
Embedding

Hardware Description Languages

in Proof Systems

Kees G. W. Goossens

Doctor of Philosophy

University of Edinburgh

1992

ii

Abstract

The aim of this thesis is to investigate the integration of hardware description
languages (hdls) and automated proof systems.

Simulation of circuit designs written in an hdl is an important method
of testing their correctness. However, due to the combinatorial explosion of
possible inputs it is not feasible to verify designs using simulation alone. Formal
hardware verification, using a proof system, has tried to address this issue.
Whilst some medium-sized designs have been (partially) verified, industrial take-
up of formal methods has been slow. This is partly due to the use of specialised,
non-standard notations employed in various formalisms.

By embedding a hardware description language in a proof system we hope to
clarify the semantics of the particular hdl, and present a more standard inter-
face to formal methodologies. We have given a new static structural operational
semantics for a subset of the ella hardware description language. The formal
dynamic semantics of this subset is based on an existing informal model.

We embedded the semantics of this hdl in the Lambda higher-order logic
proof system. The embedding allows meta-theoretical results to be proved about
this and other semantics. It has been proved that the semantics computes the
least fixed point solution of the circuit description. Another semantics which
computes a more defined output has also been embedded, and the relationship
between both semantics has been proved formally.

A number of paradigms such as operational semantics based formal sym-
bolic simulation, formal interactive (top-down and bottom-up) synthesis, formal
hardware generators, proved correct transformations and traditional hardware
verification are presented as small case studies. However, scaling up of the
examples turned out to be difficult, and verification tended to be slow.

iv

Acknowledgements

I would like to thank first of all my supervisor, Stuart Anderson, for his encour-
agement and hints in the development of this thesis. I would also like to thank
my second supervisor Professor Mike Fourman for providing financial support
for a substantial period of this research.

The technical support staff of the Department of Computer Science at Ed-
inburgh provided a much appreciated smooth running computing environment.

Mike Hill, James McKinna, Matthew Morley, David Rees and Fabio da Silva
proof-read parts of this thesis. My thanks go to them. Any remaining mistakes
are, of course, entirely theirXXX my responsibility.

Special thanks to Fabio and Hans for being such good office-mates.

Declaration

This thesis has been composed by myself. The work reported herein has not
been presented for any university degree before, and, unless otherwise stated, is
my own.

Kees G. W. Goossens

vi

Contents

1 Introduction 1

1.1 Hardware Description Languages and Simulation 1
1.2 Formal Hardware Verification . 3
1.3 Combining HDLs and Formal Verification 4
1.4 The Structure of this Thesis . 6

2 Integrating an HDL and a Proof System 7

2.1 Relating Circuit Denotations and Behaviour 7
2.1.1 Research Relating Structure and Behaviour 10
2.1.2 The Programming Language Semantics Connection 12

2.2 Extracting Behaviour From Circuit Descriptions 13
2.2.1 Behaviour Extraction in the Literature 15

2.3 Deriving Behaviour via a Semantics 19
2.3.1 Related Work . 22

2.4 Conclusions . 26

3 The picoELLA Language and Its Semantics 27

3.1 Choosing an HDL . 27
3.1.1 VHDL . 27
3.1.2 ELLA . 35
3.1.3 ELLA versus VHDL . 39

3.2 A picoELLA Rationale . 40
3.3 A picoELLA Semantics . 45

3.3.1 Some Definitions . 46
3.3.2 A Static Semantics . 47
3.3.3 A Dynamic Semantics . 49
3.3.4 Results About the Semantics 53
3.3.5 Alternative Semantics . 53
3.3.6 Different Approaches to ELLA Semantics 55

3.4 Formal Semantics for Other Hardware Description Languages . . 58

4 Embedding picoELLA in Lambda 61

4.1 The Lambda Proof Assistant . 61
4.1.1 Lambda’s Logic . 61

vii

viii CONTENTS

4.1.2 Using the Lambda System 68

4.1.3 Differences Between the Lambda and HOL Logics 73

4.2 Encoding picoELLA in Lambda 74

4.2.1 Constants and Types . 75

4.2.2 Expressions . 81

4.2.3 The Embedded Static and Dynamic Semantics 84

4.2.4 Related Work . 91

4.3 Results About the Embedding 93

4.3.1 Totality and Monotonicity of Matching 94

4.3.2 Monotonicity of the Dynamic Semantics 95

4.3.3 Some Corollaries . 114

4.3.4 Future Work . 117

4.4 Proof Programming and Large Proofs 117

4.5 Conclusions and Future Work . 121

5 Case Studies 123

5.1 Operational Semantics Based Symbolic Simulation 123

5.1.1 A Simple AND Gate . 126

5.1.2 Adding Time . 130

5.1.3 Two Parity Checkers . 132

5.1.4 Feedback Loops . 136

5.1.5 Hierarchical Simulation 141

5.2 Hardware Synthesis . 145

5.2.1 Top-Down Operational Semantics Based Synthesis 145

5.2.2 Bottom-Up Operational Semantics Based Synthesis 146

5.2.3 Hardware Synthesis Functions 149

5.3 Transformations on Circuits . 152

5.4 Discussion . 158

5.5 Conclusions . 162

6 Conclusions and Future Work 165

6.1 Summary . 165

6.2 Future Work . 166

6.3 Conclusions . 167

A Glossary of Terminology and Notation 169

A.1 Terminology . 169

A.2 Notation . 169

A.3 Overview of Types and Functions Used in this Thesis 171

B Overview of Lemmas and Statistics 175

B.1 Overview of Lemmas Proved . 175

B.2 Some Statistics about Proofs . 179

CONTENTS ix

C Embedded Operational Semantics Rules 183

C.1 Pretty Printing Conventions . 183
C.2 The Embedded Operational Semantics Rules 184
C.3 Alternative Recursion Rules . 188
C.4 Correspondence Between Paper and Embedded Operational Se-

mantics Rules . 189
C.5 Goal Directed Use of Operational Semantics Rules 190

Bibliography 192

x CONTENTS

List of Figures

1.1 Overview of Our Approach . 5

3.1 The vhdl Simulation Model . 32
3.2 picoella Flat and Product Data Orderings. 42
3.3 picoella Tagged Union Data Ordering. 42

4.1 Monotonicity of reduce in Its First Argument. 97
4.2 Monotonicity of reduce in Both Arguments. 99
4.3 The THMI Invariant on iterate. 102
4.4 Ordering Approximations During a Fixed Point Computation. . . 103
4.5 A Delayed Feedback NOT Gate. 104
4.6 ‘Left Vertical’ Instantiation of Induction Hypothesis 107

5.1 The HOLPC Parity Checker. 133
5.2 A Derived Truth Table for a Flip-Flop. 138
5.3 Top-down Synthesis using Operational Semantics Rules. 146
5.4 Bottom-up Synthesis using Operational Semantics Rules. 147
5.5 Initial Value of Delay Transformation. 156

xi

Huius farinae sunt et isti, qui libris edendis famam immortalem au-
cupantur. Hi cum omnes mihi plurimum debent, tum praecipue
ii, qui meras nugas chartis illinunt. Nam qui erudite ad paucorum
doctorum iudicium scribunt, quique nec Persium nec Laelium iu-
dicem recusant, mihi quidem miserandi magis, quam beati videntur,
ut qui sese perpetuo torqueant: addunt, mutant, adimunt, repo-
nunt, recudunt, ostendunt, nonum in annum premunt, nec umquam
satisfaciunt ac futile praemium, nempe laudem, eamque perpauco-
rum, tanti emunt, tot vigiliis, somnique, rerum omnium dulcissimi,
tanta iactura, tot sudoribus, tot crucibus. Adde nunc valetudinis
dispendium, formae perniciem, lipitudinem aut etima caecitatem,
paupertatem invidiam, voluptatum abstinentiam, senectutem prae-
poperam, mortem praematuram, et si qua sunt alia eiusmodi. Tantis
malis sapiens ille redimendum existimat, ut ab uno aut altero lippo
probetur.

Erasmi Roterodami
MΩPIAΣ EΓKΩMION

Id Est STULTITIAE LAUS

In Praise of Folly [53, pp 202–204]

Chapter 1

Introduction

1.1 Hardware Description Languages and Sim-

ulation

Modern hardware designs are complex. Conventional methods take many it-
erations to arrive at an acceptable implementation. Increasing use of circuits
in embedded systems, perhaps with some aspect of safety criticality, requires
greater rigour in specification and design.

Traditionally, breadboarding has been used to test designs. Breadboarding is
the process of constructing the design and then using this prototype to perform
tests. However, this is only feasible for small designs. With greater integration
and density of components this method becomes prohibitively expensive.

Greater circuit complexity encouraged the use of structured circuit descrip-
tions, leading to hardware description languages (hdls) [100]. A large number
of hdls have been designed; well-known hdls include ddl [50], the conlan

family [147, 148]1, ella2 [45] and vhdl [101]. Since their initial use as doc-
umentation and design tools, hdls have been used to simulate the design. A
simulator for an hdl is intended to model the behaviour of a circuit described
in the language. Given a set of input values, corresponding outputs are com-
puted using a particular simulation model. There is a wide spectrum of such
languages, from the very low-level (e.g. spice [126] which models hardware at
the differential-equation level), to high-level languages such as ella and vhdl,
which contain conventional programming language constructs. Traditionally,
simulators have been used to test designs at various levels of abstraction. How-
ever, a serious problem of both breadboarding and value simulation is that for
any substantial circuit the number of possible inputs (or test vectors) becomes
very large. If, in addition, a circuit contains internal state the input history
must be taken into consideration, increasing the number of possible test cases
dramatically [24].

1Citations are ordered by date, and are therefore not necessarily in ascending order.
2ella is a trademark of the Secretary of State for Defence, United Kingdom.

1

2 CHAPTER 1. INTRODUCTION

It is not feasible to verify current circuit designs using exhaustive simulation
alone. By introducing extra values in the value domain, such as ‘don’t know’
and ‘don’t care,’ the number of test vectors may be reduced substantially [170].
If a particular input is irrelevant for a particular test, its value can be set to
don’t care, instead of having to simulate the test twice, with the value set to
true and false respectively. A number of methods to extend the basic value
domain are described in [91].

The next development was to adapt powerful symbolic execution of con-
ventional programming languages to the domain of hardware description [37].
Symbolic simulators such as mossym [25] and later versions of cosmos [27]
allow variables and formulae as inputs. Variables and formulae, possibly rep-
resenting more than one value, are used instead of individual values. This can
drastically reduce the number of test vectors needed to exhaustively test a de-
sign. Variables range over all values in the value domain, in contrast to values
such as don’t know, which are constants in the value domain. Of course, this
puts an extra burden on the simulator which now needs to be able to handle
arbitrary formulae instead of simple values. It may also require algebraic ca-
pabilities to simplify intermediate formulae. In theory, we need to do only one
simulation, namely the one with all the input values set to variables. The result
would be an expression which would describe the circuit’s behaviour. However,
this expression may be as complex as the circuit description and simplification
of intermediate formulae may be very complex (NP-hard in the case of mossym

[25].)
In mossym we have an asymmetry: we are permitted abstraction over data

but not over circuits. In other words, we may have symbolic variables ranging
over data values, but we are not allowed circuits containing symbolic variables.
Symbolic variables are abstract hardware. This idea is not as strange as it may
seem; plug-in components are in effect abstract hardware, certainly as long as
the circuit is under development. Why would it be useful to have this capa-
bility? It would seem that, since we are dealing with the design of a certain
circuit, we would only want to simulate that circuit. Consider, however, that
large circuits are designed in a modular fashion to allow a number of people to
work on separate parts of a circuit at the same time. When a subcomponent
is ready, it has to be simulated in a larger context, all of which may not be
completed. The availability of an abstract implementation for unfinished parts
of the design would enable the component to be simulated in its correct context.
A suitable simulator would allow the evaluation of a circuit containing a mix-
ture of concrete and abstract components. Of course, certain properties of the
abstract components may be needed to arrive at an output, but these should
be available from their specifications. We use the specification of the abstract
components to simulate them as long as they are not available. Simulators of
multi-level hdls, which span more than one level of abstraction, often allow a
basic form of this. By providing a behavioural description, without any indi-
cation of a possible implementation, this can be used as a placeholder as long
as the implementation is not available. However, behavioural descriptions are
limited to the behavioural constructs the hdl has to offer. This usually lim-

1.2. FORMAL HARDWARE VERIFICATION 3

its statements of specifications to high-level programming language constructs,
often in an imperative style, whereas more abstract (non-algorithmic) specifi-
cations are often wanted. Another shortcoming is that no proof is provided
that the implementation has the same behaviour as the behavioural description
placeholder. Moreover, a behavioural placeholder and the final implementation
can only be proved correct by simulation as both are given in the hdl. This
problem arises every time we have a new implementation at another level of
abstraction.

Another shortcoming of using fixed circuit descriptions is that often we would
like to describe parametrised hardware. Hardware may be parametrised on a
particular subcircuit (plug-in component), and regular hardware may often be
parametrically defined on the size of the data. Although this is possible in a
number of hdls (e.g. ella and vhdl), it is not possible to simulate (or prove
correct) parametrised descriptions: they must be instantiated to a fixed number
of bits, or must use particular plug-in components.

For these reasons we would like to move to a more powerful system, where
we can use hdl descriptions for (symbolic) simulation, but may also use gen-
eral formulae as specifications of abstract components, verify hardware which
is independent of a particular word size, etc. A formal relation between speci-
fication and implementation must be provided so that we can safely replace a
specification, used as a placeholder, by a particular implementation. For exam-
ple, formal proof of correctness of abstraction functions is an important facet of
hardware design, documentation, and verification.

The field of formal hardware verification has tried to address some of the
problems raised above. In the next section we will briefly give an introduction
to formal hardware verification. Following this, we present the approach taken
in this thesis which intends to address the problems inherent in simulation, and
offer a solution which fuses the formal treatment of hardware verification and
widely used hardware description languages.

1.2 Formal Hardware Verification

The formal verification of hardware attracted interest in the early 1980s in
response to the concerns discussed in the previous section. Formal notations and
automated proof systems have been used in a variety of methodologies. These
include formal logics (e.g. first-order [98, 34], higher-order [84, 79], temporal
[139, 171]), type theory [102], state machines and automata [81, 28, 15], process
algebras (e.g. Circal [132], hop [74]) and others [56, 155, 165]. Many other
formalisms and systems have been studied, some of which are reviewed in [66,
35].

The avoidance of the combinatorial explosion of test vectors, mentioned
above, is a major driving force. For example, if a logic is used, symbolic vari-
ables are available which allow symbolic simulation [73]. A proof system will
often have capabilities such as simplification of (intermediate) formulae built-
in. Moreover, most logics allow mathematical induction. For example, it be-

4 CHAPTER 1. INTRODUCTION

comes possible to prove a component correct for all time [80] without having
to simulate the design for ever. Similarly induction may be applied to prove
correctness of parametrised hardware [83]. Thus an N bit adder may be proved
correct once, instead of verifying every instantiation for a particular word size.
Another important aspect of hardware design is abstraction [121]. For example,
structural abstraction corresponds to circuit decomposition. Data abstraction
is a crucial and recurring theme. When a circuit design proceeds to a lower
level of abstraction in a top-down design method data values are often encoded
in a different manner; natural numbers may become bit vectors, for example.
This abstraction must be dealt with in hdl descriptions in order to compare
simulation results arising from implementations at different levels of abstrac-
tion. Although some hdls provide facilities to insert abstraction functions at
module boundaries there is no formalised correspondence between the levels of
data representation. Using a formal logic a description of various abstractions
may be given, and proved correct.

While the hardware verification field has been relatively successful in deal-
ing with theoretical issues, industrial take-up of these methods has been limited.
Partially this is due to the problems of scaling up models which have been used
for hardware description. Industrial sized designs have not been verified yet.
(The largest circuit to date has probably been the viper chip, which has been
partially verified [41, 42].) The use of many different notations has also hindered
industrial acceptance. A major motivation for this thesis has been the integra-
tion of formal approaches advocated by the hardware verification community
with commonly used notations used by practising hardware designers. We hope
to achieve this through the provision of a standard hdl in a proof system [72].

1.3 Combining HDLs and Formal Verification

In our work we integrate an hdl and a higher-order logic proof system. A num-
ber of different paradigms may be combined into one overall framework by doing
so. Consider the following diagram. To embed an hdl in a proof system [72]
we provide objects of type hdl (or circuit.) These are purely structural entities
which have no meaning. A separate object, the formal semantics, provides the
mapping from circuit descriptions to their behaviour. Results may be proved
about particular hdl descriptions by mapping them onto their behaviour and
then using this to prove correctness properties. Moreover, it is possible to prove
properties about the semantics itself. There may be more than one semantics,
in which case we can prove facts about the relationships between them. The
embedded semantics may also be used as a sophisticated symbolic simulator,
incorporating all the properties described in earlier sections. Abstract hardware
and formal links between specifications and implementations, and hardware de-
scriptions at different levels of abstraction are all possible.

In addition, transformations on circuits may now be conducted on familiar
hdl descriptions, and may be formally proved correct. This can be used in
conjunction with transformational design methodologies [30] or post hoc circuit

1.3. COMBINING HDLS AND FORMAL VERIFICATION 5

descriptions

simulation

results

description

of behaviour or properties

specifications

counter

examples

formal

semantics

formal
synthesis

formal circuit

optimisations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

♦
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.✴

layout

generators

handcrafted

designs

synthesis

tools

❄❄ ❍❍❍❍❍❍❍❍❍❍❍❨

✲

❅
❅

❅
❅

❅
❅❅❘✟✟✟✟✟✟✙

❍❍❍❍❍❍❥ ✲

prove correct

proof system

simulation....

....

export

import

formal HDL

Figure 1.1: Overview of Our Approach

optimisations [115].
Various approaches to synthesis also benefit from using an hdl in a proof

system. As circuit descriptions are part of the proof system they can be manipu-
lated like any other proof system entity. In particular, functions can operate on
and return circuits. Hardware generators or synthesis tools have been formally
verified using the Boyer-Moore theorem prover [22], Nuprl [9] and hol [38].

Interactive methodologies such as Hanna’s formal synthesis [86] can be adapted
to manipulate hdl descriptions rather than logical formulae. The resulting de-
sign is correct by construction, and no translation is necessary to export the
synthesised designs into the ‘real world.’ Fourman et al. use a refinement-based
approach, where a circuit design is gradually refined and instantiated along with
a proof of correctness [62, 59]. Although it uses a relational form of hardware
description, common in the higher-order logic hardware verification commu-
nity, this could be adapted to use hdl descriptions instead. Together with
the graphical interface used in [62, 59] this would allow hardware designers to
schematically construct formally verified designs written in a familiar notation.

The use of a widely used hdl facilitates the communication with other tools.
Designs may be exported to layout generators, or imported from synthesis tools
to be verified.

The objective of the research described in this thesis is to construct a pro-
totype system to test the feasibility of the approach described above. A clean
embedding is therefore important. Whenever a conflict between theoretical ad-
vantages and practical issues arises we invariably discard usability in favour of
theory. For example, the restriction to a small hdl subset introduces difficulties
when describing large circuits. However, we might not have been able to even

6 CHAPTER 1. INTRODUCTION

attempt to describe large circuits had we started with a full-blown industrial
hdl. After constructing the basic infrastructure, i.e. embedding the hdl, we
attempt to use the different methodologies, such as formal synthesis and sym-
bolic simulation, to assess the extent to which they have been combined into a
unified framework.

1.4 The Structure of this Thesis

In Chapter 2 we describe our perception of the separation of structure and
behaviour of circuits. This leads us to a particular type of embedding of an hdl

in a proof system. Related work is discussed throughout the chapter.
We choose a particular hdl subset to use in the remainder of the thesis in

Chapter 3, after reviewing two candidate hdls. A formal semantics of the subset
is then presented, followed by a discussion of possible alternative semantics and
related work.

In Chapter 4 we give an introduction to the proof system we use, and show
how the hdl subset can be combined with this proof system. Some important
results which have been proved about the semantics in the proof system will be
reviewed.

A number of small examples are presented in Chapter 5. It is shown how
various methodologies such as symbolic simulation, interactive hardware syn-
thesis, and synthesis functions may be used in conjunction with the embedded
semantics for an hdl.

Finally, in Chapter 6 we conclude and present directions for further work.
A number of appendices have been included. Appendix A contains an

overview of terminology and notation used in this thesis. Conventions for dis-
playing proof system output are described there. We would like to draw special
attention to indices (pages 171–174) of the definitions of types, functions and
abbreviations which are used.

Appendix B contains an overview of the lemmas and theorems which have
been proved about the embedding in the proof system.

Appendix C lists a number of proof system rules which implement the for-
mal semantics of the hdl subset presented in Chapter 4. Some pretty-printing
conventions, alternative semantics rules, and a correspondence between paper
and embedded versions of semantics rules are also given there.

Chapter 2

Integrating an HDL and a

Proof System

In this chapter we describe the reasons for embedding an hdl in a proof system
against a historical and evolutionary background. We describe the relation be-
tween the structure and behaviour of a circuit description, and how this relation
has been implemented in previous work.

2.1 Relating Circuit Denotations and Behaviour

In our opinion the most important way to make meaningful statements about
actual hardware is to talk about its behaviour under a set of input stimuli. Input
stimuli produce observable output excitations. The relation between input and
output is the behaviour of the device. We take the behaviour of systems as
fundamental.

Hardware description languages were developed to describe particular de-
signs, which could then be implemented. The first rôle of hdls was to document
designs [100]. Older hdls only provide facilities for structural descriptions —
no means for describing behaviour is provided. Later it was realised that these
descriptions could be used to simulate the realisations of the designs they de-
scribed. The shift from the use of hdls as a documentation tool to their use
as behavioural descriptions is important [152]. A structural description of the
physical realisation of the system was replaced by the behavioural description
of the design of the system. Low-level hdls, such as edif [51] continue to be
used primarily to describe the connectivity of circuits. Higher-level hdls use be-
havioural descriptions exactly because they express what the design is supposed
to do without having to resort to an intermediate structural description which
has to be simulated.1 Thus there is a large gap between an hdl description and

1However, this behaviour can be accessed only indirectly, using a simulator. This is not the
case for all behaviour descriptions. Mathematical logic may be considered expressive enough
and at a sufficiently high level to serve as a behavioural description which does not need to

7

8 CHAPTER 2. INTEGRATING AN HDL AND A PROOF SYSTEM

the behaviour of one of its implementations. This gap is bridged by its simula-
tion model. The accuracy of the correspondence between a circuit’s behaviour
and the simulation behaviour of its hdl description depends crucially on the
model which is used [43, 26]. All models are abstract and hence cannot be used
to draw meaningful conclusions concerning features from which they abstract.
A description of a design is therefore not just verified; it is verified with respect
to a specification using a particular model. For example, Joyce et al. reveal in
[106] that a gate-level model used in the verification of a microprocessor included
unrealistic power-up assumptions. Using a more accurate switch-level model an
error in the design was discovered. The subsequent correct functioning of the
implementation underlines the fact that the more detailed model did not ac-
curately describe the implementation’s behaviour. Henceforth we assume that
hdl descriptions are interpreted relative to some model. We will not concern
ourselves with the accuracy of this model.

Structure and Behaviour in Formal Hardware Verification

Where proof assistants have been used in the hardware verification community,
the following schema has generally been used to describe circuits.

⊢ implementation implements specification

The relation implements expresses that the implementation satisfies the speci-
fication. implements has been interpreted as equivalence (↔ or =), and logical
implication (→.) Although more sophisticated notions have been investigated
[185, 179, 13], logical implication is used predominantly. Nearly always imple-
mentation is a relation, describing the behaviour of the design under considera-
tion. Although this poses no problem in principle, in practice this behavioural
description of the implementation has been regarded as a structural description.
However, in purely structural descriptions there is no behavioural information.
and(x,y,z) means only ‘the piece of hardware commonly called an AND gate.’

In the approach taken by researchers using the Boyer-Moore theorem prover
[21] and(x,y,z) already denotes a particular behaviour — that normally asso-
ciated with an AND gate (at gate level.) Consider the following representative
example from [22].2

(defn b-not a) (if (equal a F) T F)
(defn b-and a b) (if (and (boolp a) (boolp b))

(and (equal a T) (equal b T))
F)

(defn b-nand a b) (b-not (b-and a b))

The behavioural description has been broken down into small components which
we relate directly with their usual implementations, but strictly speaking the

be animated.
2Whenever we show output from related work, we will keep as close to the original notation

as possible. Unfortunately, this means that something as simple as implication may be written
as →, ⊃, ⇒, or implies.

2.1. RELATING CIRCUIT DENOTATIONS AND BEHAVIOUR 9

description is still behavioural. The example above consists of a composition of
constants which already have an interpretation. In our approach we insist on
beginning with the uninterpreted syntax of a structural language. Behaviour is
a secondary concept, and is provided in an explicit manner. This highlights the
fundamental difference between the structure of hardware and the behaviour of
the hardware, when it is abstracted using a particular model. In the Boyer-
Moore system only Brock and Hunt have used this approach [22]. Their work
will be discussed below, in Section 2.3. Other Boyer-Moore work provides inter-
pretations such as the one given above. The hardware description is a recursive
function which is intended to model the behaviour of the design. Hunt first used
tail recursion to represent the advance of time [98]. The same idea has been
used by later hardware verification research based on the Boyer-Moore theorem
prover; for a general account of this method see [146].

In the hol proof assistant [79], nearly all work has been in terms of similar
direct interpretations [83, e.g. Section 4]. The exceptions will be discussed later
in sections 2.2 and 2.3. Consider the usual hol definition of an AND gate [44]:
⊢ and(x, y, z) = (z = x ∧ y). It defines a three-place relation between booleans.
It may be composed with a similarly defined NOT gate as follows:

⊢ and(x, y, z) ∧ not(z, a) (2.1)

Although this looks conspicuously like a structural description it is a behavioural
description, composed of the two very simple relational descriptions and and
not. In the Lambda3 proof assistant [64], used in later chapters, the example
would read as follows. The definition of and would be val and#(x,y,z) = (z
== x && y). It is combined with a NOT gate as follows:

⊢ and#(x , y, z) ∧ not#(z , a)

Where && is the boolean conjunction, and ∧ is the conjunction for truth values.
Truth values have type Ω rather than type bool. (See Section 4.1 for more infor-
mation about Lambda.) A corresponding description which is truly structural
would be given in the following style:

⊢ P#(strand(x, y, z) ∧str strnot(z, a)) (2.2)

There is a considerable difference between the previous relational behavioural
description and this purely structural description. strand is an object denot-
ing a purely structural AND gate. ∧str is an operator combining structural
descriptions, with result type structural. The purely structural description is
not a truth-valued expression, like the relational descriptions. We have to say
something about the structural expression, which is what the context P indi-
cates. We could give a meaning to the structural description using a behaviour
extraction function. Given a circuit, such a function returns a description of
its behaviour. Assuming behaviour : (name → bool) → structural → Ω is a

3Lambda is a product of Abstract Hardware Ltd.

10 CHAPTER 2. INTEGRATING AN HDL AND A PROOF SYSTEM

homomorphism (i.e. maps ∧str to &&), we would have:

behaviour env (strand(x, y, z)) = (env z = (env x) && (env y)),
behaviour env (strnot(x, y)) = (env y = not (env x))
⊢ behaviour env (strand(x, y, z) ∧str strnot(z, a)) ↔

env a = not ((env x) && (env y))

(2.3)

not is the boolean NOT operator. env : name → bool is an environment or
valuation function, giving a value to a name. Later we will see this same pat-
tern arising; the use of a semantic function to give a meaning to structural
descriptions, and an environment to link structural names to values.

It may be very useful to have multiple behaviour functions, emphasising
different aspects of the structural description [22, 140, 162]. For example, a
circuit layout could be extracted if the ∧str operator included placement and
routing of components.

In our opinion a proper separation between the structural and behavioural
aspects of a circuit description is crucial. In the remainder of this section we
review research which has explicitly addressed this issue.

2.1.1 Research Relating Structure and Behaviour

In [84] Hanna and Daeche present the Veritas hardware verification approach
which includes a proof assistant implementing a classical polymorphic higher-
order logic. Theories are used to define new notions, starting with proposi-
tional logic, followed by theories defining natural numbers, time, waveforms,
etc. Waveforms are analogue and may or may not correspond to a discrete
digital value at particular points in time. A theory of gate behaviours contains
definitions for basic gates. It is important to note that only behaviours are
defined, there is no mention of any particular implementation or structure. For
example, if wf is the type of waveforms,

⊢ andbehav : characteristics → (wf × wf × wf → bool) = definition

is a parametrised relational definition of the behaviour of an AND gate. An
example of characteristics could be the timing characteristics of the particular
AND gate behaviour. The three waveforms correspond to two input and one
output waveforms. However, note that strictly speaking this is a structural
interpretation which we cannot express yet. The association of structure with
behaviour can only be completed after a theory of simple structures has been
defined. This theory defines the purely structural aspects of a circuit. Input
and output ports, components and interconnects are axiomatised through the
notion of subtypes. The most general structural type struct has a subtype
port, which in turn contains subtypes inport and outport. The gate subtype of
struct contains types of components such as the type andgate of AND gates.
For each type there may be a number of implementations; i.e. elements of the
type. To reason about these purely structural entities projection functions are
used. Projection functions extract particular characteristics from a value. For

2.1. RELATING CIRCUIT DENOTATIONS AND BEHAVIOUR 11

example, we use the function in i : andgate → inport to obtain the ith input
port of an AND gate. A waveform function W : port → wf may then be used
to access the waveform of a port. Thus, basic components may only be used
through associated projection functions which extract a particular property. We
associate an AND gate behaviour andbehav, as defined in the gate behaviour
theory, with a particular simple structure g of type andgate as follows.

⊢ ∀g : andgate . andbehav (characteristics g) (in1 g) (in2 g) (out g)

This axiom states that every purely structural AND gate g with its particular
properties, in this case characteristics g, input and output ports, satisfies the
behaviour of an AND gate as axiomatised by andbehav. Finally, a theory of
compound structures defines hierarchically composed structures. Properties of
structures, such as subgates and their interconnections, are again obtained by
applying projection functions. However, by virtue of being composed of more
basic components, the behaviour of composite structures may be derived by
using the behaviours of their subcomponents. This work is a good example of
the separation of structure and behaviour. It is very distinctive in its use of
projection functions to extract the composition of compound structures. The
more usual approach is to define compound circuits by the explicit composition
of substructures, using composition and hiding operators (e.g. Circal [132] and
lcf lsm [81].)

Wang [177] describes a Hardware Synthesis Logic, which also maintains a
clear distinction between structure and behaviour. Circuit structures are com-
posed in a simple structural algebra, called the implementation language, con-
taining a structural connective &, which is comparable to ∧str introduced on
page 9. A logic, called the specification language, is used to reason about prop-
erties of implementations and about specifications. The calculus is independent
of a particular specification logic, although a higher-order logic is used in the
example below. The implementation and specification languages are related
through a so-called construction logic, which comprises two basic axioms, a
small number of inference rules and some axiom schemas. Axiom schemes de-
fine, using the specification language, the behaviour S of basic terms I in the
implementation language. This is denoted by the use of the connective in I |≡| S.
It may be used to state the behaviour of a register as follows:

Register(i, c, o) |≡| ∀t. o(S t) = if c t then i t else o t

In this work the structural conjunction & is preserved by |≡|, so that we have
the following inference rule in the calculus:

⊢ I1 |≡| S1

⊢ I2 |≡| S2

⊢ I1&I2 |≡| S1 ∧ S2

It seems reasonable to assume that the behaviour of a component is composed
of the behaviours of its subcomponents. This corresponds to the assumption for

12 CHAPTER 2. INTEGRATING AN HDL AND A PROOF SYSTEM

Equation 2.3 of page 10 that a behaviour function is a homomorphism. Wang
proves a number of meta-results relating the implementation, specification, and
construction logics.

The formal synthesis methodology of Hanna et al. [86] has similar features
to Wang’s work, but takes place within the Veritas logic. As a result, the
distinction between structural and behaviour composition is lost: both are rep-
resented by the same logic conjunction operator (e.g. the split rule in [86].)
This work is distinct from earlier research [84] described above.

Melham discusses the separation of structure and behaviour in Sections 3.1
and 3.2 of his thesis [124]. In most of [124] the standard hol behavioural
descriptions which we showed in Equation 2.1 are used. However, a means to
denote the structure of circuit separately from its behaviour is introduced to
discuss the notion of abstraction between models of hardware behaviour. We
will review this aspect of Melham’s work in the next section.

2.1.2 The Programming Language Semantics Connection

The structure versus behaviour issues discussed above have been investigated
thoroughly for conventional programming languages in the formal semantics
field. Circuits are called programs, and there is no concept of time. Three
types of semantics have been proposed to give meaning to programs; axiomatic
[60, 95], denotational [169, 159, 173] and operational [150, 108].

Axiomatic semantics gives properties of a program directly, without the need
to evaluate the program. Two examples of very direct applications of a Floyd-
Hoare style axiomatic semantics to hdls are given in [149] and [120]. We review
this work in Section 2.2.1. The various kinds of behaviour functions given above
are also examples of the axiomatic approach. An advantage of this approach is
that no evaluation model is needed to arrive at properties of structural terms.
This means that the intended behaviour is independent of any simulator model
one may wish to use.

A denotational semantics is intended to map a program directly onto its
meaning or denotation, which is generally taken to be a function from stores to
stores. Input-output relations can be derived by reasoning about the functions.
Circuits with the same meaning are mapped onto identical objects.

The term ‘operational semantics’ indicates a family of semantics which in-
cludes Plotkin’s Structural Operational Semantics [150] and Kahn’s Natural
Semantics [108]. We will use the term operational semantics to indicate the re-
lational style of semantics, rather than only Structural Operational Semantics.
In operational semantics different implementations with the same meaning (e.g.
input-output relation) may be distinguishable by their internal behaviour. This
is a result of taking a very computational approach. The meaning of a program
in this setting is given by the (labels of the) transitions the program performs
during its evaluation. More detailed results can be proved about programs
using an operational semantics, because it takes the simulation or evaluation
algorithm into account.

2.2.EXTRACTING BEHAVIOUR FROM CIRCUIT DESCRIPTIONS 13

The three types of semantics are suited to different applications [159]. Ax-
iomatic semantics map programs directly onto properties characterising their
behaviours. Denotational semantics map programs onto functions, from which
input-output behaviours may be derived. Operational semantics allow a be-
haviour to be derived through the sequence of transitions a program may per-
form.

The remainder of this chapter is structured as follows. The next section
reviews direct mapping of circuits to behaviours corresponding to an axiomatic
semantics approach. In Section 2.3 we adapt the operational semantics approach
to hdls. The behaviour of hdl descriptions may be then extracted indirectly.
Related denotational semantics work will also be discussed there.

2.2 Extracting Behaviour From Circuit Descrip-

tions

The intuitive solution to the structure-behaviour division described above is
to directly extract a behaviour from a circuit description. We have a function
behaviour : structural → Ω. Here Ω stands for the type of truth values.
In other words, behaviour maps a hardware description to a logical formula
characterising its behaviour. In our examples, we will generally use some higher-
order logic to map hdl descriptions into. For example,

behaviour (delay(c, in, out)) = (out 0 == c ∧ ∀t. out(S t) == in t) (2.4)

Here delay(c,in,out) is an hdl description for a unit transport delay. Let
us first assume that this equation is entirely outside a proof system. This
definition raises the following question: what is the relation between in and in?
The former is a syntactic structural object, whereas the latter is part of the
formal system in which the behaviour is expressed. The situation is clarified by
giving explicit types to the various components:

behaviour : structural → Ω

delay : (value × name × name) → structural

in : name

in : signal = time → value

Although this behaviour function resembles that of Equation 2.3 of page 10 it is
very different (even ignoring, for the moment, that the latter is part of a proof
system.) In Equation 2.3, x, y and z appear in both the domain and range of
the behaviour function. In the range, however, we use the value associated with
the name via the environment. In Equation 2.4 the behaviour function does not
establish any explicit relationship between in and in. We would argue that the
behaviour function of Equation 2.4 provides a higher-level axiomatic semantics
than the behaviour function in Equation 2.3. The other function is closer in
spirit to a denotational semantics.

14 CHAPTER 2. INTEGRATING AN HDL AND A PROOF SYSTEM

The definition of behaviour could be an entirely informal exercise. A num-
ber of successful implementations of this approach are described below. Later
work advocated the use of a proof system to map the extracted behaviour into
instead of an ad hoc implementation of the manipulation of behaviours. This led
to a clean separation of conceptually different processes, namely the extraction
of the behaviour and the formal reasoning about this behaviour. We may view
Equation 2.4 in this light; the right hand side would be inside the proof system.
Equation 2.3 cannot be interpreted in this manner, however. This is due to the
appearance of x, y, and z in both the domain and range of behaviour. One
fundamental problem remains: the behaviour function itself resides outside the
proof system. This means that we cannot reason about it within the proof sys-
tem. In particular, we will have to accept the correctness of the implementation
of the behaviour function in good faith. The hdl description is also informal,
which means we cannot reason about structural terms. We can only use the be-
haviour of the design, and not its structural description, inside the proof system.
This becomes a problem where we want to reason about general properties pos-
sessed by all, or a set of, circuits. The solution is to move the behaviour function
into the proof system also. For example, some hardware models may satisfy the
property that for every input a (possibly unique) output exists. Rather than
proving this for every instance we are interested in, we would rather prove a
theorem of the form

⊢ ∀e : structural . ∀i : const. ∃o : const. simulation e i = o

It is important to note that the type structural, representing terms of type
circuit, resides inside the proof system. We may then quantify over these terms
and state properties involving all possible circuits using ∀. We have a real
separation between the description of the circuit and its behaviour. The circuit
description is purely structural, and it may be manipulated independently from
its behaviour. We will discuss this aspect of embedded circuit descriptions in
more detail in Section 2.3. It is not always possible to move the behaviour
function into a proof system. In the Boyer-Moore proof system there is no
problem because it is not strongly typed. Everything is encoded using lists,
which may be interpreted in various ways. Truth values and judgements are
not distinguished from other objects. In the hol system this is also possible
because functions can produce and manipulate truth values. In the Lambda

proof assistant it is not possible for functions to operate on truth values (see
Section 4.1.1); as a result no useful behaviour function can be encoded.

Consistency, soundness, and completeness are properties which are impor-
tant for behaviour functions. These are meta-theoretic properties in the sense
that we cannot prove them within the formal system we use. We would like
behaviour functions to always produce formulae which are consistent, i.e. do
not contain contradictions. If this were not the case, a particular circuit for
which an inconsistent behaviour description was produced would satisfy any
specification. This is the ‘false implies everything’ problem [185, 179, 13].

Soundness means that we cannot derive any false results using the behaviour
function. If our intuition is that c is an adder, we would like to prove, using

2.2.EXTRACTING BEHAVIOUR FROM CIRCUIT DESCRIPTIONS 15

the behaviour function output, that it does indeed add two numbers. This is a
semantic question in the sense that it is our interpretation which provides the
ultimate truth. Unless we have another semantics with which we can compare
the behaviour function, soundness is a meaningless concept. As claimed previ-
ously, we could take one of the semantics as the definitive semantics, and check
the others against it.

The same applies to completeness. Completeness states that we do not lose
any information about the behaviour of the circuit when we apply the behaviour
function to it. As an extreme, we could map every circuit to a trivial input-
output relation, but this would not help us in deriving useful results about
circuits. We note that in principle the range of the behaviour function may
be anything, as long as it allows us to express the intuitions we have about
the behaviour of circuits. Higher-order logic is a good candidate for hardware
description, because many concepts, such as time, signals, and hidden wires,
may be conveniently expressed in it [83].

2.2.1 Behaviour Extraction in the Literature

The remainder of this section will review research which has some aspect of
explicitly relating a circuit description to its behaviour.

Floyd-Hoare Style Axiomatic Semantics

Floyd [60] and Hoare [95] introduced axiomatic semantics, in which program-
ming language constructs are given a meaning through the use of pre- and
post-conditions. For example, a while loop has the following semantics:

{P ∧ Q} c {P}

{P}while Q do c od {P ∧ ¬Q}

This rule states that if P is the loop invariant, then we can infer that after the
while loop terminates the pre-condition P is still true and the loop condition Q
is false. Note that the proof that the loop terminates must be given separately.
A number of conventional programming languages have been given a formal
semantics in this style [1, 163]. Pitchumani and Stabler [149] used a Floyd-
Hoare style semantics to give a definition for a register-transfer level hdl. The
main difference between conventional programming languages and hardware de-
scription languages is the notion of time in the latter. The language which is
described in [149] does not have an explicit notion of time: there is no delay
construct for example. Rather, time is introduced in the semantics through
the use of a distinguished variable t, representing time. t may be used in pre-
and post-conditions, but not in programs. This precludes assignments to the
time variable, but does allow temporal information to be given in the specifica-
tion, for example. Consider the null statement. Its conventional semantics is
{P} null {P}. When time is involved this becomes {P [t+1/t]} null {P}. null

has no effect other than to pass time. In other words, everything that was true
before executing the null statement at time t, is also true after it has finished,

16 CHAPTER 2. INTEGRATING AN HDL AND A PROOF SYSTEM

at time t + 1. A drawback of this approach is that users have to instantiate the
rules with particular formulae P , Q themselves.

McFarland and Parker [120] give a Floyd-Hoare style semantics for an hdl

called ispb. ispb is a behavioural language, used to describe processors at the
instruction level. The meaning of a ispb program is the set of interactions be-
tween it and its environment. This operational view is formalised using the
notions of events, histories, and behaviours. An event is either a read or write
statement in the program, a history is a sequence of events, and the behaviour
of a program is the set of histories which an execution of the program may pro-
duce. Equivalence between processor descriptions is defined as equality of their
behaviours. Now behaviour expressions are introduced to describe histories in an
abstract manner, using regular expressions and data dependencies. The mean-
ing of a behaviour expression is defined to be the set of history × event pairs
satisfying it. Finally, using the Floyd-Hoare triples defining the meaning of ispb

descriptions, a behaviour function is defined. This function maps programs into
behaviour expressions: behaviour : program → behaviour expressions. This
procedure has been shown to be complete. In other words, the behaviour ex-
pression produced by the behaviour function defines a set of histories; this set
turns out to be equal to the set of all histories obtained by executing the pro-
gram using the operational definition. Behaviour expressions are then used to
prove that transformations on programs are correct, i.e. behaviour preserving.

Ad Hoc Behaviour Extraction Functions

Early research into hardware verification was informal and rather ad hoc. Most
efforts took the form of a software system which, given a hardware descrip-
tion and a specification, would try to show their equivalence. Specifications
were either at the same level of abstraction as the hardware description, or one
level above. Hardware was usually described at the transistor level, gate level
or register-transfer level (rtl.) Specifications were mostly given in terms of
boolean functions. From a historical perspective we may consider these efforts
as primitive behaviour extraction functions.

In the late 1970s and early 1980s a number of efforts were directed at func-
tional abstraction. This is the name given to the process of extracting a be-
haviour from a circuit description. In [112] Leinwand and Lamban describe an
automated system which extracts a dynamic boolean algebra description from
an implementation at the asynchronous-transistor level. Dynamic boolean al-
gebra consists of classical two-valued boolean algebra augmented with rise and
fall operators. A second phase matched subexpressions with dynamic boolean
algebra descriptions of standard circuitry, such as adders. The resulting asyn-
chronous sequential behaviour was then rewritten to a synchronous behaviour
with as few states as possible. Using the notion of weak simulation [128] the ex-
tracted behaviour and specification could be compared at the boolean-function
level. It is a remarkable achievement that this temporal abstraction [121] was
automatically dealt with.

Weise [178] describes the Silica Pithecus system, which extracts functional

2.2.EXTRACTING BEHAVIOUR FROM CIRCUIT DESCRIPTIONS 17

three-valued boolean behaviour from mos circuit descriptions. In addition to
the circuit’s description and its specification, a set of constraints is part of the
system’s input. There are three types of constraints: (i) Those asserting the
validity and interrelationships of inputs. (ii) Constraints ensuring valid outputs;
these are derived by the system using the data abstraction function mapping
analogue signals to booleans. (iii) Constraints which state the meaning of basic
mos components. The latter axiomatise the behaviour of the basic building
blocks. Rather than manipulating circuit models at the lower signal level, only
the abstracted behaviours are used. Moreover, instead of using constraints
describing the behaviour of a circuit, constraints which define the boundaries of
correct behaviour are used. The system verifies subcircuits only once; multiple
occurrences use the same constraints. The hierarchical verification and use of
abstracted instead of detailed behaviour make this system efficient.

Other related work which did not use a proof system includes [171, 7, 186,
117].

Partially Formal Behaviour Extraction Functions

In [14] Borrione and Paillet recognise the need for a formal system to unam-
biguously express the semantics of an hdl. They outline the design of a system
to translate vhdl descriptions to a representation of their behaviour in a proof
system. The behaviour is represented by a set of simultaneous functional equa-
tions, in the Boyer-Moore and reve proof systems [146]. As indicated earlier
in this section, the use of a proof system is a great improvement on the ad hoc
implementations reviewed so far.

Boulton et al. [19] describe a behaviour extraction function from a subset
of ella to the hol proof assistant. The behaviour function and its abstract
syntax tree input are outside the formal part of the hol proof system. The
behaviour function has been kept simple in order to minimise the risk of errors.
This is possible by mapping ella constructs to high-level behaviours in hol.
For example, consider the multiplexor, called a case statement in ella.

[[case in of lo: hi, hi: lo]] =

CASE [[in]] [OF [[[lo: hi]]; [[hi: lo]]]] (UNLIFT UU) =

CASE in [OF [CONST lo, SIGNAL LIFT hi;

CONST hi, SIGNAL LIFT lo]] (UNLIFT UU)

[x, y; a, b] is a list containing two pairs (x, y) and (a, b). [[·]] is the behaviour func-
tion giving a semantics to the structural description (case in of lo: hi,

hi: lo.) CASE and OF are hol functions which together represent the be-
haviour of the whole case statement, given the subcomponents’ behaviours
[[lo: hi]] and [[hi: lo]]. Because this behaviour function is itself not part of
hol, the case statement is informal, and the variable in has no explicit relation
to in (cf. Equation 2.4 on page 13.) [19, 17] go into some detail describing the
semantics of ella, which we will comment on in Section 4.2.4.

Other related work includes [174, 56] which describe mapping vhdl into
hol and sdvs respectively. silage has also been given a hol semantics in this

18 CHAPTER 2. INTEGRATING AN HDL AND A PROOF SYSTEM

manner [75, 2]. In [145] the Boyer-Moore and tache theorem provers are used as
the target logics to map behaviours of cascade descriptions into. Eveking uses
the lovert system to check the equivalence of smax hdl circuit descriptions
[54, 55]. Recently Umbreit has mapped vhdl programs onto ml descriptions
using the Lambda proof assistant [172].

Formal Behaviour Extraction Functions

In the work described above the circuit descriptions and behaviour function were
not part of a proof system. Here we describe research in which the behaviour
function is formalised also.

In [123, 124] Melham describes a formal behaviour function in hol. He
defined an abstract data type representation of cmos circuit descriptions inside
the hol proof assistant, using a recursive data type definition package [122].
Part of this data type is given below.

circ ::= pwr str | ntran str str str | join circ circ | . . . (2.5)

The intuition for these structural combinators is as follows. pwr w indicates
that the wire name w is connected to power. ntran g s d describes an N-type
transistor with wire names g, s, and d as its gate, source, and drain respectively.
join c c′ is structural composition, comparable to ∧str of page 9. A switch-level
model and threshold model semantics were given to these structural descriptions
using primitive recursive functions. These semantics model circuits at one point
in time only. We will give only a flavour of the definitions for the switch-level
semantics.

⊢ Sm (pwr p) e = (e p = T)
⊢ Sm (ntran g s d) e = (e g ⊃ (e d = e s))
⊢ Sm (join c1 c2) e = Sm c1 e ∧ Sm c2 e

(2.6)

T is the boolean value true, and Sm : circ → (str → bool) → bool is the
function mapping circuits together with an environment to a formula describing
their switch-level behaviour. The term e : str → bool is the environment, or
valuation function, mapping strings str, denoting wire names, to their values. As
we briefly indicated on page 14, because the data type expressions are ordinary
proof system terms we may quantify over structural descriptions. This feature
was used to relate the switch-level and threshold models of hardware formally,
i.e. as a theorem in hol.

In [8] Basin uses the Nuprl proof assistant [46], which implements a con-
structive type theory. He uses the proofs-as-circuits paradigm, which is an
adaptation of the propositions-as-types idea [97]. A constructive proof contains
computable evidence, e.g. a program, of the truth of the proposition it proves.
Different proofs of a specification correspond to different implementations. For
example, proving

>> ∀i, o. ∃c. S(i, o, c)

entails exhibiting a witness c which satisfies the specification S(i, o, c). (>>
is Nuprl’s judgement.) However, there is no guarantee that this realisation

2.3. DERIVING BEHAVIOUR VIA A SEMANTICS 19

c has a particular form, or intention; we only know that it has behaviour, or
extension, S. We would like c to be a circuit description, not just any old proof
term. To force the realisation to have a particular form, or to be at a particular
level of abstraction, a type of circuit terms is introduced. This type trans is a
recursively defined data type. An interpreter Interptrans : trans → env → bool
is defined to give a meaning to these terms. trans and Interp

trans
correspond

to Melham’s circ (Equation 2.5) and Sm (Equation 2.6) respectively. A more
sophisticated correctness statement may then be defined as follows:

>> ∃c : trans. ∀i, o : bool. Interptrans c env ⇒ S(i, o)

Where env is the environment linking the bound variables i and o with their
syntactic representations in c (cf. e in Equation 2.6, str in Equation 2.5.) Note
that the circuit description c does not appear in S because Interptrans c env
provides the relation between c, i, and o. In fact, [8] gives a more general
correctness statement; parametrised circuits and an arbitrary number of input
and output ports are also allowed. To emphasise the use of the behaviour
function Interp

trans
, we have also ignored the distinction between the type bool

and the type of truth values in Nuprl. The definition and use of boolean logic
in Nuprl is described in detail in [10].

In the Veritas approach, discussed in Section 2.1.1, all structural objects
are indivisible entities. The behaviour of composite structural objects is not de-
rived through a semantic function defined on the structure of terms as above but
projection functions are used instead. The behaviours of subcomponents, ob-
tained through projection functions, are combined to form the derived behaviour
of the composite object. Thus in Veritas only atomic structural objects exist,
which may or may not be related to other, perhaps smaller, structural objects
through projection functions.

2.3 Deriving Behaviour via a Semantics

In the previous section we showed how behaviour could be extracted directly
from circuit descriptions. This is a high-level approach with no indication of an
underlying model of how the behaviour is arrived at. Industrial hardware de-
scription languages usually have a simulator to animate hardware descriptions
written in the hdl. It makes sense not to state properties directly about circuit
descriptions, but derive properties using the simulator. That is, we take a more
operational stance. Taken at face value, this would seem to imply that we can
only derive properties using simulation; exactly what we are trying to get away
from. This is not the case, however. If we provide an operational semantics
for the hdl, we may prove general properties about the simulator model. For
example, we would like to prove that the simulator returns an answer for every
circuit and set of input stimuli. If this is not the case, a characterisation can
be given for circuits or inputs which do not have this property, so that we may
avoid them. The operational semantics gives us a firm mathematical grip on

20 CHAPTER 2. INTEGRATING AN HDL AND A PROOF SYSTEM

the simulator model.4 Using this approach we can derive behaviour indirectly,
via a more intuitive simulation-based route. By proving desirable properties
we expect to hold, we can gain confidence in the correctness of the simulation
algorithm. These could include totality, monotonicity, some upper bound on
the size of the computation, etc. We can prove more detailed properties using
an operational semantics than using other types of semantics such as axiomatic
and denotational semantics. The reason for this is that we can refer to the sim-
ulation method, which is absent in axiomatic and denotational semantics. If we
also have an axiomatic semantics for the hdl, it becomes possible to prove the
soundness and completeness of the operational semantics with respect to the ax-
iomatic semantics. This is achieved by abstracting away from simulation details.
As with behaviour functions earlier, we can define an operational semantics on
paper, or use a proof system. In this case, however, there is no half-way stage:
either everything is on paper, or everything is in a proof system. The reason
for this is clear when we consider a fragment of an operational semantics.

opsem env (wire n) = env n
opsem env (parcomp (c1, c2)) = (opsem env c1, opsem env c2)
opsem env (mux (c1, c2, c3)) = if opsem env c1 then opsem env c2

else opsem env c3

wire n returns the value on the wire n; note that we assume that value =
bool . parcomp is parallel composition, and mux a multiplexor. We see that the
variables n and ci occur in both the pattern and the right hand side. Although it
is conceivable to map from outside a proof system into one, this does not really
make sense, precisely because the same objects and types occur in both the
domain and range of the semantics. This was also the case in Equation 2.3 on
page 10, which defined a behaviour function in a denotational manner. This was
not the case for the axiomatic behaviour function of Equation 2.4 on page 13.

The discussion which follows applies equally to an embedded operational
semantics, and to an operational semantics outside a proof system. The differ-
ence between the two is of a more pragmatic nature. It is possible to use an
operational semantics on paper to evaluate expressions. However, the size of ex-
pressions, environments, etc. becomes unwieldy very quickly (see, for example,
Section 5.1.) The process is error prone without automation. The use of a proof
system relieves the user of the semantics from such mundane tasks as keeping
track of environments and variable restrictions. This allows the designer to con-
centrate on more important aspects, such as the actual design, the proof plan,
etc. Using the operational semantics should be as painless as possible, e.g. by
providing commands to apply semantic rules automatically. In the remainder
of this section we will take it that our operational semantics is embedded in a
proof system.

To embed an operational semantics in a proof system we need to represent
circuits, input and output values, and the semantic rules. Auxiliary objects

4Particular implementations of this algorithm may still be incorrect. In Chapter 5 we shall
show how our approach allows formal simulation, overcoming this problem.

2.3. DERIVING BEHAVIOUR VIA A SEMANTICS 21

such as environments, and wire names will also be needed. In the previous
section, dealing with behaviour functions, we already encountered these notions.
However, we reiterate the basic principles here for clarity, and also because these
concepts are crucial to our work. The structure and behaviour of hardware are
kept separate by providing a structural description language, which is given a
meaning through the use of an operational semantics. The operational semantics
relates a circuit and its inputs to an output according to some simulation model.
The semantics may be nondeterministic or partial. For simplicity we allow only
one input. A type for the operational semantics could be the following:

opsem : (structural × value) × value

However, the concept of state is missing; most circuits contain latches, which
retain a value between clock cycles. Adding an explicit state yields the following.

opsem : (structural × state × value) × (value × state)

An alternative view is to dispense with the state, and evolve the circuit itself.
The state is part of the circuit description. This is the type of the semantics
which we will use in later chapters.

opsem : (structural × value) × (value × structural)

Milner first described this type in [129]. Gordon elaborated it in [78], and used
it as the basis for lcf lsm [81]: the Cambridge lcf extended with a logic for
sequential machines to describe hardware. State transition functions of state
machines may be seen to have a similar type (value × state) → (value × state).
This view is also common in process algebras such as ccs [131], Circal [132],
and hop [74], which use a labelled transition system.

We can state important properties such as soundness and completeness with
respect to another semantics. We would like this reference semantics to be
more abstract than the operational semantics. If the reference semantics is not
embedded in the proof system soundness and completeness cannot be stated
within the proof system. In the remainder of this section we assume that there
is an axiomatic semantics axsem : structural → P(value×value) available in the
proof system as the reference semantics. (PS is the powerset of set S.) Given a
circuit, axsem returns a relation of input-output pairs which the circuit defines.
The soundness of opsem with respect to another semantics axsem states that for
all circuits, if (i, o) is a valid input-output pair for the operational semantics, it
is also in the relation specified by axsem. In other words, the low-level opsem
does not define a larger input-output relation than the high-level axsem.

⊢ ∀e, e′ : structural . ∀i, o : value. opsem (e, i, o, e′) → (i, o) ∈ axsem e

This statement is entirely within the mechanised logic. Completeness states that
we do not lose any information: we can derive the same input-output relation
using the operational semantics as with the axiomatic semantics.

