these

two research interests by embedding critiquing mechanisms into domain-oriented design environ

ments. This embedding enhances both the richness of the critiquing process and the ability of our

design environments to support the complex activity of design. This section discusses early

critiquing systems we have built and how they contributed to the development of the multifaceted

architecture, HYDRA, for design environments. A scenario using HYDRA-KITCHEN illustrates how the

embedded critiquing mechanisms integrate the various components in the design environment.

3.f Analyses of early critiquing systems

Critical analyses of our early stand-alone critiquing systems (Fischer et aI., 1991) and systems built

by others (Burton & Brown, 1982; Silverman, 1992), combined with empirical evaluations, led us

to realize that the challenge in building critiquing systems is not simply to provide feedback: the

challenge is to say the right thing at the right time. Our analyses identified several shortcomings in

early critiquing systems that hindered their ability to sav the "right" thing at the "right" time:

• lack of domain orientation;

• insufficient facilities for justifying critic suggestions:

• lack of an explicit representation of the user's goals:

• no support for different individual perspectives:

• timing problems with critic intervention strategies.

3.f.1 Lack of domain orientation

LISP-CRITIC (Fischer, 1987) allows programmers to request suggestions on how to improve their

code. The system proposes transformations that make the code more cognitively efficient (i.e.,

easier to read and maintain) or more machine efficient (i.e., faster or smaller). However, the lack

of domain orientation limits the depth of critical analvsis the critiquing system can provide.

Without domain knowledge, critic rules cannot be tied to higher level concepts; LISP-CRITIC can

answer questions such as whether the Lisp coele can be written more efficiently, but it cannot assist

a user in deciding whether the code can solve a specific problem.

G. FISCHER ET AL. 290

3.1.2 Insufficient facility for justifying critic suggestions

FRAMER (Lemke & Fischer 1990) enables designers to develop window-based user interfaces on

Symbolics Lisp machines. FRAMER'S knowledge base contains design rules for evaluating the

completeness and syntactic correctness of the design as well as its consistency with interface style

guidelines. Evaluations of FRAMER showed (1) that many users did not understand the conse

quences of following the critic's advice or why the advice was beneficial to solving their problem,

and (2) that when users do not understand why a suggestion is made, they tend to blindly follow the

critic's advice whether or not it is appropriate to their situation. FRAMER provided short expla

nations to address this problem. However, in design there are not always simple answers; access to

argumentative discussions detailing the pros and cons of a particular suggestion are necessary

(Rittel & Webber, 1984).

3.1.3 Lack of an explicit representation of the user's goals

JANUS (Fischer et aI., 1989) is a step toward addressing the previous shortcomings. JANUS allows

designers to construct kitchen architectural floor plans. It contains two integrated subsystems: a

domain-oriented kitchen construction kit and an issue-based hypermedia system containing design

rationale. Critics respond to problems in the construction situation by displaying a message and

providing access to appropriate rationale in the hypermedia system. However, these critics often

give spurious or irrelevant advice resulting from the lack of an explicit representation of the user's

task. The only task goal built into JANUS is one of building a "good" kitchen; that is, a kitchen that

conforms to commonly accepted standards and design practices. With an explicit model of the

designer's intentions for a particular design, critics can be selectively enabled based on this model

and provide less intrusive and more relevant advice.

3.1.4 No support for different individual perspectives

It is not possible to anticipate all the knowledge necessary for a critiquing system to say the "right"

thing in every design situation. Design domains are continually evolving as new knowledge is

gained. JANUS-MoDIFIER (Fischer & Girgensohn, 1990) was developed to respond to this problem

by making the domain knowledge (including critics) end-user modifiable. But being able to add

new knowledge is not suffIcient; different llsers must be able to organize and manage design

knowledge and critics to reflect their perspectives on design. Design environments need to support

interpretation of a problem from many perspectives (technical, structural, functional, aesthetic,

personal), and critique accordingly.

3.1.5 Timing problems with critic intervention strategies

A number of systems (Fischer et aI., 1985; Burton & Brown, 1982) investigated critic intervention

strategies, which determine when and how a critic should signal a potential problem. This research

focused on studying active versus passive intervention strategies. Active critics continually monitor

user actions and make suggestions as soon as a problematic situation is detected. Passive critics are

explicitly invoked hy users to evaluate their partial design.

A protocol analysis study (Lemke & Fischer, 1990) showed that passive critics were often not

activated early enough in the design process to prevent designers from pursuing solutions known to

be suboptimal. Often, subjects invoked the passive critiquing system only after they thought they

had completed the design. By this time, thc effort of repairing the situation was expensive. In a

subsequent study using the same design environment, an active critiquing strategy was shown to be

more effective by detecting problematic situations early in the design process.

However, our interactions with professional designers showed that active critics arc not a

perfect solution either: they can disrupt the designcr's concentration on the task at the wrong time

and interfere with creative processes. Interruption becomes even more intrusive if the critics signal

breakdowns at a different level of abstraction compared to the level of the task users arc currently

engaged. For example, if the designer is currently concerned about where the refrigerator should

Embedding critics in design environments

Specification

Component

critic "'~II- ___ _

messages

argumentation ... ~-----

examples ... ~ ... -----

Construction
Component

Argumentation Jl/ustrator

~
Catalog

Component

291

Figure 2 The critiquing process with HYDRA. The links between the components-the Construction

analyser and the Argumentation illustrator-are crucial for exploiting the synergy of the integration.

be located in a kitchen floor plan, then a critic suggestion that a double-bowl sink is better than a

single-bowl sink is probably inappropriate and distracting at this point in time.

What is needed is a critiquing system that: (1) alerts designers to problematic solutions; (2)

avoids unnecessary disruptions; and (3) allows users to control the critic's intervention strategy.

Embedding critics in design environments allows users to control critic intervention through

interaction with the construction, specification, and perspective design components built into the

design environment.

3.2 HYDRA: A multifaceted architecture for design environments

Design environments are computer programs that support designers in concurrently specifying a

problem and constructing a solution. Design environments provide information repositories to

store domain knowledge and allow designers to accumulate additional domain-knowledge through

interaction with the environment.

HYDRA (Figure 2 represents its components schematically: Figure 3 provides a screen image)

contains design creation tools in the form of a construction component and a specification

component. Design information repositories are provided in the form of argumentation and

catalog knowledge bases. The architecture is multifaceted because these components provide

multiple representations of both the current design and underlying domain knowledge. The

critiquing mechanisms integrate these facets in the design environment architecture. The various

representations arc managed by the following four components:

• The construction component is the principal medium for modelling a design. It provides a palette

of domain-oriented design units, which can be arranged in a work area using direct manipu

lation. Design units represent primitive clements in the construction of a design, such as sinks

and stoves in the domain of kitchen design. Critics can be tied to these domain-oriented design

units and to relationships between design units .

• The specification component allows designers to describe abstract characteristics of the design

they have in mind. The specifications are expected to be modified and augmented during the

design process, rather than to be fully articulated at the beginning. The specification provides

the system with an explicit representation of the user's goals. This information can be used to

Hydra -Kitchen

Current Specltlca.tlonIJ for:

Typ~: kitchen N.~e: s .. d ths-k1 t.chen

5 1." of faMily?
1~ Four to Si~

1.1. ~ .IlI:..iJIAa ~ L1..sM lI.C. I cft-bondcdT
• --+ Left handed

S i l.e of r"Ieal.s7

''''-'+- huge
• Enterta1nnent requ i re"ent?

7--+- Yes
How often do you cook?

• ~ fre.quent1)o1
~h1Ch tyP. or s i nk do you nerd?

.~ double: bo...,l sink

_Catalog

i And; -K i tch"n

i i
,! Brenta-K1t.che.n

, I
II Chr i .-K itch"n

! I
~ Oocc"oc-<'"", C.!!.WLJ

Clear Work Area
li st Obj eets

Current ConlltructJon

"' •• &ag ••

Critique All
New Object

ornE]

Edit Global Oueriptions
Save In Catalo9

I
[',ultl •••. ll'Double-door-refrliierator Is not used.

I~$p •• ili •• t.l]· shwasher- s not e t 0 ouble~Bow -Slnk-2.
"\

Commands

A ~ • I
~

l-1nll~.·-t ~ ~hnw fu "'J"If"~nt •• , inn I.,r ... Or(fH·.hW'.J1· .h'·I ' ,!".lut.): r·',lu· .. · .. 1 ~ 1· r ,II f l .. (. -Of(lIl· " .• · .• ,.· •. '.1,.(.); I·I" .. ·. " .. R· t·I "
J4-ll00-0UU).1~ .. lIUD4Itu.._f.ll · ~lll.4 _ ' "Ql. !-t",ta-::'hlfL.'" !iUj.>O>' _ _ _ . __ -_._ _ _ _ ______ .. _. _______ . __

~ed 16 Dec 1 • • 6. BJ kUl'dyo CL JC. User Input SIS! EX >kunlyp):merlflcAtlpo)cuJcxpIg9 IIsp 6 lOOZ 989

Figure 3 Screen image of Jl YDRi\ -KITCHEN The "Current Specification" window shows a summary of currentl y selected answers using the specification component.

A n indicator attached \() each of the selected answers allows users to assign weights of importance to the specified item in order to set priorities. The "Cata log"

window shows previous kitchen designs that ca n be examined o r reused. The "Current Constructio n" window shows a parti a l construction being built using

compone nts provided in a palett e of kitchen design units (not shown). The "Messages" window is used to present critic notification messages. The number attached

to the critic message is a weight ed measure indi ca ting the releva nce o f the fired critic.

N
~
N

Embedding critics in design environments 293

tailor both the critic suggestions put forth and the accompanying explanations to the user's task

at hand.

• The argumentative hypermedia component contains design rationale based on the procedural

hierarchy of issues (PHI) structure (see Figure 5) (McCall, 1987; Conklin & Begeman, 1988).

The PHI structure consists of issues, answers, and arguments about decisions made during the

course of design. Users can annotate and add argumentation as it emerges during the design

process. Argumentation is a valuable component in a critic's explanation; it identifies the pros

and cons of following a critic suggestion and helps the user to understand the consequences of

following a suggestion.

• The catalog component provides a collection of previously constructed designs. These illustrate

examples within the space of possible designs in the domain and support reuse (Prieto-Diaz &

Freeman, 1987) and case-based reasoning (Kolodner, 1991). Catalog entries are also important

components in a critic's explanation. Often, a critic does not suggest a course of action but

instead points out a deficiency in the current design; catalog entries can then be used as specific

examples illustrating sample solutions that address a deficiency noted by a critic.

This architecture derives its power from the integration of its components. When used in

combination, each component augments the value of the others in a synergistic manner. The

components of the architecture are integrated by two linking mechanisms (see Figure 2). Together,

these linking mechanisms support the critiquing process by providing critic messages, explanatory

argumentation, and illustrative examples:

• Thc construction analyser is the core critiquing component in HYDRA. This mechanism analyses

the design construction for compliance with the currently enabled set of critic rules. When a lack

of compliance is detected, the critic signals a breakdown and provides entry into the exact place

in the argumentative hypermedia component in which the appropriate explanation is located.

• The argumentation illustrator can retrieve both positive and negative catalog examples to

illustratc thc problematic situation detected by the construction analyser. Providing specific

examples is essential, because the explanation given in the form of argumentation is often highly

abstract and conceptual. Concrete design examples that match this explanation assist designers

in understanding the potential problem, assessing the design situation, and devising a solution.

In addition to thc construction and argumentation components of its predecessor JANUS, HYDRA

supports a specification component (Fischer & Nakakoji, 1991) and a catalog of designs. The

specification format is based on questionnaires used by professional kitchen designers to elicit their

customers' requirements, such as the kitchen owner's cooking habits and family size. Each

component in HYDRA contains design knowledge that can be used by an embedded critiquing

mechanism to overcome the deficiencies of the stand-alone systems prcviously described.

As mentioned in section 2.2, we have studied three classes of embedded critiquing mechanisms:

generic, specific and interpretive critics. These mechanisms embody different types of design

knowledgc, and correspond to three dimensions of embedding. Generic critics are embedded in the

construction and use domain knowledge concerning desirable spatial relationships between design

units to detect problematic situations in the partial design construction. Specific critics are

embedded in the partial specification and take advantage of additional knowledge in the partial

specification to detect inconsistencies between the design construction and the design specification.

Interpretive critics are embedded in a perspective mechanism that enables designers to create

topical groupings of critics and design knowledge; such groupings support designers in examining

their artifacts from different viewpoints. The argumentation and catalog components provide rich

sources of domain knowledge that all three mechanisms use in their explanation process when

communicating with the designer.

The following section provides a scenario depicting how kitchen designers work within the

HYDRA environment. The scenario describes the three critiquing mechanisms, and it illustrates the

benefits derived from embedding these mechanisms in the multifaceted architecture.

G. FrSCHER ET AL. 294

3.3 Scenario illustrating generic, specific and interpretive critics

Imagine that Bob, a professional kitchen designer, has been asked to design a kitchen for the Smith

family. The partial specification of the Smith's kitchen is articulated using HYDRA, as shown in

Figure 3.

Bob begins working on a floor plan in the construction area. He moves the dishwasher next to

the cabinet. Bob's action triggers a generic critic, and the message "The dishwasher is too far from

the sink" is displayed. Generic critics reflect knowledge that applies to all designs, such as accepted

standards, building codes, and domain knowledge based on physical principles. Often, this generic

knowledge can be found in textbooks, training curricula, or by interviewing domain practitioners.

Bob highlights the critic's message and elects to see its associated argumentation. The argumen

tation explains that plumbing guidelines require the dishwasher to be within one meter of the sink.

Bob follows the critic's suggestion and moves the dishwasher next to the right side of the sink (for

details, see Fischer et al., 1991).

This action triggers a specific critic with the rule "If you are left-handed, the dishwasher should

be on the left side of the sink". Specific critics reflect design knowledge that is tied to situation

specific physical characteristics and domain-specific concepts that not every design will share.