⊢ ∀e : structural . ∀i, o : value. (i, o) ∈ axsem e → ∃e′ : structural . opsem (e, i, o, e′)

22 CHAPTER 2. INTEGRATING AN HDL AND A PROOF SYSTEM

Although both semantics define the same relation, we may be able to derive
more detailed results using the operational semantics than with an axiomatic
semantics. The reason for this is that the axiomatic semantics only defines the
input-output relation, whereas the operational semantics defines a mechanism
for deriving outputs from inputs. We may prove results about this mechanism.

It is important to realise that the two previous equations manipulate both
circuits e and semantics opsem and axsem inside the proof system. We are able
to quantify over circuits, expressing properties which hold for all or particular
classes of circuits. For example, it is likely that not all circuits will be well-
formed according to some static semantics, and we would like to exclude these
circuits from any properties P we wish to prove.

⊢ ∀e : structural. (∃t : type. typeof e = t) → P#(e)

Universal quantification may be used, for example, to represent alternative im-
plementations of a circuit. It is also possible to existentially quantify over cir-
cuits.

⊢ ∃impl : structural. (∃t : type. typeof impl = t) → SPEC#(impl)

By proving this theorem we would define a witness impl, which is a well-formed
circuit satisfying the specification SPEC. In general, all proof system operations
are applicable to circuits. For example, circuits may contain free variables,
corresponding to plug-in components.

⊢ ∀subcomponent . PSPEC#(subcomponent) → SPEC#(plugin subcomponent)

In particular, functions may operate on and deliver circuit expressions; e.g.
plugin above. This becomes a powerful tool in the form of hardware synthesis
functions (Section 5.2.) We can prove the correctness of these functions so that
all generated functions satisfy a particular specification:

⊢ ∀parameter . SPEC#(parameter , synthesise parameter)

For example, synthesise could be an adder synthesis function. In a similar man-
ner we can prove properties about the semantics, such as totality (Section 4.3.)

We will encounter these features in practice later in this thesis in Chapter 5.

2.3.1 Related Work

Recently a number of hardware description languages have been given formal
semantics. With a few exceptions, these have all been paper exercises, and will
be reviewed in the next chapter on hdl semantics. In this section we discuss
only those which have been used in conjunction with proof systems.

Compiler Correctness Proofs in Proof Systems

Proofs of compiler correctness in proof systems use the same techniques as those
used for embedding hdls in proof systems. To reason about programs their

2.3. DERIVING BEHAVIOUR VIA A SEMANTICS 23

syntax and semantics have to be encoded in the proof system. We will describe
Cohn’s work [40] in some detail below, because it shows how techniques used
by early compiler correctness research have been carried over to later research,
reviewed later this section.

Milner and Weyhrauch used the Stanford lcf proof checker to check the cor-
rectness of a simple compiler algorithm [127]. The source and target languages
were axiomatised in the system through the use of constructors and destructors.
Aiello et al. encoded a denotational semantics for Pascal in the Stanford lcf in
a similar manner [1].

The Stanford lcf was extended to an interactive proof assistant resulting
in the Edinburgh lcf [76]. Using the Edinburgh lcf Cohn proved a compiler
correct with respect to the denotational semantics of imperative source and
target languages [40]. The high-level language was defined using the following
types:

hprogram = assign + if + while + compound

assign = id × exp

if = exp × hprogram × hprogram

while = exp × hprogram

compound = hprogram × hprogram

id is the type of identitiers, and exp the type of expressions. These types were
introduced by axioms which also defined constructors and destructors such as
mkif and destif. Programs are axiomatised using constructors and destructors,
rather than using data types. Research discussed below takes the latter ap-
proach. The high-level denotational semantics was defined as the least fixed
point of the function hsemfun, defined below:

hsem : hprogram → (store → store) = FIX hsemfun

The meaning of a program is a store-to-store mapping. hsemfun : (hprogram →
store → store) → hprogram → store is defined on the structure of hprogram
terms. The syntax if hp = C(v,...) is syntactic sugar for if isC hp, where
occurrences of v are replaced by the appropriate projection from hp. eval is the
expression evaluation function.

24 CHAPTER 2. INTEGRATING AN HDL AND A PROOF SYSTEM

hsemfun = λ hsem. λ hp. λ s.
if hp = assign (x, ex) then

s [eval (ex,s) / x]
else if hp = if (ex, hp1, hp2) then

if eval (ex, s)
then hsem hp1 s
else hsem hp2 s

else if hp = while (ex, hp1) then
if eval (ex, s)
then (hsem hp) (hsem hp1 s)
else s

else if hp = compound (hp1, hp2) then
(hsem hp2) (hsem hp1 s)

The lcf is a logic based on continuous functions, and contains a fixed point
operator FIX with an associated fixed point induction principle. The latter may
be used to derive structural induction principles for recursive data types such
as hprogram. The proofs of correctness proceeded by fixed point induction on
the high and low-level semantic functions respectively, followed by a structural
induction on program p [29]. Fixed point induction is also called computational
induction, because it follows the flow of computation rather than the structure of
the program [118]. When we discuss proofs about our embedded hdl semantics
in Section 4.3.2 we will mention the similarities and differences with Cohn’s
proofs.

Other research involving compiler correctness proofs using proof systems
includes Sokolowski’s lcf work [163]. Using hol Joyce has verified a compiler
with as target machine a non-idealised formally verified computer Tamarack [82]
taking into account finite storage [107]. A group at Computational Logic has
used the Boyer-Moore theorem prover to verify a code generator [187], assembler,
and linker [133] to a verified microprocessor FM8502 [98, 99].

Embeddings of Hardware Description Notations

Brock and Hunt [22] describe a simple hardware description language in the
Boyer-Moore theorem prover. It lacks delays and does not permit recursion; it
thus deals with combinatorial logic only. However, this is the earliest research
known to us which defines an operational semantics for an hdl in a proof system.
Circuits are encoded as list constants, which are interpreted by a semantic
function. For example, a full adder is described as follows.

’(half-adder (a b) (sum carry) (((sum) (b-xor a b))
((carry) (b-and a b)))

’(full-adder (a b c) (sum carry)
(((sum1 carry1) (half-adder a b))
((sum carry2) (half-adder sum1 c))
((carry) (b-or carry1 carry2))))

2.3. DERIVING BEHAVIOUR VIA A SEMANTICS 25

The circuit half-adder is defined as having two inputs a and b, and two outputs
sum and carry. b-xor and b-and represent primitive XOR and AND gates re-
spectively. The circuit descriptions may be hierarchically composed, as is seen
in the full adder definition. A well-formedness predicate is defined to check that
these definitions are purely combinatorial. The output value of a circuit descrip-
tion is computed by an operational semantics. It is encoded as a total recursive
function; relational or partial definitions are not possible in the Boyer-Moore
logic. The conceptual type of the semantic function is as follows: 5

heval : name → signalenv → circuitenv → value list

name consists of the name of the top-level component and its inputs. An en-
vironment circuitenv contains the definitions of non-primitive functions, such
as half-adder. An environment signalenv is used to store the values of input,
output and internal variables such as sum. List literals may be used to great
advantage here. To evaluate the half adder with inputs x and y with values F
and T respectively, we use:

(heval ’(half-adder x y) (list (cons ’x F) (cons ’y T)) (list ’(half-adder (a b). . .)))

The Lisp quote ’ converts the variable x into a constant, which may be used as
a name in the environment valueenv. (Recall that the hol solution has been to
formalise the type of names of wires to build an environment associating wires
with their values (str in Equation 2.5.) In Section 4.2.2 we adopt the de Bruijn
encoding [48] to deal with this problem.) The semantic function traverses valid
abstract syntax trees, computing subcircuit outputs as it goes along. The se-
mantics of primitive components such as b-xor is hard-wired into the interpreter.
Other, non-standard semantic functions are also defined, computing the delay,
and size (in number of primitive gates) of circuit descriptions. A recent ex-
tension to this work allows sequential circuits with delayed feedback loops [23].
State-holding components are listed explicitly in circuit descriptions.

Camilleri has given a semantics for csp [96] in hol [32]. The semantics is
denotational; an abstract data type of csp terms is mapped onto objects of
type process. To reason about csp terms one must obtain their corresponding
processes from the semantics, and then reason about these processes.

To our knowledge our work is the first to describe the embedding of a se-
mantics for a (subset of an) industrial hdl [69, 72]. The hdl contains unit
delays, generalised multiplexors and allows recursion. Both delayed and delay-
less feedback loops are allowed. We use the Lambda proof assistant, described
in Chapter 4. We define a data type to define the abstract syntax of the hdl.
As Lambda does not allow recursive relational definitions, the operational se-
mantics is given as a function which is defined structurally on abstract syntax
terms. This limits proofs to structural induction on program terms. Unlike the
Boyer-Moore research, we do not need explicit environments (circuitenv, above)
to bind circuit names such as ’half-adder to their defining abstract syntax term.

5The actual type is slightly more complicated because the function encodes two mutually
recursive functions.

26 CHAPTER 2. INTEGRATING AN HDL AND A PROOF SYSTEM

We use Lambda’s logical infrastructure (discussed in detail in Section 4.1) to
define abbreviations for subcircuits.

van Tassel’s vhdl embedding in hol [175] uses the approach described in this
thesis rather than the axiomatic and denotational semantics previously used in
hol. He gives an operational semantics for a small subset of vhdl, which deals
elegantly with vhdl’s problematic delta time. Delta time is used to represent
the underlying simulator model’s iterative behaviour. Any number of delta time
clock ticks may occur within one discrete time interval. An abstract data type
is used to represent program terms. A hol package to define inductive relations
[125] is then used to define a relational semantics. A rule induction principle for
this set of rules is automatically derived by the package. This is a more general
induction method than our structural induction on the abstract syntax, and the
fixed point induction used by the lcf research described previously. We can
only use functions to model semantics, restricting our semantics to functional
semantics, where the hol system allows more general relational semantics. The
embedded semantics has been used to simulate simple circuits, in the manner
discussed in Section 5.1. However, we are not aware of any results about the
embedded semantics itself, such as totality. For example, a characterisation of
circuits for which the operational semantics terminates would be very useful.

2.4 Conclusions

In this chapter we have argued for the separation of the description of structure
and behaviour of hardware. We have seen how hdls and proof systems may
be combined, starting by extracting the behaviour of circuits directly. Various
stages of automation using proof systems were described. The derivation of
the behaviour via a formal semantics, and the progressive use of proof systems
were reviewed also. The use of a formal semantics for an hdl embedded in a
proof system allows powerful manipulation of both circuit descriptions and se-
mantics. A number of operations such as symbolic simulation, circuit synthesis,
and circuit optimisations can be used within one framework when using this
approach.

Chapter 3

The picoELLA Language

and Its Semantics

In previous chapters we presented the case for combining a hardware description
language and a proof system by embedding the hdl’s formal semantics. Here
we present a small subset of a commercial hdl and its static and dynamic
semantics.

3.1 Choosing an HDL

In this section we consider two candidate hdls in detail: ella [45, 137] and
the vhsic hardware description language vhdl [101, 161]. Other hardware
description languages which have been formalised will be discussed briefly in the
related work section. Both ella and vhdl have had governmental backing, and
are widely used in industry. ella was designed by the Royal Signals and Radar
Establishment (now Defence Research Agency) in Malvern, UK for the Ministry
of Defence in the UK in 1978. It is the one of the ‘preferred hdls’ of the MoD.
The US Department of Defence commissioned vhdl in 1983. It was standardised
by the Institute of Electrical and Electronic Engineers (IEEE) in 1987 [101]. We
consider these two languages because a goal of this research is to promote our
formal methodology to industry. Using a stable, widely used language facilitates
this process. Fortunately, it turns out that ella has a mathematically well
defined and elegant semantic model, first described by Elliot [52]. To compare
ella and vhdl we will describe the philosophies behind both languages, and
discuss their underlying simulator models.

3.1.1 VHDL

In this section we first give a high-level outline of vhdl, we then sketch the sort
of data values permitted, followed by the main modes of hardware description.

27

28 CHAPTER 3. THE PICOELLA LANGUAGE AND ITS SEMANTICS

We then describe the simulator model for vhdl, and briefly discuss the disad-
vantages of this model. Finally we describe research into providing a formal
model for vhdl. We omit a large number of features of vhdl for lack of space,
and because we are more interested in the underlying mechanisms rather than
the particulars of specific constructs.

The very high speed integrated circuit hardware description language (vh-

sic hdl, or vhdl) was developed for the Department of Defence in the US
in response to the need for a standard language to describe, document, and
exchange hardware designs [161]. vhdl is intended to cover the whole of the
design process, from high-level specification to the gate level. As a result it is a
very large language, and includes many features which deal with programming
in the large. Most of these constructs have been modelled on similar constructs
in the Ada programming language [141, 161]. Packages are a means to group
declarations of types and subprograms (functions and procedures.) For exam-
ple, a package could implement a three-valued boolean logic data type as a data
type with associated operators. The design entity is the fundamental concept
for hardware description in vhdl. Design entity declarations describe input
and output ports of a hardware component. Assertions about behaviour may
also be included. For every design entity declaration there may be one or more
implementations, called architecture declarations. In a final configuration of a
hardware design every design entity which has been used must be instantiated
with a particular implementation.

Type definitions in vhdl resemble closely those of Ada. Enumerated types,
arrays, records, various kinds of floating point and real numbers are supported.
In the behavioural subset of vhdl pointers may also be used. Signals and
physical types have been introduced to deal specifically with hardware design.
The former represent the changing values of wires, the latter are used to define
the time scale, for example.

There are two principal modes of description for architecture declarations:
behavioural and structural. A third form, data flow, may also be used, but
is a shorthand for a behavioural description. To illustrate different styles of
descriptions in vhdl, we will use a two bit adder as a running example. Here
is a possible interface declaration.

use BitPackage.all;

entity TwoBitAdder is

port (in: in bit (0 to 1);

carryin: in bit;

sum: out bit (0 to 1);

carryout: out bit);

end TwoBitAdder;

The use clause specifies that the declarations of the package BitPackage, such as
type bit, are included. A design entity may be composed of smaller components
in a purely structural manner. Leaf components of this structural hierarchy will
be behavioural descriptions. Structural descriptions cannot be leaf components

3.1. CHOOSING AN HDL 29

because they define no behaviour; they can only compose behaviours of sub-
components. Moreover, behavioural and data flow descriptions may not contain
structural descriptions. This means that behavioural descriptions can only be
decomposed behaviourally, or else a corresponding structural description has to
be provided. A two bit adder could be described in a structural manner using
full adder subcomponents as follows.

architecture Structural of TwoBitAdder is

component Adder

port (ina: in bit;

inb: in bit;

sum: out bit;

carry: out bit);

end component;

signal carries : bit (0 to 1);

begin

Add0: Adder port map (in (0), carryin,

sum (0), carries (0));

for i in 1 to 1 generate

Add: Adder port map (in (i), carries (i-1),

sum (i), carries (i));

end generate;

carryout <= carries (1);

end Structural;

This particular implementation, or architecture, is called Structural, and it
contains a one bit adder subcomponent called Adder. In a final configuration
we have to specify the particular implementations which will be used for the
two Adders. Here we only know the interface of the Adder entity as described
in the port map. Ports of subcomponents are connected using signals sum and
carries. sum and carryout have been declared in the interface declaration
TwoBitAdder. Particular subcomponents may be named using labels, such as
Add0. The structural replication (for i in ...) which we have used may be
used to a more obvious advantage in larger or parametrised adders.

A behavioural description of the two bit adder is given below.

architecture Behavioural of TwoBitAdder is

function carryfunction (x: bit (0 to 1); y: bit) ...;

function sumfunction (x: bit (0 to 1); y: bit) ...;

begin

process begin

sum <= sumfunction (in, carryin);

carryout <= carryfunction (in, carryin);

wait on in, carryin;

end process;

end Behavioural;

30 CHAPTER 3. THE PICOELLA LANGUAGE AND ITS SEMANTICS

sumfunction and carryfunction are functions with a bit array and bit input,
and return a bit array and bit respectively. They are conventional program-
ming language programs, and there is no indication of any particular hardware
implementation. The process statement models hardware as a continuously
running sequential program. After the output signals sum and carry are as-
signed the appropriate values, the process waits until a new value arrives on
either of the two input signals in or carryin. Waits for signal changes, time-
outs, etc. must be explicitly specified using the wait statement. In a top-down
design methodology, the first implementation of a design entity would be a
high-level behavioural description. Subsequent refinements would partition the
behavioural description into smaller components. The behavioural style most
clearly shows the underlying simulation model of vhdl, which we will describe
shortly.

The third description style, data flow description, is intended to be similar
to a register transfer description style.

architecture DataFlow of TwoBitAdder is

begin

sum(0) <= in(0) and carryin;

...

carry <= in(0) xor (in(1) xor in(2));

end DataFlow;

Descriptions using the data flow style are syntactic sugaring for more explicit
behavioural descriptions. Every data flow (or concurrent) signal assignment is
equivalent to a process containing the signal assignment, followed by a wait
statement on the signals in the right hand side of the signal assignment. In the
remainder of this section we will assume that data flow descriptions have been
rewritten to their corresponding behavioural form.

VHDL’s Simulation Model

The following description of vhdl’s simulation model [101, Section 12.6] is nec-
essarily incomplete. We try to convey an intuition for the basic behavioural
model, but ignore more advanced features. We briefly mention how signals are
resolved over the structural hierarchy.

Every design is a structural decomposition containing behavioural descrip-
tions at the leaves. These may be composed in a structural or behavioural
manner. vhdl’s simulation model therefore has two parts: the first deals with
the structural aspects of the design, the second with the behavioural elements
of one design entity. The latter is more fundamental, and we will discuss it first.

A behavioural description consists of a number of communicating sequen-
tial processes. The computation model is designed to deliver the same result
irrespective of the execution order of the processes in a design entity. This is
achieved as follows. Each process is a sequential program which may commu-
nicate with other processes only via signals. Variables are strictly local to a
process, and may not be used for interprocess communication. Processes are

3.1. CHOOSING AN HDL 31

perceived as running in parallel, synchronising occasionally to update shared
signals. An unresolved signal may be read by any number of processes, but
only written by one process. A resolved signal may be written and read by any
number of processes. Resolved signals may be used to model buses. In order
to ensure that all reading processes read the same value of a signal, an assign-
ment to a signal is not effected until all processes have synchronised. (This
may also be interpreted as a buffering of signal assignments.) Synchronisation
is explicit, using wait statements. Processes have synchronised when they are
all suspended, i.e. waiting for a change in a signal. If this is the case, the values
of all signals which have been assigned to are updated. For resolved signals
this entails computing the value from the multiple assignments to the signal
using a resolution function. (Or: compute the global value using the buffered
values.) A resolution function could represent a bus resolution algorithm, a
hard-wired OR, or any other protocol. At this point the global store has been
updated and all processes will read the new signal values. All processes are then
restarted. Of course, in an actual implementation of the simulation algorithm
it is unnecessary to rerun a process if it does not depend on (is sensitive to)
any of the signals which have changed. This process continues until no signals
have been changed. The period between two process synchronisations is called
a simulation step. Individual simulation steps are not accessible to the user, but
their effects are visible. A simulation step takes one so-called ‘delta time.’ Only
when all processes have synchronised, signals have been updated and there are
no more signal changes, is time advanced. Zero or more delta time steps take
place in every time step, which the user may use explicitly. There may be an
infinite number of delta time steps in a time step, which means that the simula-
tion does not terminate. vhdl’s hierarchical timing model is derived from that
of conlan [147]. The simulation model is given in a pictorial form on the next
page.

We will not give any details about the part of the simulation model which
deals with inter-design entity communication. Input and output ports of a
design entity behave ‘as expected’ when they are not connected to resolved
signals. The value of resolved signals, however, is computed at each level of
the hierarchy, and passed up through a port. If the port is an inout port, the
final resolved value is passed down again. A resolved signal may therefore have
two different values: one which is passed up through output ports, and another
which is received through input ports. The model is further complicated by the
possibility of conversion functions which operate at input and output ports.

To clarify this model consider the following example.

use BitPackage.all;

entity Example is

port (input: in bit; output: out bit := ’1’);

end Example

-- continued overleaf

32 CHAPTER 3. THE PICOELLA LANGUAGE AND ITS SEMANTICS

simulation step

time := 0fs

run all active

processes

propagate all

signal changes

❄

run all processes

until they suspend

time +:= 1fs

active process
is there an

❄

✚
✚

✚
✚

✚
✚

✚✚❂

❩
❩

❩
❩

❩
❩

❩❩⑦

❄

✲✛

initialisation

noyes

Figure 3.1: The vhdl Simulation Model

architecture Eg of Example is

begin

NAND: process begin

output <= not (input and output);

wait on input, output;

end process;

end Eg;

3.1. CHOOSING AN HDL 33

output is initialised to 1. If input is 0 then the NAND process will assign 1 to
output. The process then waits for a signal change on input or output. There
are no other processes to finish so we can conclude this simulation step, because
the signal output has not changed. It therefore takes one simulation step to
converge to a solution, and time advances. If on the other hand, input is 1,
output is first assigned 0. The process then waits for a signal change on input

or output. There are no other processes to finish so we resume, because the
signal output has changed from 1 to 0. The second time around we assign 1

again to output. We suspend and resume again, this time to assign 0 to output.
These last two simulation steps will be repeated ad infinitum. The circuit fails
to converge to a solution, and time does not advance.

As the preceding exposition will have made clear, vhdl is a large language
with an intricate simulation model. The user must be familiar with this opera-
tional model before the language can be used. A simulation must be understood
at this level because the simulator mechanism affects the behaviour of circuit
descriptions at a high level. Consider the following illustrative vhdl fragment.

process begin

s <= ’1’;

assert s = ’1’ report "s <> 1" severity error;

end process;

If s is 0 before the signal assignment, the assertion will fail because signal assign-
ments are buffered. Explicit delays may be introduced at signal assignments.
For example, s <= transport ’1’ after 10fs; assigns 1 to the signal s 10
femtoseconds after the current time. vhdl documentation describes this as
scheduling a transaction, which confirms the event-driven nature of the simula-
tion algorithm. Inertial delays are also provided by vhdl. Their definition is
given in terms of event queue manipulation [101, Section 8.3.1]. Thus the vhdl

timing model is forward looking in the sense that future values of a signal are
manipulated.

The simulation model has the feel of a conventional programming language.
A number of sequential subprograms execute in parallel, communicating using
a rather unintuitive synchronisation mechanism to ensure that the execution
order of the processes does not matter. Indeed, when a programming language
such as Ada or C is used as an hdl, a similar style of hardware description
emerges [3, 67, 111]. Not only is the simulation model visible, it may be used
in hardware descriptions using signal attributes, as demonstrated below.

process begin

wait on input;

if input = ’1’ then

s <= ’1’;

end if;

end process;

34 CHAPTER 3. THE PICOELLA LANGUAGE AND ITS SEMANTICS

process begin

s is active <= s’active;

end process;

Here we assign true to signal s is active if signal s has been active in the cur-
rent simulation cycle. A signal is active if it has been assigned to, but its value
need not have changed. This makes no sense from a hardware point of view. Al-
though the above description looks plausible enough, an implementation would
have to model the simulation algorithm in hardware to compute the active

attribute. The fact that the simulation model is event-driven should be irrele-
vant to any hardware description. However, the current situation allows circuit
descriptions which rely explicitly on the event-driven simulation algorithm.

Research into Formal Semantics for VHDL

The complication of vhdl’s simulation model has slowed down progress on a
formal semantics. Borrione’s group in Grenoble has been working on a functional
model for vhdl [14, 16, 157]. The prevail proof environment [16] translates a
subset of vhdl which describes synchronous sequential circuitry into the Boyer-
Moore theorem prover. Tail recursive functions are used to model the passing
of time, and their arguments represent the state. For zero delay combinatorial
hardware (a non-recursive functional model in) the tache theorem prover is
used. Salem has done some initial work towards reasoning about vhdl timing
constructs using the Boyer-Moore theorem prover [157]. He proves some lemmas
involving signal attributes which are stated without justification in the vhdl

reference manual [101]. His work differs from other vhdl semantics in the
use of a backward looking timing model rather than the standard preemptive
signal semantics. In both research efforts multiple processes without resolved
signal assignments were discussed. It is hard to see how delta delays may be
incorporated into the coarser (in effect unit delay) time scale supported by their
Boyer-Moore model.

At the Aerospace Corporation Fillipenko et al. use the state delta verification
system (sdvs) [56, 114, 113]. sdvs has been used to reason formally about Ada,
isps, and vhdl. sdvs implements a first-order logic extended with temporal
operators. State deltas are the basis for describing temporal properties. State
deltas are rules which fire when their preconditions are satisfied. Postconditions
specify their effect on the state. The semantics of the three languages has been
given by behaviour functions mapping programs into state deltas, as described
in the previous chapter. The subset of vhdl which can be translated into sdvs

contains multiple processes, although only unresolved signals are allowed. A
four-level timing hierarchy consisting is used to model vhdl’s timing model. In
increasing granularity these are: user-visible time (in femtoseconds), delta time,
zero time and state delta time. We have described the first two previously. Zero
time models the evaluation of sequential statements in a process, which may
take several steps in the primitive (state delta) time scale of sdvs, but within

3.1. CHOOSING AN HDL 35

one delta time step. An evaluation of a single statement may take more than
one step on the primitive state delta time scale.

In [174, 176] van Tassel describes how the sequential subset of vhdl may be
translated into the vhdl annotation language val, and into hol. This work
implements a behaviour function, as described in the previous chapter. More
recently his hol semantics [175] has taken the embedded operational semantics
approach advocated in this thesis. This work has been reviewed in Section 2.3.1.

Wilsey has taken a much wider look at vhdl by including design entities and
inter-architectural communication which has been ignored in all other work [181,
182]. Resolution functions, type conversions, and unrestricted wait statements
are all included. This research is also distinctive in its use of temporal interval
logic to specify the behaviour of signals.

Umbreit [172] translates vhdl programs into ml programs which may be
reasoned about using the Lambda proof assistant. The generated ml programs
are simplified automatically. In effect, a simulator which is instantiated with a
particular program is generated. Thus no general facts can be proved about the
simulator, only about particular instantiations. A large subset of vhdl, includ-
ing functions, multiple processes, signal assignments, etc. is treated. However,
delta delays are excluded.

Other related work includes [39].

3.1.2 ELLA

ella1 [45, 137] is very different from vhdl. It is a relatively small language
with a fairly simple simulator model. Few concepts suffice to make it very
powerful due to its orthogonal design. In contrast to vhdl, ella does not
provide support for designing in the large directly. This is handled by the ella

applications support environment ease instead [144]. The basic design unit is
the function. Different implementations of the same function are handled by
using different contexts in ease.

Conceptually, a circuit is a network of interconnected nodes. Functions take
the place of the nodes, and function applications or explicit joins represent the
arcs. This model may be hierarchical; nodes can contain subnetworks. All
nodes are thought of as operating at all times, and operate in zero time. Delays
must be introduced using explicit delay nodes. ella contains few primitive
components: a generalised multiplexor or truth table construct, various types
of delays, RAM, and BIOP statements. BIOP constructs are operators dealing with
built-in data types such as integers, reals and strings. All other ella constructs
may be translated automatically into this subset. All recent extensions to ella

have been defined in this manner, cf. [94].
Data types supported by ella include enumerated types, tuple types which

subsume arrays and unnamed records (rows and collaterals in ella parlance),

1We used ella version 3.0 as the basis for our work. For this reason we cite the version
3.0 manual [151] when we wish to illustrate a particular point. The version 4.0 manual [45]
will be referenced in general contexts. Apart from some new features the only difference of
interest between version 3.0 and 4.0 is explained on page 39.

36 CHAPTER 3. THE PICOELLA LANGUAGE AND ITS SEMANTICS

and function types. In ella version 4.0 strings and reals were introduced.
Enumerated types may be simple enumerated types or associated types. The
latter allow a value to be associated with elements of an enumerated type. For
example, consider the following enumerated and associated types.

TYPE bit = NEW (hi | lo). # enumerated type #

TYPE address = NEW addr(0..255). # ELLA integer type #

TYPE addrdata = (address,[8]bit). # address and 8 bits #

TYPE enable = NEW (read & address | write & addrdata).

associated type

TYPE bustype = enable -> [8]bit. # function type #

Replicators such as [8] define an array of elements. Elements of type enable can
be either a read with an associated address, or a write with associated address
and datum. The last type is a function type, but no data values of this type exist.
It is a purely syntactical device to deal with buses and plug-in components.
All types but function types implicitly declare a ‘don’t know’ element. This
treatment ensures that a consistent approach exists for initialising delays etc.
with unspecified values, and during simulation allows irrelevant inputs to be
designated as such. All types contain a finite number of elements. Thus the
built-in integer and real types have a predefined, rather than a de facto, limited
range.

Three modes of hardware description are supported: an explicit net-list style,
a functional or implicit net-list style, and a sequential style. We will give an
example of each of these styles below. A major difference with vhdl is that
these three styles may be mixed arbitrarily. This is due to the consistent treat-
ment of expressions; wherever an expression is expected any program fragment
which delivers an expression is allowed. As mentioned above, all basic hardware
descriptions are delayless; delays have to be introduced explicitly using delay
nodes. This makes designs more verbose, but also highlights where the design
depends on certain timing conditions. In vhdl it is possible to describe a flip-
flop constructed from two cross-coupled NAND gates without the mention of
any explicit delays. The simulator model ensures that, in this case, the design
does not oscillate. This masks the fact that, if both NAND gates had zero delay
or exactly the same delay the design would fail with certain inputs. In ella the
same description would output undefined for these inputs unless explicit delays
were introduced. The function DEL is a pure delay of one time step and its input
is a two bit vector.

FN DEL ([2]bit: in) -> [2]bit: DELAY ((lo,lo), 1).

The output of the delay at time zero is (lo,lo).
As an example of the functional description style consider a full adder.

FN ADDER = (bit: x y c) -> [2]bit: # sum, carry #

BEGIN

LET xor = XOR (x,y). # fan-out of signal #

OUTPUT DEL ((x AND y) OR (c AND xor), xor XOR c)

END.

3.1. CHOOSING AN HDL 37

All subcomponents are used as functions operating on expressions. Every appli-
cation of a function generates a distinct piece of hardware, so that there are two
AND gates in the above description. The output of the XOR (x,y) expression is
given an explicit name because we want a fan-out of the signal. Thus there are
two XOR gates in the adder. If we substituted XOR (x,y) for the two occur-
rences of xor we would obtain an implementation with three XOR components.
The adder has a one-unit delay, expressed by the final call to DEL.

A two bit adder may be described in a structural, or explicit net-list style
as follows.

INT n = 2.

FN NBITADDER = ([n]bit: in, bit: carryin) -> ([n]bit, bit):

BEGIN

MAKE [n]ADDER: adders.

JOIN (in[1], carryin) -> adders[1].

FOR INT i = 2..n

JOIN (in[i], adders[i-1][2]) -> adders[i].

OUTPUT ([INT i=1..n] adders[i][1], adders[n][2])

END.

This description is parametrised on the number of bits. It is not as general as it
could be, but is given as a comparison with the vhdl fragment on page 29. n is a
constant, but it is possible to instantiate NBITADDER with different n by making
the function definition generic on n. Subcomponents are declared explicitly
using the MAKE statement, and are connected using the JOIN statements. To
duplicate something in ella it may be prefixed with a replicator [n] for a
number of identical copies, or [FOR i=n1..n2] to vary the expression with the
index i. These constructs may be applied to any expression, which makes them
easy to use.

Finally, behavioural descriptions are supported in ella through sequential
statements. These are more limited than the behavioural subset of vhdl. All
ella descriptions have a hardware intuition [138]. That is, every circuit design
may be expanded to a structural or explicit net-list description. Of course,
the values operated on by this description need not be as low-level as bits say.
Consider an RS flipflop:

FN RSFF = (bool: set reset) -> bool:

BEGIN SEQ

VAR state INIT x;

CASE (set, reset) OF

(lo,hi): state := f,

(hi,lo): state := t,

(lo,lo): # no change #

ELSE state := x

ESAC;

OUTPUT state

END.

38 CHAPTER 3. THE PICOELLA LANGUAGE AND ITS SEMANTICS

In this imperative style the variable state retains its value from one time step
to the next. Also consider BTOD which converts an n bit vector to an integer.

MAC BTOD {INT n} = ([n]bit: vector) -> int:

BEGIN SEQ

VAR answer := i/0;

[INT j = 1..n]

answer := (answer * i/2) + ABS vector[j];

END.

Parametrised functions, or macros, can use replicators, or use structural recur-
sion. They may be parametrised on types, integers (e.g. word size), functions,
constants, etc.

ELLA’s Simulation Model

The version 4.0 ella simulation model [45] is very simple. Recall that all circuits
may be considered as a network of interconnected nodes. We create such a
network by expanding all non-primitive ella constructs, such as sequences and
function types, and creating nodes for all implicit function calls. At every time
step we initialise the outputs of all functions to the undefined or don’t know
value of the appropriate type. We repeatedly compute all function outputs in
any order. The re-evaluation of all functions at every pass corresponds to the
notion that all hardware runs continuously. Time is advanced when all function
outputs have stabilised. Of course, in the absence of delayless feedbacks, this
reduces to a single pass computation, which follows the flow of data. Delays
output a constant value during one time step, so that feedbacks through a delay
are no problem. Function outputs do not need to be initialised to the undefined
value in this case.

When delayless feedbacks are introduced, more than one pass may be nec-
essary, but the circuit will stabilise within a finite number of steps. It may
be proved that this always happens (Section 4.3.) The proof of this property
depends crucially on the presence of the undefined value implicitly defined for
every type. This value introduces a ‘definedness’ ordering on values of a type.
The don’t know value (e.g. (?bit,?bit)) is least defined or most pessimistic,
because we know nothing about it. A value such as (hi,?bit) is partially de-
fined, and thus larger than (?bit,?bit). (hi,lo) is fully defined, and therefore
larger than (hi,?bit). In an enumerated type all constructors are larger than
the undefined value, but incomparable to one another. This is a flat data or-
dering. We can then extend this ordering to tuples and associated types. Using
this ordering we can show that every construct in ella is monotone. That is, if
we obtain more information about an input we also get to know more about its
output. (Strictly speaking, we know at least as much.) The basic totality proof
is as follows. At every time step we start with the most pessimistic estimate
possible because all outputs are set to undefined. If we evaluate the functions in
any order they either use an old, pessimistic estimate, or an up-to-date estimate.
By repeatedly computing all functions, an up-to-date, i.e. least pessimistic value

3.1. CHOOSING AN HDL 39

percolates through the network, following the flow of data. The monotonicity
of the nodes is crucial, because it allows delayless feedback loops to increase the
definedness of their outputs using previous pessimistic estimates. As we allow
only a finite number of functions, and all types contain only a finite number
of elements we cannot find more defined estimates forever. Due to the mono-
tonicity of ella constructs the output cannot become less defined, and because
there is an upper bound on the number of elements in a type it follows that
we neither decrease nor increase our current estimate. In other words, we have
arrived at a fixed point. In particular we have computed the least fixed point
solution because we started with the most pessimistic estimate. There may be
other fixed points, but these cannot be reached in this manner. This fixed point
model for ella was first described by Elliot [52].

The version 3.0 ella [151] simulator did not deal properly with delayless
feedback loops. The feedback wires were not initialised to the don’t know value,
but used the output from the previous simulation time instead. This could lead
to infinite loops in the simulation. The user had to provide an upper bound of
the number of iterations to prevent this.

The fact that the simulation model is, in both cases, implemented in an
event-driven rather than iterative manner is completely irrelevant to the user, as
long as the implementation exhibits the ‘official’ behaviour. There is no way in
which the user can access the events in the simulator. It is not possible therefore
to write an ella function corresponding to the vhdl fragment on page 33.
However, one may write functions which give the same information as vhdl

attributes such as ’stable which have a hardware intuition. These functions
are directly implementable in hardware, by virtue of the direct mapping of ella

onto hardware. Thus there is no need to emulate ella’s simulator mechanism
in hardware to be able to do this.

3.1.3 ELLA versus VHDL

vhdl is a broad-spectrum language; it may be used from very high-level al-
gorithmic designs down to transistor-level circuit descriptions [109]. Although
ella is designed to be used from the gate level upwards, it may be used to model
transistor-level circuitry. However, this becomes quite tedious and convoluted.
At the higher levels, behavioural descriptions may not be as good as those in
vhdl, due to the lack of imperative programming language features. Designers
therefore tend to use ella in the middle ground [137, 180]. In general vhdl

is a richer language than ella. For our purposes this is a disadvantage as we
need a tractable rather than a complete language. The ability to translate ella

into a small subset is a definite advantage. ella’s orthogonality and consistent
treatment of its constructs was more suitable to the approach where a subset
of the language was given a semantics followed by a derivation of the semantics
for the remainder. In vhdl this is harder due to a larger number of primi-
tive concepts, and their distinct treatment (cf. structural versus behavioural
implementations.)

The most important difference from our point of view is the simplicity of

40 CHAPTER 3. THE PICOELLA LANGUAGE AND ITS SEMANTICS

the simulation model. ella’s evaluation model is simple and mathematically
pleasing, whereas the same cannot be said for vhdl. Although both ella and
vhdl have a concept of simulation cycles within one time step, only in ella’s
case are these invisible and inaccessible to the user.

Overall, we preferred the relatively simple ella with a well-defined core of
constructs which needs more explicit user-guidance in the case of timing to a
more complete vhdl which tries to anticipate users’ needs by using a more
complicated simulator model.

We devote the remainder of this chapter to the description and definition
of picoella, the subset of ella we will be working with. Its formal static and
dynamic semantics will then be presented, followed by a discussion of research
related to subsets of ella and their semantics.

3.2 A picoELLA Rationale

In this section we first highlight some inadequacies in the ella reference manual
which indicate a need for a formal semantics. Following this, we define and
justify a minimal subset picoella which we will be using.

The need for a formal semantics becomes clear when we see how the ella

reference manual [151] describes the operation of the sequential case clause:

The CASE clause is similar to the CASE clause described in Chapter 7,
but the arms of the CASE clause do not deliver a value. This means
that a colon need not be followed by a ‘statement.’
[151, Section 9.3.4.5]

The sequential case clause is not value delivering, so how are we to reconcile
this with the definition in Chapter 7:

If the ELSE part is omitted and the input does not match any of the
‘choices’, the output of the CASE clause is an unspecified value of the
appropriate type (‘?’).
[151, Section 7.3.3.1]

A strict interpretation would be to abort the simulation because the answer is
not defined. The simulator gives a more optimistic but safe answer2: all signals
depending on the CASE statement are set to undefined. This is an example
of a construct which is translated into simpler ella and so given a derived
semantics [138]. The description of the behaviour of a value delivering CASE

statement when undefined values are present [151, Section 7.3.3.2] is another
area where a formal definition would be beneficial. Hill et al. [93] provide a
clear and unambiguous definition of the unsatisfactory ‘definition by example’
of ella delays in [151, Appendix A.3].

In [70] we described a formal dynamic operational semantics for an ella

subset called microella. It is the only attempt we are aware of which deals

2Safe in the sense that we cannot construct non-monotone circuits.

3.2. A PICOELLA RATIONALE 41

directly with ella’s sequential constructs. Their semantics turned out to be
very inelegant, because an imperative style of hardware description did not
mix well with the functional evaluation model. This semantics followed closely
the simulator model as described above. This resulted in a very imperative
style of semantics. All function outputs were stored explicitly in a store, or
memory. This store was carried over from one time step to the next to model
delays. This work highlighted the need for a clean semantics, and showed that
a minimal subset into which the remainder of ella was to be translated was
the correct way to proceed.

We concentrated on finding the smallest subset of ella which would still
have all its salient features. We called it picoella [71], and it is described below.
We later learned that Davies, at the Royal Signal and Radar Establishment, had
previously arrived at a nearly identical ella subset [47].3 In the remainder of
this section we will describe picoella and the justification for its constructs.
The next section gives a formal static and dynamic semantics for picoella.
Research involving various subsets of ella, including that of Davies, will be
reviewed in Section 3.3.6.

picoELLA Constructs

The basic components in ella are the CASE statement (without ELSEOF), DELAY,
IDELAY, RAM, and BIOP statements [136]. Expressions may be bundled into
tuples, and parts extracted using indexing. From our point of view two different
types of delay are redundant, as we are only interested in the principle of a delay.
For practical purposes built-in operators are important, but they do not add
any new theoretical insights (but see pages 160–162.)

ella’s model of hardware consists of a hierarchical network of nodes con-
nected by a number of arcs. By flattening out this network by removing all
functions, we are left with a net-list which consists of basic ella components.
This network may be described by a single functional expression, if feedback
is represented by recursive LET constructs. From a semantic point of view we
can dispense with fan-outs, or non-recursive LET statements, by replacing every
occurrence of the variable by the defining expression. However, this is not the
same from the hardware point of view, because in that case we replicate hard-
ware instead of sharing it. We therefore include the LET statement. We have
no need for functions, because they have all been flattened out. We would like
to stress that we are concerned with the least number of semantic constructs
rather than ease of circuit description. Having said that, for pragmatic reasons
we include indexing operators, which strictly speaking are superfluous. How-
ever, without indexing it becomes hard to combine program fragments, which
we will be manipulating more often than complete programs.

Enumerated types, including associated types, and tuple types are the only
essential types. In conjunction with the implicitly declared undefined or bottom
element (non-associated) enumerated types generate a flat data ordering. Tuple

3Davies’ language did not include indexing, and LET statements, which are included in
picoella for pragmatic reasons.

42 CHAPTER 3. THE PICOELLA LANGUAGE AND ITS SEMANTICS

types form a product data ordering and associated types a tagged union data
ordering [52] (figures 3.2,3.3.)

TYPE enum = NEW (true | false).

TYPE tuple = (enum,enum).

TYPE assoc = NEW (this & enum | that & enum | empty).

enum consists of three elements: true, false and ?enum. The bottom element
?tuple is equal to (?enum,?enum). The data orderings may be visualised as
the following semi-lattices. We omitted a number of elements, indicated by

Enumerated Type

✟✟✟✟✟✟

✟✟✟✟✟✟

❍❍❍❍❍❍

Produce Type

(?enum,?enum)

(?enum,false)

(false,false)

...

...

(true,true)

(true,?enum)

...(true,false)

❅
❅

❅�
�

�

?enum

falsetrue

❍❍❍❍❍❍

Figure 3.2: picoella Flat and Product Data Orderings.

ellipses. The associated type contains the following elements: ?assoc, empty,
this&?enum, this&true, this&false, that&?enum, that&true, that&false.
Although associated types introduce a new kind of data ordering we decided to

❅
❅

❅❅

�
�

��
this&true this&false

❅
❅

❅❅

�
�

��
that&true that&false

❍❍❍❍❍❍❍❍

✟✟✟✟✟✟✟✟

?assoc

this&?enum that&?enum

empty

Figure 3.3: picoella Tagged Union Data Ordering.

omit them from picoella because basic enumerated types and tuples provided
enough interest. Moreover, associated types can be encoded using tuple types.
assoc can be represented by the following type simassoc.

3.2. A PICOELLA RATIONALE 43

TYPE three = NEW (this | that | empty).

TYPE simassoc = (three,enum).

However, assuming (empty,?enum) encodes empty, simassoc contains some
redundant elements such as (empty,true) and (empty,false).

Given the above considerations we included the following constructs in picoella:
type definitions, local declarations, recursive declarations, constants, tuples, in-
dexing, a simplified CASE statement and a delay. The BNF of picoella is given
on page 45, but an informal description will be given first. Notational conven-
tions for picoella are: all keywords are given in CAPITALS, all constructors
and type names in teletype font, and all variables in italic. This agrees with
notation in later chapters.

Declarations

Type definitions may declare either a finite number of constructors of an enu-
merated type, or define a binary tuple type using previously defined types.

TYPE bool = true | false IN

TYPE bit = hi | lo | x | z IN

TYPE twobool = bool * bool IN expr

Local declarations allow signals to be given an explicit name. This aids the
structuring of circuit descriptions, and allows fan-out of signals. We will assume
throughout that an unlimited fan-out is permitted, although it is possible to
limit fan-out.

LET double = expr IN (double,double)

To be able to deal with feedback, recursive declarations are introduced. For
example, the following expression describes an alternating signal hi, lo, hi, . . .
changing at every time tick.

LET INIT ?bit REC out = DELAY (hi, IF out MATCHES hi

THEN lo ELSE hi)

IN out

The unusual term INIT ?bit uniquely types the expressions, and is also used
in the computation of the least fixed point solution.

Expressions

Constants are either constructors such as hi from an enumerated type, a bottom
value from a type, e.g. ?bit or ?twobool, or a constant binary tuple. Constant
tuples can only contain other constants. Constants are used as initial values in
delays and recursive declarations but may also be coerced to expressions.

Any two expressions may be combined in a binary tuple. Note that (hi,hi)
is either a constant tuple coerced to an expression, or two coerced constants

44 CHAPTER 3. THE PICOELLA LANGUAGE AND ITS SEMANTICS

combined in an (expression) tuple. We always indicate which form is used in
a particular context. An expression which has a tuple type (i.e. evaluates to
a constant tuple) may be indexed. Tuples and indexing behave as usual; for
example ((x,y)[2], (x,y)[1]) is equal to (y,x).

IF statements are a simplified form of CASE statements. A CASE statement
can have any number of branches and an ELSE part [151, Section 7.3.3]. Every
branch has a chooser, which is a pattern indicating when that branch will be
selected. Choosers must be disjoint to ensure a unique output. We have sim-
plified this to a series of nested IF statements each containing a single chooser.
Thus

CASE expr OF

(hi|lo,lo): lo,

(lo,hi): hi

ELSE ?bit ESAC

is encoded as

LET tmp = expr IN

IF tmp MATCHES (hi|lo,lo) THEN lo ELSE

IF tmp MATCHES (lo,hi) THEN hi ELSE ?bit

The LET forces a fan-out rather than a duplication of expr. Apart from the
fact that we do not have to consider arbitrary length (chooser, expression) pairs
we can also ignore the static type checking of the disjointness of all choosers.
Choosers are constructed from (i) fully defined constants, (ii) wild card choosers,
(iii) bar ‘|’ choosers, and (iv) tuple choosers. It is not possible to match for
partially defined values, as this would allow non-monotone circuit descriptions.
Every type has a corresponding wild card chooser, e.g. bit, twobool, which
matches all values of this type, including the bottom value. The bar ‘|’ denotes
disjunction: a value matches ch|ch’ if it matches at least one of ch and ch’. This
presents no problems because choosers cannot contain variables which may be
used in the expression, as happens in ml-style pattern matching [90]. A tuple
chooser represents pairing: it matches if both components match. Thus the
chooser (hi,lo) can either be a constant tuple chooser, or a tuple chooser of
two constant choosers. (hi|lo,lo) can only be a tuple chooser. The way in
which this matching process is defined for bottom values is crucial. There are
three possibilities when matching a value with a chooser: (i) The value and the
chooser give a definite match. For example, true matches true|false. (ii)
The value and the chooser give a definite no-match: (hi,lo) does not match
(lo,lo). (iii) Finally neither a match nor a no-match may occur. This may be
described best using an example. Take the following definition of an AND gate:

IF expr MATCHES (true,true) THEN true ELSE false

Another, equivalent, description is

IF expr MATCHES (false,bool) |(bool,false) THEN false ELSE true

3.3. A PICOELLA SEMANTICS 45

Consider either version of the AND gate with input (?bool,true). If the
unknown value turned out to be true the output would be true. On the other
hand, if it turned out to be false the output would be false. The output of
?bool therefore reflects the intuition that we cannot give a definite answer.

The final construct in picoella is the delay. It introduces a discrete linear
time starting at time zero. DELAY(ct,expr) denotes a unit delay with the output
of circuit expr as its input. DELAY(ct,expr) outputs the result of expr one time
step after it has been computed. The output at this time step is the constant
ct. At time t + 1 the new value ct+1 in the delay is the output of expr at
time t. The state of the delay (i.e. its contents) are explicit in its description.4

This is in contrast to the more common use of a state, which remembers the
values of delays from one time step to the next. Embedding the state in the
circuit description forces us to evaluate a new program at every time step. The
result of an evaluation consists therefore not only of the output signal of the
program at that time step but also the description of the program for the next
time step. The type of the evaluation (as a function) within one time step is
therefore (environment ×expression) → (constant ×expression). Given a value
environment and a circuit we output a value and a new circuit description, which
will be evaluated at the next time step. The evaluation model for picoella is
essentially the same as that for ella.

3.3 A picoELLA Semantics

The picoella semantics described here is formulated slightly differently from
earlier versions, e.g. [71].

After the informal description of picoella constructs, above, we now define
the formal syntax in the standard Backus-Naur Form.

program ::= TYPE tdecl IN program |

INPUT name : ttype IN expr

tdecl ::= tname = btype | tname = ttype

btype ::= cname | btype|btype

ttype ::= tname | ttype ∗ ttype

decl ::= INIT const REC name = expr |

name = expr

expr ::= const | name |

expr [int] | (expr , expr) |

DELAY (const , expr) |

IF expr MATCHES chooser THEN expr ELSE expr |

LET decl IN expr

4In ella the value in the description of a pure delay indicates not the state, but its initial
value only.

46 CHAPTER 3. THE PICOELLA LANGUAGE AND ITS SEMANTICS

chooser ::= tname | cname | (chooser , chooser) | chooser|chooser

const ::= ?tname | cname | (const , const)

int ::= 1 | 2

This BNF definition of picoella resembles that given in the version 3.0 ella

reference manual [151, Appendix A.1].5 In particular cname is part of two
syntactic classes: const and chooser. Moreover, it may be coerced from a const
to an expr. Assuming that coercing is explicit, it is always clear from the context
which of the three classes cname belongs to. The reason we mention this here
is that in the later versions of the ella syntax [45, Appendix A.1] and [136,
Appendix B] constants and choosers are given as one syntax class constset. This
syntactic nitpicking has a marked influence on how constants and choosers are
perceived. This results in a substantial distinction between our semantics and
that of Boulton [19], described in Sections 3.3.6 and 4.2.4.

3.3.1 Some Definitions

We define a number of types and functions used in the static and dynamic
semantics of picoella.

Type Name Defined As Typical Element
Env Name → Const Γ
Type Tname + (Type × Type) τ
TEnv Name → Type T
AEnv (Tname + Cname) → Type S

We will also use primed and subscripted versions of the typical elements. El-
ements of Env are value environments, mapping names to constants. Type is
a type whose elements are type names or binary tuples of types. Elements of
TEnv are type environments, which may be thought of as mapping variable
names to the type of their defining expressions. Elements of AEnv are type
alias environments, which may be thought of as mapping tnames to their defi-
nition, or cnames to the type they belong to. An enumerated type is mapped
to itself, and tuple types are mapped to their fully expanded definitions. This
ensures monogenicity of the static semantics. A similar approach is taken in
the dynamic semantics, where bottom values of a tuple type are mapped to
the equivalent tuple of bottom values of the constituent types. We use Dom to
extract the domain from a TEnv or AEnv. Environment lookup is defined as
follows. E{(x, y)}(z) = y if z = x and E(z) otherwise. E must be of type Env,
TEnv or AEnv.

match is the formalisation of the matching process described informally on
page 44. match only operates on well-typed choosers and constants of the same
type. Well-typedness is defined below, as part of the static semantics. The type
of match is match : chooser → const → bool3 , where bool3 is Kleene’s ternary
logic [110]. We denote truth by tt, falsity by ff and don’t know or undefined

5const and chooser are called value and choosers respectively in [151].

3.3. A PICOELLA SEMANTICS 47

by uu. c = c′ is interpreted as structural equality of c and c′ in the first two
clauses of match, and in semantic rules 3.10 and 3.29.

match cname cname ′ = ff cname 6= cname ′

match cname cname ′ = tt cname = cname ′

match cname ?tname = uu

match tname c = tt

match (ch|ch′) c = match ch c ∨ match ch′ c

match (ch, ch′) (c, c′) = match ch c ∧ match ch′ c′

match is used in rule 3.34 of the dynamic semantics.
The function ↓ is used in rules 3.10, 3.28, and 3.34 to project a constant

value to the bottom value of the same type.

↓ cname = ?tname cname has type tname

↓ ?tname = ?tname

↓ (c, c′) = (↓ c, ↓ c′)

3.3.2 A Static Semantics

The static semantics of declarations is somewhat complicated by the fact that we
want to ensure that programs are uniquely typable. A tuple type will therefore
be expanded to its most basic constituent enumerated subtypes. In general
though, the static semantics ‘does the obvious thing.’

The ⊢ : notation is overloaded, and has the following types:

Type Example
1 AEnv × Tenv × Expr × Type S, T ⊢ e : τ
2 AEnv × Expr × Type S ⊢ e : τ
3 AEnv × Expr × AEnv S ⊢ e : S
4 Type × AEnv × Expr × AEnv τ, S ⊢ e : S
5 AEnv × Tenv × Expr × TEnv S, T ⊢ e : T

1 is used to type expressions and programs, 2 is used to derive the type of a
type expression, chooser or constant, 3 returns a new type alias environment
after a type declaration, 4 is used to give constructors a type τ , and 5 returns
the type environment of local declarations.

Declarations

S ⊢ tdecl : S′ S′, T ⊢ program : τ

S, T ⊢ TYPE tdecl IN program : τ
(3.1)

S ⊢ ttype : τ S, T {(name, τ)} ⊢ expr : τ ′

S, T ⊢ INPUT name : ttype IN expr : τ ′
name 6∈ Dom(T)

(3.2)

48 CHAPTER 3. THE PICOELLA LANGUAGE AND ITS SEMANTICS

S ⊢ tname : S(tname)
tname ∈ Dom(S) (3.3)

S ⊢ ttype : τ S ⊢ ttype ′ : τ ′

S ⊢ ttype ∗ ttype ′ : τ × τ ′
(3.4)

tname, S ⊢ btype : S′

S ⊢ tname = btype : S′{(tname, tname)}
tname 6∈ Dom(S′) (3.5)

τ, S ⊢ cname : S{(cname, τ)}
cname 6∈ Dom(S) (3.6)

τ, S ⊢ btype : S′ τ, S′ ⊢ btype ′ : S′′

τ, S ⊢ btype|btype ′ : S′′
(3.7)

S ⊢ ttype : τ

S ⊢ tname = ttype : S{(tname, τ)}
tname 6∈ Dom(S) (3.8)

S, T ⊢ expr : τ

S, T ⊢ name = expr : T {(name, τ)}
(3.9)

S ⊢ const : τ S, T {(name, τ)} ⊢ expr : τ

S, T ⊢ INIT const REC name = expr : T {(name, τ)}
↓ const = const

(3.10)

Expressions

S, T ⊢ name : T (name)
name ∈ Dom(T) (3.11)

S, T ⊢ expr : τ1 × τ2

S, T ⊢ expr [i] : τi

i = 1, 2 (3.12)

S, T ⊢ expr : τ S, T ⊢ expr ′ : τ ′

S, T ⊢ (expr , expr ′) : τ × τ ′
(3.13)

S ⊢ const : τ S, T ⊢ expr : τ

S, T ⊢ DELAY (const , expr) : τ
(3.14)

S, T ⊢ expr : τ S ⊢ chooser : τ
S, T ⊢ expr ′ : τ ′ S, T ⊢ expr ′′ : τ ′

S, T ⊢ IF expr MATCHES chooser THEN expr ′ ELSE expr ′′ : τ ′
(3.15)

S, T ⊢ decl : T ′ S, T ′ ⊢ expr : τ

S, T ⊢ LET decl IN expr : τ
(3.16)

S ⊢ ?tname : S(tname)
tname ∈ Dom(S) (3.17)

S ⊢ const : τ S ⊢ const ′ : τ ′

S ⊢ (const , const ′) : τ × τ ′
(3.18)

S ⊢ cname : S(cname)
cname ∈ Dom(S) (3.19)

S ⊢ tname : S(tname)
tname ∈ Dom(S) (3.20)

3.3. A PICOELLA SEMANTICS 49

S ⊢ chooser : τ S ⊢ chooser ′ : τ

S ⊢ chooser|chooser ′ : τ
(3.21)

S ⊢ chooser : τ S ⊢ chooser ′ : τ ′

S ⊢ (chooser , chooser ′) : τ × τ ′
(3.22)

Comments

The static semantics uses a type alias environment S, and a type environment T .
Normally both would be empty initially, but this is not enforced. S contains the
type of every constructor cname, and the type associated with a tname. tnames
cannot hide cnames and vice versa (3.5, 3.6.) If this were allowed we could not
type choosers unambiguously; we would not be able to choose between rule 3.19
and 3.20. For similar reasons cnames and tnames may not be redefined (3.6, 3.8.)
Lambda abstracted variables names, i.e. in LET constructs, may be the same
as both cnames and tnames. This is safe because names and cnames appear in
different type environments. Note that typing the recursive LET is trivial due
to the presence of the initial value const. In some cases, it would be possible
to derive an infinite number of distinct types if this constant was absent. An
example of such a circuit is LET REC x = x IN x. The side condition requires
that the initial approximation must be equal to the bottom value of its type.

3.3.3 A Dynamic Semantics

The dynamic semantics follows the same principle as the simulator model for
ella, described previously. The type of the semantics is (Const stream×Env×
Expr)× (Const stream×Expr). An input stream, initial value environment and
circuit are evaluated to an output stream and a new circuit description. Within
one time step the type of the dynamic semantics is (Env × Expr) × (Const ×
Expr). We discussed the type of the semantics previously on page 21. The fixed
point computation was first described informally by Elliot [52].

The ⊢ ⇒ notation is overloaded, and has the following types:

Type Example
1 Const stream × Env × Expr × Const stream × Expr s, Γ ⊢ e ⇒ s, e
2 Const × Env × Expr × Const × Expr c, Γ ⊢ e ⇒ c, e
3 Env × Expr × Env × Expr Γ ⊢ e ⇒ Γ, e
4 Env × Expr × Const × Expr Γ ⊢ e ⇒ c, e

1 deals with input streams and whole programs, 2 passes the input at the cur-
rent time step into the program, 3 computes the value environment of a local
declaration, and 4 evaluates an expression.

Programs

nil, Γ ⊢ program ⇒ nil, program
(3.23)

50 CHAPTER 3. THE PICOELLA LANGUAGE AND ITS SEMANTICS

c, Γ ⊢ program ⇒ c′, program ′ t, Γ ⊢ program ′ ⇒ t′, program ′′

c :: t, Γ ⊢ program ⇒ c′ :: t′, program ′′

(3.24)

Declarations

c, Γ ⊢ program ⇒ c′, program ′

c, Γ ⊢ TYPE tdecl IN program ⇒ c′, TYPE tdecl IN program ′
(3.25)

Γ{(name, c)} ⊢ expr ⇒ c′, expr ′

c, Γ ⊢ INPUT name : ttype IN expr ⇒ c′, INPUT name : ttype IN expr ′

(3.26)
Γ ⊢ expr ⇒ c, expr ′

Γ ⊢ name = expr ⇒ Γ{(name, c)}, name = expr ′
(3.27)

Γ{(name, c)} ⊢ expr ⇒ c, expr ′

Γ ⊢ INIT c REC name = expr ⇒
Γ{(name, c)}, INIT ↓ c REC name = expr ′

(3.28)

Γ{(name, c)} ⊢ expr ⇒ c′, expr ′

Γ ⊢ INIT c′ REC name = expr ⇒ Γ′, expr ′′

Γ ⊢ INIT c REC name = expr ⇒ Γ′, expr ′′
c 6= c′ (3.29)

Expressions

Γ ⊢ name ⇒ Γ(name), name
(3.30)

Γ ⊢ expr ⇒ (c1, c2), expr ′

Γ ⊢ expr [i] ⇒ ci, expr ′[i]
i = 1, 2 (3.31)

Γ ⊢ expr1 ⇒ c1, expr ′
1 Γ ⊢ expr2 ⇒ c2, expr ′

2

Γ ⊢ (expr1, expr2) ⇒ (c1, c2), (expr ′
1, expr

′
2)

(3.32)

Γ ⊢ expr ⇒ c′, expr ′

Γ ⊢ DELAY (c, expr) ⇒ c, DELAY (c′, expr ′)
(3.33)

Γ ⊢ expr0 ⇒ c0, expr ′
0

Γ ⊢ expr1 ⇒ c1, expr ′
1

Γ ⊢ expr2 ⇒ c2, expr ′
2

Γ ⊢ IF expr0 MATCHES chooser THEN expr1 ELSE expr2 ⇒
c, IF expr ′

0 MATCHES chooser THEN expr ′
1 ELSE expr ′

2

(3.34)

Where type is the type of expr1 and expr2 in:

c ≡

c1 match chooser c0 = tt
c2 match chooser c0 = ff
↓ c1 match chooser c0 = uu

Γ ⊢ decl ⇒ Γ′, decl′ Γ′ ⊢ expr ⇒ c, expr ′

Γ ⊢ LET decl IN expr ⇒ c, LET decl′ IN expr ′
(3.35)

3.3. A PICOELLA SEMANTICS 51

Γ ⊢ cname ⇒ cname, cname
(3.36)

Γ ⊢ c1 ⇒ c1, c′1 Γ ⊢ c2 ⇒ c2, c′2
Γ ⊢ (c1, c2) ⇒ (c1, c2), (c′1, c

′
2)

(3.37)

Γ ⊢ ?tname ⇒ ?tname, ?tname
type of tname is a btype (3.38)

Γ ⊢ ?tname1 ⇒ c1, c′1 Γ ⊢ ?tname2 ⇒ c2, c′2
Γ ⊢ ?tname ⇒ (c1, c2), ?tname

type of tname is
tname1 × tname2

(3.39)

Comments

The dynamic semantics consists of three types of rules; (i) rule 3.25 which
skips type definitions which are not used in the dynamic semantics, (ii) those
dealing with time, (iii) and those evaluating the circuit during each clock cycle.
Rules 3.23 and 3.24 comprise the second class, the rules 3.26 to 3.39 the third
class. Rule 3.24 takes a value off the input sequence. After the circuit has
been evaluated using the third class of rules, the remainder of the input stream
is processed. This constitutes the advance of time, with rules 3.26 to 3.39
applying only within single clock cycles. The first four rules (3.23 to 3.26) take
successive constants off the input sequence and update the initial environment.
The initial environment would normally be empty, but this is not enforced. The
IF statement (rule 3.34) is strict in the sense that it always evaluates both
branches. This is necessary because the new circuit description needs the new
description of both branches in all cases. The two rules dealing with recursion,
3.28 and 3.29, are the most interesting. 3.28 indicates that a fixed point has
been reached, and returns this value. The side condition of 3.29 ensures that
as long as a fixed point has not been reached, the defining expression is re-
evaluated. Note that for the re-evaluation the original expression expr is used,
rather than the result expression of the first approximation expr ′. The least
fixed point iteration encoded by these two rules takes place within a single clock
cycle, which is why we must use the initial circuit. This manifests itself when
dealing with delays. Consider the following circuit.

LET INIT c REC x = DELAY (s, x) IN x

This is a delayed feedback loop, with no other components in the loop. The
current state of the latch is s, and the current approximation on the wire c. c
may be any value of the correct type. If c 6= s then the declarative part of the
LET REC will have the following derivation.

(∗)

Γ{(x, s)} ⊢ x ⇒ s, x
Γ{(x, s)} ⊢ DELAY(s, x) ⇒ s, DELAY(s, x)

Γ ⊢ INIT s REC x = DELAY(s, x) ⇒ Γ{(x, s)}, INIT ↓ s REC x = DELAY(s, x)

Γ ⊢ INIT c REC x = DELAY(s, x) ⇒ Γ{(x, s)}, INIT ↓ s REC x = DELAY(s, x)
c 6= s

52 CHAPTER 3. THE PICOELLA LANGUAGE AND ITS SEMANTICS

Where (∗) is
Γ{(x, c)} ⊢ x ⇒ c, x

Γ{(x, c)} ⊢ DELAY(s, x) ⇒ s, DELAY(c, x)

The result of the semantics is the same feedback loop, but with s instead of c
on the output. That is, the state of the delay s is the output. This makes sense
because we would not expect c to be able to influence the output of the latch,
because this would correspond to a write-through during the same clock cycle of
the delay. If we used the result expression of the first approximation, we would
obtain the following derivation:

(∗)

(∗∗)
· · ·

Γ ⊢ INIT c REC x = DELAY(s, x) ⇒ · · ·
c 6= s

Γ ⊢ INIT s REC x = DELAY(c, x) ⇒ · · ·
s 6= c

Γ ⊢ INIT c REC x = DELAY(s, x) ⇒ · · ·
c 6= s

Where (∗) remains unchanged and (∗∗) is the following derivation:

Γ{(x, s)} ⊢ x ⇒ s, x

Γ{(x, s)} ⊢ DELAY(c, x) ⇒ c, DELAY(s, x)

In this case the input of the delay c has changed the output of the delay within
the same clock cycle, and there is no fixed point. This is incorrect.

Instead of storing a constant c in the delay, it is also possible to store the
input circuit to the delay there.

Γ ⊢ expr ⇒ s, expr ′

Γ ⊢ DELAY expr ⇒ c, DELAY expr ′

This rule is in fact incorrect because in the premise we should use the environ-
ment from the previous time step. If we take this approach, we have to save the
previous environments, and use these in the evaluation of delays. This is the
approach taken by Davies [47], and by Barringer et al. for their Logic+Delay
language [5]. A finite upper bound on the number of previous environments
which has to be saved is given in [5]. Our solution removes the need to remem-
ber the previous state because the evaluated circuit, i.e. its output (s, expr),
instead of the unevaluated circuit is saved in the delay.

An alternative encoding of the fixed point computation is given below.

Γ{(name, c)} ⊢ expr ⇒ c, expr ′

Γ ⊢ INIT c REC name = expr ⇒ Γ{(name, c)}, INIT c REC name = expr ′

(3.40)
Γ{(name, c)} ⊢ expr ⇒ c′, expr ′

Γ ⊢ INIT c′ REC name = expr ⇒ Γ′, INIT c′′ REC name = expr ′′

Γ ⊢ INIT c REC name = expr ⇒ Γ′, INIT c REC name = expr ′′
c 6= c′

(3.41)
The difference with rules 3.28 and 3.29 is that we do not use the ↓ function, but
change the initial approximation in the result expression as we come out of the
recursion.

3.3. A PICOELLA SEMANTICS 53

3.3.4 Results About the Semantics

We have not proved any formal results about the operational semantics. We
sketched a number of results such as the totality and monogenicity of the static
and dynamic semantics. The dynamic semantics is monotone too. It was decided
that it made more sense to prove these results in an automated version of the
semantics. These results have indeed been proved in the embedding of picoella
in Lambda, as we will describe in Chapter 4.

3.3.5 Alternative Semantics

With a small language such as picoella there are some features one could add.
Associated types are the most interesting feature. Functions could be added,
but would fundamentally change the flavour of picoella.

We will refer to the semantics presented above as the standard semantics
in the remainder of this section. One particular question which may be asked
about picoella’s dynamic semantics is how optimistic or pessimistic its answers
are. It is obvious that a bottom semantics which always delivers the bottom
value of the appropriate type is the least semantics. (Assuming an element-
wise ordering on semantics.) It is not at all obvious if there exists a maximal
semantics, and what it would look like.

One simple change in the current semantics produces what we call the great-
est lower bound semantics. If, instead of delivering the bottom value for a uu
match, we output the greatest lower bound of c1 and c2 we obviously produce
a more defined semantics.6

c ≡

c1 match chooser c0 = tt
c2 match chooser c0 = ff
c1 ⊓ c2 match chooser c0 = uu

Whether this change has a corresponding hardware intuition is not clear. The
relationship between the standard and greatest lower bound semantics has been
formally proved in Section 4.3.3.

The standard semantics is pessimistic in its treatment of bottom values. All
bottom values are considered to be distinct. In cases such as the following XOR
gate

IF LET x = ?bool IN (x,x) MATCHES (true,true)|(false,false)

THEN false ELSE true

do we allow the inference that (?bool,?bool) going into the matching process
is really either (true,true) or (false,false)? After all x is either true or
false, and evaluates to the same value in both parts of the tuple. Morison,
one of ella’s designers at RSRE Malvern, expressed a willingness to apply
this sort of optimisation [135]. A possible intuition for undefined values had
been to regard them as sets of possible values [135]. In that case the XOR

6This variation was suggested by Simon Finn of Abstract Hardware Ltd.

54 CHAPTER 3. THE PICOELLA LANGUAGE AND ITS SEMANTICS

gate above would indeed output false rather than the pessimistic ?bool. It is
straightforward to formalise a basic version of this semantics. For example, the
result of a tuple expression would be the product set of the two sets obtained
from the subderivations.

Γ ⊢ expr1 ⇒ c1, expr ′
1 Γ ⊢ expr2 ⇒ c2, expr ′

2

Γ ⊢ (expr1, expr2) ⇒ c1 × c2, (expr ′
1, expr

′
2)

Where c× c′ is defined as {(x, y)|x ∈ c, y ∈ c′}. The matching process would be
reduced to set theoretic intersections and subsets. Choosers would be converted
to sets as follows.

cname → {cname}

tname → {c|c of type tname}

ch|ch′ → ch ∪ ch′

(ch, ch′) → ch × ch′

The complement ch of a chooser ch can be defined to be all the constants of the
same type which are not in the set ch. We choose the THEN branch of an IF if
the input c is a subset of the chooser, and the ELSE branch if it is a subset of the
complement. If c contains elements of both ch and ch we cannot decide between
the two branches. The output of the IF becomes the union of the outputs of
the two branches in this case.

c ≡

c1 if c ⊆ ch

c2 if c ⊆ ch

c1 ∪ c2 if c ∩ ch 6= {} ∧ c ∩ ch 6= {}

Recursion is handled without problems in this approach also. While this in-
creases our outputs, this set semantics is not optimal. Consider the following
circuit.

LET x = IF ?bool THEN true ELSE false IN

LET y = IF x THEN false ELSE true IN

IF (x,y) MATCHES (true,true)|(false,false) THEN false ELSE true

We invert an unknown signal x, later we match the two. Intuitively y should
be x’s complement, but we do not have this information. Thus the output
from the tuple (x,y) is not {(true,true), (false,false)} but also includes
{(true,false), (false,true)}. The final result is therefore {true, false}
instead of the desired {true}. The remedy for this problem would be to sepa-
rately derive an output for every member of a set, but this causes problems in the
computation of fixed points. In the set semantics any undefined value matches
with the chooser which contains all constructors of a type, e.g. true|false. In
ella and picoella, this would result in neither a match nor a no-match.

The previous semantics have used information within one time step only.
We can try to recover some of ella version 3.0’s concepts; i.e. to use the
output from the previous time step as the initial approximation for recursive

3.3. A PICOELLA SEMANTICS 55

LET statements. This may be desirable from a hardware point of view, where
a state may be retained by a wire for some time. Thus, rather than starting
with the bottom approximation at the start of every fixed point iteration we use
the output from the previous time step. In some cases the fixed point iteration
would oscillate. By taking a fixed upper bound on the number of iterations we
can still guarantee termination. It is not clear if we retain the monotonicity of
the semantics (assuming that the very first circuit description has all bottom
initial values.) This method can give rise to fixed points which are not least
fixed points. We can sanitize this crude method by detecting the fact that no
fixed point will be reached (the evaluation loops with more than one distinct
element in the loop.) Two options are open to us; we can output undefined
at this point, reflecting the fact that no fixed point was reached, or we can
compute the least fixed point, using the standard semantics. In the former case
neither this nor the standard semantics is always more defined than the other.
In the latter case the ordering relationship is not clear. Clearly, in some cases
this semantics will be more defined than the standard semantics. It would seem
that this semantics will never be less defined than the standard semantics, but
this is only a conjecture at present. In fact, the method of detecting a loop gives
us a family of semantics, depending on after how many steps we suspect that
the circuit is oscillating.

We may combine various features of the above semantics in order to try
to obtain the maximal semantics. There are some interesting avenues to be
explored using these semantics.

3.3.6 Different Approaches to ELLA Semantics

A number of groups in the UK have reported on semantics for subsets of ella.

Davies’ language L [47] is a small language into which ella may be trans-
lated for the purposes of equivalence checking. The constructs of L are: con-
stants SS , variables VS , delays ∆kα, pairing (α, β), case clause ✷α : A, and
recursion µv.α. It is a subset of picoella; it lacks indexing and non-recursive
LET constructs. A more important restriction is that bottom values are omit-
ted, case statements must be total, and that feedback loops must be delayed.7

These restrictions are enforced by a static semantics. The dynamic semantics
has type:

evaluate : time → valuation → value

A valuation gives a value for a name at every time: valuation = name → time →
value. The clauses for recursion µv.α and the delay ∆kα are the most interest-
ing. The expression for a delay is simply evaluated at the previous time step;
at time zero k is returned. In the case of a recursive feedback all occurrences
of the variable v must be protected by a delay. All previous environments are

7This means that we cannot get bottom value results.

56 CHAPTER 3. THE PICOELLA LANGUAGE AND ITS SEMANTICS

generated, and the subexpression α is evaluated.

evaluatet,V v = V vt

evaluate0,V (∆kα) = k

evaluate t+1,V (∆kα) = evaluatet,V (∆kα)

evaluatet,V (µv.α) = evaluatet,V ′(µv.α)

where V ′ = V ∪ (∪t−1
i=1{(vt−i, evaluatet−i,V α)})

Note the subtle interplay between the delay and recursion: a variable can occur
free inside a delay only if the delay is part of a recursive LET. As a result the
value of the variable is defined for all previous times in the environment V ′. The
number of previous environments to be computed for each recursive LET rises
exponentially with time in this semantics. Equivalence of expressions is defined
as identical output behaviour over all time. Davies notes that a finite program
with finite data types can exhibit only a finite behaviour given a constant input.
After this time, which is related to the number of delays and the size of the
data type of variables in recursive LET statements, the behaviour repeats itself.
It is shown that program equivalence is the same as comparing both programs
on every possible input combination for this length of time.

The Logic+Delay language of Barringer et al. [5] is a subset of Davies’ lan-
guage L. In Logic+Delay a circuit is not a single expression, but a set of
bindings to variables. Bindings may be mutually recursive, and are evaluated
simultaneously until a fixed point is found. If the circuit oscillates all bindings
become undefined.

∧

i∈1..k h ⊢|h| ei ⇒∆ bi

h
{vi=ei|i∈1..k}

−−−−−−−−→∆ h ††{vi 7→ bi|i ∈ 1..k}

This rule states that all bindings are evaluated simultaneously, after which the
environment h is updated. The following rule detects a fixed point of the circuit.
The · · · notation is a shorthand for the transitive closure of the −→∆ relation.

h′ = (h ⌢ (last h)) ††I h′ cir
−→∆ · · ·

cir
−→∆ h′′ h′′ cir

−→∆ h′′

h

cir

∼∼≻
I h′′

A similar rule is used to detect unstable loops.

h′ = (h ⌢ (last h)) ††I h′ cir
−→∆ · · ·

cir
−→∆ h′′ h′′ cir

−→∆ h′′′ cir
−→∆ · · ·

cir
−→∆ h′′ h′′ 6= h′′′

h

cir

∼∼≻
I (h ⌢ (UNDEF † I))

UNDEF is an undefined state. The following rule uses the negative judgement
6⊢t to determine when an expression evaluates to undefined. The t subscript
indicates the time. This facilitates the evaluation of the unit delays, which
just compute the value of their input expression at the previous time step. Of

3.3. A PICOELLA SEMANTICS 57

course, this means that a number of previous environments h need to be kept,
as discussed in Section 3.3.3.

h 6⊢t rhs ⇒∆ 0 h 6⊢t rhs ⇒∆ 1

h ⊢t rhs ⇒∆?

In our approach an iterative method gives us the fixed point solution of a circuit
(rules 3.28 and 3.29.) We compare the previous approximation with the current
one; if they are equal we have found a fixed point, if not we continue. In
Barringer’s work the stability or instability of a circuit is detected at the higher
level of complete evaluations. That is, whole states are compared to find a
fixed point for the whole circuit. This is closer to the approach we used for
microella [70]. In the picoella and microella semantics we need only keep
track of the last approximation (as a value and state respectively) because the
semantic model guarantees that a fixed point will be reached. In Logic+Delay
this is not the case, and a large (but finite) number of states may have to be
kept to detect a (non-occurrence of a) fixed point.

Barringer et al. [4] describe an ella subset called boolean kernel ella. It is a
large subset which includes functions. Program constructs are mapped onto IO
automata, and are composed using a causal product. A causal product consists
of the product of the substates with internal communication lines removed.
Internal data exchange is therefore hidden from observers. The causal product
constrains transitions to those that are consistent. Temporal properties may be
stated and proved using this state-based approach.8

microella [70] is the only subset to tackle sequences explicitly. We have
described this work at the start of this section.

hol ella [19, 17] has been given a semantics by Boulton by mapping it into
hol. We have discussed this work in the context of partially formal behaviour
functions in the previous chapter. The hol ella subset does not contain se-
quences, but does deal with a substantial subset. It is the only ella subset
to include macros. For a technical comparison of hol ella and embedded
picoella see Section 4.2.4.

Recent work by Harrison at Cambridge on hol ella has removed the explicit
bottom values [18, Section 7.8]. This resulting semantics implicitly takes an
approach similar to our set semantics (page 54 above.) By treating undefined
values not as an extra element in the value domain, but as an implicitly defined
value he obtains the same result. Using Hilbert’s ε operator a bottom value is
the disjunction of all possible constructors. A result of this method is that a
bar chooser which includes all possible values will match with the bottom value.
For example,

IF ?bool MATCHES true|false THEN true ELSE false

will output true. In our standard semantics it delivers ?bool. A problem arises
through the use of the ε operator. It is possible to identify all undefined values

8This work has been extended to cover Core ella [6], superseding [136, 92], discussed
below.

58 CHAPTER 3. THE PICOELLA LANGUAGE AND ITS SEMANTICS

which describe the same set of values. This means that unrelated signals in a
circuit can be unified, which has no hardware or semantic intuition.

Morison and Hill have defined a large subset of ella, called Core ella[136].
Automated tools exist to map full ella into Core ella. Macros, sequences,
function types, etc. may be transformed to Core ella using this Software Trans-
formational System, and so be given a derived semantics. Note that this set of
tools is not formalised, and that it is therefore not possible to reason formally
about this mapping. For pragmatic reasons Core ella contains some constructs
which could have been translated into more primitive ella. Functions, for ex-
ample, can be removed (as in picoella), but the resulting lack of structure
makes it harder to reason about programs. As Core ella is intended to be used
by practical tools and applications, its composition was a trade-off between min-
imality and usability. Core ella’s static semantics has been defined in [136] by
mapping Core ella to Kernel ella. Kernel ella is a set of data structures
into which a static semantically correct Core ella program may be translated.
The translation from Core to Kernel ella is defined in an operational seman-
tics style. A dynamic semantics for Kernel ella has been defined in [92]. The
semantics is an extension of Davies’ semantics for his language L. Delayless
feedback loops do not seem to be addressed in this work.

3.4 Formal Semantics for Other Hardware De-

scription Languages

Research into formal semantics for vhdl has been described earlier in this chap-
ter (page 34.) Few hardware notations have been given a formal semantics.

Cardelli [36] gives a denotational semantics to a language to describe ana-
logue circuits, and an operational semantics to a ccs-like language.

In Section 2.3 we already discussed work by Brock et al. on a formal op-
erational semantics for an hdl which has been embedded in the Boyer-Moore
theorem prover [22, 23].

Circal, an hdl based on process algebras, has been given a formal semantics
by Moller in [132].

Funnel [167, 168] was designed with a formal semantics in mind. A model
theoretic semantics based on sheaves and initial algebras is provided. An op-
erational semantics, defined by term rewriting, is given via a translation from
Funnel into obj3 [68].

Johnson’s hdl Daisy [103] has a formal semantics based on Scott-Strachey
denotational semantics [169]. Daisy is a small lazy functional language in which
time is represented by the use of streams. A ‘hardware description with recursion
equations’ notation based on Daisy has been used by O’Donnell to provide more
than one semantics for circuit descriptions [140]. These include shift register
simulations, net-list extraction, and lay-out generation semantics.

A stream-based functional notation with a formal semantics has also been
used by Delgado Kloos to describe hardware [49].

3.4. FORMAL SEMANTICS FOR OTHER HARDWARE DESCRIPTION LANGUAGES59

Other related research includes Rossen’s work on Ruby [155, 156].

60 CHAPTER 3. THE PICOELLA LANGUAGE AND ITS SEMANTICS

Chapter 4

Embedding picoELLA in

Lambda

This chapter contains an introduction to the Lambda proof system [64], the
definitions used in the embedding of picoella in Lambda, and a detailed de-
scription of the main result of the embedding.

4.1 The Lambda Proof Assistant

Where we have mentioned Lambda until now, we have not distinguished the
logic and its implementation. Here we will first describe the logic which the
Lambda proof system uses, and then how it is used in practice. As Lambda’s
logic is different from the more commonly used classical logics, we also describe
these differences explicitly.

4.1.1 Lambda’s Logic

In our work we use Lambda version 3.2 [57], which has the same constructive
logic as all earlier versions. Lambda version 4.0 and later versions use a different
logic [58], which is also used by the hol system [79]. Henceforth when we omit
the version of the Lambda system, we will assume that version 3.2 is used.
Lambda’s logic is a higher-order constructive polymorphic logic of partial terms
[57, 160]. In the remainder of this section we will explain different aspects of
the logic.

Logical inference rules contain a conclusion and zero or more premises. Each
of these is written as a sequent, and has a conclusion on the right hand side
of the turnstile, and two hypothesis lists, known as the G and H lists. The G
list usually contains existence hypotheses (explained below), and the H list the
remaining (‘conventional’) hypotheses. As an example, consider the following
raw Lambda output.

61

62 CHAPTER 4. EMBEDDING PICOELLA IN LAMBDA

2: E r1’ $ E r’ $ G //

leaves r1’ == nodes r1’ + 1 $ leaves r’ == nodes r’ + 1 $ H

|- leaves (Node (r1’,r’)) == nodes (Node (r1’,r’)) + 1

1: G // H |- leaves Leaf == nodes Leaf + 1

G // H |- (forall t. leaves t == nodes t + 1)

This rule has two premises, the first of which has no hypotheses. The dollar
signs separate individual hypotheses, and the G and H indicate the ends of the G
and H hypothesis lists respectively. The slashes // separate the G and H lists.
We will pretty-print this as

***** Premise 2 *****

1: E r1’

2: E r’

1: leaves r1’ == nodes r1’ + 1

2: leaves r’ == nodes r’ + 1

⊢ leaves (Node (r1’,r’)) == nodes (Node (r1’,r’)) + 1

***** Premise 1 *****

⊢ leaves Leaf == nodes Leaf + 1

⊢ ∀t. leaves t == nodes t + 1

We use ⊢, ∀, ∃, ∧, ∨, →, and ↔ instead of Lambda syntax |-, forall, exists,
/\, \/, ->, and <-> respectively. All object-level variables are printed in italics,
and meta-variables constructors and functions in typewriter font. Note that
the G and H lists are numbered separately, with the G list displayed first.
Sometimes we will omit the numbering of the premises and hypothesis. When
listing theorems we will often omit the dashed line. A more extensive overview
of our notation is given in Appendix A.

The propositional logic fragment of Lambda is standard, and contains rules
such as andR:

***** Premise 2 *****

⊢ Q

***** Premise 1 *****

⊢ P

⊢ P ∧ Q

The law of the excluded middle, and the strong axiom of choice are not part of
the logic, because it is constructive. Thus case analysis on truth values is not
possible, and double negations cannot be eliminated. There are some additional
functions to manipulate the hypothesis lists: permh: int list -> unit permutes
the H list hypotheses according to the list of integers. The function permg is
similar. htog: int -> unit and gtoh can be used to move hypotheses from
the H to G list and vice versa. These operations are also available as tactics
e.g. permhTac, htogTac. The G and H lists behave as multisets.

4.1. THE LAMBDA PROOF ASSISTANT 63

Lambda’s Type System

Lambda’s type system can be divided into object-level types, and meta-types
[65, Section 2.4]. Object-level types are the same as ml’s type system [90] with-
out references, and with some added restrictions on function types in abstract
data types. Object-level types are composed of data types, record types, tuple
types and function types. Object-level types may be polymorphic. Examples
are nil: ’a list, and UNDEFINED: ’a. An example of an object-level function
is the following

fun sub 0 = 0 | sub (S n) = n;

It has type sub: natural -> natural. An equivalent object-level lambda term
is

fn 0 => 0 | S n => n

Higher-order object-level function types are allowed. Function composition
could be defined as follows, for example.

infix o; fun f o g = fn x => f (g x);

The type of o is o: (’a -> ’b) * (’c -> ’a) -> ’c -> ’b. We will see more
examples of functions later. All object-level types, which do not contain a func-
tion type are equality types. Equality types such as nil: natural list may
be compared using the equality function =, which is provided as part of the
Lambda libraries. Equality types are indicated by a double prime, e.g. ”a *

”a list.
Meta-types are composed of the type of truth values Ω, and the meta-type

function arrow. Thus the truth values TRUE and FALSE have type Ω. Meta-level
functions, or syntactic functions, may be named or unnamed [64, Sections 2.16
and 2.18]. The former are called abbreviations, the latter meta-level lambda
terms. F is an example of an abbreviation:

val F#(x) = x → FALSE;

and an unnamed meta-level function

lam y. y == 1 ∨ F#(E y)

Unnamed syntactic functions are not directly accessible to the user, but may
be generated by the system. The meta-level lam and F# correspond to the
object-level fn, and fun respectively. Meta-level functions may use and return
both object and meta-level values, whereas object-level functions can operate
on object-level values only. Thus we could not rewrite F above as a fun or fn. A
second difference is that object-level functions may be higher-order, but meta-
level functions must be first order, i.e. they cannot manipulate other syntactic
functions.

In the rule andR shown previously, P and Q are variables of type omega,
because they are truth-valued terms. When proving a result, variables in the

64 CHAPTER 4. EMBEDDING PICOELLA IN LAMBDA

goal are normally rigid (non-flexible) but may be flexible [64, Section 2.19.2]. A
rigid variable cannot be specialised; it will remain a variable. Flexible variables,
on the other hand, can be instantiated with another term. A flexible variable
may be regarded as standing for a particular term, but we have not decided
exactly which term. Rigid variables require a proof to be schematic in the
variable, and ensure that a general result rather than an instantiation of the
result is proved. We will see some applications of flexible variables in Section 5.1.

We will generally omit the ‘object-level’ adjective, but always specify ‘meta-
level’ explicitly.

A Logic of Partial Terms

Lambda implements a logic of partial terms: a term does not necessarily de-
note. To distinguish denoting and non-denoting terms, the existence predicate
E is provided. For example, we can prove that ⊢ E 1. All terms built from
data type constructors (which we describe below) and existing terms denote.
Non-denoting terms may be created using functions, and implicit descriptions.
The polymorphic undefined object UNDEFINED may be defined using implicit
descriptions, discussed below. Functions, and partial function applications to
existing terms denote, but a fully applied function need not denote. That is,
functions are strict but need not be total. For example, the application of the
infinitely recursing function
fun f x = f x; does not denote for any x:

⊢ ∀x. NOT (E (f x))

To compare object-level terms we have an equality predicate ==, and an equiv-
alence predicate ===. Two terms are equivalent if, whenever either denotes,
they denote the same thing. Equality may be defined in terms of equivalence
as follows.

⊢ (x == y) ↔ (x === y ∧ E x ∧ E y)

The difference between equality and equivalence is that any two non-denoting
terms are equivalent but not equal. Note that == and === have type Ω * Ω ->

Ω. Boolean equality = has type =: ”a * ”a -> bool. ”a denotes any equality
type, i.e. any object-level type which does not contain any function types. The
function = returns a boolean value, rather than a truth value as these are not
the same in Lambda (see Section 4.1.3.) One of the axioms characterising = is
the following rule.

⊢ (x = y == true) ↔ x == y

The quantifiers ∀ and ∃ range over existing objects only, so that ∀x. E x
always holds. This is also apparent from the rule allR:

4.1. THE LAMBDA PROOF ASSISTANT 65

1: E r’

⊢ P#(r’)

⊢ ∀x. P#(x)

This rule states that to prove a universally quantified proposition P, it is enough
to prove the proposition with a free variable. The term E r’ states that the
variable r’ denotes. The prime indicates that r’ is a restricted variable; it
cannot be instantiated with a term in which r occurred free [64, Section 2.19.3].
Lambda is a higher-order logic so that we can quantify over functions, relations,
functions of functions, etc. We cannot quantify over meta-types and hence
neither over truth values.

The iota operator ι is used to give implicit descriptions. The unique object
which satisfies P is given by ιx. P#(x). If no such object exists, or more than
one such object exists the term is undefined. The undefined object UNDEFINED,
could be defined as ιx. FALSE. That is, the unique x such that it satisfies the
condition FALSE. No denoting object can satisfy this condition. In Lambda

version 3.1 some restrictions were placed on the use of the iota operator [57].
As a result it is not available directly to the user. The rule iotaExistsR,
available until Lambda version 2.1, gives a good intuition for the ι operator:

***** Premise 3 *****

⊢ E x

***** Premise 2 *****

1: E x

⊢ P#(x)

***** Premise 1 *****

1: E y’

1: P#(y’)

⊢ x === y’

⊢ E (ιx. P#(x))

To prove that an iota expression exists, we must (i) prove that a witness exists,
(ii) that it satisfies P, and (iii) the witness is unique.

Defining New Data Types and Functions

Lambda provides ml-style data type and function definitions [90] to allow the
user to specialise the system to his or her needs. Data types definitions are the
same as in ml with the following exceptions. References cannot be used, and a
data type must not occur in the domain of a function type in its own definition
either directly or via mutual recursion or a type abbreviation [64, Section 2.4.3],
[57]. Given a definition the system returns a number of rules axiomatising it.
To illustrate this, we will describe how a binary tree may be formalised.

datatype tree = Leaf | Node of tree * tree;

Four different types of rules are returned by Lambda:

66 CHAPTER 4. EMBEDDING PICOELLA IN LAMBDA

Existence Rules Each of the constructors denote (rules tree’ex’Leaf, Node’ex’0),
and applications to existing objects also denote (tree’ex’Node), i.e. construc-
tors which take arguments are total functions.

****** tree’ex’Leaf ******

⊢ E Leaf

****** tree’ex’Node ******

1: E v1

2: E v

⊢ E (Node (v1,v))

****** Node’ex’0 ******

⊢ E Node

Every term which is composed only of data type constructors denotes; it is only
when we use function application and implicit descriptions that we can obtain
non-denoting objects.
Equality Rules Constructor applications are equal if their arguments are equal.
(This results in a trivial rule for the Leaf constructor as it takes no argu-
ments. The tree’eq’Leaf rule can be derived using the reflexivity of == and
tree’ex’Leaf above.)

****** tree’eq’Node ******

1: v3 == v1

2: v2 == v

⊢ R

1: Node (v3,v2) == Node (v1,v)

⊢ R

****** tree’eq’Leaf ******

⊢ R

1: Leaf == Leaf

⊢ R

Inequality Rules For every combination of distinct constructors there is an
inequality rule. For example:

***** tree’ineq’Leaf’Node *****

1: Leaf == Node (v1,v)

⊢ R

4.1. THE LAMBDA PROOF ASSISTANT 67

Induction Rules Every data type has an associated induction principle, which
axiomatises the initial algebra semantics for the data type [57]. For non-
recursive data types, this reduces to a case analysis. The rule we obtain for
tree is tree’ind:

***** Premise 2 *****

1: E r1’

2: E r’

1: Ptree#(r1’)

2: Ptree#(r’)

⊢ Ptree#(Node (r1’,r’))

***** Premise 1 *****

⊢ Ptree#(Leaf)

1: E w

⊢ Ptree#(w)

To prove a property Ptree of all (existing) trees w, we have to (1) prove it for
a leaf, (2) prove it for all nodes, assuming Ptree holds for all subtrees r1’, r’.
The function processFun transforms the above rules into rewrite rules. These
rewrite rules may be used with standard rewrite tactics which facilitates their
use. For example, tree’ex’Leaf becomes

⊢ E Leaf === TRUE

Functions are defined as in ml, with the added restriction that patterns must
not be overlapping.

fun wrong 0 = 1 | wrong n = S n;

fun right 0 = 1 | right (S n) = S (S n);

This leads to somewhat more verbose function definitions. As with data type
definitions, Lambda returns a number of rules which axiomatise the behaviour
of functions. These may be divided into the following categories: (1) a rewrite
rule for each function clause, (2) existence rules, and (3) a minimality rule. As
an example we define the functions leaves and nodes structurally on trees.

fun leaves Leaf = 1 | leaves (Node (l,r)) = leaves l + leaves r;

fun nodes Leaf = 0 | nodes (Node (l,r)) = S (nodes l + nodes r);

For leaves above, the rewrite rules would be the following:

***** leaves’eq’1 *****

⊢ leaves Leaf === 1

***** leaves’eq’2 *****

⊢ leaves (Node (l,r)) === when#(E l ∧ E r,leaves l + leaves r)

68 CHAPTER 4. EMBEDDING PICOELLA IN LAMBDA

The term when#(P,Q) is equivalent to Q if P is TRUE. There is only one existence
rule, namely that the function exists (leaves’ex’0.)

⊢ E leaves

For curried functions partial applications of the function exist, provided the ar-
guments exist. A fully applied function need not denote because although func-
tions are strict they may be partial. Finally the minimality rule leaves’min

states that any function leavesX with the same behaviour as leaves is equal to
leaves.

***** Premise 3 *****

⊢ E leavesX

***** Premise 2 *****

⊢ ∀l,r. leavesX (Node (l,r)) === leavesX l + leavesX r

***** Premise 1 *****

⊢ leavesX Leaf === 1

1: E (leaves v)

⊢ leaves v == leavesX v

We can now prove general properties involving trees, leaves and nodes such as
∀t. leaves t == nodes t + 1. An example Lambda session proving this
property is shown in the following section.

It becomes cumbersome to use the above rules individually so we created
some functions which take the rules and return a rewrite tactic.

val pureLeavesTac = mkPureTac rules "leaves";

val leavesTac = mkTac rules "leaves";

val treeInduct = lookupRule rules "tree’ind";

The tactic pureLeavesTac only rewrites (sub)terms involving the function leaves.
leavesTac uses the standard rewrite library in addition to leaves’s rewrite
rules. treeInduct is another name for tree’ind. treeExRules, treeEqRules,
treeEqConjRules rule lists contain the existence, equality, and inequality rules
involving trees respectively. These, and some other related rules, are collected
into the treeRules rule list. Similarly named lists and functions exist for all
data types and functions we will encounter.

4.1.2 Using the Lambda System

The Lambda proof assistant is implemented in the functional language ml [90],
which it also uses as its command language. ml was originally designed as a
special purpose language to implement proof systems in a safe manner. It is not
possible in Lambda to prove logically false results, unless axioms are introduced
by the user. We never use this facility.

To prove a result in Lambda one sets the current goal to be proved to the
desired result. This results in the trivial rule ‘if the result holds, then the result
holds.’ For example, using the definitions of the previous section, proving that

4.1. THE LAMBDA PROOF ASSISTANT 69

the number of nodes of a binary tree is one less than the number of leaves in a
tree, results in the following initial goal.

***** Level 1 *****

***** Premise 1 *****

⊢ ∀t. leaves t == nodes t + 1

⊢ ∀t. leaves t == nodes t + 1

We strip the universal quantification off the right hand side, in order to apply
the tree induction rule treeInduct. The rule allR allows us to do this.

1: E r’

⊢ P#(r’)

⊢ ∀x. P#(x)

If we apply this rule to premise 1 the context P and meta-variable x of allR’s
conclusion are unified with leaves t == nodes t + 1 and t respectively. From
this we can conclude that the new conclusion of the goal becomes P#(x), i.e.
leaves t’ == nodes t’ + 1. By default Lambda uses higher-order unification
when it applies rules and tactics, but it is possible to use matching instead [64,
Section 2.19]. Matching is faster but less general.

> apprl allR;

***** Level 2 *****

***** Premise 1 *****

1: E t’

⊢ leaves t’ == nodes t’ + 1

⊢ ∀t. leaves t == nodes t + 1

> is Lambda’s prompt, and apprl stands for apply rule. Previous goals are
retained; after a rule or tactic application the new goal is pushed onto the goal
stack. Undoing the last proof step amounts to popping the top element off the
stack. It is also possible to push and pop whole proof stacks, which is useful
when we want to prove a lemma during the course of a proof. We can now apply
the tree structural induction rule treeInduct of page 67 resulting in:

***** Level 3 *****

***** Premise 2 *****

1: E r1’

2: E r’

1: leaves r1’ == nodes r1’ + 1

2: leaves r’ == nodes r’ + 1

⊢ leaves (Node (r1’,r’)) == nodes (Node (r1’,r’)) + 1

***** Premise 1 *****

⊢ leaves Leaf == nodes Leaf + 1

⊢ ∀t. leaves t == nodes t + 1

70 CHAPTER 4. EMBEDDING PICOELLA IN LAMBDA

The last two hypotheses of the second premise are the induction hypotheses.
Using the rewrite rules for leaves and nodes premise 1 is discharged easily.
The following tactic application accomplishes this.

applyTac (leavesTac thenT nodesTac);

Applying this tactic to the second premise gives the following goal:

***** Level 5 *****

***** Premise 1 *****

1: E r1’

2: E r’

1: leaves r1’ == nodes r1’ + 1

2: leaves r’ == nodes r’ + 1

⊢ E (nodes r1’) ∧ E (nodes r’)

⊢ ∀t. leaves t == nodes t + 1

Assuming we have proved that nodes is total, we can also discharge this pre-
mise:

> applyTac (doRule andR thenLT [idT,permgTac[2]] thenR

nodesTotalR);

***** Level 6 *****

⊢ ∀t. leaves t == nodes t + 1

The tactic splits the right hand side into two subgoals, and moves r’ to the front
in the second subgoal. It then applies nodesTotalR to both subgoals, resulting
in E (nodes r1’) and E (nodes r’) respectively. This discharges the two sub-
goals. We can save this result as a derived rule lemmaT. This is not a very useful
form in which to have the result, however. We therefore also derive lemmaR:

1: E t

⊢ leaves t == nodes t + 1

We can introduce the result as a hypothesis using lemmaL, if we know that t
exists:

1: E t

1: leaves t == nodes t + 1

⊢ P

1: E t

⊢ P

These three versions of the same result we call the ‘T’, ‘R’ and ‘L’ versions re-
spectively. For certain results we also have a ‘U’, ‘F’ and ‘E’ version. The unfold
‘U’ version (lemmaU below) is used to replace subexpressions in the conclusion,

4.1. THE LAMBDA PROOF ASSISTANT 71

and the fold ‘F’ version is the inverse rule.

1: E t

⊢ P#(nodes t + 1)

1: E t

⊢ P#(leaves t)

The default is to replace all subexpressions leaves t anywhere in the two hy-
pothesis lists and the conclusion. There are two ways in which selected subex-
pressions may be changed. The first is by backtracking through possible unifi-
cations, but this becomes cumbersome, especially if there are a large number of
possible unifications. Alternatively one can guide the unification using a mouse
and clicking on the desired subterms in a pop-up window. (This may also be
accomplished using the textual interface.) Often the ‘U’ and ‘F’ versions of
rules use meta-level lambda expressions introduced on page 63. The equality
or equivalence ‘E’ version is a rule which may be used in the rewriting tactics.
lemmaE is the rewrite rule version of lemmaT.

⊢ leaves t === when#(E t,nodes t + 1)

Goal-Directed Theorem Proving

The proof we gave above was a backward proof: we start with what we want
to prove, and at each step we reduce the goal, possibly producing a number of
subgoals. Each of the subgoals has to be discharged to prove the result. The
conclusion of the rule does not change throughout the proof. This is a convenient
way of performing proofs because it allows a natural top-down approach. A
forward style of proving results is more cumbersome because a proof tree has to
be constructed starting from the leaves. It is very hard to know the exact leaves
and rule applications which will lead to the desired goal. It is much easier to
start with the desired goal, and use a divide-and-conquer approach. However,
forward application of rules can be useful to slightly change the conclusion of a
result which has been proved previously.

In Section 5.2.2 we apply the goal-directed style of theorem proving to the
embedded operational semantics.

We will now give a brief introduction to forward theorem proving, and how
it is supported in Lambda. forwardApprl is a Lambda function which, given
a natural number n and a rule r, unifies the nth premise of r with the conclusion
of the current goal [64, Section 2.15]. forwardMapprl is similar but uses match-
ing rather than unification. (In backward rule applications apprl r unifies the
conclusion of r with the first premise of the current goal.) Consider the rule
impR (we have condensed the output somewhat to save space):

P ⊢ Q

⊢ P → Q

72 CHAPTER 4. EMBEDDING PICOELLA IN LAMBDA

In backward theorem proving we would apply this rule when we have an im-
plication on the right hand side of the turnstile. The new goal would be to
prove that Q is true assuming that P holds. In a goal-directed proof it moves an
assumption into the result. The command forwardApprl 1 impR thus unifies
premise 1
P ⊢ Q with the conclusion of the current goal. In the example below reflexH

uses the first hypothesis to prove the conclusion, monoH introduces a new hy-
pothesis, or1R introduces a disjunction on the right hand side, and andL a
conjunction on the left hand side.

(* Proof system output: *) (* Definition of applied rule: *)

> pushRule libPenv reflexH;

***** Level 1 *****

-------------------- --------------------

P ⊢ P P ⊢ P

> forwardApprl 1 monoH;

***** Level 2 ***** ⊢ Q

-------------------- --------------------

Q, P ⊢ P P ⊢ Q

> forwardApprl 1 or1R;

***** Level 3 ***** ⊢ P

-------------------- --------------------

Q, P ⊢ P ∨ R ⊢ P ∨ Q

> forwardApprl 1 andL;

***** Level 4 ***** P, Q ⊢ R

-------------------- --------------------

Q ∧ P ⊢ P ∨ R P ∧ Q ⊢ R

> forwardApprl 1 impR;

***** Level 5 ***** P ⊢ Q

-------------------- --------------------

⊢ Q ∧ P → P ∨ R ⊢ P → Q

A rule such as andR (page 62) poses a problem when using forward proof strat-
egy because it combines two proof trees. The proof of P and the proof of Q are
merged to form a proof of P ∧ Q. In general a rule with more than one premise
combines a number of proof trees. This effect can be achieved in a pleasant
manner in Lambda. Recall from Section 4.1.2 that a proof is a stack of rules,
reflecting the evolution of the proof. We can also stack proofs. That is, to prove
a lemma during a proof, we just push the lemma on the proof stack, prove it
and pop it off the stack. This leaves us with the original proof. If we have
two proofs on the goal stack, we can combine them into one proof stack, and
thus achieve the effect of a forward rule application of, for example andR. In
general a rule with n premises will combine the top n proofs into one proof.
Mick Francis of Abstract Hardware Limited provided the basis for the imple-

4.1. THE LAMBDA PROOF ASSISTANT 73

mentation of the genMergeProofTrees function which combines proof trees.
It has type genMergeProofTrees: bool -> int list -> rule -> unit -> unit.
The boolean value indicates whether intermediate results are displayed. The
integer list [i1,...,iN] shows which premise of the rule is unified with proof
tree 1, . . . , N . A unit-to-unit function is returned.

4.1.3 Differences Between the Lambda and HOL Logics

This section describes the differences between the logics which Lambda version 3
uses [57, 160], and the logic used by the hol proof assistant [79]. The latter logic
is the same as Lambda version 4’s logic [58], but there are some differences in
the treatment of booleans and truth values. Lambda implements a constructive
logic whereas hol uses a classical logic. This entails that we have no law of the
excluded middle, and we cannot eliminate double negations.

In hol all functions must be total. In Lambda functions may be par-
tial, which means that for some inputs a function’s output may not exist.
Non-denoting terms are distinguished from denoting terms through the exis-
tence predicate E. It is not possible for functions to manipulate truth values in
Lambda because functions may be partial. Consider the illegal function defini-
tion which does not terminate, and would hence be equal to the undefined value
of type Ω.

fun nondenoting (t: Ω) = (nondenoting t): Ω;

How would we deal with the goal ⊢ nondenoting TRUE? The conclusion has
the correct type, but does not equal TRUE or FALSE. All truth values must be
equal to TRUE or FALSE, so this third value does not make sense. The type bool
is therefore provided in Lambda to manipulate boolean values.

datatype bool = true | false;

fun not true = false | not false = true;

Boolean conjunction &&, disjunction || are similarly provided in the standard
library. As bool is an object-level type it may be manipulated by functions:

fun nondenoting (t: bool) = (nondenoting t): bool;

Now when we use the term nondenoting true, it is a boolean value, and we can
therefore not write ⊢ nondenoting true. However, ⊢ E (nondenoting true)

is a legitimate goal, and may be proved to be equal to ⊢ E UNDEFINED which is
FALSE. This means that there is no bijection between boolean values true and
false and truth values TRUE and FALSE. Conceptually we can map true to TRUE

and false to FALSE, but we cannot map the non-denoting term UNDEFINED:

bool to any truth value. (We say conceptually because object-level functions in
Lambda cannot manipulate meta-level objects, such as truth values.)

Due to the distinction of boolean values and truth values one cannot write
certain expressions in Lambda which are legitimate in hol. Consider an AND
gate, which may be defined as follows in hol.

74 CHAPTER 4. EMBEDDING PICOELLA IN LAMBDA

⊢ andgate(x,y,z) = (z = x ∧ y)

It is then possible to write

⊢ andgate(in,T,out) ∧ T

The first T is a boolean value on an input of the AND gate. The second T,
however, is a truth value. T is used in two completely unrelated capabilities.
Also note that in the definition of the AND gate ∧ is used as the and operator on
data values, and in the goal it is used as conjunction on truth values. We would
argue that it is unnatural to identify these two different types. In Lambda one
would write:

⊢ andgate#(in,true,out) ∧ TRUE

Where andgate would be defined as

val andgate#(x,y,z) = (z == x && y);

Here the two data values and truth values are clearly distinguished by virtue of
their types: true: bool and TRUE: Ω. Lambda version 4 has the same logic as
hol, but it maintains the distinction between bool and Ω. However, in Lambda

version 4 it is possible to define a bijection between the two types, e.g. by
mapping true to TRUE and false to FALSE.

In both hol and Lambda it is possible to write a function f with type
f: . . .-> bool. Only in hol is it possible to interpret this as a proposition.
In Lambda this would correspond to changing f’s type to f: . . . -> Ω. In
Lambda there is no universal and existential quantification over booleans with
result type bool. i.e. (∀x . P#(x)) : bool is an ill-typed expression. The result
of a quantification must have type omega. The lack of quantification whilst
remaining inside booleans means that we cannot write a useful behaviour func-
tion in Lambda. Recall from Section 2.2 that a behaviour function maps a
circuit expression to a formulae describing its behaviour. In hol this amounts
to writing a function behaviour: circuit -> bool, because booleans and truth
values are equal. In Lambda behaviour: circuit -> Ω is not allowed, and
behaviour: circuit -> bool is not satisfactory because booleans do not have
enough expressive power to describe interesting behaviours.

In hol Hilbert’s operator ε is used to give implicit descriptions [79, 58].
(εx : t . f x) : t denotes a member of the set with characteristic function f. If
this set is empty, an arbitrary member of type t is returned. It is not known
which member this is, so that the epsilon expression may be viewed as an
irreducible term. It is therefore possible to use (εx. T) as a don’t know value.
However, in Lambda UNDEFINED, conceptually defined as ιx. FALSE, cannot be
used as a don’t know value because functions are strict.

4.2 Encoding picoELLA in Lambda

In Section 3.3 we described picoella’s syntax and semantics. In this section
we will describe how picoella may be embedded in Lambda. The basic idea

4.2. ENCODING PICOELLA IN LAMBDA 75

is to use Lambda’s definitional mechanisms to encode a representation of cir-
cuit expressions and a semantics operating on this representation (Section 2.3.)
We then prove results we expect to hold of this semantics to gain confidence
in the correctness of the embedding. A substantial number of auxiliary defini-
tions are necessary for the dynamic and static semantics. In Sections 4.2.1 and
4.2.2 we define various types which are used, together with some operations on
these types. Following this, we give the embedding of the static and dynamic
semantics of picoella. Finally, we compare our approach to other work.

4.2.1 Constants and Types

The embedded syntax of picoella is a subset of the syntax given in Section 3.3.
Specifically picoella type definitions1 and the INPUT construct are missing.
The reason for omitting type definitions becomes clear when we reason about
program fragments. An expression with constructors such as hi or lo is stat-
ically typable only in an environment in which these constructors have been
declared. As a result we have to attach a type environment to every expres-
sion we want to reason about. This becomes very cumbersome, and leads to
problems when combining expressions, e.g. using LET statements or tuples. We
have to combine the type environments also, which means that we have to re-
solve potentially clashing type definitions; hi could be declared in two separate
enumerated types, for example. Also, if hi is the result of an expression, the
type of hi must also be part of the type environment of the enclosing expres-
sion. The solution we have adopted is to attach the type to the constructor,
and so make every constructor uniquely typable in every context. However, this
gives us less information about a picoella type than when using an explicit
type environment. We only know the type of the particular constructor we are
dealing with, but we don’t know anything about possible other constructors of
the picoella type. This poses no problems until we want to reason about all
values of a picoella type. We describe this in more detail below. Due to the
omission of picoella type definitions we cannot use tuple types explicitly. The
constant ?type where type is a picoella tuple type, is unavailable. However,
since (?type1,?type2) behaves identically to ?type, where type = type1 *

type2, we do not lose any expressiveness. A useful result of the omission of ex-
plicit tuple types, is that we do not need to retain the definitions of tuple types
at run time. Recall that in the dynamic semantics ?type evaluates to itself,
if type is an enumerated type, or otherwise to a tuple containing the bottom
values of its constituent subtypes. By omitting tuple type definitions we can
dispense with dynamic semantics rule 3.39 and retain a monogenic semantics.

All picoella constants (see Section 3.3) are encoded by the Lambda type
const, which is defined as follows.

1We will use the term picoella type to describe the type when an embedded picoella con-
stant or expression would have when typed using the static picoella semantics of Section 3.3.2.
By the (Lambda) type of any Lambda expression, including those encoding picoella expres-
sions and constants, we indicate the type ascribed to the expression using Lambda’s type
system.

76 CHAPTER 4. EMBEDDING PICOELLA IN LAMBDA

datatype const = Cons of natural * natural |

CoTuple of const * const;

A constant is a constructor Cons(i,t), or a binary tuple containing two con-
stants. Cons(i,t) encodes the ith constructor of type t, with the convention
that the zeroth constructor Cons(0,t) represents the undefined value ?t of type
t. As Lambda implements a logic of partial terms, we might want to use the
undefined value UNDEFINED to encode bottom constants. However, UNDEFINED
is strict in the sense that, for example (CoTuple (UNDEFINED, Cons (1,1)))

[2], is equal to UNDEFINED[2] which is equal to UNDEFINED. It should, however,
be equal to Cons (1,1). This strictness of undefined also extends to functions,
so that
(fn x => true) UNDEFINED is UNDEFINED and not true. Whenever an unde-
fined value arises it would propagate through all values and functions, always
resulting in an UNDEFINED output. Thus UNDEFINED is a non-denoting term,
whereas Cons (0,t) does exist and means ‘don’t know’.

We have one Lambda type which encodes picoella constants of various
picoella types, such as bool and bit.

TYPE bit = hi | lo IN TYPE bool = true | false IN ...

It is the responsibility of the user to assign a certain interpretation to the en-
coded constructors. This will normally be done by using the meta-level defini-
tion facilities in Lambda. If we designate the natural number 1 as representing,
for example, the type of bits we can define the Lambda constants bit, hi, and
lo to stand for the corresponding picoella constructors.

val bit = Cons(0,1); (* Meaning ?bit *)

val hi = Cons(1,1);

val lo = Cons(2,1);

In Section 4.2.4 we discuss why the don’t know value must be encoded as an
additional value, and cannot be dealt with otherwise.

We now introduce the Lambda type tpe encoding picoella types, followed
by the static semantics for constants, corresponding to rules 3.17, 3.18, and 3.19
of Section 3.3.2.

datatype tpe = Type of natural | TyTuple of tpe * tpe;

fun typeOfConst (Cons (, t)) = Type t |

typeOfConst (CoTuple (c, d)) =

TyTuple (typeOfConst c, typeOfConst d);

In effect, typeOfConst converts Cons and CoTuple to Type and TyTuple re-
spectively. The typeOfConst function gives us the typing power of the static
picoella semantics encoded in Lambda. Thus, if S ⊢ c : τ in the static
picoella semantics, then typeOfConst d == Type t holds in the embedding,
where d equals Cons (n,t) (for some n and t) and Type t are the encodings of
c and τ respectively.