These critics are constructed dynamically from the partial specification to reflect current design

goals. This particular critic rule was activated because Bob specified that the primary cook is left

handed (see Figure 3). Bob examines the supporting argumentation "Having the dishwasher to the

left of the sink creates an efficient work flow for a left-handed person". Bob decides this is an

important concern and puts the dishwasher on the left side of the sink.

Then Bob remembers that the Smiths are remodelling mainly to increase their property value in

anticipation of selling in two years. So Bob decides to examine his design from a resale-value

perspective. When Bob switches to the resale-value perspective, an interpretive critic is triggered

with the rule "The dishwasher should be on the right side of the sink". Interpretive critics support

design as an interpretive process by allowing designers to interpret the design situation from

different perspectives according to their interests. In this perspective, the critic about the

dishwasher and sink has been redefined and its associated rationale has been modified. Now the

argumentation says "Optimizing your kitchen for left-handed cooks can adversely affect the

house's resale value since most kitchen users are right-handed". Bob decides that enhancing the

Smiths' resale value is the more important consideration and moves the dishwasher. As long as he

remains in the resale-value perspective, Bob will be informed by the critics whenever they detect a

feature negatively affecting resale value. Addi~ionally, the critics will provide Bob access to

argumentation concerning designing for resale.

4 Three embedded critiquing mechanisms

This scction describes in detail three embedded critiquing mechanisms-generic, specific and

interpretive. Examples of how these three critic styles are deployed were illustrated in the previous

scenario. In all three mechanisms, critic knowledge is captured by rules with condition and action

parts. The condition clause checks whether a certain situation exists in the current design

construction. The action clause notifies the designer that a particular situation has been detected.

Figure 4 illustrates a condition-action critic rule in which the condition checks if the stove is away

from the window; the action part notifies the designer that "the stove is not away from the

window".

For all three mechanisms, the basic critiquing process consists of the following phases: (I) the

set of appropriate critic rules to be enabled is identified; (2) the design construction is then

analysed for compliance with the currently enabled set of critic rulcs; (3) when a lack of

compliance is detected, the critic signals a possible problem and provides entry into the argumenta

tive hypermedia component in which the appropriate explanation is located; and (4) concrete

catalogue examples that illustrate the explanation given in the form of argumentation can

Embedding critics in design environments 295

Rule Away-From(Stove,Window)

I
Cond i t i on: A~AY -FROM
P~raneters: Stove Windou
Apply to: One All
Requirenents: (And (Gener~tes Stove He~t) (H~s Windou Curtains) (Fl~nn~ble Curt~ins)

a fact description
6Argunentation Topic: ansuer (stove, uindow)

(t"\-\&'~,*,"'-'%%\~~w..%~~%"*"~\\»%"~""-W..''''*'''''''-'\\,'»'"",,,*-,*,-'*''%~'*'''®..'\§§>.~w~''*'*w~'-\\-'b-~'~'$\,*,-',}'-'-'.%'-',,*,~""~,*,-,\w>\~'»''''':D

Relation Away-From

Paraneters: x y

Condition: (> (nininun-distance x y) (inches 12»
Critique: -A i5 not ~uay fran -A.
Praise: -A is away fron -A. I
Nane: A~AY -FROI1

Description: Two deslgn unit5 are aw~y fran each other
if the nininun distance betueen then is More than 12 inches.

I ft"*""*»~%',}'*'''*'~~''*''~'*'''''-'~''''-'''~~~'<}~%'-~~~~''*'~~''»~,,,\~''~~~'~~~~''0~~~'''w.-~,,'*'-~~'&.~ I

Figure 4 The "'stove should be away from the window" critic rule and the definition of the Haway

from" spatial relation

Table I The critic mechanisms-generic, specific and interpretive---differ in how they enable critic rules, the

rules' scope of applicability, and the types of design knowledge each mechanism is best suited to represent

How enabled Applicability Design knou1edge Example

Generic Enabled by placing All designs Standards Cabinets should be 150 cm

design units into the above floor

construction area Physical principles Heat ignites flammable objects

Specific Enabled by the Specific Situation characteristics Cook is left-handed and 150 em

partial specification design Abstract domain in height

concepts Efficiency; safety

lntel'pretive Enabled hy the Specific Multiple interpretations Cabinet height: convenient for

currently active perspective of domain concepts cook

design perspective Cabinet height: desirable for

resale value

optionally be delivered (Fischer et aI., 1991). As illustrated in Table I, the three critic mechanisms

differ mainly in tenm of how they enable critic rules and in the types of design knowledge

embodied in their rules.

• Generic critics (Fischer et aI., 1991) are enabled by the placement of design units into the

construction area. These critics apply to all designs containing the design unit to which the critics

are attached. Generic critics reflect knowledge that is applicable to all designs, such as accepted

standards or regulations or domain knowledge based on physical principles (see Table 1).

• Specific critics (Nakakoji, 1993) are constructed dynamically to reflect the designer's goals as

they are stated explicitly in the specification component. These critics apply only to the design

situation currently under construction. Specific critics reflect design knowledge that is tied to

situation-specific physical characteristics and domain-specifIC concepts that not every design will

share.

• Interpretive critics (Stahl, 1993) provide a mechanism for supporting design as an interpretive

process; that is, they are a response to the recognition that domain concepts such as "cabinet

height" and "efficiency" can have more than one definition or interpretation depending upon the

G. FISCHER ET AL. 296

current situation and the designer. Interpretive critics allow designers to view their work from

multiple perspectives by creating, managing and selectively activating different sets of design

knowledge.

Specific examples illustrating each of these critic mechanisms will be discussed below. Generic

critics will be used to discuss the basic critiquing process described at the beginning of this section.

The three mechanisms for embedded critics differ from one another primarily in how they

determine which set of critic rules should be enabled. The discussion of specific critics and

interpretive critics will focus on how these mechanisms determine which critics are currently

enabled.

4.1 Generic critics

Generic critics reflect knowledge that applies to all designs such as accepted standards, building

codes and domain knowledge based on physical principles. Often, this generic knowledge can be

found in textbooks, training curricula, or by interviewing domain practitioners. A generic critic

representing an accepted kitchen design standard is the cabinet height critic. Kitchen designers

agree that unless more specific information regarding the primary cook is known, the top cabinets

should be placed 150 cm above the floor. A generic critic reflecting domain knowledge based on

safety principles is the "stove should be away from the window" rule shown in Figure 4. This rule

reflects the principle that objects that generate heat (e.g., the stove) should not be placed under

flammable objects (e.g., the curtains on the window).

Generic critics in HYDRA are implemented as object-oriented methods of appliances and other

design units in the design construction. When the design construction is altered, all design units

implicated by the changes evaluate their critic methods. These methods are defined and parameter

ized by the information in property sheets such as those shown in Figure 4. For example, the rule

box shown defines a generic critic for stoves. This method checks that the stove is "away from" all

windows in the construction area.

The condition away-from is defined in the relation property sheet as taking two objects and

evaluating whether or not the minimum distance between them is greater than 12 inches. The

corresponding message for display if this condition is not met is the critique: the first object "is not

away from" the second object.

The critic defined in the rule sheet applies this relation to the stove as the first parameter and

sequentially to earh window in the construction as the second parameter. The definition specifies

that this rule shall be applied to windows (Apply to: All) because stoves should be away from all

windows to prevent fires. Other critic rules specify only that there should exist at least one object in

the construction (Apply to: One) that matches the condition relation with the first parameter-for

example, the dishwasher should be near at least one sink.

Further requirements can be specified for the applicability of the critic rule. These applicability

requirements make use of domain concepts like "generates heat", "has curtains" anel "is

flammable". In the example rule, a stove has to be away from a window only if the stove generates

heat (e.g., it is not a microwave), if the window has curtains, and if the curtains are flammable.

Finally, the definition of the critic lists a topic in the argumentation issue-based that will be

displayed if this critic fires and the user selects the critic message.

All generic critics in HYDRA are defined through property sheets like these for rules and relations.

Using these property sheets, designers arc able to modify the definitions of existing critics and to

create additional critics.

Critics inform designers of potentially problematic situations by using a three-tiered approach

that involves simple notification, supporting argumentation and specific examples. First, the critic

signals the designer of a potentially problematic situation with a simple initial notification message.

The form of this initial notification message is defined by the critique phrase in the spatial relation

definition. The critic shown in Figure 4 would display the message "Stove-l is not away from

Embedding critics in design environments 297

Window-l". Variables in the notification string are resolved into specific design units by the critic

rule using the spatial relation. Associating notification messages with the spatial relations allows

these messages to be shared by many critic rules. The downside of this approach is that the

notification message signals only that a spatial relation was detected and does not report why this is

significant.

As discussed in section 3.1, our work has shown that such "one-shot" notifications, which merely

identify a situation, are inadequate. Critics that support design as an argumentative process (Rittel

& Webber, 1984) should be capable of presenting different alternatives and opinions and each

alternative's corresponding advantages and disadvantages. The critiquing systems use the argu

mentation component of HYDRA to provide the second tier of explanation, thereby "making

argumentation serve design" (Fischer et aI., 1991).

Each critic rule has an associated link into the argumentation component where issues

pertaining to the situation identified by the critic arc discussed. For the critic in Figure 4, the

associated link is found in the slot "Argumentation Topic: answer (stove, window)". The designer

can view the critic's associated design rationale by selecting the initial notification message

displayed in the Message area (Figure 3). Because design rationale contains design issues

accompanied by positive and negative argumentation, critic explanations in this form help the

designer understand why the current design situation may be significant or problematic.

Sometimes designers may not understand the arguments made in the design rationale or they

may understand the arguments but not know what action to take. In these situations, providing

designers with specific examples can be helpful. The third tier of critic explanation delivers specific

examples upon request that illustrate the issue being discussed. Designers can select an issue in the

argumentation and request to see a positive example or a counter example. As illustrated in Figure

4, critic conditions are associated with argumentation issues. When the designer requests to see an

example of a specific issue, the argumentation illustrator (see Figure 5) takes the critic condition

associated with the selected argumentation issue and searches the catalog component for examples

that fulfill the condition.

4.2 Specific critics

In HYDRA specification knowledge is related to: (I) situation-specific physical characteristics such

as the size and shape of the kitchen or the owner's height; (2) specified requirements such as "a

dishwasher should be included"; and (3) abstract domain concepts such as safety and efficiency.

The specification issues were derived from questionnaires used by professional kitchen designers

(Nakakoji,1993).

Specific critics evaluate the construction situation for compliance with the partial specification.

They reduce the intrusiveness of a critiquing system by narrowing the enabled critics to those that

are relevant to the task at hanu as determined from the partial specification. Specification-linking

rules (Fischer & N akakoji, 19(1) are uscd to dynamically identify the set of spccific critics to be

enabled.

The specification consists of issue/answer pairs (see Figures 3 and 6). A specification linking rule

represents a dependency between an issue/answer pair in the specification and associated pro and

con arguments in the argumentation component. As shown in Figure 6, a specification linking rule

connects the argumentation issue "Where should the stove be located?" with the specification item

"Is safety important to you'r The shared domain distinction "safety" is used to establish a

dependency between this particular spccification item and the argumentation issue.

A critic condition is associated with each answer in the specification, and a domain distinction is

associated with each argument. Domain distinctions arc a vocabulary for expressing domain

concepts such as safety or efficiency. Whenever the designer moditles the specifIcation, the

critiquing system recompiles the specification-linking rules to reflect the newly relevant domain

distinctions. In this \vay, critiquing criteria arc tied to a representation of the partially articulated

goals of a specific design project.

G. FISCHER ET AL.

I (Stove)

~t thoUId tn. loc:.Uon op the .tove 0.7

s.. 0100: OSublo_ (Stover

~ntl'W''''' (Stove. OOOr\y
.,. .tov ... hould be aw ftom • door.

F'slur. 5: etov.-door

Argument (Fir .. Hazard)
By placing t.h. .tove too close to • door it will b. a fir.
and burn hazard to' tJnl:tJ~te<J pass.,. by (Iuch a. small
cnlldr.,..)1

Argument (Dining Room)
It tt,. door I •• d. Iflto .. dining room, It will b •• a.y to

bring hot food from the: ,lOVe Into the dining arw

An.Wef'" (Stove. Window)
The .tov •• hould b. away from. window.

I I

298

Stove Is away from Door.

Figure 5 Argumentation consists of issues, answers and arguments supporting or refuting answers.

The designer can view the stove-away-from-window critic's associated design rationale by selecting

the initial notification message displayed in the Message area (e .g. "Stove-I is not awav from

Window-I") of Figure 3. The arguments shown explain why many kitchen designers believe windows

and stoves should not be adjacent. Choosing the menu item "Show Example" causes example

designs that illustrate the answer advocated in the argumentation to be delivered to the designer.

The operation of the specification-linking rules can best be conveyed with an example. Assume

the designer knows that the kitchen owners have young children and he specifies that having a safe

(child-proof) kitchen is very important (Figure 6). The domain distinction associated with this

specification item is "safety". In the argumentation, answers (e .g., "the stove should be away from

all doors") are associated with critic conditions (e.g., "away-from stove door"). Pro and con

arguments are associated with domain distinctions. In Figure 6. the domain distinction "safety" is

associated with the pro argument and the domain distinction "efficiency" is associated with the con

argument.

Specification-linking rules link the domain distinctions activated in the specification with the

appropriate critic condition. First, the argumentation is analysed until the domain distinction

activated in the specification (safety) is found. If the domain distinction is associated with a pro

argument, then a specification-linking rule is created with the form: domain distinction implies

critic condition. If the domain distinction is associated with a con argument, then a specificatiol1-

linking rule is created with the form: domain distinction implies not critic condition. The

specification-linking rules "safety implies stove away-from door" and "efficiency implies stove not

away-from door" can be derived from the example in Figure 6. Whenever the designer modifies the

specification, the critiquing system recomputes the specification-linking rules. For the partial

specification shown in Figure 6, specification-linking rules supporting the notion of safety will be

constructecl. The right side of the specification rules are the enabled critic conditions used to

evaluate the design construction for adherence to the current specification.