A number of operators acting on constants and types have been defined. We
have given a number of functions encoding the syntactic equality predicate for

4.2. ENCODING PICOELLA IN LAMBDA 77

various types. For example, eq compares two natural numbers.

fun eq 0 0 = true |

eq 0 (S) = false |

eq (S) 0 = false |

eq (S n) (S m) = eq n m;

The function eq: natural * natural -> bool encodes equality on natural num-
bers. The reason for encoding a straightforward equality function explicitly is a
historic one. In Lambda version 2.0 no boolean equality predicate was provided,
so that it had to be defined for every type. In version 2.2 = was introduced with
type =: ”a * ”a -> bool. Recall that ”a is an equality type. At this point
it would have been too much work to convert all uses of the explicit equality
functions to the built-in equality, especially in proofs. We did, however, prove
that these equality functions behave identically to the built-in equality. For
example:

⊢ ∀ n,m. (eq n m = true) === (n == m)

From this we can derive that the equality functions are reflexive, commutative,
and transitive. The definition for constant equality is equally straightforward.

fun ceq (Cons (c,s)) (Cons (d,t)) = eq s t && eq c d |

ceq (Cons) (CoTuple) = false |

ceq (CoTuple) (Cons) = false |

ceq (CoTuple (c1,c2)) (CoTuple (d1,d2)) =

ceq c1 d1 && ceq c2 d2;

Note that && is the infix boolean conjunction, and that we rely on the previously
defined eq to compare natural numbers. A function implementing type equality
typeEq is defined in a similar manner.

We will now define a function implementing the data ordering on constants
cle, and its extension to lists of constants lle.

fun cle (Cons (c,s)) (Cons (d,t)) =

eq s t && (eq 0 c || eq c d) |

cle (CoTuple (c1,c2)) (CoTuple (d1,d2)) =

cle c1 d1 && cle c2 d2;

fun lle nil = true |

lle (::) nil = false |

lle (h1::t1) (h2::t2) = cle h1 h2 && lle t1 t2;

The definition of cle is partial, and is defined only on constants of the same
picoella type. Recall that Cons(0,t) is the bottom value of type t. lle

is a total function because an empty list is less than or equal to any other
list. For example, lle [c] [c,d] = true because lle [] [d] = true and
cle c c = true. If we interpret a list of constants as an environment or stack
this corresponds to a natural ordering on environments. Finally we define the
greatest lower bound function, followed by the projection of a constant to its

78 CHAPTER 4. EMBEDDING PICOELLA IN LAMBDA

bottom value (↓ of Section 3.1).

fun glb (Cons c) (Cons d) =

if cle (Cons c) (Cons d) then

Cons c

else if cle (Cons d) (Cons c) then

Cons d

else

bottomOfConst (Cons c) |

glb (CoTuple (c1,c2)) (CoTuple (d1,d2)) =

CoTuple (glb c1 d1, glb c2 d2);

fun bottomOfConst (Cons (, t)) = (Cons (0, t)) |

bottomOfConst (CoTuple (c, d)) =

CoTuple (bottomOfConst c, bottomOfConst d);

Appendix B contains a list of basic results proved in Lambda about various
operators, such as cle and glb’s totality, reflexivity, and transitivity. Various
results relating ceq, cle, glb, etc. have also been proved.

Constant Induction Principles

We will now briefly discuss reasoning about constants of one picoella type.
The induction principle which Lambda returns for the const data type is:

***** Premise 2 *****

1: E r1’

2: E r’

1: Pconst#(r1’)

2: Pconst#(r’)

⊢ Pconst#(CoTuple (r1’,r’))

***** Premise 1 *****

1: E r3’

2: E r2’

⊢ Pconst#(Cons (r3’,r2’))

1: E w

⊢ Pconst#(w)

When dealing with functions such as typeOfConst and cle, which destruct the
Cons constructor we need a more discerning induction principle. For constants
which are enumerated types, we have to deal with all possible types, and all
possible constructors. However, in all functions which are used in the embed-
ding all enumerated types are treated uniformly so that it is not necessary to
do an induction on the r2’ variable in the first premise. However, the zeroth
constructor is treated differently from the remaining constructors, so that it is
useful to do a natural number induction on r3’. In the inductive case the induc-
tion hypothesis is generally useless because all non-bottom values are treated
in the same manner in function definitions. Functions operating on constants

4.2. ENCODING PICOELLA IN LAMBDA 79

are not defined on constructor number, but only use the distinction between
bottom values and non-bottom values.

We would like to have the following induction principle, based on the data
ordering cle.

***** Premise 2 *****

⊢ P#(⊥)

**** Premise 1 *****

∀d. cle d c == true → P#(d) ⊢ P#(c)

⊢ ∀c. P#(c)

It is similar, though not identical, to a fixed point induction [118]. To try to
prove this rule we define a measure sizeOfConst on constants.

fun sizeOfConst (Cons (0,)) = 1 |

sizeOfConst (Cons (S ,)) = 0 |

sizeOfConst (CoTuple (x, y)) = sizeOfConst x + sizeOfConst y;

The size of a constant is the maximum number of steps it is away from being a
fully defined value, where a step corresponds to changing a single bottom value
to a constructor. This measure gives rise to an induction principle which is less
useful than expected. The reason for this is that
sizeOfConst c < sizeOfConst d → cle c d does not hold. As a counter
example, take c to be CoTuple (Cons (0,t), CoTuple (Cons (0,t), Cons

(1,t)))
and d to be CoTuple (Cons (1,t), CoTuple (Cons (1,t), Cons (0,t))). It
is not possible to encode a sizeOfConst function which has this property, be-
cause it would have to linearise (map into natural numbers) an inherently non-
linear ordering (a semi-lattice.) We therefore intend to use sizeOfConst only
in conjunction with the cle operator. Note that sizeOfConst as defined above,
is not strictly increasing, i.e.
∃c,d. sizeOfConst (CoTuple (c,d)) 6> sizeOfConst c + sizeOfConst d.
This means that it cannot be used by itself as the basis of a useful induction
principle. We can fix this trivially, by adding one to the size of any tuple,
but since we use sizeOfConst in conjunction with cle only, we will keep this
conceptually cleaner version.

We can only reason about constants of all picoella types, unless we qualify
the statement by using typeOfConst. For example,
⊢ ∀c. typeOfConst c == t → P#(c). Even in this case we do not know any-
thing about the number of constructors in the picoella type. We can use an
explicit assumption to define the constructors.

val BITINDUCT = ∀c. typeOfConst c == bittype →
c == hi ∨ c == lo ∨ c == bit;

(bittype is defined to be Type 1, say.) Sometimes we want to restrict our at-
tention to defined values of a type only.

80 CHAPTER 4. EMBEDDING PICOELLA IN LAMBDA

val DEFBITINDUCT = ∀c. typeOfConst c == bittype →
c == hi ∨ c == lo;

With one of these abbreviations as an hypothesis we can instantiate c with the
variable we want to do induction over, and define the derived bitInduct rule.

⊢ Pbit#(bit)

⊢ Pbit#(lo)

⊢ Pbit#(hi)

E w, typeOfConst w == bittype ⊢ Pbit#(w)

Often we want to reason about two constants which have the same picoella
type, although we are not interested in the exact type. We can use the following
derived induction rule twoConstInduct for this.

***** Premise 2 *****

1: E r7’

2: E r5’

3: E r4’

⊢ P#(Cons (r5’,r4’),Cons (r7’,r4’))

***** Premise 1 *****

1: E r3’

2: E r2’

3: E r1’

4: E r’

1: P#(r1’,r3’)

2: P#(r’,r2’)

3: typeOfConst r1’ == typeOfConst r3’

4: typeOfConst r’ == typeOfConst r2’

⊢ P#(CoTuple (r1’,r’),CoTuple (r3’,r2’))

1: E c

2: E d

1: typeOfConst c == typeOfConst d

⊢ P#(c,d)

This is a good example of the use of derived rules. We could use a tactic of the
form (the actual tactic is more involved):

doRules [allR,constInduct,allR,constInduct] thenT typeOfConstTac

but it may have unwanted side effects, apart from duplicating work. The appli-
cation of tactic typeOfConstTac will rewrite the whole premise it is applied to,
whereas the derived rule will only change the variables c and d in the context
P. The application of this tactic applies four rules as well as the rewrite rules of
typeOfConstTac, whereas twoConstInduct is a single rule.

4.2. ENCODING PICOELLA IN LAMBDA 81

4.2.2 Expressions

We will now define the type of picoella expressions, and some auxiliary func-
tions operating on expressions. The expression type contains two auxiliary
types, const, which we have already seen, and chooser.

datatype chooser = C of const |

B of chooser * chooser |

T of chooser * chooser;

The chooser data type encodes the syntactic category of choosers. It is differ-
ent from the paper syntactic definition because it uses the type of constants
instead of duplicating them (Section 3.3.) This allows the chooser C (Cons

(0,type)). Following the convention that the zeroth constructor encodes the
undefined value of the type, this would be a term which cannot be produced in
the paper syntax. We therefore interpret this chooser as the wild card chooser
of its type. Thus Cons (0,type) stands for the constant ?type, and C (Cons

(0,type)) for the chooser type. This gives an intuitive dual interpretation.
Typing of choosers, corresponding to static semantics rules 3.19, 3.20, 3.21, and
3.22 is defined in the embedding as follows.

fun typeOfChooser (C c) = (typeOfConst c, true) |

typeOfChooser (B (ch1, ch2)) =

(fn (t1, b1) =>

(fn (t2, b2) =>

(t1, b1 && b2 && typeEq t1 t2)))

(typeOfChooser ch1) (typeOfChooser ch2) |

typeOfChooser (T (ch1, ch2)) =

(fn (t1, b1) =>

(fn (t2, b2) =>

(TyTuple (t1, t2), b1 && b2)))

(typeOfChooser ch1) (typeOfChooser ch2);

This definition would normally be written in ml using
let val (t1,b1) = typeOfChooser ch1 in ..., but this is not allowed in the
ml subset which is used in Lambda. The typing of choosers is more involved
than the typing of constants because they are not necessarily well-typed. There
is a choice in how we handle this. We could make the function partial on those
choosers which are not well-typed, which would correspond naturally to the fact
that in the paper static semantics there is no derivation for the type. However,
it is easier to return a pair of values than it is to reason about undefined terms.
The second component of the pair indicates success or failure, the first the type
of the chooser if the derivation is successful. If the derivation is not successful
the type is irrelevant. Even using this solution we have a choice of what we
return when the chooser is ill-typed. Do we always return the same type, or do
we salvage as much of an incorrect type as possible? In the solution above, we
always return the first type of a bar chooser, even if the types of the first and
second component don’t agree. This means that the following result does not
hold.

82 CHAPTER 4. EMBEDDING PICOELLA IN LAMBDA

⊢∀x,y. typeOfChooser (B (x,y)) == typeOfChooser (B (y,x))

If x and y are both well-typed, but have differing types, then the type compo-
nent of the result type will be different on the left and right hand side of the
equality. What we can prove is the following:

⊢ ∀x,y,t.
typeOfChooser x == (t,true) ∧ typeOfChooser y == (t,true) →

typeOfChooser (B (x,y)) == typeOfChooser (B (y,x))

If would have been possible to obtain the first statement, but it would have
complicated the definition of typeOfChooserwithout any other advantage. Like
constant equality ceq chooser equality cheq is defined so that it too is equal to
the boolean equality =. It is easy to define a chooser normal form, and functions
mapping a chooser onto its normal form. It turns out to be hard to reason about
these functions, however, and no significant results have been proved about the
chooser normal form.

We can now define the data type representing expressions of Lambda type
expr, or circuit.

datatype expr = Const of const |

Tuple of expr * expr |

Let of expr * expr |

Var of natural |

Delay of const * expr |

If of expr * expr * expr * chooser |

Index1 of expr |

Index2 of expr |

LetRec of const * expr * expr;

We justified the absence of the type declaration constructor TYPE earlier in
this section. We decided that a uniform treatment of variables was important
because we would be reasoning more often about program fragments than com-
plete programs. For this reason the INPUT construct has been omitted and any
input variables are regarded as free variables in the expression. They receive
their values through the enclosing value environment, as we shall see in the
embedded dynamic semantics.

We use the de Bruijn encoding [48] for lambda abstractions. This removes
the need to formalise variable names. In the de Bruijn encoding variable names
are replaced by a natural number indicating the distance to the defining lambda,
measured in intervening lambdas. The value environment then becomes a nat-
ural to const mapping, which we may implement as a stack. For example, the
picoella fragment

LET x = a IN (x, LET y = b IN (x, y))

would be given in the embedded syntax as

Let (a, Tuple (Var 0, Let (b, Tuple (Var 1, Var 0))))

4.2. ENCODING PICOELLA IN LAMBDA 83

We would have preferred to use Lambda’s meta-variables to encode abstraction
instead of implementing it at the object level. Recall from Section 4.1 that ab-
breviations are syntactic meta-functions, which map an object-level expression
to another object-level expression. A LET expression would have been written
either as

Let (e, lam x. f) (1)

or, if F#(x) = f, as

Let (e, F#(x)) (2)

In the former expression the lam constructor is an unnamed syntactic lambda
abstraction (cf. an object-level lambda abstraction fn x. f.) The second ex-
pression uses a named syntactic lambda abstraction, i.e. an abbreviation. The
great advantage of this method over implementing abstraction at the object
level is that issues such as variable capture and scoping are dealt with by the
proof system. A severe drawback is that it would not have been possible to
reason about the abstraction mechanism, because it is not part of the logic.
However, Lambda does not allow users access to the syntactic lambda abstrac-
tion constructor lam [64, Sections 2.4.1 and 2.6.1]. In logic frameworks such as
the Edinburgh lf [89] it is possible to take this approach because the logic is
defined explicitly by the user and meta-level constructors such as lam must be
available. Another disadvantage of using meta-level lambda abstraction is that
it implements call-by-name, rather than call-by-value [119]. In terms of hard-
ware this means that in (1) and (2) above the defining expression would have
been replicated, instead of implementing a fan-out. Failing this approach we
could have approximated the use of the syntactic lambda abstraction (function
type) by the object-level function arrow.

datatype expr = Let (expr, expr -> expr) | ...

-> is the function type at the object level, rather than the meta-level. Due
to possible inconsistencies in the Lambda version 2 logic the use of function
spaces was restricted, so that the type being defined could not appear on the
left hand side of the function arrow [61]. We can get around this by not passing
the expression in to the abstraction, but the evaluated expression. This is more
in line with what we would like to do anyway, because the defining expression
is then evaluated once, no matter how many times a reference to it occurs in
the using expression. As mentioned previously, this corresponds to a fan-out,
rather than replication of the defining hardware. This would be accomplished
by the definition

datatype expr = Let (expr, const -> expr) | ...

In this case, the function expression would have to be a lambda term of the
form fn x => e, or a previously defined function. However, in both cases the
totality of the functional expression is a prerequisite for the totality of the static
and the dynamic semantics. This would have been quite cumbersome to reason
about. (Meta-level lambda expressions would always have been total.) A more

84 CHAPTER 4. EMBEDDING PICOELLA IN LAMBDA

serious drawback is that the induction principle returned by Lambda is not
strong enough. The premise dealing with the LET would be as follows:

E r1’, E r’, Pexpr#(r1’) ⊢ Pexpr#(Let (r1’,r’))

Thus we get no induction hypothesis for the result expression of the function r’.
For these reasons we chose to use the de Bruijn encoding. In the related work
Section 4.2.4, we will compare this aspect of our approach to other research.

Recursive LET statements are encoded by the LetRec constructor, which
carries its initial approximation with it (see dynamic semantics rules 3.28 and
3.29 of Section 3.3.3.) This makes the typing of expressions monogenic because
the type of the initial approximation is unique, and the defining expression must
have the same type (rule 3.10 and comments on page 49.)

We define a function mapping expressions to their size, which is a natural
number. It is a strictly increasing function, in that the size of an expression is
strictly greater than the size of each of its subexpressions. This allows us to use
this measure as the basis for an induction principle on expressions.

fun sizeOfExpr (Const c) = sizeOfConst c + 1 |

sizeOfExpr (Tuple (e, f)) = sizeOfExpr e + sizeOfExpr f |

sizeOfExpr (Let (e, f)) = sizeOfExpr e + sizeOfExpr f |

sizeOfExpr (Var n) = S n |

sizeOfExpr (Delay (c, e)) = sizeOfConst c + 1 + sizeOfExpr e |

sizeOfExpr (If (e1, e2, e3, ch)) =

sizeOfExpr e1 + sizeOfExpr e2 + sizeOfExpr e3 |

sizeOfExpr (Index1 e) = sizeOfExpr e + 1 |

sizeOfExpr (Index2 e) = sizeOfExpr e + 1 |

sizeOfExpr (LetRec (c, e, f)) =

sizeOfConst c + 1 + sizeOfExpr e + sizeOfExpr f;

Note that the size of a Var is how far it reaches into the environment (plus one
to ensure that sizeOfExpr is strictly increasing.) It is possible to return any
fixed constant value, but this complicates reduce’s mononicity theorem (Sec-
tion 4.3.2) because the induction hypothesis cannot be used for Var constructs
in this case.

4.2.3 The Embedded Static and Dynamic Semantics

The static semantics of program expressions is simplified by not embedding
tuple types, as we explained in Section 4.2.1. Moreover, by insisting on an
initial approximation for recursive LET statements we can type expressions un-
ambiguously. The function typeOfExpr implements the static semantics, and
like typeOfChooser, returns a pair of values. The second element indicates
whether the expression is well-typed or not. The first element returns the type
of well-formed expressions. All of the clauses follow the same pattern, so we will
discuss only the most interesting clause. The type of the function is
typeOfExpr: tpe list -> expr -> (tpe * bool). The type environment acts
as a stack onto which newly defined types are pushed. This means that the

4.2. ENCODING PICOELLA IN LAMBDA 85

type of the most recently declared variable is accessed as Var 0 in the encoding
(there are no intervening lambdas.) All previously declared variables are now
accessed as Var (S n), where previously they were accessed as Var n.

fun typeOfExpr te (Const c) = (typeOfConst c, true) |

typeOfExpr te (Tuple (e1, e2)) =

(fn (t1, b1) =>

(fn (t2, b2) =>

(TyTuple (t1, t2), b1 && b2)))

(typeOfExpr te e1) (typeOfExpr te e2) |

typeOfExpr te (Let (e1, e2)) =

(fn (t1, b1) =>

(fn (t2, b2) =>

(t2, b1 && b2))

(typeOfExpr (t1::te) e2)) (typeOfExpr te e1) |

typeOfExpr nil (Var 0) = (Type 0, false) |

typeOfExpr nil (Var (S n)) = (Type 0, false) |

typeOfExpr (::t) (Var (S m)) = typeOfExpr t (Var m) |

typeOfExpr (h::) (Var 0) = (h, true) |

typeOfExpr te (Delay (c, e)) =

(fn (t, b) =>

(t, b && (typeEq t (typeOfConst c))))

(typeOfExpr te e) |

typeOfExpr te (Index1 e) =

(fn (TyTuple (t,), b) => (t, b) |

(Type ,) => (Type 0, false)) (typeOfExpr te e) |

typeOfExpr te (Index2 e) =

(fn (TyTuple (, t), b) => (t, b) |

(Type ,) => (Type 0, false)) (typeOfExpr te e) |

(continued on next page)

86 CHAPTER 4. EMBEDDING PICOELLA IN LAMBDA

(continued from previous page)

typeOfExpr te (If (e1, e2, e3, ch)) =

(fn (tc, bc) =>

(fn (t1, b1) =>

(fn (t2, b2) =>

(fn (t3, b3) =>

(t2, bc && b1 && b2 && b3 &&

(typeEq tc t1) && (typeEq t2 t3))))))

(typeOfChooser ch) (typeOfExpr te e1)

(typeOfExpr te e2) (typeOfExpr te e3) |

typeOfExpr te (LetRec (c, e1, e2)) =

(fn tc =>

(fn (t1, b1) =>

(fn (t2, b2) =>

(t2, b1 && b2 && (typeEq t1 tc) &&

(ceq (bottomOfConst c) c)))

(typeOfExpr (tc::te) e2))

(typeOfExpr (tc::te) e1))

(typeOfConst c);

The LetRec clause encodes the rules 3.16 and 3.10 of the static semantics. It
computes the type tc of the constant, which is then also used to type the defining
expression. The type tc is added to the type environment, which has Lambda

type tpe list. The defining and result expressions return types t1 and t2 respec-
tively. The whole LetRec is well-typed only if both expressions are well-typed
(b1 && b2), the return type of the defining expression is the same as the type
of the constant (typeEq tc t1), and the constant c is a bottom value. This last
condition is checked by the side condition ↓ c = c in rule 3.10, which is encoded
as ceq (bottomOfConst c) c.

The type of an expression is a very crude measure; wildly different expres-
sions can have the same type. Often we want to reason about circuits which
do not only have the same type, but have the same ‘shape.’ For example, we
would like to prove that the dynamic semantics preserves the shape of a circuit.
The function shapeEq encodes shape equality on expressions. This is the only
equality function which is less discerning than the boolean equality =.

4.2. ENCODING PICOELLA IN LAMBDA 87

fun shapeEq (Const c) (Const d) =

typeEq (typeOfConst c) (typeOfConst d) |

shapeEq (Tuple (e1, e2)) (Tuple (f1, f2)) =

(shapeEq e1 f1) && (shapeEq e2 f2) |

shapeEq (Let (e1, e2)) (Let (f1, f2)) =

(shapeEq e1 f1) && (shapeEq e2 f2) |

shapeEq (Var n1) (Var n2) = eq n1 n2 |

shapeEq (Delay (c, e)) (Delay (d, f)) =

(typeEq (typeOfConst c) (typeOfConst d)) &&

(shapeEq e f) |

shapeEq (If (e1, e2, e3, ch1)) (If (f1, f2, f3, ch2)) =

(shapeEq e1 f1) && (shapeEq e2 f2) &&

(shapeEq e3 f3) && (cheq ch1 ch2) |

shapeEq (Index1 e) (Index1 f) = shapeEq e f |

shapeEq (Index2 e) (Index2 f) = shapeEq e f |

shapeEq (LetRec (c, e1, e2)) (LetRec (d, f1, f2)) =

(typeEq (typeOfConst c) (typeOfConst d)) &&

(shapeEq e1 f1) && (shapeEq e2 f2) |

shapeEq (Const) (Tuple) = false |

shapeEq (Const) (Let) = false | ...;

(* All other combinations of constructors result in false *)

Thus shapeEq checks whether the two expressions have the same abstract syn-
tax tree. Whenever a constant is encountered (Const, Delay, and LetRec) only
the type is checked. This is essential for delays because the value in a delay will
probably change over time, but it will keep its type. The constant approxima-
tion in recursive LET statements need not be the same for both expressions. In
the case of Const constructors, however, the value will not change. We introduce
an ordering ple on expressions which may be used on shape equal expressions.
By allowing constants to be different (but of the same type) we obtain a more
detailed ordering.

fun ple (Const c) (Const d) = cle c d |

ple (Tuple (e1, e2)) (Tuple (f1, f2)) =

(ple e1 f1) && (ple e2 f2)

ple (Let (e1, e2)) (Let (f1, f2)) = (ple e1 f1) && (ple e2 f2) |

ple (Var) (Var) = true |

ple (Delay (c, e)) (Delay (d, f)) = (cle c d) && (ple e f) |

ple (If (e1, e2, e3,)) (If (f1, f2, f3,)) =

(ple e1 f1) && (ple e2 f2) && (ple e3 f3) |

ple (Index1 e) (Index1 f) = ple e f |

ple (Index2 e) (Index2 f) = ple e f |

ple (LetRec (c, e1, e2)) (LetRec (d, f1, f2)) =

(cle c d) && (ple e1 f1) && (ple e2 f2);

The match function implements the matching procedure as defined on page 47.
It is used as part of the dynamic semantics. Recall that two constructors match
if they are identical, and do not match otherwise. A bottom value only matches
with the wild card chooser, and delivers neither a match nor a no-match other-

88 CHAPTER 4. EMBEDDING PICOELLA IN LAMBDA

wise. This reflects the intuition that a don’t know value cannot choose between
two constructors. A three-valued boolean logic is used in the matching which
may result in a match tt, a non-match ff, or neither uu.

datatype bool3 = tt | ff | uu;

The functions and3 is defined as follows.

fun and3 uu uu = uu | and3 uu tt = uu | and3 uu ff = ff |

and3 tt uu = uu | and3 tt tt = tt | and3 tt ff = ff |

and3 ff = ff;

Functions or3 and not3 are defined similarly. The flat data ordering in which
uu is the least element, and tt and ff are less than or equal to themselves but
incomparable to each other is implemented by le3.

fun match (C (Cons (0, s))) (Cons (, t)) = (eq3 s t) |

match (C (Cons (S n, s))) (Cons (S m, t)) =

and3 (eq3 s t) (eq3 n m) |

match (C (Cons (S n, s))) (Cons (0, t)) = and3 (eq3 s t) uu |

match (C (CoTuple (c1, c2))) (CoTuple (d1, d2)) =

and3 (match (C c1) d1) (match (C c2) d2) |

match (B (c1, c2)) d = or3 (match c1 d) (match c2 d) |

match (T (c1, c2)) (CoTuple (d1, d2)) =

and3 (match c1 d1) (match c2 d2);

This function is defined only on equally typed choosers and constants. match

could have been more partial than it currently is, by returning UNDEFINED in-
stead of ff for unequally typed constructors. The function eq3 is the same as
the embedded equality on natural numbers eq, but returns tt and ff instead
of true and false respectively. The convention that Cons (0,type) represents
?type, and C (Cons (0,type)) represents type is implemented here. These
special cases account for the messy first three clauses of the function definition.

The function elem, used by reduce, implements the lookup of variables in
an environment. It is a partial function with the following definition.

fun elem (h::) 0 = h |

elem (::t) (S n) = elem t n;

Like the matching function, the reduction function which implements the dy-
namic semantics operates only on well-formed expressions.

4.2. ENCODING PICOELLA IN LAMBDA 89

fun reduce l (Const c) = (c, Const c) |

reduce l (Tuple (e1, e2)) =

(fn (c1, f1) =>

(fn (c2, f2) =>

(CoTuple (c1, c2), Tuple (f1, f2))))

(reduce l e1) (reduce l e2) |

reduce l (Let (e1, e2)) =

(fn (c1, f1) =>

(fn (c2, f2) =>

(c2, Let (f1,f2)))

(reduce (c1::l) e2)) (reduce l e1) |

reduce l (Var n) = (elem l n, Var n) |

reduce l (Delay (c, e)) = (c, Delay (reduce l e)) |

reduce l (If (e1, e2, e3, ch)) =

(fn (c1, f1) =>

(fn (c2, f2) =>

(fn (c3, f3) =>

(case match ch c1 of

uu => bottomOfConst c2 |

tt => c2 |

ff => c3,

If (f1, f2, f3, ch)))))

(reduce l e1) (reduce l e2) (reduce l e3) |

reduce l (Index1 e) =

(fn (CoTuple (c,), f) => (c, Index1 f))

(reduce l e) |

(continued on next page)

(continued from previous page)

reduce l (Index2 e) =

(fn (CoTuple (, c), f) => (c, Index2 f))

(reduce l e) |

reduce l (LetRec (c, e1, e2)) =

(fn (d1, f1) =>

(fn (d2, f2) =>

(d2, LetRec (c, f1, f2)))

(reduce (d1::l) e2)) (iterate l e1 c)

and iterate l e c =

(fn (d, f) =>

case ceq c d of

true => (d, f) |

false => again l e d)

(reduce (c::l) e)

and again l e d = iterate l e d;

This definition contains a number of points of interest. First note that it
depends on typeOfExpr to remove ill-formed circuits such as Index1 (Const

90 CHAPTER 4. EMBEDDING PICOELLA IN LAMBDA

(Cons ...)). The environment is used in the same manner as typeOfExpr

does, but this time is a value environment, containing constants. The rela-
tion between the value environment l and type environments te is te == map

typeOfConst l.
The function iterate is used to implement the fixed point computation.

Its arguments are the current value environment, the defining circuit, and the
previous approximation. By virtue of the static semantics the first invocation of
iterate will be with a bottom value. The function again is purely a technical
device to allow rewrite tactics to be written which make the rewriting converg-
ing. This will be clearer when we describe some of the tactics which have been
written for these functions. See Section 5.1.4 for more details. An alternative
definition for reduce, implementing the fixed point iteration directly could be
given as follows.

fun reduce l (LetRec (c, e1, e2)) =

(fn (d1, f1) =>

if ceq c d1 then

(fn (d2, f2) =>

(d2, LetRec (bottomOfConst c, f1, f2)))

(reduce (d1::l) e2)

else

reduce l (LetRec (d1, e1, e2)))

(reduce (c::l) e1) | ...

We did not take this approach because it is cleaner to reason about the fixed
point computation as a separate function. Note that if we did not apply
bottomOfConst to c, the initial approximation in the result expression would
be the fixed point, not the bottom value. Alternatively we could take the re-
sult expression apart every time we came out of a recursion, and replace the
approximation by the value passed into the recursion. This would correspond
to the alternative semantic rules 3.40 and 3.41 of Chapter 3. The reduce and
iterate functions are mutually recursive, and a property of one will involve a
similar property of the other.

The function reduce implements the part of the dynamic semantics dealing
with evaluation within one time step. Time is added by reduceSeq, correspond-
ing to semantic rules 3.23, 3.24, and 3.26.

fun reduceSeq l e [] = ([], e) |

reduceSeq l e (h::t) =

(fn (c1, f1) =>

(fn (c2, f2) => (c1::c2, f2))

(reduceSeq l f1 t)) (reduce (h::l) e);

We have an initial environment l, onto which the input value for every time step
is pushed. The expression result from a reduce evaluation is used as the input
for the next reduceSeq evaluation.

We would preferred to have used a relational approach rather than a func-
tional one. In earlier versions of Lambda we could have written

4.2. ENCODING PICOELLA IN LAMBDA 91

val reduce =

ιR. (∀c. R (Cons c) (c, Const c)) ∧
(∀e1,e2,c1,f1,c2,f2.

R e1 (c1,f1) ∧ R e2 (c2,f2) →
R (Tuple (e1,e2))

(CoTuple (c1,c2), Tuple (f1,f2))) ∧ ...;

In other words, the reduction relation is the (smallest) relation satisfying the
reduction clauses for the individual constructs. As mentioned in Section 4.1.1,
restrictions on the iota operator disallowed this style of definition, and the iota
operator is not user-accessible any more.

4.2.4 Related Work

We justified our use of the de Bruijn encoding on page 82. Recall from Section
2.5 that Melham formalises variables as sequences of characters, and defines a
valuation function e: str -> bool representing the environment [124]. He uses
strings str to index the environment instead of natural numbers. The semantic
function maps circuit expressions to assertions about the environment. For
example, the clause Sm (pwr p) e = (e p = T) expresses that the entry for
p in the environment must be T. The semantics defines the environment in
terms of constraints which are deduced from circuit structure. In our case, the
environment is used solely to store intermediate results from LET and LET REC

constructs. It is used purely as a stack.
Some aspects of the embedding in hol of an ella subset by Boulton et al.

[19, 17] have been reviewed in Section 2.2.1. Although it is a partially formal
behaviour function, a comparison with our work is useful. The hol ella subset
is much larger than picoella. ella type and function definitions are included,
and are translated to hol type and function declarations. Consider the picoella
type bit:

TYPE bit = hi | lo IN ...

In our embedding we do not explicitly deal with picoella type definitions, but
we represent hi by Cons(i,t) and lo by Cons(j,t), for some t and i 6= j 6= 0.
The don’t know value ?bit is encoded by Cons(0,t) (see Section 4.2.1.) The
don’t know value is an extra value, declared implicitly, as it is in the original
ella. In hol ella type definitions use the process of lifting to deal with the
don’t know values of a type. There is one value UU which represents the don’t
know value for all ella types. The type bit would be represented by the type
(bit) lifted in hol. If the elements of bit are hi and lo, the elements of (bit)
lifted are LIFT hi, LIFT lo, and UU. The function UNLIFT projects lifted values
to their unlifted equivalent. The term UNLIFT UU is irreducible. LIFT apply1

lifts a function:

⊢ LIFT apply1 f x = (x = UU ⇒ UU | LIFT (f (UNLIFT x)))

Thus a major difference between the hol embedding and ours is that in hol

92 CHAPTER 4. EMBEDDING PICOELLA IN LAMBDA

every picoella type is represented by a different hol type, whereas we represent
all picoella types by the same Lambda type const.

In our embedding constants may be converted to choosers by applying the
C constructor. The constant ?type (Cons(0,type)) is interpreted as the type

chooser (C (Cons(0,type)).) We have a uniform treatment for constructors
such as hi; they are the same as constants, choosers (we apply the constructor
C), and as expressions (Const is the conversion operator.) Boulton takes another
approach: constants and choosers are represented in the same manner, but
differently from constants used as expressions (called time independent units
in [17, Section 2.8.1].) We mentioned in Section 3.1 that in version 3.0 ella

the constant, chooser, and expression syntactic classes all contain constructor
names. From ella version 4.0 onwards the syntactic classes for constants and
choosers were combined. As Boulton’s embedding is based on version 4.0, and
ours on version 3.0 ella this may account for the different outlook on this issue.
(To avoid confusion we will use constant, chooser, and time independent unit in
the remainder of this paragraph.) Time independent units are represented by
time-to-value functions, with an unchanging output [17, Section 2.8.1]. A time
independent unit c is mapped onto SIGNAL c, where SIGNAL c t = c. This is
a function which returns c for all times t. We explicitly encode the process of
matching in the function match, whilst in hol choosers are the active agents in
matching. Choosers are represented by functions which, when given a constant,
return a lifted boolean [17, Section 2.6], representing a match, no-match, or
‘can’t decide.’ Our three-valued booleans tt, ff, and uu correspond to LIFT T,
LIFT F, and UU respectively. We would write match ch c, where hol ella has
ch c. Thus, when a constructor c is interpreted as a chooser, its semantics is
CONST c, where CONST is defined as

⊢ ∀c. LIFT apply1 (λ x. x = c)

A constructor chooser is translated to a function which returns UU if its argument
is UU, LIFTED T if its argument is equal to the lifted constructor, and LIFTED F

otherwise. A type name chooser such as bit is mapped onto MATCH ALL, which
is defined as

⊢ ∀x. MATCH ALL x = LIFT T

Finally, the bar chooser (tuple chooser) is implemented as repeated application
of the chooser OR (chooser AND) function, which is comparable to our or3

(and3). Constants are used to provide the initial values for delays etc. The
semantics for the delay statement is therefore complicated by the fact that
constants and choosers are treated uniformly in hol ella.

We might want to represent the don’t know value not as an additional value,
but as an undefined value. By an undefined value we do not mean a non-denoting
value such as UNDEFINED, but a value of which we only know that it is equal to
an (unknown) constructor. (This approach was described as the set semantics
in Section 3.3.5, and Harrison’s ella embedding in hol [18, Section 7.8] on
page 57.) In Lambda the variable undefbit together with the hypothesis undefbit
== hi ∨ undefbit == lo would do. Note that undefbit === (ιx. x == hi ∨

4.3. RESULTS ABOUT THE EMBEDDING 93

x == lo) would make undefbit equal to UNDEFINED, which is not acceptable. In
hol the Hilbert operator provides the wanted intuition: (εx .x = hi ∨ x = lo)
is either hi or lo, but we cannot prove that it is either. Thus we can prove the
following lemma in hol:

undefbit = (εx. x = hi ∨ x = lo) ⊢ undefbit = hi ∨ undefbit = lo

When we match undefbit with the chooser hi|lo we obtain LIFT T. This is
incorrect; it should be UU. In picoella Lambda terms, this would deliver tt,
but should deliver uu. With ?bit encoded as undefbit the choosers bit and
hi|lo have been identified, which is incorrect. This proves that ?type really is
a distinct value, declared implicitly for every ella type.

Another consequence of using undefbit, is that all don’t know values are the
same. The ella fragment

CASE (?bit,?bit) OF (hi,hi)|(lo,lo): hi ELSE lo ESAC

and its corresponding picoella

IF (?bit,?bit) MATCHES (hi,hi)|(lo,lo) THEN hi ELSE lo

would output hi rather than lo. The reason for this is that we can prove that
(?bit,?bit), which is represented by (undefbit,undefbit), is equal to either
(hi,hi) or (lo,lo). A case analysis selects the THEN branch in both cases, so
that the output is hi. The problem here is that all don’t know values are con-
sidered to be equal because of the reflexivity of equality. In ella and picoella,
however, every don’t know value is different, even in the following case:

LET x = ?bit IN (x,x)

It is therefore not possible to represent the tuple by (undefbit,undefbit) in
Lambda. We have to use two different don’t know values: (undefbit1,undefbit2),
where both are defined as undefbit previously. This also cures the incorrect out-
put above. Of course, this becomes very cumbersome as we need to generate a
new variable undefi for every IF and LET REC statement, as both can result in
a bottom value. This solution does not work in hol, because

⊢ undefi = εx. x = hi ∨ x = lo

still allows us to prove that undefi = undefj for all i and j.

4.3 Results About the Embedding

By proving results which we expect to hold about the embedded semantics we
can increase our confidence in the embedding. The dynamic semantics, for ex-
ample, defines a total function, but this is not obvious from the definition of
the reduce function. A number of lemmas have to be proved about auxiliary
functions before we can attempt this proof. Reflexivity, commutativity, transi-
tivity, totality, and monotonicity are examples of properties we are interested in.
More than 700 results have been proved, ranging from simple rewrite rules and

94 CHAPTER 4. EMBEDDING PICOELLA IN LAMBDA

lemmas to the complex monotonicity theorem of the dynamic semantics. The
proof scripts, containing more than 14,000 lines with over 10,000 rule applica-
tions2 and 2,800 tactic applications, take nearly 13 hours to run on an unloaded
sun 4/65 (sparc station 1+) with 32M memory and a local hard disk. We will
discuss only a fraction of this effort. Appendix B describes the most interesting
results which have been proved, and presents some statistics about the proofs.
In this section we will explain the proof of the totality and monotonicity of the
match and reduce functions. Some corollaries following from these results will
also be given.

4.3.1 Totality and Monotonicity of Matching

The process of matching a chooser and a constant was defined on page 47 in the
‘paper semantics’, and on page 88 in the embedded semantics. The totality and
monotonicity of the matching process depend on the corresponding properties
of the and3 and or3 functions which are used by match. The totality of match
was proved first, and is straightforward though tedious. The function match

operates on a well-typed chooser and a constant of the same type.

⊢∀ch,c. typeOfChooser ch == (typeOfConst c,true) → E (match ch c)

The proof starts with a structural chooser induction on ch. This results in a
subgoal for each of the different types of choosers: constant chooser, bar chooser,
and tuple chooser.

Case (C d) We now do a constant induction on d, followed by a constant in-
duction on c. By using the assumption that the chooser and constant c
have the same type we discharge two of the four subgoals by rewriting.
This leaves us with the match (C (Cons (i,t))) (Cons(j,t)) and match

(C (CoTuple (c1,c2))) (CoTuple (d1,d2)) cases. The latter subgoal
is proved by using the induction hypotheses. The former is more compli-
cated due to our encoding of the bottom element Cons (0,t) and the wild
card chooser C (Cons (0,t)). We have to do a natural number induction
on both i and j, producing the three distinct clauses of the matching algo-
rithm. (See the definition of match on page 88.) All three cases are dealt
with by rewriting using the definition of match, followed by the use of the
totality of eq3 and and3.

Case (B (ch1,ch2)) This subgoal is proved by applying the induction hy-
potheses, and using the totality of or3.

Case (T (ch1,ch2)) A constant induction on c, followed by using the fact that
c must be a tuple type leaves one subgoal: matching a tuple chooser with
a tuple constant. The induction hypotheses together with the totality of
and3 then proves this subgoal.

2These are derived rule applications, not basic inference rules. Rewrite rule applications
are also not included. Lambda does not provide any tools to count the number of basic
inference rules which have been applied.

4.3. RESULTS ABOUT THE EMBEDDING 95

This proof takes nine tactic applications. The following tactic, proving the
(C (CoTuple (c1,c2))) subgoal above, is typical.

applyTac ((doRule andL) thenH [2] thenRL [andL,eqCommL]

thenH [6] thenRL [allL,typeOfConstTotalL,eqReflL,imp2L’]

thenH [8] thenG [2] thenRL [allL,typeOfConstTotalL,

eqReflL,imp2L’] thenH [3,1] thenT (htogTac 2) thenR

and3TotalR);

The monotonicity of the matching function is a longer proof but follows along
the same lines.

⊢ ∀ch,c,d. (cle c d == true ∧
typeOfChooser ch == (typeOfConst c, true) ∧
typeOfChooser ch == (typeOfConst d, true)) →

le3 (match ch c) (match ch d) == true

The function le3 implements the ordering on three-valued booleans uu, tt and
ff. Due to the presence of a second constant d, wherever the totality proof
used a constant induction on c, it now includes an induction on d. As c and d
have the same type, this extra induction does not introduce any extra subgoals
(cf. twoConstInduct of Section 4.2.1.) For the C choosers this is proved by case
analysis, and for the B and T choosers the proof relies on the monotonicity of
and3 and or3.

A nice corollary of the mononicity of match is the following:

⊢ ∀c,d. typeOfConst c == typeOfConst d ∧ cle c d == true →
NOT (∃ch. typeOfChooser ch == (typeOfConst c,true) ∧

match ch c == tt ∧ match ch d == ff)

It states that there does not exist a chooser which can distinguish between two
constants one of which is smaller than the other. In other words, increasing the
definedness (in the data ordering sense, rather than partiality) of a constant
cannot affect which branch of an IF statement we take.

4.3.2 Monotonicity of the Dynamic Semantics

The totality and monotonicity of the reduction function reduce are interdepen-
dent, and have to be proved simultaneously. The monotonicity of reduce in its
first argument (the environment) may be proved independently of its monotonic-
ity in its second argument (the circuit), but not vice versa. We will indicate in
the proof where this fact is needed. Due to the mutual recursion of the reduce

and iterate functions, any property which is to be proved about reduce will
need a related invariant on iterate. It is this which makes the statement of the
theorem which we will prove very large. The simplest monotonicity theorem we
can prove is the following.

96 CHAPTER 4. EMBEDDING PICOELLA IN LAMBDA

⊢ ∀envl,envr,e,t.

lle envl envr == true ∧
map typeOfConst envl == map typeOfConst envr ∧
typeOfExpr (map typeOfConst envl) e == (t, true) →

∃c1l,f1l,c1r,f1r. reduce envl e == (c1l, f1l) ∧
reduce envr e == (c1r, f1r) ∧
cle c1l c1r == true ∧
typeOfConst c1l == t ∧
typeOfConst c1r == t

For clarity we omit the invariant on iterate from the above statement. The
theorem expresses that

For all environments envl and envr, and expressions e,
if envl and envr are ordered, and equal as type environments, and

e is well-typed in the type environment
then there exist two tuples (c1l,f1l) and (c1r,f1r) such that

reduce envl e and reduce envr e evaluate to these values
respectively, and the output values c1l and c1r are ordered, and
have the same type as the expression e.

The seemingly spurious observation that the result constants have the same
type as the original expressions (or at least that the constants have the same
type) is necessary, as we shall see in the section dealing with the LET statement.
Note that the fact that the output tuples exist is a non-trivial observation. It
means that the recursion of a well-typed expression in iterate always termi-
nates. This is not necessarily the case for all expressions. The oscillating de-
layless feedback NOT gate iterate [hi] (LetRec (hi, If (Var 0,lo,hi,C

hi),Var 0)) does not terminate and is an example of a non-denoting term in
Lambda. Although a logic of partial terms involves additional existence condi-
tions, it does allow partial functions. In our case stating the iterate function
as a partial function is more natural than forcing it to be total.

The above theorem may be expressed in the following diagrammatic form.
Single arrows denote ordering, with the arrow pointing to the smaller object.
The particular ordering function is used as a label for the arrow. In case of the
lower horizontal arrow the value environments are ordered using the lle func-
tion, and for the top horizontal arrow the constants of the (constant, expression)
pair are also ordered. Double arrows indicate dynamic semantics evaluation,
with the arrow pointing towards the result.

However, this theorem is less useful than would appear at first sight. Con-
sider the circuit Delay (hi, Var 0). With envl = [bit] and envr = [lo] we
get as outputs (hi, Delay (bit,Var 0)) and (hi, Delay (lo,Var 0)) as
respective outputs. As we would expect, cle hi hi holds. But at the next
time step we cannot use the theorem because we are dealing with two distinct
circuits. This arises from the fact that the state is part of the circuit descrip-
tion, and different environments may give rise to different states. Thus we have
to modify the theorem to deal with two expressions, which are identical apart

4.3. RESULTS ABOUT THE EMBEDDING 97

✻✻✻ ✻

✛

✛

envl

c1r,f1r

lle
envr

reduce envr ereduce envl e

c1l, f1l
cle

Figure 4.1: Monotonicity of reduce in Its First Argument.

from their internal states. The function shapeEq, defined on page 86, imple-
ments this notion. Thus we want to prove the following more involved result
about reduce:

For all environments envl and envr, and expressions e0l and e0r,
if envl and envr are ordered, and equal as type environments and

e0l and e0r are well-typed in the type environments, and
have the same shape and are ordered

then there exist two tuples (c1l,e1l) and (c1r,e1r) such that
reduce envl e0l and reduce envr e0r evaluate to these values
respectively, and the output values c1l and c1r are ordered, and
have the same type as the original expression.
Moreover, the output expressions e1l and e1r are ordered and
have the same shape, and
they have the same type and shape as the original expressions.

Shape equality of input and output expressions means that, for example, an
adder circuit will not become a multiplier after some time, no matter what its
input is. We do not allow dynamically changing circuit descriptions: only the
state in delays and the approximations in the LET REC statements change. We
abbreviate the conclusions of the theorem by THMR:

98 CHAPTER 4. EMBEDDING PICOELLA IN LAMBDA

val THMR#(e0l,e0r,envl,envr,t) =

∃c1l,e1l,c1r,e1r.
reduce envl e0l == (c1l, e1l) ∧
reduce envr e0r == (c1r, e1r) ∧
cle c1l c1r == true ∧ (* a *)

ple e1l e1r == true ∧ (* b *)

shapeEq e1l e1r == true ∧
shapeEq e0l e1l == true ∧
shapeEq e0r e1r == true ∧
typeOfConst c1l == t ∧
typeOfConst c1r == t ∧
typeOfExpr (map typeOfConst envl) e1l == (t, true) ∧
typeOfExpr (map typeOfConst envr) e1r == (t, true)

The labels a and b will be used later, in figure 4.4. We can now state the
theorem in Lambda as follows.

⊢ ∀nl,nr,e0l,e0r,envl,envr,t.

sizeOfExpr e0l == nl ∧
sizeOfExpr e0r == nr ∧
lle envl envr == true ∧
ple e0l e0r == true ∧
shapeEq e0l e0r == true ∧
map typeOfConst envl == map typeOfConst envr ∧
typeOfExpr (map typeOfConst envl) e0l == (t, true) ∧
typeOfExpr (map typeOfConst envr) e0r == (t, true) →

THMR#(e0l,e0r,envl,envr,t)

We will use the abbreviation THM#(nl,nr,e0l,e0r,envl,envr,t) to denote the
theorem without the leading universal quantifiers. The value environments envl
and envr must have the same length by virtue of map typeOfConst envl ==

map typeOfConst envr. In principle the length of envl could be smaller than
that of envr, as long as they are ordered element-wise on the initial segment
of length length envl of envr. If both expressions do not access a particular
variable (element in the environment) then its value and type are irrelevant.
The condition that both environments are the same when viewed as type envi-
ronments, ensures that the types of unused variables are the same. Note that if
e0l and e0r have the same shape, and e0l is well-typed it does not follow that
e0r is well-typed. (e0r could have non-bottom initial approximations in its re-
cursive LET statements.) This may be seen from the definitions of typeOfExpr
and shapeEq on pages 85 and 86 respectively.

In graphic form we obtain figure 4.2. We have added a universal quan-
tification over two natural numbers nl and nr which must be equal to the size
of e0l and e0r respectively. This enables a more powerful proof on the size of
expressions, instead of a structural induction on expressions. We will indicate
in the proof where we need this extra power.

The proof proceeds by a nested general natural number induction on the nl
and nr. This induction takes the following form, and is called genInduct in
Lambda.

4.3. RESULTS ABOUT THE EMBEDDING 99

✻✻✻ ✻

✛

✛

reduce envr e0r

c1r,e1r

envr,e0r

reduce envl e0l

cle, ple

lle, ple
envl,e0l

c1l,e1l

Figure 4.2: Monotonicity of reduce in Both Arguments.

E n’, ∀m. m < n’ == true → P#(m) ⊢ P#(n’)

E n ⊢ P#(n)

The reason for using this rather than the standard natural number induction
is that the size of the subexpressions need not be exactly one less than the size
of the total expression. Thus the standard inductive case P#(n) ⊢ P#(S n)
is not suitable. A structural induction on the two expressions e0l and e0r is
used after the general natural number induction. As we know that these two
expressions have the same shape, this introduces only eight subgoals rather than
sixty four subgoals. Recall that the shape equality is equivalent to comparing
abstract syntax trees, in which only constants may be different. To illustrate
the monotonicity proof we consider the three most interesting subgoals, the IF,
the LET, and the recursive LET statement.

The If Statement

The IF statement is straightforward. The variables e0l and e0r are equal
to If(e0l,f0l,g0l,ch) and If(e0r,f0r,g0r,ch’) in this case. Shape equality
implies that ch and ch’ are in fact equal. We instantiate the induction hy-
pothesis for the three pairs of subexpressions of the IF statement; we use
THM#(...,e0l,e0r,...), etc. to obtain the conclusion of the theorem for the
subevaluations. Recall that at the heart of the definition of the evaluation of
the IF statement lies a match, which returns uu, tt, or ff.

fun reduce l (If (e1, e2, e3, ch)) = ...

(case match ch c1 of

uu => bottomOfConst c2 |

tt => c2 |

ff => c3,

If (f1, f2, f3, ch)) ...

If c0l and c0r are the (constant) outputs from evaluating e0l and e0r respec-

100 CHAPTER 4. EMBEDDING PICOELLA IN LAMBDA

tively, match ch c0l and match ch c0r give a total of nine combinations of tt,
ff, and uu. However, as the subexpressions’ outputs are ordered (by the induc-
tion hypotheses) not all of the nine combinations are valid. Using the induction
hypothesis for e0l and e0r we conclude that cle c0l c0r. Since match is mono-
tone it follows that le3 (match ch c0l) (match ch c0r) holds. So the only
valid combinations of uu, tt and ff are (uu,uu), (uu,tt), (uu,ff), (tt,tt)
and (ff,ff). The last but one of these indicates that both IF statements choose
the THEN branch, which we know to be ordered by virtue of the induction hy-
pothesis for f0l and f0r. In the final case both select the ELSE branch, for which
monotonicity also holds by the induction hypothesis for g0l and g0r. In the first
three cases the first IF statement delivers the bottom value because it cannot
decide which of its two outputs it should deliver. (This is what the uu value
from the matching process indicates.) We know than the bottom value is less
than or equal than any other value of its type. In particular the value from the
first IF is less than or equal to the output of the second IF.

The Let Statement

The LET follows the same approach as the IF statement. If Let (e0l, f0l) is
the first expression, and Let (e0r, f0r) the second, we know that they are
both well-typed, and have the same shape and type t. When we consider how
the type of a Let is computed it is not obvious, however, that the types of the
subexpressions e0l and e0r are also equal.

fun typeOfExpr te (Let (e1, e2)) =

(fn (t1, b1) =>

(fn (t2, b2) =>

(t2, b1 && b2))

(typeOfExpr (t1::te) e2)) (typeOfExpr te e1) | ...

For all we know, the intermediate types t1 could diverge, but the types t2 of
the whole Let constructs could be the same. If this were so, we could not apply
the induction hypothesis because it assumes that both types are the same t. As
it happens, we can prove that if two expressions are both well-typed, and are
shape equal then their types are the same.

⊢ ∀e0l,f0l,l,t1, t2. shapeEq e0l f0l == true ∧
typeOfExpr l e0l == (t1, true) ∧
typeOfExpr l f0l == (t2, true) → t1 == t2

We can not prove the stronger result which states that if two expressions are
shape equal, and one of the expressions is well-typed then the other one is
well-typed with the same type. This is solely a consequence of typeOfExpr’s
insistence on bottom initial approximations for recursive LET constructs, which
shape equality does not preserve. At the start of this section (on page 96) we
mentioned that the following conclusions are essential: (1) typeOfConst c1l ==

t and

4.3. RESULTS ABOUT THE EMBEDDING 101

(2) typeOfConst c1r == t, where t is the type of the defining expressions e0l
and e0r. It is at this point that we need them.

When we instantiate the induction hypothesis for f0l and f0r with value
environments c1l::envl and c1r::envr respectively, we have to prove that the
value environments are the same when viewed as type environments. That is,
map typeOfConst (c1l::envl) == map typeOfConst (c1r::envr). It follows
from the lemma above that the types of e0l and e0r are the same, and thus,
using (1) and (2) above, that typeOfConst c1l == typeOfConst c1r. The LET

subgoal may be proved without any further complications. The lemma must
also be used in the subgoals dealing with the indexing operators, where we
don’t care about the type of the part the indexing throws away.

A First Attempt at The LetRec Statement

In all subgoals but the recursive LET we are not interested in the invariant on
the iterate function. Moreover, we could have proved all these subgoals using
a simple nested structural induction on expressions. Only in the LET REC do
we need the natural number induction on the size of expressions, which is more
general than the structural induction. Let us consider what happens if we try
to apply the simple approach which we used so far to the LetRec. Let e0l in the
theorem be LetRec(c0l, e0l, f0l) in this subgoal and e0r be LetRec(c0r, e0r,
f0r). We have to prove the following goal using the given induction hypotheses,
ordered in decreasing generality.

1: ∀m. m < nl == true → ∀nr,e,f,t. THM#(m,nr,e,f,t)

2: ∀m. m < nr == true → ∀e,f,t. THM#(nl,m,e,f,t)

3: ∀f,t. THM#(nl,nr,e0l,f,t)

4: ∀t. THM#(nl,nr,e0l,e0r,t)

5: nl == sizeOfExpr (LetRec (c0l,e0l,f0l))

6: nr == sizeOfExpr (LetRec (c0r,e0r,f0r))

... ⊢ THMR#(nl,nr,LetRec(c0l,e0l,f0l),LetRec(c0r,e0r,f0r),t)

We have omitted the existence hypotheses, and the antecedent of the implication
in THM, of which the fifth and sixth hypotheses are parts. We have to evaluate
the following term in THMR.

reduce envl (LetRec (c0l,e0l,f0l))

We expand it, using the definition of reduce, and arrive at a subterm

iterate envl e0l c0l

which, according to iterate’s definition, is equal to

(fn (d,f) => if ceq c0l d then (d,f) else ...) (reduce (c0l::envl))

Using one of the induction hypotheses above, we obtain an answer (c1l,e1l) for
reduce (c0l::envl) e0l. Substituting this into the previous expression gives

if ceq c0l c1l then (c1l,e1l) else iterate envl e0l c1l

102 CHAPTER 4. EMBEDDING PICOELLA IN LAMBDA

We have computed the second approximation c1l, using the first approximation
c0l. Now iterate checks if we have reached a fixed point (i.e. c0l and c1l are
equal.) If we have, we return the result (c1l,e1l). If, on the other hand, c0l and
c1l are distinct we have not reached a fixed point, and we call iterate again
with the most recent approximation c1l. We get a similar situation for the right
hand side expression e0r. Thus we have four possibilities: (1) both recursions
have arrived at their fixed points, that is, ceq c0l c1l and ceq c0r c1r; or (2)
the first recursion has fixed, but not the second (ceq c0r c1r == false); or (3)
the first recursion must iterate again, but the second fixes; or (4) both recursions
must iterate again. These cases are obtained by doing a boolean induction (case
analysis) on the value of ceq c0l c1l and ceq c0r c1r. (Note that this is not
the same as doing an induction on truth values, which is not possible — see
Section 4.1.) The first case is trivial: it can be discharged after some rewriting.
In the remaining cases we can compute the next approximations c2l and c2r.
If we do this, however, we end up having to decide whether we have arrived at
a fixed point this time. If we have, we can stop, otherwise we have to iterate
again. We can continue this process ad infinitum. The problem is that we can
compute every next approximation, but we have no guarantee of a finite number
of iterations.