Embedding critics in design environments

~: Where should the stove be located?

AIrnRr: The stove should be away from all doors.

Critic Condltlon:

Arguments:[pros]

Oomain-distinction:

Arguments ;[cons J

Oomain-distlnction:

(away-from stove door)

If stove is not away from a door.

it is a fire-hazard

safety

If stove is away from a door.

it is not convenient for serving

meals.

efficiency

Is safety important to you?

AIrnRr: Yes

Domaln-distinction: safety

Specificatjon-linkjnl: rule

safety -> (away-from stove door)

299

Figure 6 Derivation of the Specification-Linking rules. The domain distinction associated with a

specification item is paired with a matching pro or con argument in the hypermedia issue base. The

critic condition associated with an answer is linked with the domain distinction to form a specific

critic rule.

Default Residential Kitchen

Generic Critic Rule: Top Cabinets
~ should be placed 150cm above floor.

Resale Residential Kitchen 'Elw.

Critic Rule: Top Cabinets / ~ Smith's Residential Kitchen

should be placed not lower CritiC Rule: Top Cabinets should be
than 140 cm or higher __ __ placed at 80% of cook's height.

than 160 em ,7\ 1@,\ok"He,ght"50cm

Figure 7 Perspectives arc arranged in an inheritance network. Three perspectives-a "default

kitchen". "Smith's kitchen" and a "resale kitchen "-arc shown. The preferred placement of the top

cabinets depends on the perspective selected. The critic rule analysing the placement of the top

cabinets is redefined within each of the three perspectives.

Ofkn. conflicts between specific critics arise. The designer could have specified that he was

concerned with both safety and efficiency. For example. having the stove to the left of the

refrigerator may be efficient, but it may also be less safe if this places the stove next to the door.

Using the specification component. the designer cannot only state which concepts arc of interest,

he can also articulate his level of interest by weighting specification items. The critiquing system

uses these weights to help prioritize critic activity. When a critic fires, it displays an importance

weight next to the initial notification message that reflects the weights assigned to the specification

items that enabled the particular critic rule (see Figure 3). The designer can then take these relative

weights into account when deciding to respond to the critic messages.

4.3 Interpretive critics

Design can be viewed as an interpretive process (Stahl, 1993). Designers and their clients interpret

the design situation according to personal backgrounds. experiences, and concerns. This means

G. FISCHER ET AL. 300

that there cannot be a unique set of domain knowledge that is adequate for all people and all

interests. We have prototyped a design environment (Stahl, 1992) with perspectives (Bobrow &

Goldstein, 1980) to provide alternative views or approaches to given design situations. The

perspectives mechanism organizes all the design knowledge in the system. It allows items of

knowledge to be bundled into personal or topical groupings or versions. For instance, a resale

value perspective might include critics and design rationale pertinent to homeowners concerned

about their home's resale appeal. A kitchen design environment might have perspectives for

evaluating kitchens from the perspective of an electrician, a plumber, an interior designer, a

realtor, a mortgage writer or a city inspector. Perspectives could also be defined for individuals who

have special preferences or for specific kitchens. A perspective for the Smith's kitchen would

include design rationale for its unique set of design decisions so that any future modifications could

be checked for consistency with those decisions.

The organization of knowledge by perspectives encourages users to view the knowledge in terms

of structured, meaningful categories which they can create and modify. It provides a structure of

contexts that can correspond to categories meaningful in the design domain. This can ease the

cognitive burden of manipulating large numbers of alternative versions of critics and other design

knowledge.

Interpretive critics are the result of interactions between the perspectives structure and the critic

mechanisms (Figure 7). Critics are associated with design perspectives. The perspectives provide a

mechanism for creating, managing and selectively activating different sets of critics along with their

related design knowledge, such as spatial relations, domain distinctions, palette items and

argumentation. A perspective can incorporate critics from other perspectives, including generic

and specific critics from the default perspective (see Figure 7). Additionally, a perspective may

modify any inherited critics and define new ones.

Designers switch perspectives to examine a design from different viewpoints. Switching

perspectives changes the currently effective definitions of critics, the terms used in these defi

nitions, and other domain knowledge. As a result, the critics adapt to the different perspectives

hence the term "interpretive" critics. The designer always works within a particular perspective. At

any time, the designer can select a different perspective by name. New perspectives can also be

created by assigning a name and selecting existing perspectives to be inherited. Bob, the designer

working with the Smiths in the previous scenario, could create a Smith's kitchen perspective and

select the resale perspective to be inherited by it.

Perspectives are connected in an inheritance network; a perspective can modify any knowledge

inherited from its parents or it can add new knowledge. Consider the inheritance network shown in

Figure 7. Suppose that in the default perspective there is a rule that checks "if the top cabinets are

150 cm above the floor". In the Smith's kitchen perspective the rule that determines cabinet height

is based on the cook's height. This same critic rule will be evaluated differently in the three different

perspectives because it is defined in terms of the spatial relationship whose definition varies.

Similarly, either the rule or the spatial relationship in the rule could be defined indirectly in terms of

something in the argumentation issue-base, such as the answer to an issue requesting the primary

cook's height. Critics and the design knowledge on which they are based can be adapted to

interpret designs differently in many ways: by inheritance, by modification of inherited objects, or

by addition of new objects into a perspective.

Interpretive critics based on perspectives provide a mechanism for refining the critiquing

process that is orthogonal to the specific critics. Specific critics fine-tune the generic critics that

embody general domain knowledge, relating them to the design choices specified for a given

project. Whereas the set of generic and specific critics may be extensible in the sense that new critics

can be added from time to time, the perspectives mechanism provides for multiple definitions of

these sets to exist simultaneously so that individual designers can fluidly adopt varying viewpoints

on designs. This provides a means for structuring new critics and other knowledge representations

as they emerge during use of the design environment and systematically retaining this knowledge

for use in future projects.

Embedding critics in design environments 301

5 Benefits of embedding: increasing the shared context

Computational media offer great capacity for storing large volumes of information and support for

managing dynamic information spaces (Norman, 1993). Computational media can integrate

diverse information sources such as reference materials, solutions to previous design problems,

and collections of design rationale. However, access to large information spaces creates a new

problem for designers; information overload. In situations of information overload, the critical

resource for designers is not information, but rather the attention with which to process

information. Simon (1981) argued with convincing examples that a design representation suitable

for a world in which the scarce factor is information may be exactly the wrong one for a world in

which the scarce factor is attention. When presenting people with information, the primary

concern is to present items that are relevant to the task at hand (Fischer & Nakakoji, 1991). Critics

embedded in design environments exploit a rich notion of the designer's task at hand, or context, to

provide relevant information to designers.

Design environments support a cooperative problem-solving process in which the designer

determines the context of design by manipulating interface objects (such as graphical objects and

form-based objects) in the construction, specification and perspective components. Objects in the

construction component define a construction context that provides generic critics with a represen

tation for the task at hand. Values and priorities for specification objects define a specific context

that allows specific critics to compute relevant information for the particular task as specified by the

designer. The perspective mechanism determines an interpretive context that enables collections

of critics and their associated argumentation.

The context defined by the construction, specification and perspective situations allows the

system to provide information relevant to a dynamic representation of the task at hand that is

shared by the designer and the design environment. This shared context enables precise inter

vention by critics, reduces annoying interruptions, and increases the relevance of information

delivered to designers. Critics embedded in design environments benefit the design process by

increasing the designer's understanding of design situations, by pointing out significant design

situations that might have been overlooked, and by locating relevant information in very large

information spaces.

5.1 Increasing the designer's understanding of design situations

The solution of a design problem necessarily involves coming to a deeper understanding of the

problem through attempts to solve it. Design problems cannot be clearly defined "up front", before

any attempt at a solution is made. New requirements emerge during the design process (Schoen,

1983; Rittel, 1984; Fischer et aI., 1992) that cannot be identified until portions of the artifact have

been designed or implemented. These aspects of design create the following dilemma: (1) one

cannot gather information meaningfully unless the problem is understood; (2) one cannot

understand the problem without having a concept ()f the solution in mind; and (3) one cannot

understand the problem without information about it.

Problem framing and problem solving are IIlllflla!l\, enabling design processes because each

informs the other. Design methodologists such as Schoen (1983) and Rittel (1984) stress the strong

interrelationship between problem framing and problem solving. They characterize design

problems by the need for designers to impose a discipline. or framing, on the problem to reduce the

complexity of the situation to a manageable level. Problem framing is the process of determining

the boundaries (or framework) of a problem, such as determining the "givens" of the problem, the

assumptions under which the designer operates, and the criteria for evaluating a solution. Each

move toward a design solution tests the problem framing, potentially exposing conflicting or

unrealistic goals. Critics embedded in design environments support designers in creating and

modifying the problem framing throughout the design process-not just in the beginning. Critics

support a design process where "understanding the problem is the problem".

G. FISCHER lOT AL. 302

In this view of design, in which problem framings and problems solutions coevolve, each action

by the designer has the potential to alter the understanding of the problem, which in turn can

influence subsequent actions. Our goal is to support design as a cooperative problem-solving

dialogue between the designer and the evolving design situation.

5.2 Pointing out significant design situations

By seeing design as a "reflective conversation with the situation" (Schoen, 1983), action is

governed by nonreflective thought processes and proceeds until it breaks down. A breakdown

(Fischer, 1993) occurs when the designer realizes that nonreflective action has resulted in

unanticipated consequences-either good or bad. Schoen described this realization as "the

situation talks back". Reflection is used to repair the breakdown, and then (nonreflective) situated

action continues. The hallmark of reflection-in-action is that it takes place within the action

present-within the time period during which the decision to act has been made but the final

decision about how to act has not. This is the time period during which reflection can still make a

difference in what action is taken.

Schoen's theory of design is based on designers interacting with traditional media, and the back

talk from the situation is determined solely by the designer's skill, experience and attention.

Computational technology, such as critics embedded in design environments, afford a new type of

back-talk from the design situation. Computational design situations can actively point out

breakdowns to designers. This active design support enables designers to hear the situation talk

back in situations that might have remained mute in passive media.

Reflection-in-action, as supported by embedded critics, is an ongoing cycle of action, break

down and reflection. Designers act when they shape the design situation. They establish a shared

context with the design environment by manipulating interface objects in the construction,

specification or perspective components. Breakdowns are triggered by critics embedded in the

design environment that detect situations that indicate the designer might need to reflect. Based on

the shared context, critics support reflection by delivering information relevant to the breakdown

situation. Argumentative information helps designers understand the breakdown situation, and

the catalog contains design solutions that provide examples of how other designers have resolved

similar problems.

The scenario illustrates how embedded critics support design as a reflective conversation with

the situation. In the scenario, critics triggered two consecutive breakdowns. In the first, the

construction situation talked back to Bob when his actions violated a generic kitchen design

principle that "the dishwasher should not be too far from the sink". After some reflection, he

moved the dishwasher nearer to the sink to comply with the critic. However, this action created a

new breakdown situation. A specific critic signalled a breakdown to remind Bob that his actions

were inconsistent with his partial specification; that is, his placement of the sink might not be

optimal for left-handed cooks. This breakdown led him to reflect on his goals; instead of altering

the design construction, Bob reformulated his partial specification.

5.3 Locating relevant information ill large information spaces

Making information relevant to the task at hand poses many challenges for the design of interactive

computer systems, particularly for problems in which the need for information is critical and yet

precise information needs cannot be known in advance of attempts to solve the problem. Our design

environments that support design in complex domains are high-functionality computer systems; that

is, they provide a large amount of functionality and are built on large information bases. Such systems

provide more information and functionality than a single person can master (Draper, 1984). Two

factors contribute to this behaviour: (1) the effort of finding information often outweighs the

perceived benefits of doing so; and (2) users are not aware that the information even exists. Both

factors can be related to the discrepancy between the designer's perception of an information space

and the actual information contained in a high-functionality system (see Figure 8).

Embedding critics in design en\'ironmell{s 303

D

o

Information Contained in

Design Environment

Information Space as

Perceived by Designer

Information Contained in

Design Environment but

Unknown to Designer

Information Mistakenly

Believed to Exist in

Design Environment

Information Known

to be Contained in

Design Environment

Figure 8 Large information spaces contain more information than a single person can know exists.

The oval represents the information a designer rerceives to he in the design environment. The

square rerresents the information actuallv contained in the design environment. This figure

illustrates that the designer's perception include, information that docs not exist in the design

environment, and docs not include some information that actually exists in the design environment.

Designers are often unwilling to disrupt the design process to search for information in large

information spaces, even if they know the information exists. In addition, designers may not know

when they need information. Embedded critics save designers the trouble of explicitly querying the

system for information. Critics notify designers of situations indicating the need to reflect

(breakdowns) and provide access to information fueling reflection. The context of the breakdown

situation serves as an implicit query that enables embedded critics to deliver relevant information.

Designers benefit from needed information without having to explicitly ask for it.

Embedded critics can also deliver relevant information (Nakakoji, 1993) about which designers

were unaware (see Figure 8). Critics provide the designer with a pointer into part of the system's

information space with which the designer needs to become aware. The designer can further

browse the unfamiliar portion of the information space starting from the entry point provided by

the critic.

Critics afford lcarning on demand (Fischer, 1991) bv letting ciesigners access new knowledge in

the context of actual problem situations; users arc informed (I) when they are getting into trouble,

(2) when they are missing important information. and (3) when they come up with problematic

solutions. Learning on demand is a promising appl'llach for the following reasons; (1) it

contextualizes learning by integrating it into work rather than relegating it to a separate design

phase; (2) it Icts designers sec for themselves the usefulness of new knowledge for actual problem

situations, therehv increasing the designers' understanding of their situations: and (3) it makes new

information relevant to the task at hand, thereh\' leading to better decision making, better

products. and better performance.