To ensure this we define an invariant on iterate: THMI#(nl,nr,c0l,c0r,envl,
envr,e0l,e0r,c1l,c1r,e1l,e1r,t) which will be defined on page 105. First, we
will try to give a more intuitive account of the definition in the following fig-
ure. A star on the double arrow indicates that reduce is applied zero or more

✻✻ ✻

✛

✛

✻

✻ ✻✻✻

✛

c1r,e1r

lle, ple

cle, ple

cle, ple

* *

iterate envl e0l c1l

c1l,e1l

cnl,enl cnr,enr

iterate envr e0r c1r

reduce (c0r::envr) e0r

(c0l::envl),e0l (c0r::envr),e0r

reduce (c0l::envl) e0l

Figure 4.3: The THMI Invariant on iterate.

times to arrive at the answer. (This is iterate’s purpose.) The THMI invariant

4.3. RESULTS ABOUT THE EMBEDDING 103

introduces some orderings between the different approximations, i.e. vertical ar-
rows in the diagram. We have omitted these arrows here, and have them shown
separately in the following figure 4.4. The values c0l and c0r are the first approx-
imations, c1l and c1r the second, etc. In general we have reduce (cil::envl)
e0l == (c(i+1)l,e(i+1)l) and reduce (cir::envr) e0r == (c(i+1)r,e(i+1)r).
Note that we use e0l and e0r every time we compute a new iteration; this was
explained in Section 3.3.3. cnl and cnr are the fixed points. All of the cil are
equal for i ≥ n. The numbering of the arrows (1 to 10) corresponds to the

✛

✛

❄❄

❄ ❄
✛

❄ ❄

✛
❄ ❄

✛

✛

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

❄ ❄

✛ ✛

c1l c1r
cle

clecle

clecle

cle
c2r

c0r
cle

Value Outputs

c2l

c0l
1

2 3

4

5 6

7

8 9

10

a b

e0r

ple ple

e1re1l

ple

ple

Expression Outputs

ple

e2l e2r

e0l

cnl cnr enl enr

Figure 4.4: Ordering Approximations During a Fixed Point Computation.

numbering of the orderings in the definition of THMI on page 105, and arrows a

and b refer to orderings in THMR on page 98. The dashed lines indicate that the
lattice continues to the fixed points, after which the values remain the same.
The dotted lines in the right hand diagram indicates that the ordering does
not hold. We need two squares (and therefore variables c2l, c2r, e2l, and e2r)

104 CHAPTER 4. EMBEDDING PICOELLA IN LAMBDA

because ple e0l e1l and ple e0r e1r do not hold. The reason for this is that
the passage of time happens at this point: e0l is the circuit at time t and e1l is
the circuit at time t + 1. In general there is no ordering relation between these
two circuit descriptions. The delayed NOT gate which is fed back into itself
illustrates this: The circuit at time zero is:

❤ ✲✲
❍❍❍❍

✟✟✟✟ delay

Figure 4.5: A Delayed Feedback NOT Gate.

LetRec (bit, Delay (hi, If (Var 0, lo, hi, C hi)), Var 0)

We have the following computations in the iterations (within one time step):
reduce (bit::envl) (Delay (hi,...)) == (hi,Delay (lo,...))

reduce (hi::envl) (Delay (lo,...)) == (hi,Delay (lo,...))

reduce (hi::envl) (Delay (lo,...)) == (hi,Delay (lo,...))

The delay will contain hi at times 2n, and lo at times 2n+1. So at time 2n e0l
is Delay (hi,...) and e1l will be Delay (lo,...). The expression e2l will
also be Delay (lo,...), so that ple e1l e2l holds. However, ple e0l e1l does
not hold at any time.

Given this informal explanation the invariant THMI is defined on page 105.
Although the statement is very large, all it says is that iterate is monotone in
its inputs (value environment, expressions and approximations), and preserves
the shape of expressions. It also preserves the types of expressions and constants.
These conditions ‘horizontally’ relate the inputs with inputs (1 and 4), and
output with outputs (7 and 10.) Three additional invariants ‘vertically’ link
inputs with outputs: (i) the output of the iteration (i.e. the next approximation)
is more defined than the input approximation (2, 3, 5 and 6, e.g. cle c1l c2l),
and (ii) the output expression of the second approximation is greater than the
output expression of the first approximation (8 and 9, e.g. ple e1l e2l), and
(iii) the output expression of the second approximation has the same shape as
the output expression of the first approximation (e.g. shapeEq e1l e2l.) The
orderings numbered 1 to 10 correspond to the numbered arrows in figure 4.4.

An ‘arrow chasing’ interpretation of THMI, with reference to diagram 4.4,
may be given as follows. If we have the four arrows 1 to 4 (these form the
shape of a ‘U’ in the diagram) we can infer arrows 5 to 10, which form the
shape of two upside down ‘U’s in the diagram. Thus THMI is used to obtain the
‘vertical’ ordering relations 5, 6, 8 and 9, and the ‘horizontal’ relations 7 and
10. The hypothesis THMR, on the other hand, is used to infer the intermediate

4.3. RESULTS ABOUT THE EMBEDDING 105

‘horizontal’ orderings a and b in the diagram. From 1 and 4 we can conclude a

and b. In the first attempt to prove the monotonicity of the LET REC statement
we used only horizontal arrows 1, a, 7, . . . and 4, b, 10, Using THMI we
obtain extra vertical information, consisting of arrows 2, 3, 5, 6, 8, and 9.

The definition of THMI is given below.

val THMI#(n0l,n0r,c0l,c0r,envl,envr,e0l,e0r,c1l,c1r,e1l,e1r,t) =

sizeOfConst c0l == n0l ∧
sizeOfConst c0r == n0r ∧
typeOfConst c0l == t ∧
typeOfConst c0r == t ∧
typeOfExpr (map typeOfConst (c0l::envl)) e0l == (t, true) ∧
typeOfExpr (map typeOfConst (c0r::envr)) e0r == (t, true) ∧
cle c0l c0r == true ∧ (* 1 *)

cle c0l c1l == true ∧ (* 2 *)

cle c0r c1r == true ∧ (* 3 *)

ple e0l e0r == true ∧ (* 4 *)

shapeEq e0l e0r == true ∧
reduce (c0l::envl) e0l == (c1l,e1l) ∧
reduce (c0r::envr) e0r == (c1r,e1r) →
∃c2l,e2l,c2r,e2r.
iterate envl e0l c1l == (c2l,e2l) ∧
iterate envr e0r c1r == (c2r,e2r) ∧
cle c2l c2r == true ∧ (* 7 *)

cle c1l c2l == true ∧ (* 5 *)

cle c1r c2r == true ∧ (* 6 *)

ple e2l e2r == true ∧ (* 10 *)

ple e1l e2l == true ∧ (* 8 *)

ple e1r e2r == true ∧ (* 9 *)

shapeEq e2l e2r == true ∧
shapeEq e1l e2l == true ∧
shapeEq e1r e2r == true ∧
typeOfConst c2l == typeOfConst c1l ∧
typeOfConst c2r == typeOfConst c1r ∧
typeOfExpr (map typeOfConst (c2l::envl)) e2l == (t,true) ∧
typeOfExpr (map typeOfConst (c2r::envr)) e2r == (t,true);

We now modify the statement of the overall theorem to include the THMI in-
variant. We will prove ∀nl ,nr , e0l , e0r , envl , envr , t .THM#(nl ,nr , e0l , e0r , envl , envr , t).

106 CHAPTER 4. EMBEDDING PICOELLA IN LAMBDA

val THM#(nl,nr,e0l,e0r,envl,envr,t) =

sizeOfExpr e0l == nl ∧
sizeOfExpr e0r == nr ∧
lle envl envr == true ∧
ple e0l e0r == true ∧
shapeEq e0l e0r == true ∧
map typeOfConst envl == map typeOfConst envr ∧
typeOfExpr (map typeOfConst envl) e0l == (t, true) ∧
typeOfExpr (map typeOfConst envr) e0r == (t, true) →

(THMR#(e0l,e0r,envl,envr,t) ∧
∀xl,yl,zl,xr,yr,zr.
e0l == LetRec (xl,yl,zl) ∧
e0r == LetRec (xr,yr,zr) →

∀n0l,n0r,c0l,c0r,c1l,c1r,e1l,e1r.

THMI#(n0l,n0r,c0l,c0r,envl,envr,yl,yr,

c1l,c1r,e1l,e1r,typeOfConst xl));

Recall that THMR was defined on page 98. This new statement includes THMI.
We have not simply changed the conclusion to THMR#(...) ∧ THMI#(...) be-
cause this would entail proving THMI for all expression constructors. Although
in theory THMI could make sense for non-LET REC constructors we do not want
to do unnecessary work. Note that in a structural induction on the e0l and e0r
expressions we cannot use the THMI part of the hypotheses. The reason for this
is that we do not know whether the subexpressions are LetRec statements or
not. We therefore use THMI only when e0l and e0r are both LetRec statements.
Before we do this, however, we take a look at some subproofs we will use during
the proof of the LET REC statement.

How To Prove Orderings Of Approximations

It is helpful to step back at this point and take a more abstract view of what we
are trying to prove. It may be helpful to refer to figure 4.4, and the definition
of THMI on page 105 in the following. We have two LET REC statements which
are computing their respective least fixed points. We have to prove that the
fixed point on the left hand side is less than or equal to the fixed point on the
right hand side. Both sides start with a bottom approximation; thus c0l = c0r
= bottom. Every application of reduce to (cil::envl) e0l and (cir::envr) e0r
amounts to computing the next approximation c(i+1)l and c(i+1)r respectively.
This corresponds to computing the next horizontal arrows a and b and a THM

induction hypothesis is used for this. We shall call this a ‘horizontal instanti-
ation’ of the induction hypothesis. As we shall see, we also need the vertical
arrows cle cil c(i+1)l and cle cir c(i+1)r. For expressions we need all ver-
tical arrows, except ple e0l e1l and ple e0r e1r, as explained previously. We
now describe how to prove the two vertical orderings.

If we know that cle cil c(i+1)l holds then we can prove cle c(i+1)l c(i+2)l
as follows. We use the most general THM induction hypothesis:

∀m. m < nl == true → ∀nr,e,f,t. THM#(m,nr,e,f,t)

4.3. RESULTS ABOUT THE EMBEDDING 107

and instantiate m with sizeOfExpr e0l, which we can easily prove to be less
than nl = sizeOfExpr (LetRec (c0l,e0l,f0l)).3 We instantiate nr with nl
also, and both e and f with e0l. Thus we pretend that the left vertical ar-
row (cle cil c(i+1)l) (arrow 2 in 4.4) is the horizontal arrow (arrow 1.) We
can easily discharge the antecedent of the hypothesis, and obtain the ordering
cle c(i+1)l c(i+2)l. In diagrammatic form this corresponds to the left diagram
in figure 4.6. The diagram on the right hand side shows the effect in the original
lattice. The double arrow indicates equality; by identifying the two values at

❄

❄

✛

✛

✛
❄

❄
✛

❄ ❄
✛

■❅
❅

❅
❅

❅
❅

❅
❅❅❘

❄ ❄

✛

cle

clecle

cle
cil

clecle

cle
c(i+2)r

c(i+1)r

cir

c(i+2)l

c(i+1)l
cle

clecle

cle
cil c(i+1)l

c(i+2)l

clecle

cle
c(i+3)lc(i+2)l

c(i+1)l

cle

Left Vertical Instantiation As Seen in Original Lattice

Figure 4.6: ‘Left Vertical’ Instantiation of Induction Hypothesis

the ends we see that we have proved the ordering cle c(i+1)l c(i+2)l.

We can do a similar trick on the right hand side. Assuming cle cir c(i+1)r
holds we can prove cle c(i+1)r c(i+2)r. In this case we have to instantiate m
in the induction hypothesis with sizeOfExpr e0r, and have to do slightly more
work to prove that it is less than nl, where nl is equal to sizeOfExpr (LetRec

(c0l,e0l,f0l)).

3See the discussion on the next page about the inadequacy of structural induction at this
point.

108 CHAPTER 4. EMBEDDING PICOELLA IN LAMBDA

For the vertical instantiations we need the general natural number induction
on nl and nr (page 98.) It would not be enough to use the hypotheses from the
structural induction on expressions. The structural induction hypotheses 3 and
4 on page 101 have e0l and e0r fixed as the circuit on the left and the circuit
on the right. This prevents us doing the ‘vertical instantiations’ because they
depend on using the same expressions (but different value environments) for
the instantiation of the hypotheses. Moreover, for both vertical instantiations
we rely on the fine comparison sizeOfExpr performs. Structural induction on
expressions ignores all subexpressions of a LetRec which are not expressions. In
other words, we could not simply have had something along the lines of ∀e,f.
THM#(e,f) because the structural induction wouldn’t have known the difference
between LetRec (cil,e0l,f0l) and LetRec (c(i+1)l,e0l,f0l), which is crucial
for the vertical instantiations.

So, using ‘horizontal’, ‘left vertical’ and ‘right vertical’ instantiations of the
THM induction hypothesis we can find our way around the lattice of orderings,
displayed in figure 4.4.

A Note on the Induction Principle

The subgoal in which both e0l and e0r are LetRec constructors has the following
form.

... ⊢ THMR#(nl,nr,LetRec(c0l,e0l,f0l),LetRec(c0r,e0r,f0r),t) ∧
∀xl,yl,zl,xr,yr,zr.
LetRec (c0l,e0l,f0l) == LetRec (xl,yl,zl) ∧
LetRec (c0r,e0r,f0r) == LetRec (xr,yr,zr) →

∀n0l,n0r,c0l,c0r,c1l,c1r,e1l,e1r.

THMI#(n0l,n0r,c0l,c0r,envl,envr,yl,yr,

c1l,c1r,e1l,e1r,typeOfConst xl)

We have omitted a number of existence and induction hypotheses. The an-
tecedent of the implication of THM has also been omitted. We can now apply the
rule and2R, which allows us to use THMI in the proof of THMR.

⊢ Q

Q ⊢ P

⊢ P ∧ Q

After rewriting the LetRec ... == LetRec ... terms and unifying the vari-
ables (c0l with xl etc.), we obtain the following two subgoals.

***** Premise 2 *****

... ⊢ ∀n0l,n0r,c0l,c0r,c1l,c1r,e1l,e1r.

THMI#(n0l,n0r,c0l,c0r,envl,envr,e0l,e0r,c1l,c1r,e1l,e1r,typeOfConst c0l)

***** Premise 1 *****

∀n0l,n0r,c0l,c0r,c1l,c1r,e1l,e1r.

THMI#(n0l,n0r,c0l,c0r,envl,envr,e0l,e0r,c1l,c1r,e1l,e1r,typeOfConst c0l)

... ⊢ THMR#(nl,nr,LetRec(c0l,e0l,f0l),LetRec(c0r,e0r,f0r),t)

4.3. RESULTS ABOUT THE EMBEDDING 109

Thus we have to prove (1) that THMR holds for the LetRec case, assuming the
invariant THMI on iterate, and (2) that THMI does really hold for iterate.

The proof of the monotonicity and totality of reduce depends on the same
property for iterate. Premise 2 corresponds to the latter, and it is used as
a hypothesis in premise 1, which corresponds to the former. It is tempting to
think of premise 1 as a base case for some induction, but this is not correct.
THMI is instantiated directly in the THMR case, because THMI is not an induction
hypothesis.

The proof of the second premise THMI proceeds by a general natural number
induction (genInduct on page 98.) The size n0l of the current approximation
c0l may be regarded as the maximum height of the derivation tree of the seman-
tics. That is, there can be at most sizeOfConst c0l iterations using c0l as the
initial approximation. As cle x y implies sizeOfConst y <= sizeOfConst x,
it follows that the bottom value can have the largest derivation tree, and a fully
defined value a smallest derivation tree. The induction rule states that, assum-
ing that the THMI holds for all smaller derivation trees, we have to prove that it
holds for the current derivation tree. In other words, assuming iterate obeys
the appropriate properties for smaller size sizeOfExpr c(i+1)l, they also hold
for the current size sizeOfExpr cil. Of course, we don’t think about sizes of
approximations, we think about the approximations themselves. The statement
then becomes more intuitive; assuming iterate obeys the appropriate proper-
ties for the next approximation c(i+1)l (corresponding to the recursive call in
iterate; see the next page), we have to prove that they also hold for the current
approximation cil. By using genInduct instead of the standard natural number
induction rule natInduct, we don’t have to prove a base case. The term P#(0)

would correspond to a fully defined approximation, but the least fixed point is
not necessarily fully defined. Moreover, the inductive step P#(n) ⊢ P#(S n)
restricts us to increasing the (size of the) current approximation one step at a
time, whereas the fixed point computation could omit intermediate steps.

The proof resembles a fixed point induction because the THMR case deals with
bottom values. It is different, however, because premise 1 is not a base case for
an induction. Moreover, in the inductive step of the proof of premise 2 we do
not use the hypothesis for a less defined value (as is the case in a fixed point
induction [118]), but instantiate it with a more defined value. A more defined
value has a smaller size, corresponding to a smaller derivation tree.

After the discussions of the induction principle and the various ‘horizontal’
and ‘vertical’ induction hypothesis instantiations we now return to the proof.

The Monotonicity of The LetRec Statement

We will first describe the proof of the THMR premise. In this subproof, c0l and
c0r are equal to the bottom values, because the well-typedness of the LetRec

constructor ensures that the initial approximation is equal to the bottom value
(see page 85.) As in our first attempt at the proof on page 101, we use a hori-
zontal instantiation to obtain the answers (c1l,e1l) and (c1r,e1r) for reduce

(c0l::envl) e0l and reduce (c0r::envr) e0r respectively. As before, this al-

110 CHAPTER 4. EMBEDDING PICOELLA IN LAMBDA

lows us to rewrite iterate envl e0l c0l to

if ceq c0l c1l then (c1l,e1l) else iterate envl e0l c1l

and a similar expression for iterate envr e0r c0r. In this version of the proof
we use the THMI subgoal, to prove that the iterate expressions exist. The
iterate expressions correspond to the second and further approximations.

∀n0l,n0r,c0l,c0r,c1l,c1r,e1l,e1r.

THMI#(n0l,n0r,c0l,c0r,envl,envr,e0l,e0r,c1l,c1r,e1l,e1r,typeOfConst c0l)

Recall from figure 4.4 that we need arrows 1 to 4 to be able to use the hypothe-
sis. 1 (cle c0l c0r) and 4 (ple e0l e0r) are given as part of the antecedent of
the THMR; 2 (cle c0l c1l) and 3 (cle c0r c1r) are trivial to prove, because c0l
and c0r are equal to the bottom value. We therefore instantiate the variables
n0l, n0r, c0l, c0r, c1l, c1r, e1l, and e1r with sizeOfConst c0l, sizeOfConst
c0r, c0l, c0r, c1l, c1r, e1l, and e1r respectively. We discharge the left hand side
of THMI’s implication. This gives us fixed points c2l and c2r. We now perform
a boolean case analysis on the values of the comparisons ceq c0l c1l and ceq

c0r c1r in the expanded iterate term. This gives four cases, of which we can
discharge all but the third subgoal easily. These cases are:

Case 1: ceq c0l c1l and ceq c0r c1r. That is, both the left and right hand
side of the lattice have reached their fixed points c0l == c1l == c2l and
c0r == c1r == c2r. Following this, we have to compute the output for
the LetRec (c0l,e0l,f0l). If cnl is the fixed point, this may be done by
instantiating a THMR induction hypothesis with cnl::envl and f0l, etc. This
proves this case for the LetRec.

Case 2: ceq c0l c1l but ceq c0r c1r == false. The left hand side fixes, but
the right hand side has not reached its fixed point yet. This case proceeds
as 1 above. The fact that the right hand side has not reached a fixed point
does not matter, because we have already instantiated THMI so that we
know that the fixed points will be c2l and c2r. Conceptually it might have
been clearer to instantiate THMI after the case analysis, but this would have
meant duplicating the instantiation effort.

Case 3: ceq c0l c1l == false and ceq c0r c1r == true. The left hand side
iterates and the right hand side fixes. This case cannot occur, and we
derive a contradiction from the hypotheses as follows. We know that cle
c0l c1l, cle c0r c1r (this follows from ceq c0r c1r and the reflexivity of
cle), cle c0l c0r, cle c1l c1r. These correspond to arrows 1, 2, 3 and
a in figure 4.4. In fact, c1r is equal to c0r. Moreover, anything less than
bottom must be equal to bottom, so that c1l is equal to bottom. This
contradicts with
ceq c0l c1l == false.

Case 4: ceq c0l c1l == false and ceq c0r c1r == false. Both sides have
not arrived at their fixed points yet. This is proved as case 1.

4.3. RESULTS ABOUT THE EMBEDDING 111

This concludes the proof of the THMR case of the LET REC.
We will now show how to prove the invariant THMI on iterate (premise 2

on page 108.)

... ⊢ ∀n0l,n0r,c0l,c0r,c1l,c1r,e1l,e1r.

THMI#(n0l,n0r,c0l,c0r,envl,envr,e0l,e0r,c1l,c1r,e1l,e1r,typeOfConst c0l)

We do a general natural number induction on both n0l and n0r. This corre-
sponds to an induction on the size of the constants c0l and c0r because all other
subexpressions of the LetRec constructors remain unchanged. It may also be
regarded as an induction on the height of the derivation tree, because the size of
the approximation indicates the maximum number of iterations which may be
computed using the approximation. This gives the following total of induction
hypotheses:

1: ∀m. m < nl == true → ∀nr,e,f,t. THM#(m,nr,e,f,t)

2: ∀m. m < nr == true → ∀e,f,t. THM#(nl,m,e,f,t)

3: ∀f,t. THM#(nl,nr,e0l,f,t)

4: ∀t. THM#(nl,nr,e0l,e0r,t)

5: ∀m. m < n0l == true → ∀n0r,c0l,c0r,c1l,c1r,e1l,e1r.

THMI#(m,n0r,c0l,c0r,envl,envr,e0l,e0r,c1l,c1r,e1l,e1r,typeOfConst c0l)

6: ∀m. m < n0r == true → ∀c0l,c0r,c1l,c1r,e1l,e1r.
THMI#(n0l,m,c0l,c0r,envl,envr,e0l,e0r,c1l,c1r,e1l,e1r,typeOfConst c0l)

7: nl == sizeOfExpr (LetRec (c0l,e0l,f0l))

8: nr == sizeOfExpr (LetRec (c0r,e0r,f0r))

9: n0l == sizeOfConst c0l

10: n0r == sizeOfConst c0r

⊢ THMI#(n0l,n0r,c0l,c0r,envl,envr,e0l,e0r,c1l,c1r,e1l,e1r,typeOfConst c0l)

As usual we have omitted existence conditions and most parts of the antecedents
of THM and THMI. Hypotheses 5, 6, 9, and 10 are new. Note that THMI rather
than THMR is to be proved. Where c0l and c0r were bottom values previously,
they may now be anything, although cle c0l c0r still holds of course. The
antecedent of THMI on the right hand side gives us arrows 1 and 4 of figure 4.4.
We use these in a horizontal instantiation of THMR to obtain arrows a and b.
This corresponds to the outputs of the reduce (c0l::envl) e0l and reduce

(c0r::envr) e0r. These are (c1l,e1l) and (c1r,e1r) respectively. In the THMR

case we could just instantiate the THMI hypothesis 5 to obtain the fixed points
c2l and c2r, because it was not an inductive hypothesis. Here, however, it is
shielded by the induction condition m < n0l. So we have to do the boolean case
analysis on ceq c0l c1l and ceq c0r c1r in the expanded iterate term first.
This gives us four cases, which are more involved than those of the THMR case.
These cases are:

Case 1: ceq c0l c1l and ceq c0r c1r. That is, both the left and right hand
side of the lattice have reached their fixed points. This subgoal is proved
by straightforward rewriting.

Case 2: ceq c0l c1l but ceq c0r c1r == false. The left hand side fixes, but
the right hand side has not reached its fixed point yet. We use a right ver-

112 CHAPTER 4. EMBEDDING PICOELLA IN LAMBDA

tical instantiation of THM hypothesis 1, which gives cle c1r c2r (arrow 6

of figure 4.4.) As c1l is equal to c0l we obtain cle c0l c1r by transitivity.
The ordering >= on sizes of constants strictly reflects cle. This is stated
as follows in Lambda:

⊢ ∀x,y. cle x y == true → sizeOfConst y <= sizeOfConst x

From cle c0r c1r we can therefore conclude that
sizeOfConst c1r <= sizeOfConst c0r holds. This, in conjunction with
the inequality of c0r and c1r, implies sizeOfConst c1r < sizeOfConst

c0r. This term is equal to sizeOfConst c1r < n0r, and this can be used
to obtain induction hypothesis 6. We use the least general of the two
THMI induction hypotheses because the value on the left hand side (c0l)
does not change, as hypothesis 5 requires. Thus, we instantiate m with
sizeOfConst c1r, discharge the induction condition, and instantiate c0l,
c0r, c1l, c1r, e1l, e1r with c0l, c0r, c0l, c1r, e1l, e1r respectively. After
discharging the antecedent of THMI, we conclude that iterate envl e0l
c1l == (c2l,e2l), and
iterate envr e0r c2r == (c3r,e3r). The former is equal to
iterate envl e0l c0l == (c0l,e1l) because we had already reached the
least fixed point c0l anyway. The goal we have to prove is the following.
(We have renamed ∃c2l,e2l,c2r,e2r on the right hand side to ∃c4l,e4l,c4r,e4r
to avoid variable name clashes.)

∃c4l,e4l,c4r,e4r. iterate envl e0l c1l == (c4l,e4l) ∧
iterate envr e0r c1r == (c4r,e4r) ∧...

Using iterate’s definition, and the induction hypotheses above, this may
be rewritten to

∃c4l,e4l,c4r,e4r. (c0l,e1l) == (c4l,e4l) ∧
if ceq c1r c2r then (c2r,e2r) else (c3r,e3r) == (c4r,e4r) ∧...

This may be proved easily by a boolean case analysis on ceq c1r c2r
followed by rewriting.

Case 3: ceq c0l c1l == false and ceq c0r c1r == true. The left hand side
iterates, and the right hand side fixes. We cannot derive a contradiction
here, as we did for the THMR case. The same line of attack is used as in
case 2. Instead of the right vertical instantiation followed by the use of
induction hypothesis 6, we use a left vertical instantiation and induction
hypothesis 5.

Case 4: ceq c0l c1l == false and ceq c0r c1r == false. Both sides have
not arrived at their fixed points yet. This is a combination of cases 2
and 3 above; first we use a left vertical instantiation of the THM induction
hypothesis 1. This is followed by a right vertical instantiation of hypoth-
esis 1. The THMI hypothesis 5 (both the left hand and right hand side
change) can then be instantiated. Two boolean case analyses are required
to discharge this subgoal.

4.3. RESULTS ABOUT THE EMBEDDING 113

This concludes the LET REC part of the monotonicity proof.

The remainder of the monotonicity proof proceeds without any further com-
plications.

A Post Mortem of the Proof

The proof described above is complex because the induction is not straightfor-
ward, and several different induction hypotheses must be instantiated a number
of times. The proof could probably be simplified by changing the definition of
reduce to iterate directly, without using the auxiliary function iterate (see
page 90.) This would allow us to dispense with the inductions on n0l and n0r,
because these would be subsumed by the inductions on nl and nr. Although we
can remove THMI from the statement of THM, this introduces a problem concern-
ing well-typedness. At the moment, only LET REC expressions with a bottom
approximation are well-typed, but using a fixed point computation without
iterate will introduce non-bottom approximations. This will complicate the
statement of the theorem because we have to introduce a less stringent typing
function, and apply it when we are inside a fixed point computation. Moreover,
it will be harder to state the ‘vertical’ invariants on the fixed point induction
because they are now mixed up with reduce, rather than being localised around
iterate. It seems likely that, although the new proof will contain less nested
inductions it will not be very much simpler, because it follows the same principle
as the current proof and the notational difficulties are transferred from iterate

to reduce.

The current proof contains a large number of nested inductions and case
analyses. Most often, a natural number induction on size, and a structural
induction are really aspects of one induction. This induction is more general
than the structural induction, but cannot be expressed directly. Moreover,
nested inductions on expressions which have the same shape do not introduce 64
subgoals, but only eight, so that this too makes the proof seem more complicated
than it really is. We have a total of 10 nested inductions when dealing with the
fourth case of the THMI subgoal of the LET REC:

• natural number induction on nl (1 case)
• natural number induction on nr (1 case)
• structural expression induction on e0l (8 cases)
• structural expression induction on e0r (8 cases)
• natural number induction on n0l (1 case)
• natural number induction on n0r (1 case)
• boolean case analysis on ceq c0l c1l (2 cases)
• boolean case analysis on ceq c0r c1r (2 cases)
• boolean case analysis on ceq c1l c2l (2 cases)
• boolean case analysis on ceq c1r c2r (2 cases)

Although it seems we could have 1024 cases, we never have more than 17 sub-
goals in the actual proof.

114 CHAPTER 4. EMBEDDING PICOELLA IN LAMBDA

A complexity inherent in the proof is that we need to use two squares in
figure 4.4. That is, we cannot say that every square is ordered because ple e0l
e1l and ple e0r e1r do not hold. For this reason we have to supply the interme-
diate outputs of reduce (c0l::envl) e0l and reduce (c0r::envr) e0r and the
related ordering relations. This makes the statement of THMI so unwieldy. An
additional problem is that a large number of properties are proved at the same
time: reduce preserves shape, type, ordering between e0l and e1l, as well as the
ordering between e1l and e1r. Most of these properties are interdependent, and
even if they weren’t it would be very tedious to do essentially the same proof
over and over again. We intended to make the proof schematic in an extra in-
variant P, which could later be instantiated with a desired operator or function.
In principle it would be possible to derive the minimal properties which P would
need to obey to be used as an invariant on reduce and iterate. After some
initial difficulties we decided it made more sense to try to prove the theorem
in the above form first, and maybe later try to extend it. Finally, as most
properties must be preserved by iterate to be any use for reduce they had
to be mentioned at least five times. (1) To hold between the inputs of reduce
(P#(xil,xir)), (2) to hold between the outputs of reduce (P#(x(i+1)l,x(i+1)r)),
(3), (4) similarly for iterate, and (5) to hold between inputs and outputs of
iterate (e.g. P#(xil,x(i+1)l).)

4.3.3 Some Corollaries

We will now state some results which follow from the monotonicity of reduce.
The proofs are generally straightforward. The monotonicity theorem as proved
above is very unwieldy. Some corollaries stating the monotonicity of reduce
and iterate separately, and the monotonicity in single arguments have also
been given.

The following result states that reduceSeq is total, monotone, preserves
type and shape. The statement is much like THMR, and we will not go into any
detail explaining it.

4.3. RESULTS ABOUT THE EMBEDDING 115

⊢ ∀envl,envr,e0l,e0r,inp1,inp2,t1,t2.
lle inp1 inp2 == true ∧
length inp1 == length inp2 ∧
(∀i. i < length inp1 == true →

typeOfConst (elem inp1 i) == t1 ∧
typeOfConst (elem inp2 i) == t1) ∧

lle envl envr == true ∧
ple e0l e0r == true ∧
shapeEq e0l e0r == true ∧
map typeOfConst envl == map typeOfConst envr ∧
typeOfExpr (t1::map typeOfConst envl) e0l == (t2,true) ∧
typeOfExpr (t1::map typeOfConst envr) e0r == (t2,true) →

∃out1,e1l,out2,e1r.
lle out1 out2 == true ∧
(∀i. i < length out1 == true →

typeOfConst (elem out1 i) == t2 ∧
typeOfConst (elem out2 i) == t2) ∧

length out1 == length inp1 ∧
length out2 == length inp2 ∧
reduceSeq envl e0l inp1 == (out1,e1l) ∧
reduceSeq envr e0r inp2 == (out2,e1r) ∧
ple e1l e1r == true ∧
shapeEq e1l e1r == true ∧
shapeEq e0l e1l == true ∧
shapeEq e0r e1r == true ∧
typeOfExpr (t1::map typeOfConst envl) e1l == (t2,true) ∧
typeOfExpr (t1::map typeOfConst envr) e1r == (t2,true))

We can generalise the theorem by not requiring inp1 and inp2 to be of the same
length, but this means we lose ple e1l e1r == true from the conclusion. We
also have to modify

(∀i. i < length inp1 == true → typeOfConst (elem inp1 i) == t1 ∧
typeOfConst (elem inp2 i) == t1)

to

(∀i. i < length inp1 == true → typeOfConst (elem inp1 i) == t1) ∧
(∀i. i < length inp2 == true → typeOfConst (elem inp2 i) == t1)

and a similar change in the conclusion.
An important meta-result is that iterate computes a fixed point. We define

FIXPOINT and LEASTFIXPOINT as follows.

val FIXPOINT#(c,env,e) = ∃f. reduce (c::env) e == (c,f);

val LEASTFIXPOINT#(c,env,e) =

FIXPOINT#(c,env,e) ∧
(∀d. typeOfConst d == typeOfConst c →

FIXPOINT#(d,env, e) → cle c d == true);

116 CHAPTER 4. EMBEDDING PICOELLA IN LAMBDA

We proved that iterate computes a fixed point provided its second approxi-
mation is more defined than its first approximation. This condition guarantees
convergence.

⊢ ∀envl,c0l,e0l,c1l,e1l,c2l,e2l.

typeOfExpr (map typeOfConst (c0l :: envl)) e0l ==

(typeOfConst c0l,true) ∧
reduce (c0l :: envl) e0l == (c1l,e1l) ∧
cle c0l c1l == true ∧
iterate envl e0l c0l == (c2l,e2l) → FIXPOINT#(c2l,envl,e0l)

If we start with the bottom approximation, we compute the least fixed point:

⊢ ∀envl,c0l,e0l,c1l,e1l.

typeOfExpr (map typeOfConst (c0l::envl)) e0l ==

(typeOfConst c0l,true) ∧
ceq (bottomOfConst c0l) c0l == true ∧
iterate envl e0l c0l == (c1l,e1l) → LEASTFIXPOINT#(c1l,envl,e0l)

We can also prove that if c1l lies between the first approximation c0l and its
fixed point c2l, then c2l is also c1l’s fixed point.

An Alternative Dynamic Semantics

We have encoded an alternative dynamic semantics for expressions. It only
differs from reduce in the If statement through its use of the greatest lower
bound rather than the bottom value. It is the greatest lower bound semantics
reduceGlb of Section 3.3.5.

fun reduceGlb l (If (e1, e2, e3, ch)) =

(fn (c1, f1) =>

(fn (c2, f2) =>

(fn (c3, f3) =>

(case match ch c1 of

uu => glb c2 c3 |

tt => c2 |

ff => c3,

If (f1, f2, f3, ch)))))

(reduceGlb l e1) (reduceGlb l e2) (reduceGlb l e3) | ...

and iterateGlb l e c = ...

and againGlb l e d = iterateGlb l e d;

It delivers the greatest lower bound of the two branches rather than the bottom
value when the output of e1 is not defined enough to decide between the THEN

and ELSE branches. As the bottom value bottomOfConst c2 is smaller than
anything, in particular glb c2 c3, we can deduce that the result of reduceGlb
is more defined than that of reduce on the same inputs. We proved the follow-
ing result:

4.4. PROOF PROGRAMMING AND LARGE PROOFS 117

⊢ ∀e0l,envl,envr,t.

lle envl envr == true ∧
map typeOfConst envl == map typeOfConst envr ∧
typeOfExpr (map typeOfConst envl) e0l == (t,true) →

∃c1l,e1l,c1r,e1r.
reduce envl e0l == (c1l,e1l) ∧
reduceGlb envr e0l == (c1r,e1r) ∧
cle c1l c1r == true ∧
ple e1l e1r == true ∧
shapeEq e1l e1r == true ∧
shapeEq e0l e1l == true ∧
shapeEq e0l e1r == true ∧
typeOfConst c1l == t ∧
typeOfConst c1r == t ∧
typeOfExpr (map typeOfConst envl) e1l == (t,true) ∧
typeOfExpr (map typeOfConst envr) e1r == (t,true)

Thus reduce is a more pessimistic semantics than reduceGlb. A similar the-
orem has been proved relating iterate and iterateGlb. We also proved the
monotonicity result THM of reduce for reduceGlb.

4.3.4 Future Work

One result which would be useful to prove, would be under which circumstances
we do not get undefined values as outputs from a circuit. Three conditions
come to mind immediately: (1) no undefined inputs, (2) no explicit undefined
constants in the circuit description (other than initial values for LET REC state-
ments), (3) no delayless feedbacks. This would be a non-trivial theorem to
prove because the proof does not reflect the structure of the circuit, and does
not seem to lend itself to a structural induction. However, the predicates cor-
responding to the second and third conditions must be defined structurally on
the circuit. A syntactic condition on the circuit structure which expresses this
would be very useful. It would allow a simpler match function to be used, which
can use two-valued boolean logic, and can be translated into equality and truth
value predicates. This would allow us to rewrite symbolic evaluations to more
tractable expressions (see, for example, Section 5.1.5.)

It would also be interesting to try to implement some other alternative se-
mantics for picoella and try to formally prove their interrelationships.

Another area which we have so far ignored is the existence of normal forms
for choosers and expressions. Davies proved some results concerning expression
normal forms and equivalence checking in [47]. In Section 5.3 we prove some
basic properties about behaviour equivalence of expressions.

4.4 Proof Programming and Large Proofs

In this section we will describe our experience with performing large proofs in
the interactive proof assistant Lambda. Theorem proving in a proof system,

118 CHAPTER 4. EMBEDDING PICOELLA IN LAMBDA

especially an interactive proof assistant, often has the flavour of programming.
The recent term ‘proof engineer’ is a good indication of the type of work car-
ried out in a proof system. In common with conventional programming the
early days of proof programming were not interactive (cf. Stanford lcf [127].)
The Edinburgh lcf introduced the meta-language ml so that proofs could be
provided interactively [77]. A great leap was made forward by the provision
of tactics and tacticals which allowed backward theorem proving [130]. Rather
than coding a proof in terms of basic inference rules the proof structure became
clearer through the use of higher-order operations such as tactics and tacticals
[40]. Tacticals provided sequencing, choice and repetition operators, correspond-
ing to high-level programming language constructs. Paulson’s Isabelle [143, 142]
pioneered the use of combining rules by unifying the conclusion of one rule with
the premise of another. Lambda uses the same approach to the construction of
proofs as Isabelle. However, theorem proving in Lambda still has an ‘assembler
programming’ feel to it. Consider the proof of the reflexivity of cle.

pushGoal pe "G // H ⊢ ∀x. cle x x == true";

apprl allR;

apprl constInduct;

(* Premise 1: Cons *)

applyTac cleTac;

apprl eqReflL’;

permg[2];

apprl eqReflL’;

applyTac (rewriteTac []);

permg[2];

apprl zeroExistsL;

apprl eqTotalR;

(* Premise 2: CoTuple *)

applyTac cleTac;

val cleReflT = popGoal();

This sequence of commands may be interpreted as a program computing the
proof for the theorem. All steps are at a low level, but a basic hierarchy is al-
ready present through the use of derived rules such as eqReflL’ (the reflexivity
of eq.) The use of cleTac, and rewriteTac also lifts the conceptual level from a
purely rule-based level. Using tacticals we can implement this proof by a single
tactic.

doRules [allR,constInduct] thenT cleTac

thenR eqReflL’ thenG [2] thenR eqReflL’ thenT (rewriteTac [])

thenG [2] thenRL [zeroExistsL,eqTotalR]

(Section B.2 contains some figures about the proportion of permutations and
rules, number of rules per tactic, etc.) Note however, that there are a number
of explicit numbers in the permutation tactics. These correspond to the posi-
tions of the hypotheses in the hypothesis lists. This form of absolute addressing
limits the reusability of the tactic. Often, the first statement of a theorem is
incorrect. This means that we have to amend the statement and rerun the

4.4. PROOF PROGRAMMING AND LARGE PROOFS 119

proof, possibly with changes. Adding a hypothesis, for example, results in all
absolute addresses being out by one. While this is easy to fix (at the start of
the proof we move the new hypothesis to the end of the hypothesis list, so that
it does not interfere with the old proof, and we only move it forward when it is
required) the proof should be independent of this sort of operation. By provid-
ing some sort of symbolic addressing we can make the proof more readable and
more robust. We created two functions permgTac’ and permhTac’ which take
a string, corresponding to a variable name or initial segment of a hypothesis,
as input and generate the appropriate absolute address. The above tactic could
be rewritten as follows.4

doRules [allR,constInduct] thenT cleTac thenG’ ["r1’"]

thenR eqReflL’ thenG’ ["r’"] thenR eqReflL’ thenT (rewriteTac [])

thenG’ ["r’"] thenRL [zeroExistsL,eqTotalR]

Non-existence hypotheses can be referred to by a unique initial segment. If
cle r1’ r1’ == true and cle r’ r’ == true are two hypotheses, the first
can be looked up as permhTac’["cle r1"]. A severe drawback of the current
system is that it depends on the way in which hypotheses are printed. This
is particularly a problem for variables such as r1’ and r’. When a new vari-
able r is introduced previously present rs may be renamed [64, Section 2.8].5

A method to unambiguously identify variables and hypotheses is needed. This
helps particularly in large proofs such as the monotonicity of reduce, described
previously. We can have a large number of variables and hypotheses: at one
point 51 existence hypotheses and 83 ‘conventional’ hypotheses were present in
the first premise alone! It may be useful to provide support to give explicit
names such as ‘indhyp’, ‘isbottom’ to individual hypotheses so that they may
be retrieved by name, rather than their variable position in the hypothesis list,
or the manner in which they are printed. This, of course, represents introducing
variable names in our proof programming language, which contain the varying
location on which the premise is currently situated. The lego proof system
supports the explicit naming of hypotheses in exactly this manner [116].

As with conventional (interactive) programming, after a proof command is
entered it will often fail, either due to type-checking, or the failure of a rule
or tactic. A slightly modified version is then tried until a working version is
obtained. We advance a number of proof steps and discover that we made
an error some steps ago. We have to undo those steps, modify the tactic,
and possibly rerun the proof from that point. In such an interactive mode of
proving it becomes hard to keep track of old versions of proofs, old versions of

4This is not quite true, as in our implementation the position of r1’ and r’ is defined
statically at the start of the tactic. In the example there are no such variables yet, and the
tactic will fail with Exception- PrintStringNotFound "E r1’" raised. Nevertheless, even
with this limitation the current implementation has made proofs considerably more readable.

5Lambda uses rule connections [64, Section 2.9] to ensure that names don’t get arbitrarily
renamed when new names are introduced. This makes proof output much more understand-
able, but does not help us here. A consequence of using the way in which hypotheses are
printed out is that proofs of different premises are not commutative. This is due to the fact
that variable names may be dependent on the order in which the proof is performed.

120 CHAPTER 4. EMBEDDING PICOELLA IN LAMBDA

the statement of the theorem (most initial statements will be incorrect), etc.
[105]. At a very basic level a history mechanism to help with the rerunning
of (modified) previous commands is useful. At a higher level, proof scripts
should be automatically generated. A proof script containing the verbatim
input is better than nothing, but we would prefer to have undone commands
automatically deleted from the proof script. Some systems allow proof tree
fragments to be saved and re-used in other proofs [154]. Such an encapsulation
facility would be useful even at a command-line level. Note that a proof fragment
does not necessarily correspond to a lemma because a proof fragment may have
side effects to expressions which are not captured in a lemma. A replay facility
(which includes interactive actions such as selecting expressions to be unified
in a pop-up window) is useful in this context also. At a basic level cutting
and pasting of proof scripts works, but a more advanced mechanism should be
available. Saxe et al. [158] describe the use of annotations in the Larch rewrite
system. If the new proof does not obey the annotations to the proof it is halted
at that point, even though the proof script may still be able to (incorrectly)
proceed. The process of rerunning proofs which we believe to be correct, but
don’t want to check at this moment can benefit from recent work by Boulton
[20]. A proof may be lazy which allows its execution to be deferred. It can be
evaluated off-line afterwards to ensure that the proof is correct, and a proper
(non-lazy) theorem is then obtained.

A number of proof systems have provided graphical user interfaces to a proof
system. These include the Interactive Proof Environment ipe of Ritchie [154,
153], the Veritas proof system [87], and the Mural proof environment [134]. A
graphical interface per se does not resolve our problems, although abilities such
as showing the ‘shape’ of a proof in the form of a (condensed) proof tree are very
useful. In our opinion it is crucial that not all interaction with the proof engine
needs to be performed via a ‘point and click’ interface. It must be possible to
enter tactics such as those displayed above in one step otherwise the system will
become too frustrating to use for experienced users. This corresponds to the
ability to enter input in the largest chunks still comprehensible to the user, and
at a sufficiently high level of abstraction.

Although version control of theorem statements and their possible proofs
have already been mentioned in our opinion this is very important area of re-
search. Proofs for hardware verification are generally large and boring ([41],
Section 4.3.2) rather than small and interesting. These sort of problems have
been studied for software engineering and they will have to be addressed if the-
orem provers are to be used on industrial-sized problems. Thus proof support
needs to be provided in the form of an integrated proof support environment
where proof documentation and annotation, proof dependency graphs, version
control, library, and data base support are combined. Lambda supports a data
base through the use of hierarchical persistent data bases. There is no struc-
turing of data (e.g. lemmas, rules, tactics) in this data base other than explicit
structure provided by the user. A notion of a theory would be very useful, espe-
cially if they may be hierarchical and parametrised. Veritas [85, 87] and hol

[79] both support hierarchical theories. Windley has done some work on pro-

4.5. CONCLUSIONS AND FUTURE WORK 121

viding parametrised theories for hol [183, 184]. obj [68] and lego [116] both
support parametrised theories. Mural allows hierarchical theories, alternative
proofs, partial proofs, etc. [11, 134].

4.5 Conclusions and Future Work

The embedding of picoella in Lambda turned out to be a sizable effort. This
was partly due to the steep learning curve associated with the use of a proof
system. Moreover, the monotonicity proof of the dynamic semantics had to be
encoded in a non-trivial manner. A number of interesting properties have been
proved about the standard picoella semantics reduce, and one alternative se-
mantics reduceGlb. It would be challenging to formalise some of the alternative
semantics described in Section 3.3.5 and try to prove some relationships between
them.

Unfortunately, due to the different logic of later versions of Lambda, the
current system is dated. Moreover, if a production quality system is required a
larger subset of ella must be tackled. It would be better to treat the current
system as a prototype, and discard it, rather than try to build on top of it. This
cannot be seen as a shortcoming of the current embedding the explicit purpose
of which was to explore a minimalist approach to combining a subset of ella

and a proof system.

122 CHAPTER 4. EMBEDDING PICOELLA IN LAMBDA

Chapter 5

Case Studies

In this chapter we discuss how the embedded semantics for picoella may be
used in practice. The first section describes how familiar looking operational
semantics rules are derived and used as a powerful simulator. In Section 5.2
we show how circuits may be synthesised interactively. We also define a simple
hardware synthesis function. Section 5.3 briefly shows how behaviour preserving
transformations can be proved correct using the embedding. Finally future work
is discussed.

5.1 Operational Semantics Based Symbolic Sim-

ulation

In this section we describe how the embedded static and dynamic semantics
may be used as one would use a ‘paper semantics’. We can check semantic
derivations, or use it as a simulator. The work in this section has been presented
previously in [73].

Using the definitions of the static and dynamic semantics and the derived
properties presented in the previous chapter, the operational semantics rules
described in Section 3.3 may be derived within Lambda. This is in contrast
with recent work which uses the hol proof assistant to embed a semantics [175].
There the operational semantics rules are the basis from which rewrite rules are
derived.

Consider rule reduceSeqCons (3.24 of Section 3.3.3):

c, Γ ⊢ program ⇒ c′, program′ t, Γ ⊢ program′ ⇒ t′, program′′

c :: t, Γ ⊢ program ⇒ c′ :: t′, program′′

It takes the first element of the input stream, and evaluates the circuit with this
input. The program is then evaluated with the remainder of the input stream.
Recall from page 90 that the function reduceSeq implements the time seman-
tics of picoella. The relevant clause of the definition of reduceSeq is:

123

124 CHAPTER 5. CASE STUDIES

fun reduceSeq l e (h::t) =

(fn (c1, f1) =>

(fn (c2, f2) => (c1::c2, f2))

(reduceSeq l f1 t)) (reduce (h::l) e) | ...

The corresponding rewrite rule which is returned by Lambda is

⊢ reduceSeq l e (h::t) ===

when#(E t, (fn (c,f) =>

(fn (d,g) => (c::d,g))

(reduceSeq l f t)) (reduce (h :: l) e))

(Strictly speaking this is the optimised rule delivered by processFun [64, Sec-
tion 3.2].) From this we would like to derive something resembling the ‘paper’
version. This is not difficult; but we have to decide on the underlying repre-
sentation for our embedded semantics rules. The rule reduceSeqCons below
corresponds to reduceSeqCons above. Names of rules in the typewriter font
denote the embedded rules, those in roman font the ‘paper’ rules.

The format of the embedded operational semantics rule below is only one
possible convention we could have used. The differences are mainly pragmatic
and do not affect any of the results presented here.

E instream , E env , E circ1 , E t

⊢ reduceSeq env circ1 instream == (outstream ,circ2)

E (i1 :: env), E circ , E t

⊢ typeOfExpr (map typeOfConst (i1 :: env)) circ == (t ,true) ∧
reduce (i1 :: env) circ == (o1 ,circ1)

E (i1 :: instream), E env , E circ , E t

⊢ reduceSeq env circ (i1 ::instream) == (o1 ::outstream ,circ2)

To evaluate a program circ with a non-empty input stream i1 ::instream , the
head of the input stream is pushed onto the environment env . The environment
Γ{(name, c)} in the paper rules is encoded as (i1 ::env). (Strictly speaking
reduceSeqCons also implements rule 3.26 dealing with the INPUT statement.)
The expression circ is then evaluated within this time step. The remainder of
the input stream is then evaluated using the new circuit circ1 . Finally, the
output o1 is prepended to the resulting output stream.

Note that the first premise deals with both the static and dynamic seman-
tics within one time step. The dynamic semantics operates only on well-typed
expressions. As both semantics are defined on the structure of expressions the
static and dynamic semantics may be conveniently evaluated simultaneously.

In the remainder of this chapter we will display embedded operational se-
mantics rules in the following format.

⊢ (instream , env ⊢ circ1 ⇒ (outstream ,circ2))

⊢ (i1 :: env ⊢ circ ⇒ (o1 ,circ1) : t)

⊢ (i1 :: instream , env ⊢ circ ⇒ (o1 :: outstream ,circ2))

5.1. OPERATIONAL SEMANTICS BASED SYMBOLIC SIMULATION 125

This is reduceSeqCons. The input streams (i1 :: instream and instream)
are shown for reduceSeqCons and reduceSeqNil only. A pretty-printer has
been implemented which outputs rules in this format. However, as discussed in
Sections 4.2.1 and 4.2.2 there are some differences between picoella on paper
(Section 3.3) and the embedded picoella. The de Bruijn encoding of vari-
ables is the main change. To increase legibility, expressions have been manually
converted from a prefix format (e.g. Let (e,Index1 (Var 0))) to infix format
(LET e IN (Var 0)[1].) Constant to expression conversions and (constant) tu-
ple constructors have been omitted where this does not introduce ambiguities.
For example,
Delay (CoTuple (c,d), Tuple (Var 0,Var 1)) is shown as
DELAY ((c,d), (Var 0,Var 1)). However, as Lambda provides no quotation/-
anti-quotation facilities, all input must still use the raw syntax.

Certain rules contain premises dealing solely with the static semantics, or
only with the dynamic semantics. Consider the rule reduceIf’ for the multi-
plexor.

[6] ⊢ E t

[5] ⊢ o3 == (case match chooser out of

uu => bottomOfConst o1 | tt => o1 | ff => o2)

[4] ⊢ chooser : t

⊢ (env ⊢ branch2 ⇒ (o2 ,branch2’) : t1)

⊢ (env ⊢ branch1 ⇒ (o1 ,branch1’) : t1)

⊢ (env ⊢ circ ⇒ (out ,circ’) : t)

⊢ (env ⊢ IF circ MATCHES chooser THEN branch1 ELSE branch2 ⇒
(o3 ,IF circ’ MATCHES chooser THEN branch1’ ELSE branch2’) : t1)

Premises [4] and [6] deal only with the static semantics: the choosers must
be well-typed and have (denoting) type t . Note that branch1 and branch2
must have the same type t1 , which is also the type of whole IF. In premise 5
the output of the IF is computed; this concerns the dynamic semantics only.
The three cases (match, no match, and don’t know) are represented in the case
statement by tt, ff, and uu respectively (see Section 4.2.3.) The IF is strict;
both branches must always be evaluated. Four other rules dealing with the IF

are particular instantiations of this rule, as we shall see later.

All derived operational semantics rules are listed with a brief explanation in
appendix C.

It is important to realise that circ , t , etc. are meta-variables. The reduceIf’
rule is really a rule schema, which may be instantiated in an infinite number of
different ways. When it is applied to a particular IF statement such as
IF hi MATCHES hi THEN lo ELSE hi, circ , chooser , branch1 and branch2
will be unified with hi, hi, lo, and hi respectively. This unification is reflected
in every place where these variables occur in the rule. The unification works both
ways: meta-variables in a rule are unified with the current goal so that the rule
applies, but meta-variables in the goal may also be unified (specialised, made
more concrete) for the rule to apply. Recall that in Lambda meta-variables

126 CHAPTER 5. CASE STUDIES

may be flexible or rigid (Section 4.1.1.) The former are used to stand for some
term to be determined as the proof proceeds, the latter require proofs to be
schematic in the variable. Rigid variables ensure that a general result, rather
than an instantiation of the result, is proved. Varying the flexibility of variables
allows the use of embedded operational semantics rules in various ways, as we
shall see below.

5.1.1 A Simple AND Gate

An AND gate may be described in picoella as

IF e MATCHES (hi,hi) THEN hi ELSE lo

or, using the syntax of the embedding:

If (e, Const hi, Const lo, T (C hi, C hi));

Here e is the input to the circuit. The abbreviations bit, hi, and lo have been
defined as Cons(0,1), Cons(1,1), and Cons(2,1) respectively. All of bit, hi
and lo have type Type 1. We will simulate an AND gate with (hi,lo) as
input using the reduceIfFf and reduceConst rules. The rule reduceIfFf is
comparable to the rule reduceIf’ of the previous page, but always chooses the
ELSE branch.

***** Level 1 *****

⊢ (env ⊢ IF (hi, lo) MATCHES (hi,hi) THEN hi ELSE lo ⇒
(lo,IF (hi, lo) MATCHES (hi,hi) THEN hi ELSE lo) : Type 1)

⊢ (env ⊢ IF (hi, lo) MATCHES (hi,hi) THEN hi ELSE lo

⇒ (lo,IF (hi, lo) MATCHES (hi,hi) THEN hi ELSE lo) : Type 1)

> apprl reduceIfFf;

***** Level 2 *****

[6] ⊢ E t

[5] ⊢ match (hi, hi) out == ff

[4] ⊢ (hi, hi) : t

[3] ⊢ (env ⊢ lo ⇒ (lo, lo) : Type 1)

[2] ⊢ (env ⊢ hi ⇒ (o1 , hi) : Type 1)

[1] ⊢ (env ⊢ (hi, lo) ⇒ (out , (hi, lo)) : t)

⊢ (env ⊢ IF (hi, lo) MATCHES (hi,hi) THEN hi ELSE lo

⇒ (lo,IF (hi, lo) MATCHES (hi,hi) THEN hi ELSE lo) : Type 1)

We now have six subgoals to prove, the first of which deals with the input to the
IF. The second and third subgoals compute the THEN and ELSE branches respec-
tively. As stated earlier, both branches must be evaluated, because the result
circuit is always used to describe the IF at the next time step. Note, however,
that the value output o1 does not appear in the conclusion of reduceIfFf. It is
for this reason that it has not been constrained to (unified with) a concrete term
such as lo. The variable branch1 , in contrast, did appear in the conclusion of

5.1. OPERATIONAL SEMANTICS BASED SYMBOLIC SIMULATION 127

the reduceIfFf rule and has been unified with the corresponding expression
(hi) in the goal it was applied to. The fourth premise states that the chooser
must be well-typed; in this case it has type t . Like o1 , t is an as yet uninstan-
tiated meta-variable. Evaluating premise 1 forces t to become a tuple type. We
also have to prove that the type denotes in premise 6. [5] expresses the con-
straint that we choose the ELSE part of the IF; the result out of the input circuit
must not match with the chooser. We may now apply reduceTuple to reduce
the tuple in premise 1 to two subgoals. Following this we apply reduceConst to
premises one to four. (Recall that constants are converted to expressions using
Const, page 82.)