Critics exploit the shared context of hreakdown situations to compute what information is

relevant to the task at hand. In the scenario. each critic's notilication message was linked to

information in the argumentation component. For the "dishwasher not too far from the sink" issue,

the designer was reminded of plumbing requirements he might have known about hut did not

remember in the context of the design situation. The "left-handed" specific critic identilied

information the designer had previously been unaware of: that the recommended positions of the

sink and dishwasher arc dependent upon whether the cook is right- or left-handed. The interpretive

critic (enabled by adapting a Resale Perspective) infnrmed Bob of additional information about

which he had pn:viously been unaware. Now that he is aware of this "resale" value concern, Bob

G. FISCHER ET AL. 304

could explore further implications of a resale perspective by browsing related information or by

continuing his design process, where he will be informed on demand.

6 The dynamic nature of critiquing knowledge

6.1 Supporting designers in adapting the critiquing system

To be successful, embedded critiquing systems must adapt to reflect changes in the design domain.

Two questions arise when considering system adaptation: will designs be able to adapt the system as

required, and will designers be motivated to adapt the system? End-user modifiability components

and design environment "seeds" are important steps toward answering these questions.

Adapting the critiquing system involves modifying or adding critic rules, design units, design

unit relations and critic explanations in the form of argumentation and catalog examples.

Sometimes, adapting the system is as simple as changing parameters or filling out specialized forms.

Girgensohn (1992) explored end-user modifiability in domain-oriented design environments. His

work showed that end-users without any formal training in computer s<:ience need considerable

environmental support in the form of explanatory help, critics that support modification processes,

task decomposition agendas, and computer-supported object classification to effect significant

system changes. Even with this extensive environmental support, none of the subjects in his user

studies were able to complete the adaptations without intervention from the study supervisor.

Girgensohn's research has demonstrated that enabling designers to adapt their systems is a very

difficult problem which requires further research in the areas of demonstration components,

domain-oriented knowledge representations, and adaptive user modelling components. The

HERMES project is exploring a different approach toward achieving end-user modifiability by

building into the design environment an English-like end-user programming language (Stahl et al.,

1992).

6.2 "Seeding" the critiquing system with domain knowledge

Whereas ongoing adaptatIon of embedded critiquing systems is in the hands of designers solving

design problems, system builders must create the original conditions that enable and motivate this

evolution process to occur. Specifically, system builders must provide initial environments in the

form of a seed.

We cannot offer an easy-to-follow prescription for successful seed building. Seed building

requires a deep understanding not only of the application domain, but also of the practice (Ehn,

1989) of the people who will use the system. System builders cannot hope to attain such an

understanding without, at least to some extent, becoming domain experts themselves. But this is

generally infeasible. For useful seeds to he built, system-building must be based on a process of

mutual education (Greenbaum & Kyng, 1991) between system builders, who know about building

software design environments, and domain designers, who understand the practice of design in the

target application domain. The goal of this mutual education process is to establish a shared

understanding of what domain knowledge a seed should contain so that it will immediately support

the practice of designers within that domain.

6.3 Accumulating design knowledge through critics

Embedded critics play the crucial role of "knowledge attractors" in domain-oriented design

environments. Design knowledge surfaces during reflection-in-action, when designers reflect upon

the source of breakdowns and devise courses of action for resolving the breakdowns. User

observations in using specific critics revealed that when designers were tired a critic rule, they often

argued for or against the associated argument and were motivated to describe the reason by

articulating pro or counter arguments to the argumentation (Nakakoji, 1993). The incomplete

nature of design knowledge guarantees the argumentation is never complete. Designers who arrive

Embedding critics in design environments 305

at an innovative resolution to a breakdown may add their arguments to the existing rationale,

enriching the information space contained in the design environment.

7 Conclusions

Although this paper focuses primarily on a single design environment built for residential kitchen

design, the HYDRA-KITCHEN system, other ongoing research in our group has demonstrated that

embedded critiquing systems have broad applicability to a variety of domains and that embedded

critiquing systems can be applied to complex, new domains with few accepted design rules and

practices, and non-spatially-oriented domains.

The interpretive critiquing mechanism is being explored in the domain of lunar habitat design

(Stahl, 1993). Unlike kitchen design, lunar habitat design is a completely new domain with few

design rules and no standardized vocabulary. I n domains with few standards, negotiation,

argumentation and interpretation are increasingly important aspects of design. This aspect of the

lunar habitat design domain led us to extend our critiquing systems to include interpretive

mechanisms.

The Voice Dialog Design Environment tests the applicability of critiquing systems to non

spatial domains. The system supports the design and simulation of applications with phone-based

interfaces (Repenning & Sumner, 1992). In this domain, design units include audio prompts, voice

menus and telephone touch-tone input. Relations between design units are temporal in nature;

that is, design units occur before or after certain events in the execution sequence. This design

environment is part of a joint research project between the University of Colorado and voice

dialogue application designers at US WEST Advanced Technologies (Sumner et aI., 1991).

We have demonstrated how embedding critic mechanisms in design environments overcomes

many deficiencies found in stand-alone critiquing systems. The generic, specific and interpretive

critics we have explored correspond to three dimensions of embedding. Generic critics are

embedded in the construction context because they are enabled by the placement of design units in

the work area. Specific critics are embedded in the partial specification by being dynamically

constructed from domain distinctions tied to specification items; they reduce the intrusiveness of

generic critics by narrowing the enabled critics to those that are relevant to the partially specified

task at hand. Interpretive critics are embedded in the network of perspectives that supports the

evolution of alternative viewpoints on designs~ using these critics, designers are able to consider

their designs critically from multiple perspectives. The heneficial role of human critiquing in

science, design and engineering had been socially recognized long before the advent of computa

tional critiquing systems. Our approach of embedding critics into integrated design environments is

an important step toward applying the critiquing paradigm to create more useful and usable

knowledge-based computer systems.

Acknowledgements

The authors thank the mcm bers of the Human-Computer Communications group at the University

of Colorado. who contributed to the conceptual framework and the system discussed in this paper.

The research was supported by the National Science Foundation under grants No. IRI-8722792 and

IRI-9015441. by the Colorado Advanced Software Institute, by US WEST Advanced Technolo

gies, by the NYNEX Science and Technology Center, and by Software Research Associates, Inc.

(Tokyo, Japan). We especially wish to thank Barbara Gibson at Kitchen Connection in Boulder,

Colorado. for sharing her expertise in kitchen design.

References

Bohrow, DG and Gol(J:,tcin, I. 19~() ... Representing design alternatives" In: Pruc('cdings oIAIS B COI1Ierl'l1cc.

AISB. AIl1,terdalll

G. FISCHER ET AL. 306

Buchanan, Band Shortliffe, E, 1984. "Human engineering of medical expert systems" In: B Buchanan and E

Short[iffe (Eds), Rule-Based Expert Systems: The MYCIN Experiments of the Stanford Heuristic Program

ming Project, Addison-Wesley, Reading, MA, pp 599-·M2.

Burton, R and Brown, 1S, 1982. "An investigation of computer coaching for informal learning activities" In:

D Sleeman and JS Brown (Eds), Intelligent Tutoring Systems, Academic Press, London, pp 79~98.

Chambers, AB and Nagel, DC, 19R5. "Pilots of the future: Human or computer')" Commull. ACM 28 (J 1)

1187~1199.

Conklin, J and Begeman, M, 1988. "gIBIS: A hypertext tool for exploratory policy discussion" Trails. Office

Infor. Syst. 6 (4) 303--331.

Draper, SW, 1984. "The nature of expertise in UNIX" In: Proceedings of INTERA C1"8-1-. I FI P COllference

on Human-Computer Interaction, pp 182~186, Elsevier, Amsterdam.

Ehn, P, 1989. Work-Oriented Design of Computer Artifacts (2nd ed.), Arbetslivscentru, Stockholm.

Fischer, G, 19R7. "A critic for LISP" In: Proceedings of the iOth Illternational Joint Conference of Artificial

Intelligence, pp J77~184, Mi[an, Italy.

Fischer, G, 1990. "Communication requirements for cooperative problem solving systems" Illformation Syst.

15 (1) pp 21-36.

Fischer, G, 1991. "Supporting learning on demand with design environments" In: Proceedings of the

International Conference on the Learning Sciences, pp 165~172, Evanston, IL.

Fischer, G, 1992. "Domain-oriented design environments" In: Proceedings of 7th Annual Knowledge-Based

Software Engineering (KBSE-92) COllference, pp 204--213, McLean, VA.

Fischer, G, 1993. "Turning breakdowns into opportunities for creativity" In: E Edmonds (Eds), Creatil'ity in

Cognition, Penrose Press.

Fischer. G and Girgensohn, A, 1990. "End-user modifiability in design environments" In: Proceedings of

CHf'90, pp 183-191. ACM Press.

Fischer, G, Grudin, J, Lemke, AC, McCall. R, Ostwald, J, Reeves, EN and Shipman, F, 1992. "Supporting

indirect, collaborative design with integrated knowledge-based design environments" Human ComplIler

Interaction (Special Issue on Computer Supported Cooperative Work) 7 (3).

Fischer, G, Lemke, AC, Mastaglio, T and Morch, A, 1991. "The role of critiquing in cooperative problem

so[ving" ACM Trans. InfoI'. Syst. 9 (2) 123-151.

Fischer, G, Lemke, AC, McCalL Rand Morch, A, 1991 "Making argumentation serve design" Human

Computer Interaction 6 (3-4) 393-419.

Fischer, G, Lemke, AC and Schwab, T, 1985. "Knowledge-Based Help Systems" In: Proceedings of HlIInan

Factors ill Computing Systems. CflI'S5 Conference Proceedings, pp 161-167, San Francisco, CA.

Fischer, G, McCall, R and Morell, A, 19R9. "Design environments for constructive and argumcntative

design" In: Proceedings of CHf'89. pp 269-275, ACM Press.

Fischer, G and Nakakoji, K, 1991. "Making design objects relevant to the task at hand" In: Proceedings 0/
AAAI-9/. Nillth National COlljiTence on ArlificiaIIllle/ligence, pp 67-73, AAA[Press(fhe MIT Press.

Girgensohn, A, 1992. End-Usa Modijiabilitl' in Knowledge-Based Design Environlllents. Unpuhlished Ph.D

Dissertation, Department of Computer Science, University of Colorado at Boulder. (Also available as

TechReport CU-CS-595-92.)

Greenbaum, J and Kyng, M. 199 I. Design al Work: Cooperative Design of Compliter Srstellls, Lawrence

Erlbaum.

Hackman, JR and Kaplan, RE, 197'+. "Interventions into group process: An approach to improving the

effectiveness of groups" 5 459-480.

Johansen, R, lY8R. GroItPll'II/'(': COlllp/llcr S/lpport for Busincss TCilIllS. Free Pre'"

Kolociner, J, 1991. "Improving human decision making through case-ha,cd deci,lon ~!Illing" 12 (2) :')2--68

Lave. J, 1911R. Cognition in Practice. Cambridge Univer,itv Press.

Lemke, AC and Fischer, G. IY90. "/\ cooperative problem solving sYstem for user Il1tcrface de~lgn" In.

Proceedings ofAAAI-90. Eighth Nalional Conference 011 Artificial intelligence, pp .+79 '+8'+, AAAI Press/

The MIT Press.

McCall, R, 1987. '"PHIBIS: Precedurally I-lierarchicaiissue-Bascd Information Systems" In: Proceedings of

the Conference 011 Architectllre at the inlernational Congress 011 Planning and Design Theon' (New York),

American Societv of Mechanical Engineer..,.

N akakoji, K, 1993. Increasing shared knowledge of design tasks betweenlzlllnalls IIltd design efll'ironll1ellfS: The

role of a specijication componelll, PhD Dissertation Thesis, Departmcnt of Computer Science, University

of Colorado at Boulder.

Norman, DA. 1993. Things That ,Hilke Us SlIIart, Addison-Wesley.

Petroski, H, 19K5. To Engineer is HIIIIlt/I!. The Role of Failure in Success/it! Design, St. :Vlarlin's Press.

Polanyi, M, 1966. fhe Tacit Dimt'llsioll, Doubleday.

Popper, KR, I Y65. Conjectures lind Rejillatiolls, Harper & Row.

Prieto-Diaz, R and Freeman, P. 19K7. "Classifving software for reusahility" 4 (1) ()-16

Embedding critics in design environments 307

Repenning, A and Sumner, T, 1992. "Using agentsheets to create a voice dialog design environment" In:

Proceedings of Symposium on Applied Computing (SAC92) , pp 1199-1207, ACM Press.

Rittel, H, 1984. "Second generation design methods" In: N Cross (Ed.) Developments in Design Method

ology, pp 317-327, Wiley.

Rittcl, H and Webber, MM, 1984. "Planning problems are wicked problems" In: N Cross (Ed.) Developments

in Design Methodology, pp 134-144, Wiley.

Schoen, DA, 1983. The Reflective Practitioner: How Professionals Think in Action, Basic Books.

Silverman, B, 1992. "Survey of expert critiquing systems: Practical and theoretical frontiers" Comm. ACM 35

(4) 106-127.

Simon, HA, 1981. The Sciences of the Artificial (2nd cd.), The MIT Press.

Stahl, G, 1992. Toward a Theory of Hermeneutic Software Design, No. CU-CS-589-92, Computer Science

Department, University of Colorado at Boulder.

Stahl, G, 1993. "Supporting interpretation in design" 1. Archilecture and Planning Research (Special Issue on

Computational Representations of Knowledge) (Forthcoming).

Stahl, G, McCall, R and Peper, G, 1992. "A hypermedia inference language as an alternative to rule-based

expert systems" (Submitted to Expert Systems ITL Conference).

Sumner, T, Davies, S, Lemke, AC and Polson, PG, 1991. Iterative Design of a Voice Dialog Desigll

Environment, Technical Report No. CU-CS-546-91, Department of Computer Science, University of

Colorado at Boulder.

Winograd, T and Flores, F, 1986. Understanding Complllers and Cognition: A New Foundation for Design,

Addison-Wesley.