> applyTacn [1,2,3,4] (doRule reduceConst);

***** Level 4 *****

⊢ E (TyTuple (t1 ,t2))

[6] ⊢ match (hi, hi) (hi,lo) == ff

⊢ (hi, hi) : TyTuple (t1 ,t2)

[4] ⊢ lo : Type 1

[3] ⊢ hi : Type 1

[2] ⊢ lo : t2

[1] ⊢ hi : t1

⊢ (env ⊢ IF (hi, lo) MATCHES (hi,hi) THEN hi ELSE lo

⇒ (lo,IF (hi, lo) MATCHES (hi,hi) THEN hi ELSE lo) : Type 1)

The tactical applyTacn l t applies tactic t to all premises in the list l. The
function doRule converts a rule into the tactic which applies the rule if it is ap-
plicable, and fails otherwise.1 A similar function tryRule, is the identity tactic
if the rule fails to apply. Functions tryRules and doRules operate on rule lists.

As mentioned earlier, the type of the chooser has been constrained to a less
general type TyTuple (t1 ,t2). Evaluating premises one and two will specialise
it further to TyTuple (Type 1,Type 1), as the type of hi and lo is Type 1. All
the subgoals, except [6], are now dealing with the static semantics, or typing
of terms.

The tactic application applyTacn [1,2,3,4] (doRule reduceHi elseR reduceLo)

discharges premises one to four. Using reduceMatchTac, a tactic which rewrites
expressions involving match, we prove premise six (of level 4.)

> applyTacn [2] reduceMatchTac;

***** Level 6 *****

⊢ E (TyTuple (Type 1,Type 1))

⊢ (hi, hi) : TyTuple (Type 1,Type 1)

⊢ (env ⊢ IF (hi, lo) MATCHES (hi,hi) THEN hi ELSE lo

⇒ (lo,IF (hi, lo) MATCHES (hi,hi) THEN hi ELSE lo) : Type 1)

1Unification is used when the rule is applied, not matching. Thus doRule is equal to
unifyTac rather than matchTac.

128 CHAPTER 5. CASE STUDIES

The tactic doRules [r1,r2] applies rule r1 and then applies r2 to all resulting
subgoals. Thus reduceC and reduceHi are applied to both subgoals resulting
from reduceT.

> applyTac (doRules[reduceT,reduceC,reduceHi]);

***** Level 7 *****

⊢ E (TyTuple (Type 1,Type 1))

⊢ (env ⊢ IF (hi, lo) MATCHES (hi,hi) THEN hi ELSE lo

⇒ (lo,IF (hi, lo) MATCHES (hi,hi) THEN hi ELSE lo) : Type 1)

> applyTac (doRules[reduceTyTuple,reduceType,reduceSn,reduce0]);

***** Level 8 *****

⊢ (env ⊢ IF (hi, lo) MATCHES (hi,hi) THEN hi ELSE lo

⇒ (lo, IF (hi, lo) MATCHES (hi,hi) THEN hi ELSE lo) : Type 1)

> val example1a = popGoal();

val example1a = ? : rule

The theorem is saved as example1a so that we can apply this derivation in one
step in the future.

While this is very instructive, it becomes tedious very quickly to do this sort
of proof by hand. Tactics may be used to great advantage in this sort of regular
reasoning. The whole previous example could have been done using one general
purpose tactic:

val OpSemTac = (repeatT (nonTrivT (tryRules OpSemRules))) thenT

(tryT (theoremT reduceMatchTac)) thenT

(tryT (theoremT reduceTypeTac));

applyTac OpSemTac;

This tactic repeatedly applies one or more of the standard operational se-
mantics rules until none apply. It then applies reduceMatchTac followed by
reduceTypeTac, to rewrite any typing subgoals. These last two tactics are
applied to a subgoal only if they discharge it.

The circuit as it stands is not very useful, as it deals with only one partic-
ular input. Moreover, we had to supply the output from the simulation at the
start! We will now quickly redo the example, but using meta-variables as out-
put. These will be flexible, so that they may be instantiated as we compute the
output for a particular answer. We will also use an abbreviation for the AND
gate. Recall that abbreviations are meta-level functions in the proof system
(Section 4.1.1.)

val bit = Cons (0,1);

val hi = Cons (1,1);

val lo = Cons (2,1);

val AND#(e) = IF e MATCHES (hi,hi) THEN hi ELSE lo;

When a new goal is to be proved, all meta-variables are rigid; they cannot be (in-

5.1. OPERATIONAL SEMANTICS BASED SYMBOLIC SIMULATION 129

advertently) instantiated. In general this is what is required, because the result
so proved is then more general. Every operational semantics rule has meta-
variables such as env , circ , and t , which are unified with the corresponding
expressions in the premise it is applied to. In this case we want to specialise
the meta-variables out , newcirc , and t if required, so we make them flexible
using the flex command. A pop-up menu shows the current subgoal, and one
selects subterms by clicking on them with a mouse. The flex command is then
automatically generated by Lambda, so that it may be included in proof scripts
for later use. First we unfold the abbreviation for AND.

> (* flex *)

***** Level 2 *****

⊢ (env ⊢ AND#(circ) ⇒ (out , newcirc : t)

⊢ (env ⊢ AND#(circ) ⇒ (out ,newcirc) : t)

> apprl ANDU;

***** Level 3 *****

⊢ (env ⊢ IF circ MATCHES (hi,hi) THEN hi ELSE lo ⇒
(out , IF circ’ MATCHES (hi,hi) THEN hi ELSE lo : t)

⊢ (env ⊢ AND#(circ) ⇒ (out ,AND#(circ’)) : t)

Note that the unfolding of the AND abbreviation affects the meta-variable new-
circ . It is instantiated with AND#(circ’) because it is flexible. This is exactly
what we want in this case; we do not want abbreviations to become expanded
from one time step to the next. One must be careful in using unification when
flexible meta-variables are present. Any rule which unifies with a particular
meta-variable will instantiate it; often unnecessarily or incorrectly. Tactics such
as safeOpSemAllTac’ on page 132 take great care to avoid this. A third rule
for the IF statement reduceIf can now be applied.

> apprl reduceIf;

***** Level 4 *****

⊢ E t 1

⊢ (hi,hi) : t 1

⊢ (env ⊢ lo ⇒ (o2 ,lo) : t)

⊢ (env ⊢ hi ⇒ (o1 ,hi) : t)

⊢ (env ⊢ circ ⇒ (out ,circ’) : t 1)

⊢ (env ⊢ AND#(circ) ⇒ (case match (hi,hi) out of

uu => bottomOfConst o1 | tt => o1 | ff => o2 ,AND#(circ’)) : t)

The rule reduceIf defers the computation of the output of the IF by delivering
a symbolic answer. In this case, however, we would like to have a concrete value
answer rather than an expression describing what happens in the most general
case. After undoing everything using undoAll() we prove the result we want
by flexing type t and circuit newcirc , expanding all the abbreviations using

130 CHAPTER 5. CASE STUDIES

applyTac (doRules[ANDU,hiU,loU,bitU]), finally followed by applyTac OpSemTac.
The tactic OpSemTac uses the rule reduceIf’ rather than reduceIf, so that the
required answer is obtained.

***** Level 5 *****

⊢ out == (case match (Cons (1,1), Cons (1,1)) out 1 of

uu => bottomOfConst (Cons (1,1)) |

tt => Cons (1,1) | ff => Cons (2,1))

⊢ (env ⊢ circ ⇒ (out 1,circ’) : TyTuple (Type 1,Type 1))

⊢ (env ⊢ AND#(circ) ⇒ (out ,AND#(circ’)) : Type 1)

> val reduceAND = popGoal();

val reduceAND = ? : rule

The abbreviations for hi etc. have been expanded so that this derived rule
reduceAND may be used in general contexts without any extra work. This de-
rived rule may be thought of as abbreviating the whole proof tree which was
generated to prove this rule. Derived rules may be used very effectively in a
hierarchical manner. Simulations may be speeded up by passing rules which
reduce subcircuits such as AND gates or adders in one step. An alternative
approach, is to write a tactic with the same effect. A tactic would actually
replay or recreate the proof tree, which would be as slow as rerunning the proof.
The application of a derived rule, in contrast, is as fast as the application of a
primitive rule.

5.1.2 Adding Time

All of the computations we have shown so far have been within a single clock
tick or time step. The following example shows how a delayed AND gate may
be simulated during two time steps. At every time step the value at the head
of the input stream is put on top of the stack. The expression Var 0 indicates
the first value on the stack or environment env . DELAY (c,e) is a unit delay
of expression e. Thus the circuit DELAY (bit,AND#(Var 0)) is an AND gate
which takes its input from the input stream, and whose output is delayed by
one time step. (reduceSeqCons was shown on page 124.)

> apprl reduceSeqCons;

***** Level 3 *****

⊢ ([(bit,lo)], env ⊢ circ1 ⇒ (outstream ,newcirc))

⊢ ((lo,lo) :: env ⊢ DELAY (bit,AND#(Var 0)) ⇒ (o1 ,circ1): t)

⊢ ([(lo,lo), (bit,lo)], env ⊢
DELAY (bit,AND#(Var 0)) ⇒ (o1 :: outstream ,newcirc))

5.1. OPERATIONAL SEMANTICS BASED SYMBOLIC SIMULATION 131

> apprl reduceDelay;

***** Level 4 *****

⊢ ([(bit,lo)], env ⊢
DELAY (out ,circ’) ⇒ (outstream ,newcirc))

[2] ⊢ bit : t

[1] ⊢ ((lo,lo) :: env ⊢ AND#(Var 0) ⇒ (out ,circ’) : t)

⊢ ([(lo,lo), (bit,lo)], env ⊢
DELAY (bit,AND#(Var0)) ⇒ (bit :: outstream ,newcirc))

Note that the output from the circuit is known even though the output from
the AND has not been computed yet. We reduce premise 1 using reduceAND so
that out becomes lo, and reduce the second premise using reduceBit.

> apprl reduceBit;

***** Level 7 *****

⊢ ([(bit,lo)], env ⊢
DELAY (lo,AND#(Var 0)) ⇒ (outstream ,newcirc))

⊢ ([(lo,lo), (bit,lo)], env ⊢
DELAY (bit,AND#(Var 0)) ⇒ (bit :: outstream ,newcirc))

We have now completed time zero, and can compute the next time step. Note
that the description of the delay now has state lo, which was the output from
the AND gate at the previous time step. The second time step may be dealt
with in exactly the same manner, resulting in the following:

***** Level 10 *****

⊢ ([], env ⊢ DELAY (lo,AND#(Var 0)) ⇒ (outstream ,newcirc))

⊢ ([(lo,lo), (bit,lo)], env ⊢
DELAY (bit,AND#(Var 0)) ⇒ (bit :: lo :: outstream ,newcirc))

The final application of reduceSeqNil closes the input stream. Note that only
at this point do we know what the final circuit looks like, in case we want to
continue this simulation.

> apprl reduceSeqNil;

***** Level 11 *****

⊢ ([(lo,lo), (bit,lo)], env ⊢
DELAY (bit,AND#(Var 0)) ⇒ ([bit,lo],DELAY (lo,AND#(Var 0))))

As in the previous example, we could have done all of this with the applica-
tion of a single tactic safeOpSemAllTac’ [reduceAND]. This is a quite involved
tactic which contains an outer loop for each time step of the simulation. This
loop finishes when no more changes have been made to any of the subgoals.

132 CHAPTER 5. CASE STUDIES

Firstly, rules involving time are tried, followed by repeated applications of the
standard operational semantics rules excluding those involving CoTuple, Cons,
TyTuple, and Type. When no more rules are applicable, reduceCoTupleTac is
used. It applies reduceCoTuple, but only if no flexible meta-variables will in-
stantiated as a result of this. If the type is already constrained to a TyTuple then
reduceCoTuple can also be applied safely. Similar tactics for Cons, TyTuple,
and Type are then tried. reduceTypeTac, which uses the general rewrite sys-
tem, is applied only if it discharges the premise. Finally, reduceSafeEqRhsTac
rewrites subgoals of the form expr == case match ... in a safe way. The
tactical cutThenT only retains the first unification of its first argument; this
decreases the amount of memory which is used, as well as the execution time.
Using two nested loops, rather than a single loop forces the evaluation to take
place a single clock tick at a time. This dramatically increases the tactic’s speed
due to the fact that many small expressions are handled more effectively than
one large one. safeOpSemAllTac’ assumes that the subgoals it operates on
are in the operational semantics format, described earlier in this section. The
tactics reduceTypeTac and reduceSafeEqRhsTac are only applied if they dis-
charge the subgoal. If this was not the case, the subgoal could be left in an
incorrect format, which would slow down the rewriting. Using a fixed format
means that only a limited number of customised rewrite rules are used, rather
than the general rewrite tactics provided in the Lambda library.

fun safeOpSemAllTac’ l =

repeatCutT (nonTrivT (

(tryRules [reduceSeqNil,reduceSeqCons]) cutThenT

(tryT (repeatCutT (nonTrivT (

(tryRules (l @ safeOpSemRules)) cutThenT

(tryTacs [reduceCoTupleTac, reduceConsTac,

reduceETyTupleTac, reduceETypeTac,

(theoremT reduceTypeTac),

(theoremT reduceSafeEqRhsTac)])))))));

val safeOpSemAllTac = safeOpSemAllTac’ [];

Note that a list of derived rules l may be passed into the tactic. This means
that an AND gate is reduced using one derived rule application, rather than a
series of primitive rules. This facilitates faster, hierarchical simulation because
a circuit does not need to be flattened out into individual gates to be simulated.
A smaller memory usage is one of the practical advantages. It is also easier to
pinpoint errors in a circuit when it is simulated hierarchically because bound-
aries of subcircuits are clearer when the subcomponents have not been flattened
out. One needs to open up a subcircuit only when it is found to be in error.

5.1.3 Two Parity Checkers

Boulton et al. illustrate their approach to the verification of ella designs with
a parity checker [19]. It consists of two multiplexors, two delays and a NOT
gate. HOLPC describes the same circuit as PARITY IMP in the cited paper. The

5.1. OPERATIONAL SEMANTICS BASED SYMBOLIC SIMULATION 133

hi

delay
❢

❍❍❍
✟✟✟

inner

mux

outer

mux

delay s2

✲

✲
✲

✻

✲
✲

✲

✻

✲
✲

in
Cons(n,1)

Cons(n1,1)

o1 1

out

o1

hi

s1

Figure 5.1: The HOLPC Parity Checker.

annotations Cons(n,1), Cons(n1,1), o1 , and o1 1 correspond to terms in the
reduceHOLPC rule, discussed below. s1 and s2 represent the state of the delays.

val NOT g#(e) = IF e MATCHES hi THEN lo ELSE hi;

val MUX#(e,b1,b2) = IF e MATCHES hi THEN b1 ELSE b2;

val REG#(c,e) = DELAY (c,e);

val HOLPC#(s1,s2,e) =

LET e IN

LET INIT bit REC

(* Use a LET to avoid duplicating register *)

LET REG# (s1,Var 0) IN

MUX# (REG# (s2, hi),

MUX# (Var 2, NOT g#(Var 0), Var 0),

hi) IN

Var 0;

We use NOT g because NOT is the truth value negation operator in Lambda. It
is worth noting that the state (s1,s2) of the parity checker is explicit in the
abbreviation. The abbreviation may therefore be used in all possible states, and
not just the initial state. Most of the complexity of this circuit is due to the
restriction that delays must have lo as their initial state. We will return to this
point in Section 5.3.

134 CHAPTER 5. CASE STUDIES

[5] ⊢ ceq bit (Cons (n1,1)) == false

(* Outer MUX *)

⊢ Cons (n1,1) == (case match (Cons (1,1)) (Cons (b,1)) of

uu => bottomOfConst o1 | tt => o1 | ff => hi)

(* Inner MUX *)

⊢ o1 == (case match (Cons (1,1)) (Cons (n,1)) of

uu => bottomOfConst o1 1 | tt => o1 1 | ff => Cons (a,1))

(* NOT *)

⊢ o1 1 == (case match (Cons (1,1)) (Cons (a,1)) of

uu => bottomOfConst lo | tt => lo | ff => hi)

⊢ (env ⊢ circ ⇒ (Cons (n,1),h) : Type 1)

⊢ (env ⊢ HOLPC#(Cons (a,1),Cons (b,1),circ) ⇒
(Cons (n1,1),HOLPC#(Cons (n1,1),hi,h)) : Type 1)

The derived rule reduceHOLPC contains some points of interest. First note that
only the two multiplexors and the NOT gate are present as subgoals; both delays
have disappeared. As described in [19], the rôle of the innermost register is to
output lo at time zero, and hi ever after. This is evident from the conclusion
of the rule, where the state s2 is always hi after an evaluation. Also note that
the output Cons(n1,1) is duplicated in the first register, so that it can be used
in the next time step, using the feedback.

At time zero, the values in the registers are both lo. In fact, the value in
the first delay at time zero is irrelevant:

> applyTacAll (doRule reduceDummyVar thenT typeOfChooserTac thenT

typeOfConstTac thenT reduceTypeTac);

***** Level 5 *****

⊢ ([Cons (y,1)], env ⊢ HOLPC#(Cons (x,1),lo,Var 0) ⇒
([hi],HOLPC#(hi,hi,Var 0)))

The rule reduceDummyVar removes subgoals which compute the value of vari-
ables which do not contribute to the output of the circuit. This derivation uses
an arbitrary input Cons(y,1) and state Cons(x,1) in the first delay. The only
constraint on these don’t care values is that they must have the right type. Note
that their possible value includes the undefined or don’t know value. This sim-
ulation shows that the state of the new circuit is fully defined no matter what
the input at time zero is. In other words, the value of the input at time zero
is ignored. This parity checker outputs hi at time t if there have been an even
number of his in the input stream from time one to time t inclusive.

An alternative parity checker is listed below. It consists of a XOR gate which
has its delayed output fed back into itself.

5.1. OPERATIONAL SEMANTICS BASED SYMBOLIC SIMULATION 135

val XOR#(e) = IF e MATCHES (hi,lo)|(lo,hi) THEN hi ELSE lo;

val PC#(s,e)= LET e IN

LET INIT bit REC

REG# (s, XOR# ((Var 0, Var 1))) IN

Var 0;

The initial state must be hi. PC outputs hi at time t + 1 if there have been an
even number of hi values in the input stream from time zero to time t. The
output at time zero is hi. Given below is an example derivation of PC.

> applyTac (safeOpSemAllTac’[reducePC]);

***** Level 4 *****

⊢ ([hi,lo,hi,hi,lo,lo], env ⊢ PC#(hi,Var 0) ⇒
([hi,lo,lo,hi,lo,lo],PC#(lo,Var 0)))

Apart from the output at time zero, this output is the complement of that of
HOLPC, which ignores the initial hi at time zero:

> applyTac (safeOpSemAllTac’[reduceHOLPC]);

***** Level 4 *****

⊢ ([hi,lo,hi,hi,lo,lo], env ⊢ HOLPC#(lo,lo,Var 0) ⇒
([hi,hi,lo,hi,hi,hi],HOLPC#(hi,hi,Var 0)))

Using conventional verification techniques we proved that the PC circuit does
indeed count the number of hi values in the input stream.

(* Number of vs in the input stream from time 0 up to time t. *)

fun noof v input 0 = 0 |

noof v input (S t) = if input t = v then (noof v input t) + 1

else (noof v input t);

fun even n = n mod 2 = 0;

fun absinv true = hi | absinv false = lo;

fun state input t = absinv (even (noof hi input t));

The function noof counts the number of v values in the input stream, even
returns true if there have been an even number of them, and absinv is the
inverse data abstraction function, mapping booleans to constants. These three
functions are combined by state, to make the result more readable.

⊢ ∀l,e,input.

(∀t. reduce l (e t) == (input t,e (S t)) ∧
(input t == hi ∨ input t == lo)) →

∀t. reduce l (PC#(state input t,e t)) ==

(state input t, PC#(state input (S t),e (S t)))

In other words, assuming that a circuit e defines a signal input which is hi or
lo at every time step, the behaviour of the parity checker operating on input is

136 CHAPTER 5. CASE STUDIES

that of state input. Thus the first value of the output tuple is hi if there have
been an even number of hi values in the input stream. The second part states
that the state of the new circuit is given by the state function at time t+1. We
will have more to say about verifying circuits in this more conventional manner
in Section 5.5.

5.1.4 Feedback Loops

In Section 4.3.3 we proved that the operational semantics for picoella computes
the least fixed point solution of the circuit. An iterative method is used, and the
number of iterations may vary to reach the fixed point. This number depends
on the circuit but may also vary per input. In the case of delayed feedbacks,
however, it takes at most one iteration.2 This follows from the semantics of the
DELAY construct, which outputs the same value during one time step. Whatever
goes into the delay (i.e. the feedback) does not matter. If the output of the
defining expression in a delayed LET REC is undefined the fixed point is the
bottom value, which is reached immediately. It follows therefore that if the
output is not undefined, exactly one iteration is needed. (This is an outstanding
theorem which would be nice to prove formally in Lambda.)

So far we have not explicitly addressed this problem in the embedded oper-
ational semantics. In the derived rules for PC and HOLPC it was assumed that
no undefined values were input to the circuit. Premise [5] of rule reduceHOLPC
on page 133 states that the initial approximation bit is not equal to the next
approximation (Cons (n1,1)). In other words, we do not reach a fixed point
after one iteration. This is only so if the input to the circuit is defined, i.e. does
not contain the undefined value bit. The theorem on page 135 which states
that PC implements a parity checker contains this assumption as an explicit
hypothesis.

In the case of delayless feedbacks we cannot rely on this technique. This
introduces difficulties in the embedded operational semantics. When using the
operational semantics in the form of a rewrite system this poses no problems
due to the formulation of the rewrite tactics. We will sketch why this is the
case. Recall the definition of the iterative fragment of the reduce function:

fun iterate l e c =

(fn (d, f) => case ceq c d of

true => (d, f) |

false => again l e d)

(reduce (c::l) e)

and again l e d = iterate l e d;

Were we to omit the definition of again we would obtain an unusable rewrite
rule for iterate. The right hand side would contain an occurrence of iterate,
and the rewrite system would not converge. We therefore introduce a dummy
function again to shield the recursive call of iterate. We use it as follows.

2See page 138 for clearer statement of what constitutes an iteration.

5.1. OPERATIONAL SEMANTICS BASED SYMBOLIC SIMULATION 137

fun reduceNAllTac n = repeatnCutT n

(nonTrivT (reduceAllTac cutThenT

iterateTac cutThenT

againTac));

This tactic computes n iterations by unfolding all calls to reduce and its sub-
functions. If we have reached a fixed point the subsequent rewriting of iterate
will have no effect; otherwise we advance to the next iteration. The function
again ensures that we only advance one iteration and not an infinite number
of iterations. We can compute the least fixed point of any circuit without any
problems by using this iteration function.

In the embedded operational semantics this does not work due to the for-
mat of the standard operational semantics rules. Consider the three rules which
implement the fixed point computation. Rules reduceLetRec, reduceFix and
reduceIterate correspond to rules 3.27, 3.28 and 3.29 of Section 3.3.3 respec-
tively. These rules mimic the ‘paper’ operational semantics rules very well.
Some extra premises implement the static semantics which is also incorporated
in the embedded semantics rule. For example, the third premise states that
the initial approximation must be equal to the bottom value. reduceLetRec

initiates the recursion in [1], and uses the fixed point in the second premise.

***** reduceLetRec *****

⊢ E t1

⊢ o1 : t1

⊢ initial : t1

[3] ⊢ bottomOfConst initial == initial

[2] ⊢ (o1 :: env ⊢ circ2 ⇒ (o2 ,circ2’): t2)

[1] ⊢ (initial , env ⊢ circ1 ⇒ (o1 ,circ1’): t1)

⊢ (env ⊢ LET INIT initial REC circ1 IN circ2 ⇒
(o2 ,LET INIT initial REC circ1 ’ IN circ2 ’): t2)

Where (c, l ⊢ e ⇒ ...) is an abbreviation for iterate l e c. Rules reduceFix
and reduceIterate implement the fixed point computation. reduceFix detects
a fixed point initial ; it applies only if the current approximation initial is equal
to (unifiable with) the next approximation.

***** reduceFix *****

⊢ (initial :: env ⊢ circ1 ⇒ (initial ,circ1’): t1)

⊢ (initial , env ⊢ circ1 ⇒ (initial ,circ1’): t1)

The rule reduceIterate computes a new approximation o1 using the current
approximation initial . The third premise of reduceIterate states that they
are not equal, and hence have not reached a fixed point. Premise [2] therefore
continues the computation, this time with the new approximation o1 . Recall
that ceq is an encoding of equality on constants.

138 CHAPTER 5. CASE STUDIES

***** reduceIterate *****

[3] ⊢ ceq initial o1 == false

[2] ⊢ (o1 , env ⊢ circ1 ⇒ (o2 ,circ2’): t1)

[1] ⊢ (initial :: env ⊢ circ1 ⇒ (o1 ,circ1’): t1)

⊢ (initial , env ⊢ circ1 ⇒ (o2 ,circ2’): t1)

We have derived reduceIteratei from these rules, which are i reduceIterate
applications followed by a reduceFix.

As an example of the variation in the number of iterations which may be
required consider a flip-flop constructed from two cross-coupled NAND gates.
The NAND gates are composed of a NOT and an AND gate.

val FF#(e) = LET e IN

LET INIT (bit,bit) REC

(NOT g#(AND#(((Var 1)[1],(Var 0)[2]))),

NOT g#(AND#(((Var 1)[2],(Var 0)[1])))),

IN

Var 0;

In the table below we list the input, output and the number of iterations it
takes the flip-flop to stabilise. These iterations are the result of the fixed point
algorithm, and do not necessarily have any relation to the relative times a
real implementation would take to settle down. Zero iterations means that
the circuit reaches its fixed point immediately. In other words, the bottom
value is the fixed point. The number of iterations is equal to the number of
reduceIterate applications. Strictly speaking computing n iterations entails
evaluating the circuit n+1 times because reduceFix must check the fixed point.
The operational semantics derivation for this table is very simple if the required

Input to FF Output of FF Number of Iterations Required

(bit,bit) (bit,bit) 0
(bit,hi) (bit,bit) 0
(hi,bit) (bit,bit) 0
(hi,hi) (bit,bit) 0
(bit,lo) (bit,hi) 1
(lo,bit) (hi,bit) 1
(lo,lo) (hi,hi) 1
(hi,lo) (lo,hi) 2
(lo,hi) (hi,lo) 2

Figure 5.2: A Derived Truth Table for a Flip-Flop.

number of iterations for each input are known in advance.

5.1. OPERATIONAL SEMANTICS BASED SYMBOLIC SIMULATION 139

(* Split the derivation into individual time steps. *)

applyTac (repeatT (nonTrivT (tryRules

[reduceSeqCons,reduceSeqNil])));

(* Inputs 0,1,2,3: fix *)

applyTacn [1,2,3,4] (safeOpSemAllTac’ [reduceFF0]);

(* Inputs 4,5,6: iterate once *)

applyTacn [1,2,3] (safeOpSemAllTac’ [reduceFF1]);

(* Inputs 7,8: iterate twice *)

applyTacn [1,2] (safeOpSemAllTac’ [reduceFF2]);

The rule reduceFFi evaluates i iterations and then fixes. Of course, if we do not
know the number of iterations in advance, we have to proceed an iteration at a
time. That is, we apply reduceIterate and try reduceFix. If we can discharge
the premises of reduceFix we have a fixed point, otherwise we have to undo the
reduceFix and apply another reduceIterate. The iteration and fix rules have
an identical first premise, which means that they cannot be distinguished early
in the derivation. We must evaluate the circuit before we can decide whether
we have a fixed point or not.

We have therefore proved three different rules which ease this process. The
problem with the reduceFix and reduceIterate rules is that they have a com-
mon initial premise. This premise computes the current iteration. Only after it
has been derived do we know whether we applied the correct rule. If we didn’t
we have to backtrack. The solution therefore, is to factor out this common pre-
fix into a separate rule. After computing the new approximation, the previous
and new approximations are passed into the next rule as a hypothesis. We can
then rely on the built-in unification to decide whether to apply the iterate or
fix rule. First we need an auxiliary function suspend.

fun suspend l circ c (d,e) = if ceq c d then (d,e)

else iterate l circ d;

The term suspend l circ c (d,e) is pretty printed as (c, d, l ⊢ circ ⇒ ...).
The rule reducePrefix carries out the operations common to reduceFix and
reduceIterate. This operation (i.e. the computation of the defining expres-
sion, in premise one) is saved in the hypothesis list of the second premise. If the
computation of the LET REC has reached a fixed point initial and o1 will be
equal. reduceFix’ takes advantage of this fact by using the same variable for
both. The overall effect of this is that reduceFix’ only unifies with the second
premise of reducePrefix if a fixed point has been reached. Thus reducePrefix
followed by reduceFix’ is equal to the original reduceFix. reduceIterate’

can always be applied and must therefore be tried after reduceFix’. As ex-
pected, reducePrefix followed by reduceIterate’ is equal to the original
reduceIterate.

140 CHAPTER 5. CASE STUDIES

***** reducePrefix *****

[2] 1: (initial :: env ⊢ circ1 ⇒ (o1 ,circ1’) : t1)

⊢ (initial , o1 , env ⊢ circ1 ⇒ (o2 ,circ2’) : t1)

[1] ⊢ (initial :: env ⊢ circ1 ⇒ (o1 ,circ1’) : t1)

⊢ (initial , env ⊢ circ1 ⇒ (o2 ,circ2’) : t1)

The computation of the first premise is passed on to the second premise in the
hypothesis list. The hypothesis of the reduceFix’ rule requires that the first
and second approximations are equal, or strictly speaking unifiable, in the rule
reduceFix’ is applied to.

***** reduceFix’ *****

1: (initial :: env ⊢ circ1 ⇒ (initial ,circ1’) : t1)

⊢ (initial , initial , env ⊢ circ1 ⇒ (initial ,circ1’) : t1)

***** reduceIterate’ *****

[2] ⊢ ceq initial o1 == false

⊢ (o1 , env ⊢ circ1 ⇒ (o2 ,circ2’) : t1)

1: (initial :: env ⊢ circ1 ⇒ (o1 ,circ1’) : t1)

⊢ (initial , o1 , env ⊢ circ1 ⇒ (o2 ,circ2’) : t1)

Note that although reduceIterate’ is always applicable, but that [2] will be
unsatisfiable if we iterate too often.

The following tactic is able to cope with recursive circuit descriptions and
iterates the minimum number of times to find the least fixed point of the circuit.

fun safeOpSemRecAllTac’ l =

repeatCutT (nonTrivT (

(tryRules [reduceSeqNil,reduceSeqCons]) cutThenT

(tryT (repeatCutT (nonTrivT (

(tryRules [reduceLetRec,reducePrefix]) cutThenT

(tryT (repeatCutT (nonTrivT (

(tryRules (l @ safeOpSemRules)) cutThenT

(tryTacs [reduceCoTupleTac,reduceConsTac,

reduceETyTupleTac,reduceETypeTac,

(theoremT reduceTypeTac),

(theoremT reduceCeqTac),

(theoremT reduceBottomTac),

(theoremT reduceSafeEqRhsTac)])

)))) cutThenT

(tryRules [reduceFix’,reduceIterate’])))))));

val safeOpSemRecAllTac = safeOpSemRecAllTac’ [];

5.1. OPERATIONAL SEMANTICS BASED SYMBOLIC SIMULATION 141

5.1.5 Hierarchical Simulation

Hierarchical simulation is supported in two ways. We have already encountered
one method: the use of derived operational semantics rules, coupled with the
use of abbreviations. Alternatively, the specification of a circuit can be used.

Derived Operational Semantics Rules

One manner in which operational semantics based simulation may be speeded
up is the use of derived rules, such as reduceAND and reduceHOLPC. An abbrevi-
ation for a circuit such as HOLPC means that it is shielded from reduction using
the standard operational semantics rules. It must be reduced using the spe-
cialised reduceHOLPC rule, which collapses the standard reduction into one rule.
Although these rules increase the simulation speed considerably, the number of
premises for each rule is equal to the number of basic gates of the component.
For example, the HOLPC parity checker consists of two multiplexors, two delays,
and one NOT gate. Although reduceHOLPC rule has eliminated the delays, there
is a case statement for each of the remaining gates. A case statement contains
the computation which represents the behaviour of the gate. It would be nice if
we had some sort of support for reasoning about matching. However, due to the
data ordering on constants, and the presence of a bottom element in particular,
this turns out to be hard to implement. We would like to be able to transform
a premise such as

⊢ o1 1 == (case match hi (Cons (a,1)) of

uu => bottomOfConst lo | tt => lo | ff => hi)

into something like this

⊢ o1 1 == if (Cons (a,1)) = hi then lo else hi

This can only be done if there are no undefined values present. For inputs this
can be assured by providing a premise to this effect. For intermediate values,
this depends on the circuit. As long as there are no undelayed feedback wires
undefined values cannot arise. Assuming that we have premises in a nice format,
we would like to combine them into a single functional expression describing the
behaviour of the circuit. This extends naturally to the use of the specification
of a circuit instead of its implementation.

Using Specifications

The second manner in which hierarchical simulation is supported is more in-
teresting. It entails using the specifications of circuits rather than their im-
plementations. This is a well-known technique from hardware verification, and
has to a limited extent also been used in simulators. Behavioural simulation
is supported by a number of simulators, but it does not have the same power.
The reason for this is that there is no formal correspondence between the spec-
ification and its implementation. In our formal framework the implementation

142 CHAPTER 5. CASE STUDIES

and specification must have the same behaviour to be used in such a manner.3

Moreover, in informal simulators, the specification must be an hdl program,
i.e. it must be an algorithm. Our specifications can be arbitrary higher-order
logic formulae, which may or may not represent an explicit computation. If it
doesn’t the simulation will probably need some advice on how to proceed when
it arrives at the specification, although some work has been done by Camilleri
on executing higher-order logic specifications [33].

To illustrate this approach we define a full adder. ADD is composed of two
half adders in the following manner:

val AND#(e) = IF e MATCHES (hi,hi) THEN hi ELSE lo;

val OR#(e) = IF e MATCHES (lo,lo) THEN lo ELSE hi;

val XOR#(e) = IF e MATCHES (hi,lo)|(lo,hi) THEN hi ELSE lo;

val HA#(e) = LET e IN (XOR#(Var 0), AND#(Var 0));

val ADD#(e) = LET e IN(* ((x,y),c) *)

LET HA#((Var 0)[1]) IN

LET HA#(((Var 0)[1], (Var 1)[2])) IN

((Var 0)[1], (* sum *)

OR#(((Var 0)[2], (Var 1)[2])));(* carry *)

The outermost LET is necessary, in case the input expression contains Var con-
structs. It also avoids duplication of the input circuit by using a fan-out. For
example, without this LET, the second half adder in ADD#(Var 0) would in-
correctly access the first half adder as input. We easily derive reduceHA and
reduceADD using safeOpSemAllTac.

The derived rule reduceHA is listed below.

⊢ o2 == (case match (T (C (Cons (1,1)),C (Cons (1,1))))

(CoTuple (Cons (n1,1),Cons (n,1))) of

uu => bottomOfConst (Cons (1,1)) |

tt => Cons (1,1) | ff => Cons (2,1))

⊢ o1 == (case match (B (C (CoTuple (Cons (1,1),Cons (2,1))),

C (CoTuple (Cons (2,1),Cons (1,1)))))

(CoTuple (Cons (n1,1),Cons (n,1))) of

uu => bottomOfConst (Cons (1,1)) |

tt => Cons (1,1) | ff => Cons (2,1))

⊢ (env ⊢ circ ⇒ (CoTuple (Cons (n1,1),

Cons (n,1)),circ’) : TyTuple (Type 1,Type 1))

⊢ (env ⊢ HA#(circ) ⇒
(CoTuple (o1 ,o2),HA#(circ’)) : TyTuple (Type 1,Type 1))

Assuming the following auxiliary functions

fun abs (Cons(1,1)) (*hi*) = 1 | abs (Cons(2,1)) (*lo*) = 0;

fun absInv 1 = Cons(1,1) (*hi*) | absInv 0 = Cons(2,1) (*lo*);

val HA SPEC#(x,y,s,c) = c == (x + y) div 2 ∧ s == (x + y) mod 2;

val ADD SPEC#(x,y,cin,s,c) = c == (x + y + cin) div 2 ∧
s == (x + y + cin) mod 2;

3Note that we don’t say the implementation satisfies the specification. More below!

5.1. OPERATIONAL SEMANTICS BASED SYMBOLIC SIMULATION 143

we can prove that the half adder satisfies the HA SPEC specification.

⊢ ∀env ,circ ,t ,x,y,a,b.

(env ⊢ circ ⇒ (CoTuple (x,y),newcirc) :

TyTuple (Type 1,Type 1)) ∧
(env ⊢ HA#(circ) ⇒ (CoTuple (a,b),HA#(newcirc)) :

TyTuple (Type 1,Type 1)) ∧
(x == hi ∨ x == lo) ∧
(y == hi ∨ y == lo) → HA SPEC#(abs x,abs y,abs a,abs b)

(We took the liberty of using (env ⊢ circ ⇒ ...) instead of typeOfExpr
circ ...; cf. page 124.) For any input circuit circ delivering (x,y), and half
adder’s output (a,b), a and b are the sum and carry of x and y respectively.
Note that x and y must be well-defined, that is, be hi or lo. This statement
is not very elegant, and this is due to the presence of the abstraction function
abs. Moreover, any statement about the behaviour of the half adder and its
input must involve the static and dynamic semantics.

We would like to use this theorem to change reduceHA to use HA SPEC in-
stead of the two explicit computations involving matching. However, this is not
possible, because the theorem can be only transformed to

⊢ (... HA#(circ) ⇒ ...)

⊢ HA SPEC#(abs x,abs y,abs a,abs b)

We want exactly the opposite. To use the specification of a circuit in a de-
rived operational semantics rule we must therefore prove that the circuit and
its specification have the same behaviour (under some constraints), rather than
the more intuitive ‘implementation satisfies specification.’ We can derive the
rule reduceHAUseSpec by proving a bi-implication instead of an implication in
HA SPEC above.

[4] ⊢ n1 == 1 ∨ n1 == 2

[3] ⊢ n == 1 ∨ n == 2

⊢ out == CoTuple (

absInv ((abs (Cons (n1,1)) + abs (Cons (n,1))) mod 2),

absInv ((abs (Cons (n1,1)) + abs (Cons (n,1))) div 2))

⊢ (env ⊢ circ ⇒ (CoTuple (Cons (n1,1),Cons (n,1)),newcirc) :

TyTuple (Type 1,Type 1))

⊢ (env ⊢ HA#(circ) ⇒ (out ,HA#(newcirc)) :

TyTuple (Type 1,Type 1))

The output from the input circuit circ is used to compute the output out
from the half adder directly. The operation + at the higher level of abstraction
is used rather than the implementation-level matching. Premises [3] and [4]

represent the constraints that the input to the half adder must be either hi or
lo.

To prove this result we considered all combinations of the values x and y
are allowed to have. This is verification by exhaustive testing. Although this

144 CHAPTER 5. CASE STUDIES

is necessary for the basic building blocks we use in circuits (e.g. basic gates),
for larger expressions it is preferable to avoid this method. This should usually
be possible by using the specifications of subcircuits and by reasoning about
signals as symbolic values. We have not proved any correctness results about
ADD’s subcircuits, so that we have to use a case analysis. The proof consists
of basic rewriting involving reduce and the abstraction functions, but is fairly
slow. However, for the full adder ADD this method becomes prohibitively slow.
The embedded operational semantics rules are much faster than the standard
rewriting to prove these results. They can only be used in the operational
semantics format, however. For example, the correctness statement of HA above
is in an unsuitable format. The operational semantics rule for reduceHA was
useful in the derivation of reduceHAUseSpec, even though the proof for the
latter essentially relied on standard rewriting.

Let us now try to use the reduceHAUseSpec to derive a similar rule for ADD. It
is easy to derive an operational semantics rule for ADD which does not unfold the
two half adders, but leaves their evaluation as subgoals. These two subgoals can
then be rewritten using reduceHAUseSpec, resulting in reduceADDUseHASpec:

[10] ⊢ o2 == (case match (T (C (Cons (2,1)),C (Cons (2,1))))

(CoTuple (Cons (n1,1),Cons (n,1))) of

uu => bottomOfConst (Cons (2,1)) |

tt => Cons (2,1) | ff => Cons (1,1))

[9] ⊢ n9 == 1 ∨ n9 == 2

⊢ n7 == 1 ∨ n7 == 2

⊢ n10 == 1 ∨ n10 == 2

⊢ n 8 == 1 ∨ n8 == 2

⊢ Cons(n1,1) == AbsInv((Abs(Cons(n9,1)) + Abs(Cons(n7,1))) div 2)

⊢ Cons(n6,1) == AbsInv((Abs(Cons(n9,1)) + Abs(Cons(n7,1))) mod 2)

⊢ Cons(n,1) == AbsInv((Abs(Cons(n10,1)) + Abs(Cons(n8,1))) div 2)

⊢ Cons(n9,1) == AbsInv((Abs(Cons(n10,1)) + Abs(Cons(n8,1))) mod 2)

[1] ⊢ (env ⊢ circ ⇒
(CoTuple (CoTuple (Cons (n10,1),Cons (n8,1)),Cons (n7,1)),cir’) :

TyTuple (TyTuple (Type 1,Type 1),Type 1))

⊢ (env ⊢ ADD#(circ) ⇒ (CoTuple (Cons (n6,1),o2),ADD#(circ’)) :

TyTuple (Type 1,Type 1))

Premise [10] represents the OR gate. This rule is not quite satisfactory because
it uses HA SPEC twice, rather than ADD SPEC once. It turns out that the result
that the half adder has the same behaviour as HA SPEC is not easy to use in the
proof that ADD has the same behaviour as ADD SPEC. The reason is that we have
to use standard rewriting to prove the latter, and this is too slow. If, on the
other hand, we try to use the embedded operational semantics rules, we cannot
combine the premises of reduceADDUseHASpec ([2] to [9] above) to form a
single premise involving ADD SPEC.

It may be that more research into this area sheds some light onto this prob-
lem, but currently it seems that this conceptually very powerful hierarchical
simulation is less useful than initially thought.

5.2. HARDWARE SYNTHESIS 145

5.2 Hardware Synthesis

We can use the operational semantics rules defined above to synthesise hard-
ware in two different ways, corresponding to top-down and bottom-up synthesis.
Another, more powerful method for synthesising circuits in a provably correct
way is to use hardware generating functions.

5.2.1 Top-Down Operational Semantics Based Synthesis

We can apply the operational semantics rules to completely unconstrained cir-
cuit expressions; i.e. flexible meta-variables. Using the usual backward rule
applications we refine the circuit top-down. The circuit, and then its subcir-
cuits are being successively refined. A very simple example is the following.
All meta-variables, including circ , are flexible. By applying rule reduceX to a
premise, the circuit expression in that premise becomes an X statement.

***** Level 3 *****

⊢ (env ⊢ circ ⇒ (out ,newcirc) : t)

⊢ (env ⊢ circ ⇒ (out ,newcirc) : t)

> apprl reduceTuple;

***** Level 4 *****

⊢ (env ⊢ circ2 ⇒ (o2 ,circ2’) : t2)

⊢ (env ⊢ circ1 ⇒ (o1 ,circ1’) : t1)

⊢ (env ⊢ (circ1 ,circ2) ⇒
((o1 ,o2), (circ1’ ,circ2’)) : TyTuple (t1 ,t2))

The application of reduceTuple unifies the conclusion of reduceTuple

(env ⊢ (circ1 ,circ2) ⇒ ((o1 ,o2), (circ1’ ,circ2’)): ...)

with the premise of the current goal (circ .) Unification works both ways, so
that the current goal may be specialised to allow the application of the rule.
Matching would not work here because circ in the premise is not a Tuple.
The rule reduceTuple corresponds to a parallel decomposition of the circuit,
reduceLet to a sequential decomposition.

> apprl reduceLet;

***** Level 5 *****

⊢ (env ⊢ circ2 ⇒ (o2 ,circ2’) : t2)

⊢ E t1 1

⊢ o1 1 : t1 1

⊢ (o1 1 :: env ⊢ circ2 1 ⇒ (o1 ,circ2’ 1) : t1)

⊢ (env ⊢ circ1 ⇒ (o1 1,circ1’) : t1 1)

⊢ (env ⊢ LET circ1 IN circ2 1,circ2 ⇒
((o1 ,o2), (LET circ1’ IN circ2’ 1,circ2’)) : TyTuple (t1 ,t2))

146 CHAPTER 5. CASE STUDIES

These two steps may be represented diagrammatically as follows. The numbers
in the boxes correspond to the subcircuits circi j in the rules. The indexing

Tuple

✲Let

✲1

1

2 2

1 1 2

Figure 5.3: Top-down Synthesis using Operational Semantics Rules.

rules represent a restriction of the outputs. They are more natural to use in a
bottom-up synthesis strategy, as we shall see below.

Although this example is very simple, it illustrates the approach. After a
number of rules have been applied it makes sense to reflect on the static seman-
tics premises which have been introduced. Often they are duplicated, or may
even be eliminated altogether. Unfortunately tactics such as safeOpSemAllTac
are conservative in their optimisations, especially when flexible variables are
present. Using this top-down synthesis we synthesised an adder, but did so
with the ready design in hand. In such cases it makes more sense to define an
abbreviation for this design and then compute a derived rule reduceCOMPONENT
using the operational semantics tactics. In both cases a derived rule of the same
complexity was arrived at. By using larger building blocks such as AND and OR
gates, adders, etc. circuits may be synthesised at the block level. It makes more
sense to synthesise top-down at a higher level because a hierarchical structure
is more apparent there, and the building blocks are larger.

5.2.2 Bottom-Up Operational Semantics Based Synthesis

In Lambda backward rule application is the norm. Given a goal we succes-
sively break it down until we reach sufficiently small subgoals which can be
discharged. That is, we build a proof tree starting at the root from which we
work towards the leaves. In forward theorem proving we commence with the
leaves and combine proof trees until we have reached the goal we desire. We
gave an introduction to forward theorem proving, and how it is supported in
Lambda in Section 4.1.2. In the operational semantics synthesis example below,
we will show only the basic rule which is applied. The actual function which
implements the goal stack manipulation4 takes some extra arguments which are
not relevant here.

Using the derived operational semantics rules in a goal directed manner
corresponds to a bottom-up synthesis method. For example, forward applying

4genMergeProofTrees was briefly discussed in Section 4.1.2.

5.2. HARDWARE SYNTHESIS 147

reduce-Index1 means that we enclose the current circuit with an Index1 con-
structor.

[2] ⊢ E t2

[1] ⊢ (env ⊢ circ ⇒ ((o1 ,o2),circ’) : TyTuple (t1 ,t2))

⊢ (env ⊢ circ [1] ⇒ (o1 , circ’ [1]) : t1)

In a forward rule application the first premise of reduceIndex1 is unified with
the conclusion of the current goal. This means that the conclusion of the new
goal will be the indexed old circuit. The forward application of reduceIndex1
expects two proof trees. The first tree gives a derivation of circ , the second a
proof that the type t2 denotes.

The circuit which we build below uses three subgoals, and is synthesised as
follows. The arrow labelled Index1 combines two proof trees, one [2] dealing

�
�

�
✲Tuple

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

✲
Index1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

❅
❅

❅

Figure 5.4: Bottom-up Synthesis using Operational Semantics Rules.

with the existence of the type t1 , and the other [1] with the synthesis of the
circuit to be indexed. The latter has been omitted from the figure because it
deals with the static semantics. Note that in contrast to the top-down synthesis
of figure 5.3 boxes are combined (e.g. Tuple) or added to the outside (e.g.
Index1.) In top-down synthesis boxes are subdivided, or split internally. For
this reason, the indexing operators are more natural to use in the bottom-up
style than in the top-down style.

We can work with theorems only, as shown below. However, it is more useful
to have general input circuits and states, as we saw in Section 5.1. This is why
we use the following trivial proof of a circuit which is delayed. Both the circuit
and the state in the delay are not specialised.

> pushRule opsempe reduceDelay;

***** Level 1 *****

⊢ initial : t

⊢ (env ⊢ circ ⇒ (out ,circ’) : t)

⊢ (env ⊢ DELAY (initial ,circ) ⇒
(initial ,DELAY (out ,circ’)) : t)

148 CHAPTER 5. CASE STUDIES

The following subproof shows the existence of the second type of the Index1

rule. Note that there are now two proof trees on the goal stack.

> pushRule opsempe reduce0;

***** Level 1 *****

⊢ E 0

> forwardApprl 1 reduceSn;

***** Level 2 *****

⊢ E 1

> forwardApprl 1 reduceType;

***** Level 3 *****

⊢ E (Type 1)

trivialOpSemRule is the trivial operational semantics rule. It will represent
the circuit which provides an input to the Index1.

> pushGoal opsempe trivialOpSemRule;

***** Level 1 *****

⊢ (env ⊢ circ ⇒ (out ,newcirc) : t)

⊢ (env ⊢ circ ⇒ (out ,newcirc) : t)

There are now three subproofs on the goal stack. From the bottom to the
top of the stack these are: the delay derivation, the ⊢ E (Type 1) derivation,
and the trivial operational semantics rule. The forward rule application of
reduceIndex1f merges the top two subproofs into one proof. For technical
reasons reduceIndex1f is slightly different from reduceIndex1 which is used
in backward theorem proving. See appendix C for details.

Thus the derivation of E(Type 1) is unified with premise [2] of reduceIndex1,
and the (trivial) derivation of rule trivialOpSemRule is unified with premise
[1]. The overall effect is that the type t2 is unified with Type 1, and circ
remains unchanged.

> ... (* forward apply *) reduceIndex1f;

***** Level 4 *****

⊢ (env ⊢ circ ⇒ ((o1 ,o2),newcirc) : TyTuple (t1 ,Type 1))

⊢ (env ⊢ circ [1] ⇒ (o1 ,newcirc [1]) : t1)

[Merged top two proof trees; StackLevel=2]

Similarly, the application of reduceTuple combines the top two subproofs. The
current goal (at level 4, above) is unified with the first premise of reduceTuple

5.2. HARDWARE SYNTHESIS 149

and the (trivial) derivation of reduceDelay is unified with the second compo-
nent of the tuple.

> ... (* forward apply *) reduceTuple;

***** Level 2 *****

⊢ (env ⊢ circ 1 ⇒ ((o1 ,o2),newcirc) : TyTuple (t1 ,Type 1))

⊢ initial : t

⊢ (env ⊢ circ ⇒ (out ,circ’) : t)

⊢ (env ⊢ (circ 1[1],DELAY (initial ,circ)) ⇒
((o1 ,initial),(newcirc [1],DELAY (out ,circ’))) : TyTuple (t1 ,t))

[Merged top two proof trees; StackLevel=1]

This method of synthesis is quite hard to use because, as with general goal-
directed theorem proving, one must anticipate what subgoals will be needed
later in a proof. Moreover, their format must be quite precise. In this respect,
having a rigid format such as the one used by the operational semantics rules is
an advantage.

5.2.3 Hardware Synthesis Functions

One of the strengths of the embedding approach used here is that we can ma-
nipulate circuit expressions just like any other term in the proof system. This
allows us to write functions operating on and delivering circuits.

We will define an N bit adder generating function which is parametrised on
a full adder subcomponent. The arguments of the functions are nested binary
tuples:

onebitadder: ((x,y),c) -> (s,c)

nadd: (((xN+1,(..,x0)),(yN+1,(..,y0))),c0) -> ((sN+1,(..,s0)),c)

fun nadd onebitadder (S 0) x = onebitadder x |

nadd onebitadder (S (S n)) x =

LET x IN (* (((xN+1, x), (yN+1, y)), c0) *)

LET nadd onebitadder (S n)

(((Var 0)[1][1][2], (Var 0)[1][2][2]), (Var 0)[2]) IN

LET onebitadder (((Var 1)[1][1][1], (Var 1)[1][2][1]),

(Var 0)[2]) IN

(((Var 0)[1], (Var 1)[1]), (* sum *)

(Var 0)[2]) (* carry *);

nadd: (expr -> expr) -> natural -> expr -> expr is a partial function: there
is no such a thing as a zero bit adder. A one bit adder with input ((x0, y0),

c0) uses the full adder component. An N +1 bit adder with input
(((xN, x), (yN, y)), c0) uses an N bit adder with input ((x, y), c0)

connected to a full adder with input ((xN,yN),cN). As with the ADD circuit,
virtually all of the complexity is due to the composition of intermediate wires.

150 CHAPTER 5. CASE STUDIES

We can use this function definition in conjunction with the embedded oper-
ational semantics rules as follows. The derived rule reduceNADD1 just unfolds
the nadd definition to evaluate the full adder. Note that the result circuit must
be identical to the circuit we evaluate. This means that the adder is not allowed
to have any state. (This is a design decision, not an inherent restriction.)

⊢ (env ⊢ add circ ⇒ (out ,add circ’) : t)

⊢ (env ⊢ nadd add 1 circ ⇒ (out ,nadd add 1 circ’) : t)

The derived rule reduceNADDSSn, dealing with N+2 word size, is more involved.
Premise one evaluates the input circuit, premise two the N +1 bit adder, and
premise three the full adder. The remaining premises deal with the static se-
mantics. We see that the output of the N +1 bit adder is a tuple
CoTuple (o2 2, Cons (n3,m2)). Comparing this to the definition of nadd we
see that o2 2 represents the partial sum (sN,(..,s0)), and Cons (n3,m2) the
carry cN+1. Decoding the inputs of the final N + 2nd bit adder add , we see
that its input carry (Var 0)[2] accesses the output carry Cons(n3,m2) from
the N+1 bit adder, as expected. The final result of the N+2 bit adder consists
of (i) the concatenation of the sum bit of add (Cons(n2,m1)) with the partial
sum o2 2; and (ii) the carry bit Cons(n1,m) of add .

⊢ E t1

⊢ o1 : t1

⊢ E (Type m2)

⊢ E t1 3

⊢ o2 2 : t1 3

[3] ⊢ (CoTuple (o2 2,Cons (n3,m2)) :: o1 :: env ⊢
add (((Var 1)[1][1][1], (Var 1)[1][2][1]), (Var 0)[2]) ⇒
(CoTuple (Cons (n2,m1),Cons (n1,m)),

add (((Var 1)[1][1][1], (Var 1)[1][2][1]), (Var 0)[2])) :

TyTuple (Type m1,Type m))

[2] ⊢ (o1 :: env ⊢ nadd add (S n)

((((Var 0)[1][1][2], (Var 0)[1][2][2]), (Var 0)[2])) ⇒
(CoTuple (o2 2,Cons (n3,m2)),nadd add (S n)

((((Var 0)[1][1][2], (Var 0)[1][2][2]), (Var 0)[2]))) :

TyTuple (t1 3,Type m2))

[1] ⊢ (env ⊢ circ ⇒ (o1 ,circ’) : t1)

⊢ (env ⊢ nadd add (S (S n)) circ ⇒
(CoTuple (CoTuple (Cons (n2,m1),o2 2),Cons (n1,m)),

nadd add (S (S n)) circ’) :

TyTuple (TyTuple (Type m1,t1 3),Type m))

A four bit adder has been simulated, with ADD as the subcomponent. For
example, binary 1010 + 1101 + 1 = 11000, that is, a sum of 1000 and a high carry:

5.2. HARDWARE SYNTHESIS 151

> applyTac (safeOpSemAllTac’[reduceNADD1bit’]);

***** Level 4 *****

⊢ ([(((hi,(lo,(hi,lo))), (hi,(hi,(lo,hi)))), hi)], env ⊢
nadd (fn e => ADD#(e)) 4 (Var 0) ⇒
([((hi,(lo,(lo,lo))), hi)], nadd (fn e => ADD#(e)) 4 (Var 0)))

Note that ADD is a meta-level syntactic function, and must therefore be converted
into an object-level function, using (fn e => ADD#(e)).

While using the circuit generating function in this manner is useful to contain
the complexity of circuits, there is a more important aspect to their use. We can
verify the correctness of a circuit generator, rather than verify the correctness of
individual outputs. This means that for any circuit which correctly implements
a one bit adder, and for any N the output of nadd is guaranteed to be a correct
N bit adder.

Research into Formal Synthesis

Formal circuit generators such as nadd were introduced by Brock et al. in [22, 23]
for use in the Boyer-Moore theorem prover. Hardware generators have also been
formally verified in Nuprl [9] and hol [38]. Chin’s approach [38] is distinctive
because no hdl is used. Synthesis functions output relational hardware descrip-
tions in higher-order logic instead (cf. Section 2.1.)

Hanna’s formal synthesis methodology [86] is a top-down design approach.
techniques, analogous to tactics, are used to split a goal into subgoals and a jus-
tification why this step is justified. The specification is reduced to simpler parts
and a circuit is designed at the same time. Our operational semantics rules are
used for top-down synthesis in a more limited manner because no specification
is associated with a design. Synthesised circuits must be verified after they have
been completed. The formal synthesis methodology could probably be adapted
to work with picoella in Lambda, if rules are used as techniques.

The Dialog synthesis system [63, 62, 59], which is integrated with Lambda,
is a schematic editor. It allows designers to synthesise circuits formally by in-
stantiating components and connecting them using a graphical interface. Com-
ponents and their interconnections have an underlying logical representation
which is used to prove correct the current specification. The design is proof
driven in the sense that the designer will decide which components to use, and
where to connect them depending on the current outstanding proof obligations.
Changes to the design update the state of the proof. At no point is the user
obliged to type proof system commands. Currently the underlying representa-
tion of circuits uses a relational style, but in principle it would be possible to
use an embedded hdl. Proof obligations will become more complex, however,
due to the fact that the behaviour of a component must be derived via a se-
mantics. A library of standard components and previously derived behaviours
could be provided to ease this process. Such a system would hide most of the

152 CHAPTER 5. CASE STUDIES

proof system from a designer; after supplying a formal specification only hdl

descriptions and the corresponding schematic representation are observed.

5.3 Transformations on Circuits

Circuit transformations are often used to optimise hardware designs. A circuit
may be replaced by another which has the same behaviour but which is more
desirable in some other way. Examples of such properties are speed of operation,
and silicon area required. Note that the differences in these properties are
not derivable from the semantics because otherwise the circuits would not be
behaviourally equivalent. To show how one could proceed to use this idea in
practice consider the following definition of behavioural equivalence.

The approach we have taken here is to provide a mapping from one circuit to
its preferred form. To ensure that this optimisation function maps well-formed
circuits to well-formed circuits we test this for each invocation. (An alternative
is to require this as an invariant on the function.) The predicate WF implements
this.

val WF#(l,e,fe) =

∃t. typeOfExpr (map typeOfConst l) e == (t,true) ∧
typeOfExpr (map typeOfConst l) (fe e) == (t,true);

The predicate BEHEQ asserts that the original circuit and its transformed form
have the same outputs. Being the same is not equality in this case, because the
output from an evaluation of a circuit results in a constant output and a new
circuit description. Only the constant outputs are the same; the new circuits
stand in the same relation as the input circuits. That is, input circuit e is trans-
formed to fe e, and the output circuit f must therefore also be transformed by
fe. This may be expressed as follows.

val BEHEQ#(l,e,fe) =

(fn (c,e) => (c,fe e)) (reduce l e) == reduce l (fe e);

These two abbreviations may be combined conveniently as follows.

val BEQ#(l,e,fe) = WF#(l,e,fe) → BEHEQ#(l,e,fe);

Note that there is a restriction on the transformation function due to the for-
mulation of behavioural equality in this manner. The function fe: expr -> expr
maps a circuit, including its embedded state, to another circuit, possibly with
another embedded state. Thus there must be a functional relationship between
the two circuits at every point in time. We will encounter an example below
where there is no such simple relation. We have to generalise our notion of
behavioural equivalence there.

To illustrate how such transformations may be proved correct consider the
following transformation function.

(fn (Delay (CoTuple (c,d), Tuple (e,f))) =>

Tuple (Delay (c,e), Delay (d,f)))

5.3. TRANSFORMATIONS ON CIRCUITS 153

It converts a delayed Tuple, or parallel composition, into the parallel composi-
tion of the delayed subcircuits. The following theorem may be proved easily.

⊢ ∀l,c,e. BEQ#(l, Delay (c,e),

(fn (Delay (CoTuple (c,d), Tuple (e,f))) =>

Tuple (Delay (c,e), Delay (d,f))))

An induction on c ensures that c is a constant tuple. Similarly, an induction on
e forces it to be a tuple. The proof then unfolds the abbreviations and moves
all antecedents of the implications to the hypothesis lists. The well-formedness
condition on the delayed tuple can then be used to show that the subexpressions
of the conclusion are well-formed. Rewriting using reduce and typeOfExpr then
yields the right hand side.

In a similar manner we proved a number of transformations to remove the
indexing operators from a circuit. We only show the Index1 rules, the Index2

rules are very similar.

⊢ ∀l,c. BEQ#(l, Index1 (Const c),

(fn (Index1 (Const (CoTuple (c,d)))) => Const d))

⊢ ∀l,e,f. BEQ#(l, Index1 (Tuple (e,f)),

(fn (Index1 (Tuple (e,f))) => e))

⊢ ∀l,c,e. BEQ#(l, Index1 (Delay (c,e)),

(fn (Index1 (Delay (CoTuple (c,d),e))) =>

Delay (c,Index1 e)))

⊢ ∀l,e,f. BEQ#(l, Index1 (Let (e,f)),

(fn (Index1 (Let (e,f))) => Let (e,Index1 f)))

⊢ ∀l,c,e,f. BEQ#(l, Index1 (LetRec (c,e,f)),

(fn (Index1 (LetRec (c,e,f))) =>

LetRec (c,e,Index1 f)))

⊢ ∀l,e,f,g,ch. BEQ#(l, Index1 (If (e,f,g,ch)),

(fn (Index1 (If (e,f,g,ch))) =>

If (e,Index1 f,Index1 g,ch)))

We cannot prove a useful relationship between Var constructors and the index-
ing operators. There are two reasons for this. The first is that when we arrive at
the evaluation of a (Var 0)[1] say, we don’t know anything about the defining
expression. To try and connect the definition and its use is difficult due to the
possible presence of nested Let statements. We cannot replace
(Let (e,f (Index1 (Var 0)))), where f is a function from expressions to ex-
pressions, by (Let (Index1 e,f (Var 0))) because the Var 0 may be access-
ing a more deeply nested Let. The second reason is that the defining expression

154 CHAPTER 5. CASE STUDIES

may be used in more than one way. Consider
Let (e, Tuple (Index2 (Var 0), Index1 (Var 0))), which interchanges the
outputs of e.

We proved the transformations in the form of theorems. While this is con-
ceptually clearest, they are more useful in the following format:

⊢ BEHEQ#(l,e,fe)

... ⊢ P#((fn (c,e) => (c,fe e)) (reduce l (fe e)))

... ⊢ P#(reduce l e)

That is, we can replace an evaluation of e by an evaluation of fe e, in any context
P. However, we must also prove that e and fe e are behaviourally equivalent.
The rule which justifies pushing a delay through a tuple is an example of a
similar format.

1: (l ⊢ DELAY ((c,d),(e,f)): t)

⊢ P#((fn (c1,e1) => (c1, (fn (Delay (CoTuple (c,d),Tuple (e,f))) =>

Tuple (Delay (c,e),Delay (d,f))) e1))

(reduce l (Delay (CoTuple (c,d),Tuple (e,f)))))

1: (l ⊢ (DELAY(c,e),DELAY(d,f)): t)

⊢ P#(reduce l ((DELAY (c,e),DELAY (d,f))))

(Recall that (l ⊢ e: t) indicates that e is well-typed.
Unfortunately, this rule is the wrong way round: we replace the desirable

circuit fe e, or in this case (DELAY (c,e),DELAY (d,f)), by the less desirable e,
in this case (DELAY ((c,d),(e,f))). It is not hard to prove the reverse rule for
this particular example, but the optimisations involving the indexing operators
are problematic. The reason is that the transformation function forgets part of
the embedded state. In the rule which pushes Index1 through a Delay, CoTuple
(c,d) is projected to c. We can convert this rule to the same format as the rule
above but this is not very useful because it introduces an irrelevant element in
the state. We cannot, however, define an inverse fe function to prove the inverse
rule. This is a simple example of a non-functional relationship.

All optimisations we have encountered so far have been constant over time.
That is, the transformation function has not depended either explicitly on time,
or implicitly, by being dependent on the state of a circuit. Our transformations
involving delays merely redistributed the state, they did not depend on the
particular values in the delays. Converting these to apply over more than one
time step, that is, involving reduceSeq is not very useful, because the circuits
then become top-level circuits rather than subcircuits. It is preferable to work
with circuit fragments and reduce as these can be replaced in any context,
regardless of time.

A more general correctness condition may be defined thus. Given an envi-
ronment l, an initial well-formed circuit e, and a transformation function
fe: time -> expr -> expr, we can conclude that the circuit e and its transformed
form fe t e produce the same output for all times t.

5.3. TRANSFORMATIONS ON CIRCUITS 155

val CORRECT#(l,e,fe) =

(∃s. typeOfExpr (map typeOfConst l) e == (s,true)) →
∀f. (f 0 == e ∧

∀t. f (S t) == (fn (,e) => e) (reduce l (f t)) ∧
(shapeEq e (f t) == true ∧
shapeEq (f t) (f (S t)) == true)) →

∀t. (∃s. typeOfExpr (map typeOfConst l) (f t) == (s,true) ∧
typeOfExpr (map typeOfConst l) (fe t (f t)) ==

(s,true)) ∧
(fn (c,e) => (c,fe (S t) e)) (reduce l (f t)) ==

reduce l (fe t (f t));

The implicitly defined function f: natural -> expr maps a time to the circuit de-
scription at that time. The invariants involving shapeEq state that the circuit,
at any time, has the same shape as the original circuit e, and also as the circuit
at the next time step. This information is needed to be able to use the definition
of fe, which needs to know the structure of the expression it is applied to. The
well-typedness assertions in the conclusion serve as additional invariants with a
similar purpose. Nothing can be done with a circuit description unless we know
that it is well-typed. Note that fe depends on time t and in the conclusion fe
t is applied to a circuit at time t, and fe (S t) is applied to the new circuit
description (at time S t.)

As an example of a transformation function which uses the full power of
this correctness statement reconsider the two parity checkers of Section 5.1.3.
The complexity of the HOLPC parity checker (figure 5.1 on page 133) was mostly
due to the use of lo initial value in the delays. The PC parity checker was
almost trivial due to the use of a hi initial value in its delay. We may regard
this difference as an abstraction function. At one level of abstraction the initial
values in delays may be arbitrary, but at a lower level of abstraction they must
be equal to a particular value. We want to transform an initial description
DELAY (b,e) to a circuit using only delays with initial value a at time zero.
This transformation function may be defined as follows.

fun fe a b 0 (Delay (x,e)) =

If (Delay(a,Const b),Const b,Delay (a,e),C a) |

fe a b (S t) (Delay (x,e)) =

If(Delay(b,Const b),Const b,Delay (x,e),C a);

The function fe maps Delay (x,e) to Delay (a,e) at time 0, but to itself
thereafter. This is the time dependency of fe. For a permitted initial value a,
and an original initial value b we create a multiplexor which selects b at time
zero, and the delayed original circuit e at later times. This is accomplished by
using a circuit DELAY (a,b) which outputs a at time zero, and b from then on.
We prove the following correctness result. The time dependence of fe may be
seen from the state of the first delay, which is a at time zero, and b otherwise.
fe is also an injection; the result circuit HOLPC contains a larger state (more
information) than the initial circuit PC.

156 CHAPTER 5. CASE STUDIES

fe
delay a

delay a

mux
e ✲ ✲

✻

✲

✲

✲
✲

b

b

e delay b✲ ✲✲ ✲

Figure 5.5: Initial Value of Delay Transformation.

⊢ ∀l,a,b,e.
(typeOfConst a == typeOfConst b ∧ match (C a) b == ff) →
CORRECT#(l,Delay(b,e),fe a b)

This is a straightforward theorem, apart from the second antecedent. It states
that the multiplexor in the design must select its ELSE branch from time zero
onwards. i.e. a and b must not match, when a is interpreted as a chooser.
This rather technical side condition was initially omitted from the theorem, but
turned out to be necessary. A more intuitive statement would be that a and
b must be not related in the data ordering cle. Some valid combinations of
(a,b) are (lo,hi), (hi,lo), ((lo,lo), (hi,bit)), etc. fe lo hi would be
the transformation to use to (partially) convert PC to HOLPC.

We could have deduced a slightly more liberal precondition, but it would
have relied upon a proof by contradiction. In other words, in certain cases the
output of the transformed circuit could have been incorrect, but the weaker
precondition would have been inconsistent. In retrospect it is clear that in this
case we would rather have a stronger precondition and not use the ex falso rule.
However, we derived the constraint on a and b because it was not clear at the
outset what a good precondition would be. When it came to instantiating the
constraint during the course of the proof it was not obvious why we should not
use the weakest possible precondition, instead of the more restrictive match (C

a) b == ff. During the proof we arrived at the two following subgoals.

2: match (C a’) b’ == uu ⊢ a1’ == bottomOfConst b’

1: match (C a’) b’ == tt ⊢ a1’ == b’

The term a1’ is the output at this time step. Any relation between a’ and b’
which ensures that these two goals are satisfied is a valid precondition. If we
do not want to use a proof by contradiction, in the second premise the output
at this time step must be equal to bottom. In the first premise it must be the
same as the output at time zero, i.e. b’. In both cases time is a free variable
and this means that the circuit always outputs undefined (in the former case)
or b’ (in the latter case.) This would constrain the circuit e, to be transformed,

5.3. TRANSFORMATIONS ON CIRCUITS 157

quite severely! By including match (C a) b == ff as an antecedent 1 and 2

do not arise, and no proof by contradiction is necessary.
This particular problem is, of course, an instance of the false implies every-

thing problem [185, 179, 13].
Note that at least two distinct non-bottom values are needed in the value

domain for the theorem to hold. If we have at least three distinct non-bottom
values we could prove a result which does not constrain the relation between a
and b. fe could be redefined thus.

fun fe’ a b c 0 (Delay (x,e)) =

If (Delay(a,Const c),Const b,Delay (a,e),C a) |

fe’ a b c (S t) (Delay (x,e)) =

If(Delay(c,Const c),Const b,Delay (x,e),C a);

The constraint generated by this definition, in the amended statement of the
theorem, would be match (C a) c == ff. This relaxation allows b to be bot-
tom, where previously this was not allowed.

A more realistic example of a transformation function is replicate which
removes all LET statements and makes all recursive LET statements as simple as
possible. Of course, the circuit may become much larger as a result of this ex-
pansion. Unfortunately we have not had the opportunity to verify this function.
It could be used in conjunction with a function which computes the fan-out of
defining expressions. If the fan-out is too large, some of the references to the
defining circuit (i.e. Var constructors) could be replaced by the defining expres-
sion. The expression environment l links the de Bruijn encoded variables with
their defining expressions.

fun replicate l (Const c) = Const c |

replicate l (Tuple (e,f)) = Tuple (replicate l e,replicate l f) |

replicate l (Let (e,f)) = (replicate (replicate l e::l) f) |

replicate (h::t) (Var 0) = h |

replicate (h::t) (Var (S n)) = replicate t (Var n) |

replicate l (Delay (c,e)) = Delay (c,replicate l e) |

replicate l (If (e,f,g,ch)) = If (replicate l e, replicate l f,

replicate l g, ch) |

replicate l (Index1 e) = Index1 (replicate l e) |

replicate l (Index2 e) = Index2 (replicate l e) |

replicate l (LetRec (c,e,f)) =

replicate (LetRec (c, replicate (Var 0::l) e,Var 0)::l) f;

Research into Formal Transformations and Optimisations

In [103, Chapter 6] Johnson shows how transformations can be proved to be be-
haviour preserving using a formal semantics of a stream-based language Daisy.
This is basically the approach used in this section. An algebraic approach to
transformational design has been presented by Johnson and Zhu in [104, 188].
Transformations on circuits have been used to optimise regular designs [115].

158 CHAPTER 5. CASE STUDIES

All the above research has been equational in nature. Busch has extended this
to implicational transformations [30, 31].

Our approach to correct transformations and optimisations is powerful, but
hard to use. The general correctness statement CORRECT is quite complex be-
cause the transformation is dependent on the circuit which is transformed, its
embedded state, and the time at which it is applied. It may well be better to use
only simple transformations, and without an explicit transformation function fe.

5.4 Discussion

In this section we reflect on our experience with the embedded operational
semantics.

Proofs and Invariants

Recall the statement of correctness of the PC parity checker of page 135:

⊢ ∀l,e,input.

(∀t. reduce l (e t) == (input t,e (S t)) ∧
(input t == hi ∨ input t == lo)) →

∀t. reduce l (PC#(state input t,e t)) ==

(state input t, PC#(state input (S t),e (S t)))

We cannot prove this statement as it stands. In all reasoning about picoella
circuits containing state, an invariant expressing the desired property about the
circuit must be provided. In this case we prove the following lemma first:

⊢ ∀l,e,input.

(∀t. reduce l (e t) == (input t,e (S t)) ∧
(input t == hi ∨ input t == lo)) →
∀t. reduce l (PC#(state input t,e t)) ==

(state input t, PC#(state input (S t),e (S t))) ∧
(state input (S t) == hi ∨ state input (S t) == lo)

(* Need extra invariant on parity’s state. *)

The extra part of the conclusion states that the state is always hi or lo.

Another feature, which we also encountered in the definition of CORRECT

(page 154), is the time-to-expression mapping e: natural -> expr. As circuit ex-
pressions which contain a state have a different description at every time step,
it is necessary to introduce a function which expresses this. This forces proofs
to include an induction over time. We can prove the result for the initial time
0, where we know what the circuit looks like. For the inductive case we can use
the induction hypothesis. It is often not clear exactly what the statement of
the theorem is when these modifications have to made. For example, the above
theorem is more intuitively stated as follows.

5.4. DISCUSSION 159

⊢ ∀t,l,e,input.

reduce l (e t) == (input t,e (S t)) ∧
(input t == hi ∨ input t == lo) →

reduce l (PC#(state input t,e t)) ==

(state input t, PC#(state input (S t),e (S t))) ∧
(state input (S t) == hi ∨ state input (S t) == lo)

However, this statement cannot be proved because in the inductive case of the
induction on t, reduce l (e t) is needed to discharge the antecedent of the in-
duction hypothesis. We only have the output of reduce l (e (S t)) available.
The first statement of the theorem which was correct was the following.

∀t,l,e,input. reduce l (e t) == (input t,e (S t)) ∧
(input t == hi ∨ input t == lo)

⊢ ∀t,l,e,input. reduce l (PC#(state input t,e t)) ==

(state input t, PC#(state input (S t),e (S t))) ∧
(state input (S t) == hi ∨ state input (S t) == lo)

This is a rather heavy-handed version, with an excessive amount of generality, as
a response to the problem described above. It works because we can instantiate
the hypothesis with the appropriate t, l, e, and input without having to worry
about any implications in induction hypotheses. Some reshuffling of quantifiers
resulted in the nicer correctness statement given at the start of this section.

In addition to the introduction of explicit time dependent circuit expres-
sions, the variable input is needed to describe the output of the input circuit.
The result type const * expr of the dynamic semantics function reduce means
that we have to name explicitly the output circuit and the constant output,
or use projections to obtain them. In both cases, the resulting expressions are
time dependent. The decision to omit the picoella INPUT construct results in
using (the de Bruijn encoded equivalent of) free variables to represent inputs to
a circuit. We can either insert input values directly into the environment, e.g.

P#(reduce (input t::l) (PC#(Var 0)))

or use an unspecified input circuit e

reduce l (e t) == (input t,e (S t)) ... ⊢ P#(reduce l (PC#(e t)))

The former limits the parity checker to be used inside a LET statement to ac-
cess the input value through the Var 0. The latter form is more verbose and
introduces more variables but allows PC to be used in any context. Moreover,
PC must save its input expression and use a fan-out to prevent incorrect envi-
ronment accesses which e may contain (cf. PC’s definition on page 134.) Either
way, the result is tedious to work with.

Apart from invariants on the state of circuits, invariants on the shape may be
needed. An example of this is the definition of CORRECT on page 154. Although
the monotonicity theorem of reduce (Section 4.3.2) tells us that the shape of
circuits does not change over time, this is expressed in terms of one time step to
the next. In the case of CORRECT we also want to know that the circuit is shape

160 CHAPTER 5. CASE STUDIES

equal to the initial circuit because the transformation functions fe are defined
on the structure of the terms they operate on. We are only given the shape
of the initial circuit. For similar reasons we need to know that the results of
reductions are well-typed. Again, reduceMonotoneTmay be used for this, but it
cannot be used to discharge well-typedness antecedents of induction hypotheses
for similar reasons as above.

Problems with picoELLA

Specific problems of picoella include the treatment of undefined, or bottom
values. This was noted also in the hol embedding of ella, which led to the
decision to abandon the original semantics which used lifting to deal with the
undefined value [17] in favour of a non-conforming semantics [18, Section 7.8].
(We discussed the latter semantics in Section 3.3.6, and the embedding of un-
defined values in Section 4.2.4.) It is the presence of the don’t know value as an
extra constant in the value domain which makes the matching function match

more sophisticated than structural equality on constants. Undefined values can-
not be encoded by the iota operator in Lambda, or the corresponding Hilbert
operator in hol.

In all verification examples we performed we excluded partially defined val-
ues from the legal inputs (e.g. the parity checker PC, above, and the correctness
of the half adder on page 143.) This ensures that the abstraction functions do
not have to map the bottom value to a corresponding undefined value of the
more abstract value domain. Due to the restrictions on the iota operator in
Lambda, it would be very annoying to implement this. For example, if tuples
of bits are mapped to natural numbers we would like to map partially defined
constants to an iota term.

fun abs (Cons (0,t)) = (ιx: natural. x == 0 ∨...∨ x == maxint) |...

This is currently not allowed in Lambda, and we would have to encode the un-
definedness as a separate data type (e.g. by lifting [17].) As discussed earlier in
Section 5.1.4, circuit without delayless feedback loops cannot give rise to unde-
fined values unless undefined values are input. Thus abstraction functions need
not deal with undefined values for intermediate values, outputs, or embedded
state. In theory, this allows us to transform premises such as

case match hi c of uu => bottomOfConst lo | tt => lo | ff => hi

into something like if c = hi then lo else hi or absInv (not (abs c)).
In practice, neither turned out to be easy to reason about.

Another problem of picoella is that it has no real facilities to deal with
data abstraction within the language. The use of binary tuples and enumerated
types alone, make data types such as bitvectors tedious to work with (cf. nadd
on page 149.) ella contains finite range integers [151, Section 4.4.1.2] on which
a number of built-in operators work. In theory, ella integers are just another
enumerated type. In practice, however, the built-in operators provide a crucial

5.4. DISCUSSION 161

functionality. For example, if we define the ella integer type address, and a
function to add two addresses

TYPE address = NEW addr(0..255).

FN ADDADDRESS = (address: i j) -> address:

CASE (i,j) OF

(addr/0,address): j,

(addr/1,addr/1)|(addr/2,addr/0): addr/2,

...

(addr/1,addr/254)|...|(addr/255,addr/0): addr/255

ELSE ?address ESAC.

The same approach has to be taken in picoella, and this is clearly not feasible.
In ella the built-in operator PLUS US may be used instead:

FN ADDADDRESS = (address: i j) -> address: BIOP PLUS US.

The semantics of BIOP statements was given in [92]. The definition of PLUS US

shows that the addresses are converted to unsigned integers. These are added
and converted back to addresses.5 Overflow results in the bottom value being
returned by the BIOP. This is a rather ad hoc solution, which has been used
for integers and reals. This conversion can be conveniently expressed in the
Lambda embedding of picoella:

fun enumToNat (Cons (S i,j)) = i;

We have ignored any typing constraints here. Note also that enumToNat is un-
defined for bottom values. The PLUS US operator can be coded as follows:

fun plus n (CoTuple (Cons(0,s),Cons(j,t))) = Cons(0,s) |

plus n (CoTuple (Cons(j,s),Cons(0,t))) = Cons(0,s) |

plus n (CoTuple (Cons(S i,s),Cons(S j,t))) =

if n < i + j then Cons(0,s) else (Cons(S i + j,s));

It is preferable to incorporate enumToNat in plus because it can deal with un-
defined values more easily. The function plus is strict in the sense that bottom
values and any overflow in the course of the addition will produce an undefined
output. The first argument n indicates the maximum element of the ella inte-
ger range. It is supplied explicitly because we do not know how many elements
a type has (see Section 4.2.1.) The semantics of picoella can be extended to
use the new built-in operators as follows.

datatype biop = Plus of natural | ...;

datatype expr = Biop of biop | ...;

fun reduce l (Biop (Plus n)) = plus n (reduce l) (Var 0) | ...;

5To be precise, this was the approach taken for ella version 3.0 ARITH statements [151, Sec-
tion 6.4.1.1] which were superseded by the BIOP constructs of later versions [136, Section 2.3].
All arguments to BIOP statements are converted to bit strings first [92, 45], which we have
omitted above.

162 CHAPTER 5. CASE STUDIES

Although it is possible to add integers and other high-level data types to picoella
in this manner, we would prefer a more aesthetically pleasing solution.

Another problem, which is not unique to the picoella approach, is that
the state of a circuit is visible at all stages. There is no mechanism for hiding
the state. Thus, abbreviations for circuits with memory such as PC and HOLPC

are parametric on the state, while rules for ADD and nadd specifically exclude
any embedded state. This is due to the lack of operators for hiding the state
in delays. In relational hardware descriptions the logical existential operator
∃ may be used for this purpose. An abbreviation or circuit description must
always be parametric on any embedded state. Abstraction functions and state
invariants, such as state for PC, can relieve this problem, but it remains a
problem nonetheless.

5.5 Conclusions

In this chapter we presented a number of very small examples to illustrate the
various ways in which an embedded operational semantics could be used. From
a practical point of view, the use of a semantics to derive the behaviour of
circuits tends to be quite tedious, especially because rewriting of reduce tends
to be slow. Anything larger than a one bit adder is not practical to verify using
rewriting. For example, proving PC correct takes nearly three hours run-time.
Considering that single reduceAllTac applications take up to 20 minutes to run,
doing these proofs is extremely frustrating. The proof is only computationally
demanding; no real intellectual effort is required. Proving these results on faster
hardware is no real solution; an inherently more effective manner of proof is
required. The hardware synthesis function nadd was not verified because the
task would have taken a substantial amount of time. Conceptually, it is very
simple; provide the appropriate functions to describe N bit vectors, map bit
vectors to natural numbers, etc. Then perform an induction on the size of the
adder. In practice this, coupled with the parametricity on the one bit adder,
made the prospect too daunting. Moreover, no new interesting problems were
expected to surface during the proof.

The embedded operational semantics rules turned out to be the most useful,
which was unexpected. The rigid format to which the rules adhere make them
very efficient to manipulate. Even if individual tactics such as safeOpSemAllTac
take a substantial time to run, the result remains in a trusted format. The
behaviour of the tactics and operations we provide is very predictable, which is
essential in large proofs. The use of rewriting outside the embedded operational
semantics has the opposite characteristics; generally the proofs take a long time,
rewriting results in huge expressions which are hard to comprehend. Although
these proofs roughly follow the same strategy6, at a local level very particular
lemmas often have to be proved to coax the expression into just the right format.

6Often something along the line of: induction on time, obtain appropriate properties
about well-typedness, compute the output of subexpressions, instantiate induction hypotheses,
rewrite reduce expressions, clean up.

5.5. CONCLUSIONS 163

It was a disappointment that the use of specifications for hierarchical simu-
lation (Section 5.1.5) turned out to be harder than expected.

As future work, it is possible to consider some of the examples or applications
in this chapter in more detail. We lacked the time to investigate a number of
issues satisfactorily. It would be interesting to consider a medium sized case
study (e.g. the Tamarack microprocessor [82].) However, considering the time
very small examples took, we are pessimistic about a favourable outcome. We
must, however, reiterate a point made earlier; picoella was designed to be a
minimal language. To use it even in medium sized examples would be taking it
out of the prototyping domain for which it was intended.

A fairly small effort would be required to incorporate the embedded opera-
tional semantics in the Lambda browser [64, Chapter 4]. The fixed set of rules
and tactics make it an ideal candidate for a menu-based interface. This would
be a very user-friendly introduction to the use of an operational semantics, with
the proof system keeping track of side conditions etc.

164 CHAPTER 5. CASE STUDIES

Chapter 6

Conclusions and Future

Work

First we summarise the work presented in this thesis. This is followed by some
suggestions about possible future work. Finally we conclude.

6.1 Summary

In the introduction we gave a very brief overview of the evolution of hard-
ware testing through the use of increasingly powerful hardware simulators. The
combinatorial explosion of the number of test vectors to be simulated has forced
alternative verification techniques to be developed. The field of formal hardware
verification attempts to address this problem. A number of different methodolo-
gies are being used, but in this thesis we concentrated on the use of automated
proof systems to formally verify hardware. However, the use of non-standard
formal notations, while suited to hardware verification, has prevented industrial
take-up of formal hardware verification techniques. One objective of this thesis
is to investigate how this may be achieved.

In Chapter 2 we described how hardware description languages (hdls) were
initially used to document circuit designs. Following this, hdl descriptions
were used to simulate circuit designs. The relation between the description of
the hardware design and the behaviour of the implementation of this design was
investigated. The separation of the structure and the behaviour of a design is
a crucial idea in this thesis. We indicated how this issue has also been studied
in programming language semantics research. Two methods of relating struc-
ture and behaviour were presented in Sections 2.2 and 2.3. The former section
shows how it is possible to extract a behaviour from a circuit description di-
rectly. Research taking this approach is reviewed from an evolutionary point
of view. In Section 2.3 we present the methodology used in this thesis. Be-
haviour may be derived from a circuit description using a formal semantics; in
particular an operational semantics. Automated proof systems may be used to

165

166 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

provide automated and safe reasoning support in both extraction and derivation
of behaviour.

As an initial step towards fulfilling the aim of this thesis, we combined the
formal semantics of a simple hardware description language with a proof as-
sistant. In doing so we obtained a versatile system which allows a number of
paradigms to be integrated. These include: formal symbolic hardware simula-
tion, proven transformations on circuits, interactive formal synthesis, verified
hardware synthesis functions, and conventional hardware verification.

As a first step towards this goal, we defined a small hdl in Chapter 3.
Two candidate hdls were reviewed and compared, and a static and dynamic
structural operational semantics of the picoella language was presented.

In Chapter 4 we introduced the proof system Lambda, used to automate
the picoella semantics. Circuits were represented by abstract data type terms.
The static and dynamic semantics were embedded as functions operating on
circuits. The main theoretical result of this thesis was described in some detail
in this chapter. It states that the embedded dynamic semantics of picoella
is total and monotone in its arguments, and preserves a number of invariants.
(Appendix B gave an overview of other theorems and lemmas.) We briefly
discussed limitations of the Lambda proof system also.

A number of small examples were presented in Chapter 5. The embedded
semantics of picoella was used to derive operational semantics rules closely
resembling those presented in Chapter 3. In conjunction with meta-variables
of the Lambda system these turned out to be an efficient (relative to other
examples in this thesis) method to implement symbolic simulation. Formal in-
teractive synthesis, both top-down and bottom-up, turned out be an extension
of this approach. Hardware synthesis functions were described in Section 5.2.3.
In Section 5.3 formally proved correct transformations on hardware descriptions
were applied to a simple parity checker. Limitations of the usability of the em-
bedding of picoella were discussed in Section 5.4. Expressions became very
large quickly, which resulted in unacceptably long times to verify even small
circuits. The use of a semantics to derive a behaviour from a structural descrip-
tion, as opposed to having a behavioural description, was also cumbersome.

Appendix A contains an overview of notation and terminology used in the
thesis. An overview of theorems and lemmas is given in Appendix B. The
embedded derived operational semantics rules, an alternative encoding of rules
dealing with recursion, and a correspondence between the embedded rules and
those of Sections 3.3.2 and 3.3.3 are described in Appendix C.

6.2 Future Work

An interesting outstanding issue is that of the ‘maximal ella semantics,’ pre-
sented in Section 3.3.5. There are some alternative semantics which are more
defined than our semantics, and to prove possible relationships between them
could be useful. The alternative semantics and their relationships may possibly
be automated in Lambda.

6.3. CONCLUSIONS 167

Although the embedded operational semantics rules of Section 5.1 were the
most efficient manner to simulate circuits, they do not seem to be so appro-
priate for proving properties by standard logical reasoning. More conventional
correctness proofs, e.g. for the parity checker PC, were problematic. More work
is needed to see if these proofs are fairly uniform and some proof support may
be provided, or whether they are inherently inefficient. We hope that the former
is the case, and tactics and derived rules can alleviate some of the problems.

It is probably not practical to use the interactive synthesis methods of Sec-
tions 5.2.1 and 5.2.2 for large examples. However, some work could be done to
see where and how problems arise. Hardware synthesis functions such as nadd
are probably much more useful. As explained in Section 5.5, we did not attempt
to verify nadd, but this should be done, if only to see how the proof compares
to other hardware description techniques.

Transformations on circuits are potentially very powerful, and more work
must be done to see if transformations need to be as powerful as fe on page 155.
It could well be that transformations not involving time are sufficient for most
applications.

The examples of Chapter 5 were all very brief. A medium sized case study
(e.g. the Tamarack microprocessor [82]) would be interesting to consider. Doing
a larger example might show a useful uniformity in proofs.

The embedded operational semantics rules can be given a menu-based front-
end by using the Lambda browser. This would make the operational semantics
very easy to use.

6.3 Conclusions

We hope to have given fresh insights into the relationship between the descrip-
tion of hardware designs and the corresponding behaviour. Different approaches
were presented in Chapter 2 culminating in a totally formal approach to deriving
behaviours from circuit descriptions using an operational semantics.

The work presented in this thesis is new in aiming to integrate an existing
hardware description language and a formal proof system. Until recently little
research was carried out which intended to combine a hardware description
notation and a proof system by using an embedded formal semantics. The
semantics for a subset of ella formalised a previously existing model. This
subset picoella is the only hdl embedded in a proof system we are aware of to
allow undelayed feedback loops. The embedding of this semantics in Lambda

raised a number of points of interest about bottom values in the semantics.
Proofs of meta-theoretic properties about the embedded semantics, rather than
properties about particular objects are significant. The main theorem of this
thesis, described in Section 4.3.2, is that the semantic model computes the
least fixed point solution of the circuit. By showing that the shape of circuits
remains unchanged over time, we can conclude that only the state of delays
needs to be stored to characterise the circuit as it evolves over time. The
relationship between the standard dynamic semantics and the greatest lower

168 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

bound semantics (Sections 3.3.5 and 4.3.3) has also been proved formally.
A number of small examples were presented to assess the claim to be able

to use a number of different paradigms within a proof system. Although this
seems to be the case in theory, practical problems prevented even medium sized
examples being carried out. Proving meta-results about the embedded seman-
tics presented no problems, but reasoning about individual circuits turned out
to be hard. The particular form of semantics was partly responsible; including
the state of a circuit in its description made theorems messy to state. However,
no comparison was made with the alternative (using a mutable state, and fixed
circuit) so that any judgement cannot be final. Another problem was that terms
became too large very quickly, which made intermediate expressions and rules
unwieldy.

By providing a theoretical basis for combining a hardware description lan-
guage and a proof system, we hope that this work has been useful as a first
step towards providing formal tools which can be used successfully outside of
academia.

Appendix A

Glossary of Terminology

and Notation

A.1 Terminology

Logical frameworks are systems in which particular logics may be specified.
These logics may then be reasoned in or about using the logical framework.
The Edinburgh lf [89], implemented in lego [116] is an example of such a
system.

Proof systems are implementations of a particular logic, such as higher-order
logic.

Rewrite systems are programs implementing the automatic application of a par-
ticular set of rewrite rules. An example is obj [68].

Theorem provers are proof systems which are capable of performing substantial
proofs without user intervention such as the Boyer-Moore system [21], otter

[34], Clio [12] and the Larch Prover [166].

Proof assistants are proof systems which may perform small proofs with no user
intervention but are normally used in an interactive mode, driven by the user.
These include hol [79], Veritas [88, 87], Lambda [64], Nuprl [46, 102].

Proof checkers are proof assistants which have to be supplied with all details of
a proof. Their function is to validate proofs. An example is the Stanford lcf

system [127].

A.2 Notation

This section describes the notation adopted in the thesis for displaying Lambda

rules and Lambda output.

We display Lambda constructs in this thesis according to the following table.
Where no explicit page is mentioned consult the Lambda reference manual [64,
Section 2.1.1.1].

169

170 APPENDIX A. GLOSSARY OF TERMINOLOGY AND NOTATION

Lambda Output
Displayed As Lambda Syntax Meaning Page

⊢ |- entailment
P#(x) P#(x) abbreviation or context 63
ιx. P#(x) iota x. P#(x) Iota operator 65
∀x. P#(x) forall x. P#(x) universal quantification
∃x. P#(x) exists x. P#(x) existential quantification
→ ->> implication
↔ <-> biimplication
E E existence predicate 64
∧ /\ truth-valued conjunction
∨ \/ truth-valued disjunction
NOT NOT truth-valued negation
fn x => P#(x) fn x => P#(x) object-level lambda expression 63
lam x. P#(x) lam x. P#(x) meta-level lambda expression 63
=== === equivalence 64
== == truth-valued equality 64
= = boolean equality 64

The operators are ordered in decreasing precedence as follows: =, NOT, E, ==,
===, ∧, ∨, →, ↔, ⊢. As an example, the following rule with two premises, each
with some hypotheses

******* LEVEL 2 *******

2: E x $ E y $ G // R#(x,x) $ H |- P \/ R#(x,NOT y)

1: E x $ E y $ G // H |- P /\ Q

E x $ E y $ G // P /\ Q ->> R#(x,x) $ H |- P \/ R#(x,NOT y)

will be displayed as

***** Level 2 *****

***** Premise 2 *****

1: E x

2: E y

1: R#(x,x)

⊢ P ∨ R#(x,NOT y)

***** Premise 1 *****

1: E x

2: E y

⊢ P ∧ Q

1: E x

2: E y

1: P ∧ Q → R#(x,x)

⊢ P ∨ R#(x,NOT y)

Note that the G and H lists are numbered separately, with the G list displayed

A.3. OVERVIEW OF TYPES AND FUNCTIONS USED IN THIS THESIS171

first. The trailing G and H are omitted. Sometimes we will omit the number-
ing of the premises and hypotheses. When listing theorems we will often omit
the dashed line. Expressions of the form B == true will often be displayed as
B, but B == false will always be displayed in the original form. Existence hy-
potheses may be left out, but this will be mentioned explicitly. The typewriter
font is used for function definitions, data type constructors, ml keywords, and
meta-variables representing meta-level objects (e.g. abbreviations.) Italic font
is used for meta-variables representing object-level objects, and variables in pat-
terns. There are some additional pretty-printing conventions which are used for
embedded operational semantics rules; these are described in Appendix C.

A.3 Overview of Types and Functions Used in

this Thesis

picoella Semantics Type Definitions
Type Typical Element Page

Env Γ 46
Type τ 46
TEnv T 46
AEnv S 46
IN i, j, n

The typical elements may also be primed and subscripted. For the BNF defi-
nition of picoella on page 45, the typical element of a syntactic class has the
same name as the syntactic class, possibly subscripted or primed. In addition,
c is also used as an element of the syntactic class const.

picoella Semantics Definitions
Symbol Description Page

↓ projection of constants to bottom 47
ff Kleene’s falsity value 47
match matching function 47
tt Kleene’s truth value 47
uu Kleene’s undefined value 47

172 APPENDIX A. GLOSSARY OF TERMINOLOGY AND NOTATION

Types Used in The Embedding
Lambda Type Description Page

’a list lists [64, Section 3.17]
biop built-in operators 161
bool boolean values [64, Section 3.12],73
bool3 Kleene’s ternary logic 88
chooser picoella choosers 81
const picoella constants 75
expr picoella expressions 82
natural natural numbers [64, Section 3.13]
tpe picoella types 76
tree binary tree (example) 65

Typical Elements Used in The Embedding
Lambda Type Typical Element

’a list l, m
const list l, m, env, instream, outstream
tpe list env
bool b
chooser ch, chooser
const c, d, i, o, v, out, initial
expr e, f , g, circ, newcirc
natural n, m, t
tpe s, t

env may be used with the letter l or r appended. c and e may be used in the form
cil and cir where i is a natural number. All elements may be used primed, with
an underscore and/or natural number appended, e.g. o , o1 1, circ’ , circ’ 1’. A
trailing prime indicates that the variable is restricted [64, Section 2.19.3]. The
type of a variable (e.g. for l or t) will always be clear from the context.

Functions Used in The Embedding
Lambda Name Description Page

&& boolean conjunction [64, Section 3.12]
|| boolean disjunction [64, Section 3.12]
abs boolean to constant representation 135
absinv constant to natural number abstraction 135
absInv inverse of abs 142
again iterative part of dynamic semantics

of expressions 89
againGlb iterative part of alternative dynamic

semantics of expressions 116
and3 conjunction of Kleene’s ternary logic 88

A.3. OVERVIEW OF TYPES AND FUNCTIONS USED IN THIS THESIS173

Functions Used in The Embedding (Cont’d)
Lambda Name Description Page

bottomOfConst constant to bottom function 78
ceq boolean equality on constants 77
cheq boolean equality on choosers 82
cle data ordering on constants 77
elem element lookup in list 88
enumToNat constant to natural coercion 161
eq boolean equality on naturals 77
eq3 Kleene’s equality, gives tt and ff 88
even even-ness predicate 135
fe initial delay value transformation on circuits 155
fe’ initial delay value transformation on circuits 157
ff Kleene’s falsity value 88
glb greatest lower bound 78
iterate iterative part of dynamic semantics

of expressions 89
iterateGlb iterative part of alternative dynamic

semantics of expressions 116
leaves number of leaves of a tree (example) 67
le3 data ordering in Kleene’s logic 88
lle data ordering on lists, extended from cle 77
match matching algorithm 88
nadd N bit adder synthesis function 149
nodes number of nodes of a tree (example) 67
noof count number of vs in input 135
not boolean negation 73
not3 negation of Kleene’s ternary logic 88
or3 disjunction of Kleene’s ternary logic 88
ple data ordering on expressions 87
plus addition of picoella integers 161
reduce dynamic semantics of expressions 89
reduceGlb alternative dynamic semantics of expressions 116
reduceSeq dynamic semantics of expressions 90
replicate removal of fan-out in circuits 157
right function definition example 67
shapeEq equal shape predicate on expressions 86
sizeOfConst size function on constants 79
sizeOfExpr size function on expressions 84
state state of parity checker 135
sub function definition example 63
suspend part of dynamic semantics of expressions 139
tt Kleene’s truth value 88
typeEq boolean equality on types 77
typeOfChooser static semantics of choosers 81
typeOfConst static semantics of constants 76
typeOfExpr static semantics of expressions 85
typeOfExprIter alternative static semantics of expressions 177
uu Kleene’s undefined value 88
wrong function definition example 67

174 APPENDIX A. GLOSSARY OF TERMINOLOGY AND NOTATION

Abbreviations Used in The Embedding
Lambda Name Description Page

ADD SPEC half adder specification 142
ADD picoella full adder 142
AND picoella AND gate 128
BEHEQ behavioural equivalence for transformations 152
BEQ correctness statement for transformations 152
bit the undefined value of type bit 76
CORRECT correctness statement for transformations 154
BITINDUCT definition of case analysis on bits 79
DEFBITINDUCT definition of case analysis on defined bits 79
FF picoella flip-flop 138
FIXPOINT definition of fixed point 115
HA picoella half adder 142
HA SPEC half adder specification 142
hi a value of type bit 76
HOLPC picoella definition of a hol parity checker 133
LEASTFIXPOINT definition of least fixed point 115
lo a value of type bit 76
MUX picoella multiplexor 133
NOT g picoella NOT gate 133
OR picoella OR gate 142
PC picoella parity checker 134
REG picoella register 133
THM reduce’s monotonicity theorem 105
THMI iterative part of monotonicity theorem 105
THMR reduction part of monotonicity theorem 98
WF well-formedness predicate on transformations 152
XOR picoella XOR gate 142

Appendix B

Overview of Lemmas and

Statistics

B.1 Overview of Lemmas Proved

In Section 4.1.2 we described how the statement of an interesting fact as a the-
orem is often not very useful. Thus, corresponding to a theorem ‘T’ statement,
there is an ‘R’ version which has all quantifiers stripped off, and implications
and conjunctions moved to the hypothesis. (Our format for ‘R’ and ‘L’ rules is
different from those used in the Lambda documentation [64, Section 3.1].) An
‘L’ version introduces the conclusion on the left hand side. For certain results
we also have a ‘U’, ‘F’, and ‘E’ version. The unfold ‘U’ version is used to replace
subexpressions in the conclusion, and the fold ‘F’ version the inverse rule. The
‘E’ version is an equality or equivalence rule which can be used in rewriting. We
illustrate this naming convention with bottomOfConstPreservesTypeT:

***** bottomOfConstPreservesTypeT *****

⊢ ∀c. typeEq (typeOfConst c) (typeOfConst (bottomOfConst c))

175

176 APPENDIX B. OVERVIEW OF LEMMAS AND STATISTICS

***** bottomOfConstPreservesTypeR *****

E c ⊢ typeEq (typeOfConst c) (typeOfConst (bottomOfConst c))

***** bottomOfConstPreservesTypeL *****

1: E c

1: typeEq (typeOfConst c) (typeOfConst (bottomOfConst c))

⊢ P

E c ⊢ P

***** bottomOfConstPreservesTypeU *****

E c ⊢ P#(typeOfConst c)

E c ⊢ P#(typeOfConst (bottomOfConst c))

***** bottomOfConstPreservesTypeE *****

⊢ typeOfConst (bottomOfConst c) === when#(E c,typeOfConst c)

In total, more than 700 results have been proved, but most of the ‘T’ versions
can be summarised in the table below.

A function is total (T), or total only if its arguments are well-typed (W.) C,
T, R, A, and I stand for commutativity, transitivity, reflexivity, associativity,
and idempotency of the function in the appropriate columns. An entry ∗ (or a
particular number n) for monotonicity shows that the function is monotone for
all arguments (or the nth argument, respectively.) In the column for invariants
C, E, and S mean that the function preserves the type of constant inputs,
the type of expression inputs, and shape of expression inputs. E and S preserve
type (shape) both between two inputs, and across the function call, cf. reduce’s
monotonicity statement on page 98. = indicates that if the function is reflexive
for two arguments, the arguments are equal. == indicates that the function is
an encoding of the equality ==.

B.1. OVERVIEW OF LEMMAS PROVED 177

Function Total Comm Trans Refl Mono Invar Other
not3 T ∗ 1
or3 T C ∗ A

and3 T C ∗ A

eq3 T C T R ==

ceq T C T R ==

cheq T C T R ==

typeEq T C T R ==

shapeEq T C T R 2
le3 T T R =

cle W T R =,3
ple W T R =,4
lle T T R

glb W C ∗ C I,5
bottomOfConst T C I,6
typeOfConst T

typeOfChooser T

typeOfExpr T

sizeOfConst T 3
sizeOfExpr T 4
match W 2 7
reduce W ∗ C,E,S 8
reduceSeq W ∗ C,E,S
iterate W ∗ C,E,S
reduceGlb W ∗ C,E,S 9
iterateGlb W ∗ C,E,S

1 de Morgan’s rules and a number of rewrite rules to provide a coherent rewrite
strategy for the three valued boolean operators have also been proved.
2 The relation between shapeEq and typeOfExpr is very uncomfortable. If two
expressions are both well-typed and shape equal, their types are the same. But a
well-typed expression which is shape equal to another expression does not imply
that the other expression is also well-typed. The reason is that initial approx-
imations in LetRec constructs must be equal to bottom to be well-typed, but
shapeEq only ensures that type types are the same (see pages 85 and 86.) We
can define a more liberal version of typeOfExpr which is preserved by shapeEq.
typeOfExprIter differs from typeOfExpr only in the LetRec clause:

fun typeOfExprIter te (LetRec (c, e1, e2)) =

(fn tc =>

(fn (t1, b1) =>

(fn (t2, b2) =>

(t2, b1 && b2 && (typeEq t1 tc)))

(typeOfExprIter (tc::te) e2))

(typeOfExprIter (tc::te) e1))

(typeOfConst c) | ...

Obviously well-typedness using typeOfExpr implies typeOfExprIter, but not

178 APPENDIX B. OVERVIEW OF LEMMAS AND STATISTICS

vice versa. We can now prove that

⊢ ∀e,f,l,t. shapeEq e f ∧ typeOfExprIter l e == (t,true) →
typeOfExprIter l f == (t,true)

If we also encode a bottomOfExpr function, which projects the initial values of
recursive LETs to bottom, we obtain a precise statement:

⊢ ∀l,e. typeOfExpr l (bottomOfExpr e) == typeOfExprIter l e

3 A useful theorem relating cle and the natural number ordering <= on the
corresponding sizes of the arguments is the following:

⊢ ∀c,d. typeOfConst c == typeOfConst d →
cle c d → sizeOfConst d <= sizeOfConst c

This is useful to know when proving the totality of the iterate and reduce

functions, for example. See also the discussion about the relation of the data
ordering and the size of constants in Section 4.2.1.

4 ple is total on arguments which have the same shape only.

⊢ ∀e,f. shapeEq e f → E (ple e f)

As cle above, ple e f implies >= on the corresponding sizes of e and f.

5 glb is less than both of its arguments.

6 A bottom value is less than any other value of the same type, so that being
less than bottom implies being bottom. For every type a corresponding bottom
value exists.

7 If we abbreviate ∀c. match ch c == match ch’ c by match equality
meq ch ch’ we have the following results.

⊢ ∀x,y. meq (x | x) x

⊢ ∀x,y. meq (x | y) (y | x)

⊢ ∀x,y,z. meq ((x | y) | z) (x | (y | z))

⊢ ∀x,y,z. meq (x | y, z) ((x, z) | (y, z))

⊢ ∀x,y,z. meq (x, y | z) ((x, y) | (x, z))

The monotonicity of match and a corollary stating the inability of match to
distinguish between cle-related constants are described in Section 4.3.1.

8 In Section 4.3.3 we showed a number of corollaries of the reducemonotonicity
theorem. We mentioned, but did not show the following result.

B.2. SOME STATISTICS ABOUT PROOFS 179

⊢ ∀envl ,c0l ,c0r ,e0l ,c1l ,c1r ,e1l ,e1r ,c2l ,e2l .

typeOfExpr (map typeOfConst (c0l ::envl)) e0l ==

(typeOfConst c0l ,true) ∧
reduce (c0l ::envl) e0l == (c1l ,e1l) ∧
cle c0l c1l == true ∧
iterate envl e0l c0l == (c2l ,e2l) ∧
reduce (c0r ::envl) e0l == (c1r ,e1r) ∧
cle c0r c1r == true ∧
typeOfConst c0l == typeOfConst c0r ∧
cle c0l c0r == true ∧
cle c0r c2l == true → iterate envl e0l c0r == (c2l ,e2l)

The theorem cleImpliesSameFixpointT states that given initial approximation
c0l , second approximation c1l and their fixed point c2l , if there is another
value c0r with next approximation c1r , such that c0r lies between the first
value c0l and the fixed point c2l, then c0r evaluated to the same fixed point. It
is unfortunate that we need to mention c1r , but we need to ensure that c0r ’s
fixed point computation terminates.

9 In Section 4.3.3 we showed the theorem stating that reduceGlb is a more
optimistic semantics than reduce. A similar theorem has been proved relating
iterate and iterateGlb. All results of reduce and iterate, such as those
involving fixed points, can also be proved for reduceGlb and iterateGlb.

B.2 Some Statistics about Proofs

The proof scripts, containing more than 14,000 lines with over 10,000 rule appli-
cations and 2,800 tactic applications, take nearly 13 hours to run on an unloaded
sun 4/65 (sparc station 1+) with 32M memory and a local hard disk. A max-
imum size (48M) heap was used. Lambda does not provide any facilities to
time proofs, count inferences, rules, etc. We provided an alternative startup
database where functions such as apprl, applyTac have been redefined to only
count the inferences carried out, and ignore the computation of the proof. For
example, doRules is redefined to add the number of rules it normally applies
to the rule counter. Unfortunately, it is not possible to count basic inferences,
or the number of rewrite rules which would be applied during the course of a
proof. Nevertheless we obtain some interesting results. This is the output from
the counting functions after running all proof scripts:

180 APPENDIX B. OVERVIEW OF LEMMAS AND STATISTICS

10539 rule applications have been counted.

5047 rewrite rules have been counted (upon declaration.)

17893 rewrite rules have been explicitly used in proofs.

2814 tactic applications have been counted.

4699 permutation applications have been counted.

733 popGoals have been counted.

3.84 tactics per proof.

14.38 rules per proof.

24.41 rewrite rules explicitly supplied per proof.

6.411 permutations per proof.

3.75 rules per tactic.

6.36 rewrite rules per tactic.

1.67 permutations per tactic.

5.42 permutations + rules per tactic.

0.45 permutations:rule ratio.

1.48 G permutations:H permutations ratio.

The number of rule applications excludes rewrite rules, and counts derived rule
applications only. There is no way of counting the number of basic inference
rules which have been used. The explicitly used rewrite rules arise from pass-
ing rewrite rules into rewrite tactics. This figure is a substantial underesti-
mate because derived tactics, such as typeOfExprTac, are not included in this
count. A total of 5047 rewrite rules were used in the declarations of such tac-
tics. typeOfExprTac, which uses 13 specialised rules in addition to the stan-
dard rewriting rules, was used 122 times in the proof scripts. This loses 1586
rewrite rules in the count above. For a larger tactic reduceAllTac’ this figure
is 284× 38 = 10792. Of course, we still cannot say how many of these rules are
actually used in a proof, nor how many times.

We were surprised to see how high the permutation per rule ratio was. In
effect this means that for roughly every two rules we had to move something in
the hypothesis lists. This is an enormous overhead. Moreover, the ratio of G list
(for existence conditions) to H list (for ‘conventional’ hypotheses) permutations
was 1.5. It seems that in a logic which does not have partial terms the proofs
would have contained 60% percentage less permutation commands. The lemmas
proving totality of all functions which are essential in Lambda version 3.2, would
also disappear.

If we consider the fact that for every theorem there are at least two other
very simple rules proved (the ‘R’ and ‘L’ versions) the figures become somewhat
more realistic. We multiply all ‘per proof’ figures times three, giving

10.17 tactics per proof.

43.13 rules per proof.

73.23 rewrite rules explicitly supplied per proof.

19.23 permutations per proof.

Another problem is the variation in the sizes of proofs. A lot of simple proofs
consisted of one tactic each, but the most complicated proof took more than

B.2. SOME STATISTICS ABOUT PROOFS 181

300. Averaging out these values does not give a true reflection of the amount
of effort which went into more interesting, larger, proofs. The figures from the
monotonicity of reduceGlb alone are as follows.

1437 rule applications have been counted.

2304 rewrite rules have been explicitly used in proofs.

320 tactic applications have been counted.

735 permutation applications have been counted.

4.49 rules per tactic.

7.2 rewrite rules per tactic.

2.30 permutations per tactic.

6.79 permutations + rules per tactic.

0.51 permutations:rule ratio.

2.09 G permutations:H permutations ratio.

The first four numbers can be set against the first set of average ‘per proof’
numbers. The last six figures can be compared with those computed for all the
proof scripts because they are stated per tactic or rule, which is independent of
the size of the proof. It is interesting to note that the number of rules, rewrite
rules and permutations per tactic is higher than the average. This means that
large proofs are not only longer, they are also more complicated on a per tactic
basis.

All the figures above exclude examples from the case studies of Chapter 5.
Most of the examples are not very long, but tend to be very CPU intensive.
For example, the four bit adder example of the embedded operational semantics
rules on page 150 has the following proof for the derived rule.

flexn 3;

flex’ (grn 2(gL([gI],gI)));

apprl reduceNADDSSn;

atn [2] (doRule reduceNADDSSn);

atn [4] (pureRewriteTac [betaRedE,exLemma1,whenTrueE]);

atn [11] (pureRewriteTac [betaRedE,exLemma2,whenTrueE]);

ata (safeOpSemAllTac’[reduceNADD2bit’’,reduceADD1]);

atn [2,3,5,6,8,9] (doRules [reduceCoTuple,reduceCons,reduceType,

reduceSn,reduce0]);

atn [2,3,4,5] safeOpSemAllTac;

It takes just under 20 minutes to run due to the enormous amount of work
safeOpSemAllTac performs. This pales into insignificance if we try to prove
that the full adder ADD of page 142 satisfies its specification using standard
rewriting. We would have to consider 8 inputs, which each take more than 40
minutes to rewrite.

182 APPENDIX B. OVERVIEW OF LEMMAS AND STATISTICS

Appendix C

Embedded Operational

Semantics Rules

In this appendix we define the pretty printing conventions for the embedded
operational semantics rules, which are then listed. Some alternative embed-
ded operational semantics rules for dealing with recursion are then presented.
Following this, a correspondence between paper and embedded operational se-
mantics rules is given. Finally some remarks are made about the difference
between the forward and backward rule application of the semantic rules, and
why this leads to some changes to the rules used in a forward manner.

C.1 Pretty Printing Conventions

The embedded operational semantics rules are pretty printed as all other Lambda

output with the following additional transformations. All expressions of type
expr have been manually converted from a prefix notation, e.g. Let (e,f), to an
infix notation LET e IN f. To code this in Lambda as part of the pretty printing
functions would require a considerable effort. Moreover, expressions involving
typeOfConst, typeOfChooser, typeOfExpr, reduce, iterate, and reduceSeq

are printed in a more conventional operational semantics syntax. The resultant
output reflects accurately the operational semantics definition outside the proof
system (see Section 3.3.)

(instream , env ⊢ circ ⇒ (outstream ,circ))

is an abbreviation for

reduceSeq env circ instream == (outstream ,circ)

And

(env ⊢ circ ⇒ (o ,circ’): t)

183

184 APPENDIX C. EMBEDDED OPERATIONAL SEMANTICS RULES

is an abbreviation for

typeOfExpr (map typeOfConst env) == (t ,true) ∧
reduce env circ == (o ,circ’)

And

(o , env ⊢ circ ⇒ (o1 ,circ’): t)

is an abbreviation for

typeOfExpr (map typeOfConst env) == (t ,true) ∧
iterate env circ o == (o1 ,circ’)

Moreover, expressions involving typeOfConst have been converted to the post-
fix notation x : t . typeOfChooser and typeOfExpr expressions have been con-
verted to a postfix x : (t , b) notation.

The following abbreviation is used for the alternative formulation of the re-
cursion rules of Section C.3.

(o , o1 , env ⊢ circ ⇒ (o2 ,circ2): t)

is an abbreviation for

typeOfExpr (map typeOfConst env) == (t ,true) ∧
suspend env circ o (o1 ,circ1) == (o2 ,circ2)

C.2 The Embedded Operational Semantics Rules

reduceSeqNil terminates the simulation, when there are no more input values
to be processed.

***** reduceSeqNil *****

⊢ ([], env ⊢ circ ⇒ ([],circ))

The reduceSeqCons rule advances time, and takes the first value of the input
stream and pushes it onto the environment.

***** reduceSeqCons *****

⊢ (instream , env ⊢ circ1 ⇒ (outstream ,circ2))

⊢ (i1 :: env ⊢ circ ⇒ (o1 ,circ1): t)

⊢ (i1 :: instream , env ⊢ circ ⇒ (o1 :: outstream ,circ2))

The following rule starts the computation of the fixed point of the LET REC.
The third premise states that the initial approximation initial must be equal
to the bottom value (bottomOfConst initial). The type t1 of the initial ap-
proximation must be equal to the type of the defining expression.

C.2. THE EMBEDDED OPERATIONAL SEMANTICS RULES 185

***** reduceLetRec *****

⊢ E t1

⊢ o1 : t1

⊢ initial : t1

⊢ bottomOfConst initial == initial

⊢ (o1 :: env ⊢ circ2 ⇒ (o2 ,circ2’): t2)

⊢ (initial , env ⊢ circ1 ⇒ (o1 ,circ1’): t1)

⊢ (env ⊢ LET INIT initial REC circ1 IN circ2 ⇒
(o2 ,LET INIT initial REC circ1 ’ IN circ2 ’): t2)

The reduceFix rule detects a fixed point initial .

***** reduceFix *****

⊢ (initial :: env ⊢ circ1 ⇒ (initial ,circ1’): t1)

⊢ (initial , env ⊢ circ1 ⇒ (initial ,circ1’): t1)

The third premise of reduceIterate determines that we have not yet reached
a fixed point. It therefore iterates again in premise two, this time with the new
approximation o1 . Recall that ceq is an encoding of equality on constants.

***** reduceIterate *****

⊢ ceq initial o1 == false

⊢ (o1 , env ⊢ circ1 ⇒ (o2 ,circ2’): t1)

⊢ (initial :: env ⊢ circ1 ⇒ (o1 ,circ1’): t1)

⊢ (initial , env ⊢ circ1 ⇒ (o2 ,circ2’): t1)

The rule for the non-recursive LET is much simpler; we can just push the result
of the defining expression onto the stack.

***** reduceLet *****

⊢ E t1

⊢ o1 : t1

⊢ (o1 :: env ⊢ circ2 ⇒ (o2 ,circ2’): t2)

⊢ (env ⊢ circ1 ⇒ (o1 ,circ1’): t1)

⊢ (env ⊢ LET circ1 IN circ2 ⇒ (o2 ,LET circ1’ IN circ2’): t2)

The following two rules deal with the lookup of variables, as encoded by the
de Bruijn encoding.

***** reduceVarSn *****

⊢ (env ⊢ Var n ⇒ (o2 ,Var n): t2)

⊢ (o1 :: env ⊢ Var (S n) ⇒ (o2 ,Var (S n)): t2)

186 APPENDIX C. EMBEDDED OPERATIONAL SEMANTICS RULES

***** reduceVar0 *****

⊢ out : t

⊢ (out :: env ⊢ Var 0 ⇒ (out ,Var 0): t)

The output from a delay is its state; its new state is the output from the ex-
pression circ . The type of the state must be same as the type of the input
expression.

***** reduceDelay *****

⊢ initial : t

⊢ (env ⊢ circ ⇒ (out ,circ’): t)

⊢ (env ⊢ DELAY (initial ,circ) ⇒
(initial ,DELAY (out ,circ’)): t)

***** reduceTuple *****

⊢ (env ⊢ circ2 ⇒ (o2 ,circ2’): t2)

⊢ (env ⊢ circ1 ⇒ (o1 ,circ1’): t1)

⊢ (env ⊢ (circ1 ,circ2) ⇒
(CoTuple (o1 ,o2),(circ1’ ,circ2’)): TyTuple (t1 ,t2))

The derivation of the semantic rules for the IF statement use the fact that the
semantics is total. At the time this work was carried out (July 1991) this result
had not been proved for the embedding which included the LET REC. As a result
the rules in this embedding were more complicated than the rules in the embed-
ding without the LET REC, for which the totality result had been proved. The
totality result discharges the subgoal ⊢ out : t in reduceIf and reduceIf’

below. In a similar manner we should be able to discharge premises 5 and 4 of
reduceLetRec and reduceLet respectively.

***** reduceIf *****

⊢ E t

⊢ out : t

⊢ chooser : t

⊢ (env ⊢ branch2 ⇒ (o2 ,branch2’): t1)

⊢ (env ⊢ branch1 ⇒ (o1 ,branch1’): t1)

⊢ (env ⊢ circ ⇒ (out ,circ’): t)

⊢ (env ⊢ IF circ MATCHES chooser THEN branch1 ELSE branch2 ⇒
(case match chooser out of

uu ⇒ bottomOfConst o1 | tt ⇒ o1 | ff ⇒ o2 ,

IF circ ’ MATCHES chooser THEN branch1 ’ ELSE branch2 ’): t1)

Note in reduceIf that the types of the two branches must be equal, and that
the type of the chooser must match that of the selecting expression. reduceIf
returns a symbolic answer, but most of the time we want a concrete value.
reduceIf’ therefore explicitly computes the output value o3 .

C.2. THE EMBEDDED OPERATIONAL SEMANTICS RULES 187

***** reduceIf’ *****

⊢ E t

⊢ out : t

⊢ o3 == (case match chooser out of

uu ⇒ bottomOfConst o1 | tt ⇒ o1 | ff ⇒ o2)

⊢ chooser : t

⊢ (env ⊢ branch2 ⇒ (o2 ,branch2’): t1)

⊢ (env ⊢ branch1 ⇒ (o1 ,branch1’): t1)

⊢ (env ⊢ circ ⇒ (out ,circ’): t)

⊢ (env ⊢ IF circ MATCHES chooser THEN branch1 ELSE branch2 ⇒
(o3 ,IF circ ’ MATCHES chooser THEN branch1 ’ ELSE branch2 ’): t1)

reduceIfTt, reduceIfFf, reduceIfUu have not been listed. They correspond
to the three possible outputs the IF statement can deliver, and each include a
premise to show that it is the THEN, ELSE or undefined branch which is taken.
There is a rule for each of the indexing operators.

***** reduceIndex1 *****

⊢ E t2

⊢ (env ⊢ circ ⇒ (CoTuple (o1 ,o2),circ’): TyTuple (t1 ,t2))

⊢ (env ⊢ circ [1] ⇒ (o1 ,circ’ [1]): t1)

***** reduceIndex2 *****

⊢ E t1

⊢ (env ⊢ circ ⇒ (CoTuple (o1 ,o2),circ’): TyTuple (t1 ,t2))

⊢ (env ⊢ circ [2] ⇒ (o2 ,circ’ [2]): t2)

The remainder of the rules deal with the static semantics proof obligations,
which may arise from the previous rules.

***** reduceCoTuple *****

⊢ d: t2

⊢ c: t1

⊢ CoTuple (c,d): TyTuple (t1 ,t2)

***** reduceCons *****

⊢ Cons (n,m): Type m

The following three rules deal with typing of choosers.

***** reduceT *****

⊢ ch2 : t2

⊢ ch1 : t1

⊢ T (ch1 ,ch2): TyTuple (t1 ,t2)

188 APPENDIX C. EMBEDDED OPERATIONAL SEMANTICS RULES

***** reduceB *****

⊢ ch2 : t

⊢ ch1 : t

⊢ B (ch1 ,ch2): t

***** reduceC *****

⊢ c: t

⊢ C c: t

The remaining rules deal with existence conditions which may arise.

***** reduceTyTuple *****

⊢ E t2

⊢ E t1

⊢ E (TyTuple (t1 ,t2))

***** reduceType *****

⊢ E n

⊢ E (Type n)

***** reduceSn *****

⊢ E n

⊢ E (S n)

***** reduce0 *****

⊢ E 0

C.3 Alternative Recursion Rules

The operational semantics rules dealing with the recursion in practice are dif-
ferent from those listed above – see Section 5.1.4. Using the auxiliary function
suspend we modify the rules so that unification can decide for us when to apply
the fix rule, and when to apply the iterate rule.

fun suspend l circ c (d,e) = if ceq c d then (d,e)

else iterate l circ d;

C.4. CORRESPONDENCE BETWEEN PAPER AND EMBEDDED OPERATIONAL SEMANTICS RULES189

reducePrefix contains the initial computation common to reduceFix and
reduce-Iterate.

***** reducePrefix *****

1: (initial :: env ⊢ circ1 ⇒ (o1 ,circ1’) : t1)

⊢ (initial , o1 , env ⊢ circ1 ⇒ (o2 ,circ2’) : t1)

⊢ (initial :: env ⊢ circ1 ⇒ (o1 ,circ1’) : t1)

⊢ (initial , env ⊢ circ1 ⇒ (o2 ,circ2’) : t1)

The computation of the first premise is passed on to the second premise in the
hypothesis list. The hypothesis of the reduceFix’ rule requires that the first
and second approximations are equal, or strictly speaking unifiable, in the rule
reduceFix’ is applied to. Thus reduceFix’ is applicable only if we have a fixed
point.

***** reduceFix’ *****

1: (initial :: env ⊢ circ1 ⇒ (initial ,circ1’) : t1)

⊢ (initial , initial , env ⊢ circ1 ⇒ (initial ,circ1’) : t1)

reduceIterate’ is always applicable, and must therefore be tried after reduceFix’
in any tactics.

***** reduceIterate’ *****

⊢ ceq initial o1 == false

⊢ (o1 , env ⊢ circ1 ⇒ (o2 ,circ2’) : t1)

1: (initial :: env ⊢ circ1 ⇒ (o1 ,circ1’) : t1)

⊢ (initial , o1 , env ⊢ circ1 ⇒ (o2 ,circ2’) : t1)

It might be useful to derive reduceIterate’’ which is the composition of
reduceIterate’ and reducePrefix because that is the only thing that can hap-
pen after reduceIterate’. Similarly we could derive reduceLetRec’ which is
reduceLetRec followed by reducePrefix.

C.4 Correspondence Between Paper and Em-

bedded Operational Semantics Rules

Below we present a table with the correspondence of paper and embedded rules
of the dynamic semantics. Note that there is no exact 1-1 correspondence: there
is a note for the cases where no corresponding rule is present.

190 APPENDIX C. EMBEDDED OPERATIONAL SEMANTICS RULES

Construct Embedded Rule (reduce-) Paper rule
TYPE 1 3.25
INPUT 2 3.26
nil instream SeqNil 3.23
h::t instream SeqCons 3.24
LET Let 3.27
LET Let 3.35
LET REC LetRec 3.35
LET REC Fix, Fix’ 3.28
LET REC Iterate, Iterate’ 3.29
const Const 3

cname Cons 3.36
(const,const) CoTuple 3.37
?tname Cons 3.38
?tname 4 3.39
name VarSn 3.30
name Var0 3.30
e[1] Index1 3.31
e[2] Index2 3.31
(e,e’) Tuple 3.32
DELAY Delay 3.33
IF If, If’, IfTt, IfFf, IfUu 3.34

1 The TYPE construct is wholly absent; see Section 4.2.1 for a justification.
2 The INPUT construct is not present; see Sections 4.2.1 and 4.2.2 for more in-
formation. The rule reduceSeqCons combines the functionality of ‘paper rules’
3.26 and 3.24.
3 In the paper semantics we do not duplicate rule 3.36 for the use of cname
as an expression. We implicitly coerce a constant to an expression. In the
embedding this coercion is explicit through the Const constructor.
4 There is no rule for the undefined value of a constant tuple type because they
cannot be created due to the omission of constant type declarations (1 above.)

C.5 Goal Directed Use of Operational Seman-

tics Rules

When the embedded operational semantics rules are used in a backward proof
strategy, it is often useful to retain information which we computed earlier in
the derivation. Consider the rule reduceIndex1.

[2] E env , E circ , E t1 ⊢ E t2

[1] ⊢ (env ⊢ circ ⇒ (CoTuple (o1 ,o2),circ’): TyTuple (t1 ,t2))

⊢ (env ⊢ circ [1] ⇒ (o1 ,circ’ [1]): t1)

Here we have shown the existence hypotheses for the second premise, which

C.5. GOAL DIRECTED USE OF OPERATIONAL SEMANTICS RULES191

the pretty printer omits. Strictly speaking these hypotheses are redundant, but
they are often useful when dealing with circuits which are parametrised on the
types t1 and t2 . If both are equal to Type n say, we can discharge [2] using
the hypotheses. We could not do this if they were absent, because we cannot
prove that n exists.

This optimisation becomes a liability when we use the rules in a forward
proof. The reason is that we build a derivation for a type t2 , which is used
later as part of a larger proof. The presence of the expressions env , circ , and t1
means that when we use the derivation later on, they must be instantiated with
the appropriate terms. However, these terms are extraneous to the derivation
of t2 . It is very hard to anticipate what env , circ , and t1 are required.

The solution is simple; the extra terms are removed, and a separate set of
rules is provided for forward rule application purposes. The following alter-
native rules rules are supplied: reduceIndex1f, reduceIndex2f, reduceLetf,
reduceLetRecf, reduceIff, reduceIf’f, reduceIfFff, reduceIfTtf, and reduceIfUuf.
The rules dealing with the IF statement still have a problem with the subgoal
which computes the output.

All embedded operational semantics rules which have more than one premise
must combine more than one derivation. This corresponds to popping an ele-
ment off the goal stack for every subgoal. This is accomplished by genMergeProofTrees,
described in Sections 4.1.2 and 5.2.2. For example, reduceIndex2f may be de-
rived from reduceIndex2 as follows.

pushRule opsempe reduceIndex2;

(* Delete unwanted existence hypotheses: *)

atn [2] (monoGl [1,2,3]);

val reduceIndex2f = popGoal ();

val fReduceIndex2 = mergeProofTrees false reduceIndex2f;

fReduceIndex2 is a function which, when applied to a unit value (), combines
the top two proof trees into a derivation for a circuit which has Index2 as its
outermost constuctor.

192 APPENDIX C. EMBEDDED OPERATIONAL SEMANTICS RULES

Bibliography

[1] Luiga Aiello, Mario Aiello, and Richard W Weyhrauch. The semantics of
Pascal in LCF. Memo STAN-CS-74-447, Stanford Artificial Intelligence
Laboratory, Computer Science Department, Stanford University, August
1974.

[2] C M Angelo, L Claesen, and H De Man. The formal semantics definition
of a multi-rate DSP specification language in HOL. In Luc Claesen and
Michael Gordon, editors, Higher Order Logic Theorem Proving and Its
Applications, Leuven, Belgium, September 1992.

[3] Mario R Barbacci, Steve Grout, Gary Lindstrom, Michael P Malony, El-
liot I Organick, and Don Rudisill. Ada as a hardware description language:
An initial report. In C J Koomen and T Moto-Oka, editors, CHDL 85: 7th
International Symposium on Computer Hardware and Description Lan-
guages and their Applications, pages 272–302, Amsterdam, 1985. North
Holland.

[4] H Barringer, G Gough, T Longshaw, B Monahan, M Peim, and
A Williams. Semantics and verification for boolean kernel ELLA using
IO automata. In P Prinetto and P Camurati, editors, Advanced Research
Workshop on Correct Hardware Design Methodologies, pages 65–90. ES-
PRIT CHARME, North Holland, June 1991.

[5] Howard Barringer, Graham Gough, and Brian Monahan. Operational
semantics for hardware design languages. In P Prinetto and P Camu-
rati, editors, Advanced Research Workshop on Correct Hardware Design
Methodologies, pages 313–334. ESPRIT CHARME, North Holland, June
1991.

[6] Howard Barringer, Graham Gough, Brian Monahan, and Alan Williams.
A semantics for Core ELLA. Deliverable D2.3b, Department of Computer
Science, University of Manchester, November 1992. Formal Verification
Support for ELLA, IED project 4/1/1357.

[7] Harry G Barrow. Verify: A program for proving correctness of digital
hardware designs. Artificial Intelligence, 24:437–491, 1984.

193

194 BIBLIOGRAPHY

[8] David A Basin. Extracting circuits from constructive proofs. In 1991
International Workshop on Formal Verification in VLSI Design. ACM
IFIP WG 10.2, January 1991.

[9] David A Basin, Geoffrey Brown, and Miriam E Leeser. Formally veri-
fied synthesis of combinatorial CMOS circuits. In Luc Claesen, editor,
Applied Formal Methods For Correct VLSI Design, pages 251–260, Am-
sterdam, November 1989. IMEC-IFIP International Workshop, Elsevier
Science Publishers.

[10] David A Basin and Peter Del Vecchio. Verification of combinatorial logic
in Nuprl. In M Leeser and G Brown, editors, Hardware Specification,
Verification and Synthesis: Mathematical aspects, pages 333–357. Springer
Verlag, July 1989.

[11] J C Bicarregui and B Ritchie. Proving support for the formal development
of software, April 1989.

[12] Mark Bickford and Mandayam Srivas. Verification of a fault-tolerant prop-
erty of a multi-processor system. In V Stavridou, T F Melham, and R T
Boute, editors, Theorem Provers in Circuit Design: Theory, Practice and
Experience, pages 225–251. IFIP TC10/WG 10.2, North Holland, June
1992.

[13] J Bormann, H Nusser-Wehlan, and G Venzl. Formal design in an industrial
research laboratory: Lessons and perspectives. In Jørgen Staunstrup and
Robin Sharp, editors, Second Workshop on Designing Correct Circuits,
pages 193–213, Lynbgy, Denmark, January 1992. IFIP WG 10.2, WG
10.5.

[14] D Borrione and J L Paillet. An approach to the formal verification
of VHDL descriptions. Technical Report RR 683-I-, IMAG/ARTEMIS,
November 1987.

[15] Dominique Borrione, David Deharbe, Hans Eveking, and Stefan Höreth.
Applications of a BDD-package to the verification of HDL descriptions. In
P Prinetto and P Camurati, editors, Advanced Research Workshop on Cor-
rect Hardware Design Methodologies, pages 385–400. ESPRIT CHARME,
North Holland, June 1991.

[16] Dominique Borrione, Laurence Pierre, and Ashraf Salem. PREVAIL: A
proof environment for VHDL descriptions. In P Prinetto and P Camu-
rati, editors, Advanced Research Workshop on Correct Hardware Design
Methodologies, pages 163–186. ESPRIT CHARME, North Holland, June
1991.

[17] Richard Boulton. A HOL semantics for a subset of ELLA. Technical
Report 254, University of Cambridge Computer Laboratory, April 1992.

BIBLIOGRAPHY 195

[18] Richard Boulton, Andrew Gordon, Mike Gordon, John Harrison, John
Herbert, and John van Tassel. Experience with embedding hardware de-
scription languages in HOL. In V Stavridou, T F Melham, and R T
Boute, editors, Theorem Provers in Circuit Design: Theory, Practice and
Experience, pages 129–156. IFIP TC10/WG 10.2, North Holland, June
1992.

[19] Richard Boulton, Mike Gordon, John Herbert, and John van Tassel. The
HOL verification of ELLA designs. Technical Report 199, University of
Cambridge Computer Laboratory, August 1990.

[20] Richard J Boulton. A lazy approach to fully-expansive theorem proving.
In Luc Claesen and Michael Gordon, editors, Higher Order Logic Theorem
Proving and Its Applications, Leuven, Belgium, September 1992.

[21] Robert S Boyer and J Strother Moore. A Computational Logic. ACM
Monograph Series. Academic Press, New York, 1979.

[22] Bishop C Brock and Warren A Hunt, Jr. The formalization of a simple
hardware description language. In Luc Claesen, editor, Applied Formal
Methods For Correct VLSI Design, pages 778–792, Amsterdam, November
1989. IMEC-IFIP International Workshop, Elsevier Science Publishers.

[23] Bishop C Brock, Warren A Hunt, Jr, and William D Young. Introduction
to a formally defined hardware description language. In V Stavridou, T F
Melham, and R T Boute, editors, Theorem Provers in Circuit Design:
Theory, Practice and Experience, pages 3–35. IFIP TC10/WG 10.2, North
Holland, June 1992.

[24] Randal E Bryant. Can a simulator verify a circuit? In G Milne and P A
Subrahmanyam, editors, Formal Aspects of VLSI Design, pages 125–136,
Amsterdam, 1985. North Holland.

[25] Randal E Bryant. Symbolic verification of MOS circuits. In Henry Fuchs,
editor, 1985 Chapel Hill Conference on Very Large Scale Integration, pages
419–438, March 1985.

[26] Randal E Bryant. Formal verification of memory circuits by switch-level
simulation. Technical Report CMU-CS-89-156, School of Computer Sci-
ence, Carnegie Mellon University, Pittsburgh PA 15213, June 1989.

[27] Randal E Bryant. Verification of synchronous circuits by symbolic logic
simulation. In M Leeser and G Brown, editors, Hardware Specification,
Verification and Synthesis: Mathematical aspects, pages 14–24. Springer
Verlag, July 1989.

[28] Giacomo Buonanno, Alberto Coen-Porisini, and William Fornaciari.
Hardware specification using the assertion language ASTRAL. In

196 BIBLIOGRAPHY

P Prinetto and P Camurati, editors, Advanced Research Workshop on Cor-
rect Hardware Design Methodologies, pages 335–358. ESPRIT CHARME,
North Holland, June 1991.

[29] R M Burstall. Proving properties of programs by structural induction.
The Computer Journal, 12(1):41–44, 1969.

[30] Holger Busch. Hardware Design By Proven Transformations. PhD thesis,
Department of Electrical Engineering and Electronics, Brunel University
of West London, Uxbridge, September 1991.

[31] Holger Busch. Transformational design in a theorem prover. In V Stavri-
dou, T F Melham, and R T Boute, editors, Theorem Provers in Circuit
Design: Theory, Practice and Experience, pages 175–196. IFIP TC10/WG
10.2, North Holland, June 1992.

[32] Albert Camilleri. Higher order logic mechanization of the CSP failure-
divergence semantics. Technical Report HPL-90-194, HP Laboratories
Bristol, September 1990.

[33] Albert John Camilleri. Simulating hardware specifications within a
theorem-proving framework. International Journal of Computer Aided
Design, 2:315–337, 1990.

[34] Paolo Camurati, Tiziana Margaria, and Paolo Prinetti. Use of the OTTER
theorem prover for the formal verification of hardware. In Geraint Jones
and Mary Sheeran, editors, Designing Correct Circuits, pages 253–270,
Oxford, September 1990. Springer Verlag.

[35] Paolo Camurati and Paolo Prinetto. Formal verification of hardware cor-
rectness: Introduction and survey of current research. IEEE Computer,
pages 8–19, July 1988. Also in Formal Verification of Hardware Design M
Yoeli (ed.), IEEE Computer Society Press Tutorial.

[36] Luca Cardelli. An Algebraic Approach to Hardware Description and Ver-
ification. PhD thesis, Department of Computer Science, University of
Edinburgh, April 1982. CST-16-82.

[37] William C Carter, William H Joyner Jr, and Danier Brand. Symbolic
simulation for correct machine design. In 16th Design Automation Con-
ference, pages 280–287, San Diego, California, June 1979. ACM/IEEE.

[38] Shiu-Kai Chin. Summary of higher-order metafunctions for synthesizing
signed-binary arithmetic hardware. In 1991 International Workshop on
Formal Verification in VLSI Design. ACM IFIP WG 10.2, January 1991.

[39] Chang H Cho and James R Armstrong. VHDL semantics for behavioral
test generation. In D Borrione and R Waxman, editors, CHDL 91: 10th
International Symposium on Computer Hardware Description Languages
and Their Applications, pages 427–444. IFIP WG 10.2, North Holland,
April 1991.

BIBLIOGRAPHY 197

[40] Avra Cohn. High level proof in LCF. Internal Report CSR-35-78, De-
partment of Computer Science, University of Edinburgh, November 1978.

[41] Avra Cohn. A proof of correctness of the VIPER microprocessor: The first
level. In Graham Birtwistle and P A Subrahmanyam, editors, VLSI Spec-
ification, Verification and Synthesis, pages 27–71, Boston, 1987. Kluwer
Academic Publishers. Also as University of Cambridge Computer Labo-
ratory report number 104.

[42] Avra Cohn. Correctness properties of the VIPER block model: The second
level. In G Birtwistle and P A Subrahmanyam, editors, Current Trends in
Hardware Verification and Automated Theorem Proving, pages 1–91, New
York, 1988. Springer Verlag. Also as University of Cambridge Computer
Laboratory report number 134.

[43] Avra Cohn. The notion of proof in hardware verification. Journal of
Automated Reasoning, 5(2):127–139, June 1989.

[44] Avra Cohn and Mike Gordon. A mechanised proof of correctness of a
simple counter. Technical Report 94, University of Cambridge Computer
Laboratory, July 1986.

[45] Computer General Electronic Design, 5 Greenways Business Park, Chip-
penham, Wiltshire SN15 1BN. The ELLA Language Reference Manual,
issue 4.0, 1990. ella is now marketed by R3 Systems.

[46] Robert L Constable and Douglas J Howe. Nuprl as a general logic. In
Piergiorgio Odifreddi, editor, Logic and computer science, volume 31 of
APIC studies in data processing, pages 77–90. Academic Press, 1990.

[47] M B Davies. Mathematical equivalence in a primitive ELLA. Memoran-
dum 4225, Royal Signals and Radar Establishment, August 1988.

[48] N D de Bruijn. Lambda-calculus notation with nameless dummies, a tool
for automatic formula manipulation. Indag Math., 34:381–392, 1972.

[49] Carlos Delgado Kloos. Semantics of Digital Circuits, volume 285 of Lecture
Notes in Computer Science. Springer Verlag, 1987.

[50] James R Duley and Donald L Dietmeyer. A digital system design language
(DDL). IEEE Transactions on Computers, C-17(9):850–861, September
1968.

[51] Electronic Industries Association. EDIF: Electronic Design Interchange
format, 1987.

[52] Bruce Elliot. An application of fixed point theory to the ELLA language.
Internal Technical Report N045.90.3, Praxis Systems plc, April 1988. Pro-
visional.

198 BIBLIOGRAPHY

[53] Erasmi Roterodami (Desiderius Erasmus). (In) Praise of Folly. 1511. Ad.
Donker Facsimile edition.
Of the same caliber are those who court immortal fame by writing books.
Although all authors owe a great deal to me, especially those who blot
their pages with pure unadulterated rubbish. For those who write a dis-
sertation, which is only meant to be subjected to the judgement of a few
professors, and who do not fear the most severe and able critics, are to be
lamented rather than to be envied for their continuous self-torture. They
add, change, remove, lay aside, take up, rephrase, like to show to others,
keep close to their heart for nine years, and are never satisfied with the
result. And their futile reward, a word of praise from a person or two,
is dearly paid for — so many late nights, so much sweat and anguish,
and the loss of the sweetest thing there is: their sleep. Then their health
deteriorates, their looks are destroyed, they suffer partial or total blind-
ness and poverty, become ill-tempered, are out of favour, have to forsake
all pleasures, age rapidly, die prematurely, and invite other disasters. But
they bear all these sacrifices to be given approval by one or two learned
people.

[54] Hans Eveking. Axiomatizing hardware description languages. Interna-
tional Journal of Computer Aided VLSI Design, 2:263–280, 1990.

[55] Hans Eveking and Ulf Schellin. Register-transfer level verification
in SMAX. CHARME Project Report THD-2.B.2.b-01, Technische
Hochschule Darmstadt, October 1991.

[56] Ivan V Fillippenko. VHDL verification in the state delta verification sys-
tem (SDVS). In 1991 International Workshop on Formal Verification in
VLSI Design, January 1991.

[57] Simon Finn and Michael P Fourman. Logic Manual for the Lambda Sys-
tem. Abstract Hardware Limited, version 3.1, May 1990.

[58] Simon Finn and Michael P Fourman. Logic Manual for the Lambda Sys-
tem. Abstract Hardware Limited, version 4.0, March 1991.

[59] Simon Finn, Michael P Fourman, Michael Francis, and Robert Harris.
Formal system design – interactive synthesis based on computer-assisted
reasoning. In Luc Claesen, editor, Applied Formal Methods For Correct
VLSI Design, pages 97–110, Amsterdam, November 1989. IMEC-IFIP
International Workshop, Elsevier Science Publishers.

[60] R W Floyd. Assigning meanings to programs. Proceedings of American
Mathematical Society, Symposia in Applied Mathematics, 19:19–32, 1967.

[61] Michael P Fourman and Simon Finn. Logic Manual for the Lambda Sys-
tem. Abstract Hardware Limited, version 3.0, November 1989.

BIBLIOGRAPHY 199

[62] Michael P Fourman and Eleanor M Mayger. Formally based system design
– interactive hardware scheduling. In G Musgrave and U Lauther, editors,
International Conference on VLSI, Munich, 1989.

[63] Mick Francis. DIALOG Reference Manual. Abstract Hardware Limited,
version 3.2, December 1990.

[64] Mick Francis, Simon Finn, and Ellie Mayger. Reference Manual for the
Lambda System. Abstract Hardware Limited, version 3.2, November 1990.

[65] Mick Francis, Simon Finn, and Ellie Mayger. Reference Manual for the
Lambda System. Abstract Hardware Limited, version 3.1, May 1990.

[66] Masahiro Fujita. Hardware verification based on HDL sources. In R W
Hartenstein, editor, Hardware Description Languages, volume 7 of Ad-
vances in CAD for VLSI, chapter 4, pages 283–312. Elsevier Science Pub-
lishers (North Holland), 1987.

[67] Sumit Ghosh. Using Ada as an HDL. IEEE Design and Test, pages 30–42,
February 1988.

[68] Joseph A Goguen. OBJ as a theorem prover with applications to hardware
verification. In G Birtwistle and P A Subrahmanyam, editors, Current
Trends in Hardware Verification and Automated Theorem Proving, pages
219–267, New York, 1988. Springer Verlag.

[69] K G W Goossens. Embedding computer hardware design and description
languages in proof systems. Thesis Proposal, December 1989.

[70] K G W Goossens. An operational semantics for a subset of the HDDL
ELLA. Version 0.3 Manuscript, April 1990.

[71] K G W Goossens. Semantics for picoELLA. Manuscript, June 1990.

[72] K G W Goossens. Embedding a CHDDL in a proof system. In P Prinetto
and P Camurati, editors, Advanced Research Workshop on Correct Hard-
ware Design Methodologies, pages 359–374. ESPRIT CHARME, North
Holland, June 1991. Also as LFCS Report ECS-LFCS-91-155.

[73] K G W Goossens. Operational semantics based formal symbolic simu-
lation. In Luc Claesen and Michael Gordon, editors, Higher Order Logic
Theorem Proving and Its Applications, Leuven, Belgium, September 1992.
A longer version is available as LFCS Report ECS-LFCS-92-231.

[74] Ganesh Gopakakrishnan, Richard M Fujimoto, Vankatesh Akella, N S
Mani, and kevin N Smith. Specification-driven design of custom hardware
in HOP. In G Birtwistle and P A Subrahmanyam, editors, Current Trends
in Hardware Verification and Automated Theorem Proving, pages 128–170,
New York, 1988. Springer Verlag.

200 BIBLIOGRAPHY

[75] Andrew D Gordon. The formal definition of a synchronous hardware
description language in higher order logic. In International Conference on
Computer Design, October 1992.

[76] M Gordon, R Milner, and C Wadsworth. Edinburgh LCF. Internal Report
CSR-11-77, Department of Computer Science, University of Edinburgh,
May 1977.

[77] Michael Gordon, Robin Milner, and Christopher Wadsworth. Edinburgh
LCF, volume 78 of Lecture Notes in Computer Science. Springer Verlag,
1979.

[78] Michael J C Gordon. The denotational semantics of sequential machines.
Information Processing Letters, 10(1):1–3, February 1980.

[79] Michael J C Gordon. HOL: A proof generating system for higher-order
logic. In Graham Birtwistle and P A Subrahmanyam, editors, VLSI Spec-
ification, Verification and Synthesis, pages 73–128, Boston, 1987. Kluwer
Academic Publishers.

[80] Mike Gordon. A model of register transfer systems with applications to
microcode and VLSI correctness. Internal Report CSR-82-81, Department
of Computer Science, University of Edinburgh, March 1981.

[81] Mike Gordon. LCF LSM. Technical Report 41, University of Cambridge
Computer Laboratory, September 1983. Second Printing with Corrections
and Additions.

[82] Mike Gordon. Proving a computer correct. Technical Report 42, Uni-
versity of Cambridge Computer Laboratory, 1983. With the LCF LSM
hardware verification system.

[83] Mike Gordon. Why higher-order logic is a good formalisation for specifying
and verifying hardware. In G Milne and P A Subrahmanyam, editors,
Formal Aspects of VLSI Design, pages 153–177, Amsterdam, 1985. North
Holland.

[84] F K Hanna and N Daeche. Specification and verification using higher-
order logic. In C J Koomen and T Moto-Oka, editors, CHDL 85: 7th
International Symposium on Computer Hardware and Description Lan-
guages and their Applications, pages 418–433, Amsterdam, 1985. North
Holland.

[85] F K Hanna, N Daeche, and M Longley. Veritas+: A specification language
based on type theory. In M Leeser and G Brown, editors, Hardware Speci-
fication, Verification and Synthesis: Mathematical aspects, pages 358–379.
Springer Verlag, July 1989.

BIBLIOGRAPHY 201

[86] F K Hanna, M Longley, and N Daeche. Formal synthesis of digital systems.
In Luc Claesen, editor, Applied Formal Methods For Correct VLSI Design,
pages 532–548, Amsterdam, November 1989. IMEC-IFIP International
Workshop, Elsevier Science Publishers.

[87] Keith Hanna and Neil Daeche. The Veritas design logic: A user’s view.
In V Stavridou, T F Melham, and R T Boute, editors, Theorem Provers
in Circuit Design: Theory, Practice and Experience, pages 301–310. IFIP
TC10/WG 10.2, North Holland, June 1992.

[88] Keith Hanna, Neil Daeche, and Gareth Howells. Implementation of the
Veritas design logic. In V Stavridou, T F Melham, and R T Boute, editors,
Theorem Provers in Circuit Design: Theory, Practice and Experience,
pages 77–94. IFIP TC10/WG 10.2, North Holland, June 1992.

[89] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for
defining logics. In Second Symposium on Logic in Computer Science,
Ithaca, NY, June 1987.

[90] Robert Harper, Robin Milner, and Mads Tofte. The definition of standard
ML version 3. LFCS Report Series ECS-LFCS-89-81, LFCS, Department
of Computer Science, University of Edinburgh, May 1989.

[91] John P Hayes. Digital simulation with multiple logic values. IEEE Trans-
actions on Computer-Aided Design, CAD-5(2):274–283, April 1986.

[92] M G Hill. The dynamic semantics of kernel ELLA. Memorandum 4630,
Defence Research Agency, Malvern, UK, August 1992.

[93] M G Hill, E V Whiting, and J D Morison. Formal semantic definition of
ELLA timing. Memorandum 4436, Royal Signals and Radar Establish-
ment, November 1990.

[94] M G Hill, E V Whiting, and J D Morison. Sprite-ELLA language en-
hancements. Memorandum 4441, Royal Signals and Radar Establishment,
November 1990.

[95] C A R Hoare. An axiomatic basis for computer programming. Commu-
nications of the ACM, 12(10):576–583, October 1969.

[96] C A R Hoare. Communicating sequential processes. Communications of
the ACM, 21:666–677, 1978.

[97] W Howard. The formulas-as-types notion of construction. In J P Sledin
and J R Hindley, editors, To H B Curry: Essays on Combinatory Logic,
Lambda Calculus, and Formalism, pages 470–490. Academic press, 1980.

[98] Warren A Hunt, Jr. FM8501: A verified microprocessor. Technical Re-
port 47, Institute for Computing Science. The University of Texas at
Austin, December 1985. Dissertation.

202 BIBLIOGRAPHY

[99] Warren A Hunt, Jr. Microprocessor design verification. Journal of Auto-
mated Reasoning, 5:429–460, 1989.

[100] IEEE computer, December 1974. Special Edition on Hardware Description
Languages.

[101] The Institute of Electrical and Electronics Engineers, Inc., 345 East 47th
Street, New York, NY10017 USA. IEEE Standard VHDL Language Ref-
erence Manual, IEEE std 1076-1987, 1988.

[102] Paul B Jackson. Nuprl and its uses in circuit design. In V Stavridou, T F
Melham, and R T Boute, editors, Theorem Provers in Circuit Design:
Theory, Practice and Experience, pages 311–336. IFIP TC10/WG 10.2,
North Holland, June 1992.

[103] Steven D Johnson. Synthesis of Digital Designs from Recursion Equa-
tions. ACM Distinguished Dissertation. The MIT Press, 1983. Indiana
University PhD Thesis, May 1983.

[104] Steven D Johnson. Manipulating logical organization with system fac-
torizations. In M Leeser and G Brown, editors, Hardware Specification,
Verification and Synthesis: Mathematical aspects, pages 260–281. Springer
Verlag, July 1989.

[105] C B Jones and P A Lindsay. A support system for formal reasoning:
Requirements and status. In R Bloomfield, L Marshall, and R Jones,
editors, VDM ’88: VDM — The Way Ahead, pages 139–152. Springer
Verlag, September 1988. Lecture Notes in Computer Science 328.

[106] Jeff Joyce, Graham Birtwistle, and Mike Gordon. Proving a computer
correct in higher order logic. Technical Report 100, University of Cam-
bridge Computer Laboratory, December 1986. HOL version of Technical
Report 42.

[107] Jeffrey J Joyce. A verified compiler for a verified microprocessor. Technical
Report 167, University of Cambridge Computer Laboratory, March 1989.

[108] G Kahn. Natural semantics. Gipe project second annual review report,
INRIA, Sophia-Antipolis, France, January 1987.

[109] K Khordoc, M Biotteau, and E Cerny. Switch-level models in multi-level
VHDL simulations. In Proceedings of the First European Conference on
VHDL, Marseille, September 1990. IMT.

[110] Stephen Cole Kleene. Introduction to Metamathematics. Bibliotheca
mathematica. North Holland, Amsterdam, 1952.

[111] David C Ku and Giovanni De Micheli. Hardware C: A language for hard-
ware design. Technical Report CSL-TR-88-362, Computer Systems Lab-
oratory, Stanford University, August 1988.

BIBLIOGRAPHY 203

[112] S Leinwand and T Lamdan. Design verification based on functional ab-
straction. In 16th Design Automation Conference, pages 353–359, San
Diego, California, June 1979. ACM/IEEE.

[113] Beth Levy, Ivan Fillipenko, Leo Markus, and Telis Menas. Using the state
delta verification system (SDVS) for hardware verification. In V Stavridou,
T F Melham, and R T Boute, editors, Theorem Provers in Circuit Design:
Theory, Practice and Experience, pages 337–360. IFIP TC10/WG 10.2,
North Holland, June 1992.

[114] Beth H Levy. An overview of the state delta verification system (SDVS).
In 1991 International Workshop on Formal Verification in VLSI Design.
ACM IFIP WG 10.2, January 1991.

[115] Wayne Luk. Optimising designs by transposition. In Geraint Jones and
Mary Sheeran, editors, Designing Correct Circuits, pages 332–354, Ox-
ford, September 1990. Springer Verlag.

[116] Zhaohui Luo and Robert Pollack. LEGO proof development system:
Users’s manual. LFCS Report Series ECS-LFCS-92-211, LFCS, Depart-
ment of Computer Science, University of Edinburgh, May 1992.

[117] Jean-Christophe Madre and Jean-Paul Billon. Proving circuit correctness
using formal comparison between expected and extracted behaviour. In
Proceedings of the 25th ACM/IEEE Design Automation Conference, pages
205–210, 1988. Also in Formal Verification of Hardware Design M Yoeli
(ed.), IEEE Computer Society Press Tutorial.

[118] Zohar Manna, Stephen Ness, and Jean Vuillemin. Inductive methods for
proving properties of programs. ACM SIGPLAN Notices, 7:27–50, 1972.

[119] Ian A Mason. Hoare’s logic in the LF. LFCS Report Series ECS-LFCS-
87-32, LFCS, Department of Computer Science, University of Edinburgh,
June 1987.

[120] Michael C McFarland and Alice C Parker. An abstract model of be-
havior for hardware descriptions. IEEE Transactions on Computers, C-
32(7):621–637, July 1983.

[121] Thomas F Melham. Abstraction mechanisms for hardware verification.
In Graham Birtwistle and P A Subrahmanyam, editors, VLSI Specifi-
cation, Verification and Synthesis, pages 267–291, Boston, 1987. Kluwer
Academic Publishers.

[122] Thomas F Melham. Automating recursive type definitions in higher order
logic. In G Birtwistle and P A Subrahmanyam, editors, Current Trends in
Hardware Verification and Automated Theorem Proving, pages 341–386,
New York, 1988. Springer Verlag.

204 BIBLIOGRAPHY

[123] Thomas F Melham. Using recursive types to reason about hardware in
higher order logic. Technical Report 135, University of Cambridge Com-
puter Laboratory, May 1988.

[124] Thomas Frederick Melham. Formalising abstraction mechanisms for hard-
ware verification in higher order logic. Technical Report 201, University
of Cambridge Computer Laboratory, August 1990. PhD Thesis.

[125] T F Melham. A package for inductive relation definitions in HOL. In Myla
Archer, Jeffrey J Joyce, Karl N Levitt, and Phillip J Windley, editors, The
HOL Theorem Proving System and Its Applications, pages 350–357. IEEE
Computer Society Press, August 1991.

[126] Meta-software Inc. HSPICE Users’ Manual H8801, January 1988.

[127] R Milner and R Weyhauch. Proving compiler correctness in a mechanised
logic. In B Meltzer and D Mitchie, editors, Machine Intelligence, chapter 3.
Edinburgh University Press, 1972.

[128] Robin Milner. An algebraic definition of simulation between programs.
Computer Science Report CS-205, Computer Science Department, Stan-
ford University, February 1971.

[129] Robin Milner. Processes: A mathematical model of computing agents. In
Rose and Shepherdson, editors, Logic Colloquium 73: Studies in Logic and
Foundations of Mathematics, volume 80, pages 157–173. North Holland,
1973.

[130] Robin Milner. LCF: A way of doing proofs with a machine. In 8th MFCS
Symposium, Olomonc, Czechoslovakia, 1979. Springer Verlag. Lecture
Notes in Computer Science.

[131] Robin Milner. A Calculus of Communicating Systems, volume 92 of Lec-
ture Notes in Computer Science. Springer Verlag, 1980.

[132] Faron Moller. The definition of CIRCAL. In Luc Claesen, editor, Ap-
plied Formal Methods For Correct VLSI Design, pages 178–187, Amster-
dam, November 1989. IMEC-IFIP International Workshop, Elsevier Sci-
ence Publishers.

[133] J Strother Moore. A mechanically verified language implementation. Jour-
nal of Automated Reasoning, 5:461–492, 1989.

[134] Richard Moore. Mural: A formal development support environment. In
SafetyNet ’90 Conference, October 1990.

[135] J D Morison. Personal Communication, November 1990.

[136] J D Morison and M G Hill. A formal definition of the static semantics of
ELLA’s core. Technical Report 91024, Royal Signals and Radar Estab-
lishment, Malvern, Worcestershire, August 1991.

BIBLIOGRAPHY 205

[137] J D Morison, N E Peeling, and T L Thorp. The design rationale of
ELLA, a hardware design and description language. In C J Koomen
and T Moto-Oka, editors, CHDL 85: 7th International Symposium on
Computer Hardware and Description Languages and their Applications,
pages 303–320, Amsterdam, 1985. North Holland.

[138] J D Morison, N E Peeling, and E V Whiting. Sequential programming
extensions to ELLA, with automatic transformation to structure. In In-
ternational Conference on Computer Design, 1987.

[139] Ben Moszkowski. A temporal logic for multi-level reasoning about hard-
ware. In T Uehara and M Barbacci, editors, CHDL 83: 6th International
Symposium on Computer Hardware Description Languages and their Ap-
plications, pages 79–90, Amsterdam, 1983. North Holland.

[140] John T O’Donnell. Hardware description with recursion equations. In
M R Barbacci and C J Koomen, editors, CHDL 87: 8th International
Symposium on Computer Hardware Description Languages and Their Ap-
plications, pages 363–382. IFIP WG 10.2, North Holland, 1987.

[141] US Department of Defense. Reference Manual for the Ada Programming
Language. ANSI/MIL-STD-1815A, January 1983.

[142] L C Paulson. Natural deduction as higher-order resolution. Journal of
Logic Programming, 3:237–258, 1986.

[143] Lawrence C Paulson. Natural deduction as higher-order resolution. Tech-
nical Report 82, University of Cambridge Computer Laboratory, Decem-
ber 1985. Revised version.

[144] N E Peeling and J D Morison. A database approach to design data man-
agement and programming support for ELLA, a high-level HDDL. In C J
Koomen and T Moto-Oka, editors, CHDL 85: 7th International Sympo-
sium on Computer Hardware and Description Languages and their Appli-
cations, pages 354–363, Amsterdam, 1985. North Holland.

[145] Laurence Pierre. From a HDL description to formal proof systems: Prin-
ciples and mechanization. In D Borrione and R Waxman, editors, CHDL
91: 10th International Symposium on Computer Hardware Description
Languages and Their Applications, April 1991.

[146] Laurence Pierre. One aspect of mechanizing formal proof of hardware: The
generalization of partial specifications. In 1991 International Workshop
on Formal Verification in VLSI Design. ACM IFIP WG 10.2, January
1991.

[147] R Piloty, M Barbacci, D Borrione, D Dietmeyer, F Hill, and P Skelly. Con-
lan Report, volume 151 of Lecture Notes in Computer Science. Springer
Verlag, 1983.

206 BIBLIOGRAPHY

[148] Robert Piloty and Dominique Borrione. The Conlan project: Concepts,
implementations and applications. IEEE Computer, pages 81–92, Febru-
ary 1985.

[149] Vaijay Pitchumani and Edward P Stabler. A formal method for computer
design verification. In 19th Design Automation Conference, pages 809–
814, 1982.

[150] Gordon Plotkin. A structural approach to operational semantics. Tech-
nical Report FN-19, Computer Science Department, Aarhus University
(DAIMI), 1981.

[151] Praxis Systems plc, 20 Manvers Street, Bath BA1 1PX. The ELLA Lan-
guage Reference Manual, issue 3.0, 1986. ella is now marketed by R3

Systems.

[152] Suresh Rajgopal, Kye Hedlund, and Douglas Reeves. Integrating hardware
verification with design automation. In 1991 International Workshop on
Formal Verification in VLSI Design. ACM IFIP WG 10.2, January 1991.

[153] Brian Ritchie. The Design and Implementation of an Interactive Proof
Editor. PhD thesis, Department of Computer Science, Edinburgh Univer-
sity, October 1988.

[154] Brian Ritchie and Paul Taylor. The interactive proof editor. An exper-
iment in interactive theorem proving. In G Birtwistle and P A Subrah-
manyam, editors, Current Trends in Hardware Verification and Automated
Theorem Proving, pages 303–322, New York, 1988. Springer Verlag.

[155] Lars Rossen. Formal Ruby. In Summer School on Formal Methods for
VLSI Design, pages 163–174. IFIP WG 10.5, June 1990.

[156] Lars Rossen and Robin Sharp. Sequence semantics of ruby. In Jørgen
Staunstrup and Robin Sharp, editors, Second Workshop on Designing
Correct Circuits, pages 159–171, Lynbgy, Denmark, January 1992. IFIP
WG 10.2, WG 10.5.

[157] Ashraf Salem and Dominique Borrione. Formal semantics of VDHL timing
constructs. In Euro-VHDL Stockholm, September 1991.

[158] James B Saxe, Stephen J Garland, John V Guttag, and James J Horn-
ing. Using transformations and verification in circuit design. In Jørgen
Staunstrup and Robin Sharp, editors, Second Workshop on Designing
Correct Circuits, pages 1–25, Lynbgy, Denmark, January 1992. IFIP WG
10.2, WG 10.5.

[159] David A Schmidt. Denotational Semantics, A Methodology for Language
Development. Allyn and Bacon Inc, Boston, 1986.

BIBLIOGRAPHY 207

[160] Dana S Scott. Identity and Existence in Intuitionistic Logic, volume
753 of Lecture Notes in Mathematics, pages 661–696. Springer Verlag,
Berlin, Heidelberg, New York, 1979. Applications of Sheaves, Proceed-
ings, Durham 1977, eds. M.P. Fourman, C.J.Mulvey and D.S. Scott.

[161] Moe Shahdad, Roger Lipsett, Erich Marschner, Kellye Sheenan, Howard
Cohen, Ron Waxman, and Dave Ackley. The VHSIC hardware description
language. IEEE Computer, pages 94–103, February 1985.

[162] Satnam Singh. Circuit analysis by non-standard interpretation. In Jørgen
Staunstrup and Robin Sharp, editors, Second Workshop on Designing
Correct Circuits, pages 199–138, Lynbgy, Denmark, January 1992. IFIP
WG 10.2, WG 10.5.

[163] Stefan Sokolowski. Soundness of Hoare’s logic: An automated proof us-
ing LCF. ACM Transactions on Programming Languages and Systems,
9(1):100–120, January 1987.

[164] Spinoza. Ethica. 1665. 1979 Wereldbibliotheek edition.
Proposition 52: An object which we have seen previously together with
other objects, or which in our opinion only has attributes in common with
many other objects, we will not pay the same attention as an object which
we imagine to have something special.

[165] J Staunstrup and M R Greenstreet. Synchronized transitions. In Summer
School on Formal Methods for VLSI Design, pages 3–61. IFIP WG 10.5,
June 1990.

[166] Jørgen Staunstrup, Stephen J Garland, and John V Guttag. Mechanised
verification of circuit descriptions using the Larch prover. In V Stavridou,
T F Melham, and R T Boute, editors, Theorem Provers in Circuit Design:
Theory, Practice and Experience, pages 277–299. IFIP TC10/WG 10.2,
North Holland, June 1992.

[167] V Stavridou, J A Goguen, S M Elker, and S N Aloneftis. FUNNEL:
A CHDL with formal semantics. In P Prinetto and P Camurati, editors,
Advanced Research Workshop on Correct Hardware Design Methodologies,
pages 115–137. ESPRIT CHARME, North Holland, June 1991.

[168] V Stavridou, J A Goguen, A Stevens, S M Eker, S N Alonefits, and K M
Hobley. FUNNEL and 2OBJ: Towards and integrated hardware design
environment. In V Stavridou, T F Melham, and R T Boute, editors,
Theorem Provers in Circuit Design: Theory, Practice and Experience,
pages 197–223. IFIP TC10/WG 10.2, North Holland, June 1992.

[169] Joseph E Stoy. Denotational Semantics: The Scott-Strachey Approach to
Programming Language Theory. The MIT Press, 1977.

[170] Edward W Thompson. Simulation — A tool in an integrated testing
environment. In 1980 Test Conference, 1980.

208 BIBLIOGRAPHY

[171] Takao Uehara, Takao Saito, Fumihiro Maruyama, and Nobuaki Kawato.
DDL verifier and temporal logic. In T Uehara and M Barbacci, editors,
CHDL 83: 6th International Symposium on Computer Hardware Descrip-
tion Languages and their Applications, pages 91–102, Amsterdam, 1983.
North Holland.

[172] Gabriele Umbreit. Providing a VHDL-interface for proof systems. In
EURO-DAC, pages 698–703, 10662 Los Vaqueros Circle, PO Box 3014,
Los Alamitos, CA 90720-1264, September 1992. IEEE Computer Society
Press.

[173] Filip van Aelten and Jonathan Allen. Efficient verification of VLSI cir-
cuits based on syntax and denotational semantics. In Luc Claesen, editor,
Applied Formal Methods For Correct VLSI Design, pages 188–197, Am-
sterdam, November 1989. IMEC-IFIP International Workshop, Elsevier
Science Publishers.

[174] John van Tassel and David Hemmendinger. Toward formal verification
of VHDL specifications. In Luc Claesen, editor, Applied Formal Methods
For Correct VLSI Design, pages 261–270, Amsterdam, November 1989.
IMEC-IFIP International Workshop, Elsevier Science Publishers.

[175] John P van Tassel. A formalisation of the VHDL simulation cycle. In
Luc Claesen and Michael Gordon, editors, Higher Order Logic Theorem
Proving and Its Applications, Leuven, Belgium, September 1992.

[176] John Peter van Tassel. The semantics of VHDL with VAL and HOL:
Towards practical verification tools. Technical Report 196, University
of Cambridge Computer Laboratory, 1990. MSc Thesis of Wright State
University.

[177] Li-Guo Wang. Hardware synthesis logic and its independence. Manuscript.
Laboratory for Foundations of Computer Science, Computer Science De-
partment, University of Edinburgh, November 1991.

[178] Daniel Weise. Functional verification of MOS circuits. In 24th Design
Automation Conference, pages 265–270, Miami Beach, Florida, 1987.
ACM/IEEE.

[179] Daniel Weise. Constraints, abstraction, and verification. In M Leeser
and G Brown, editors, Hardware Specification, Verification and Synthesis:
Mathematical aspects, pages 25–39. Springer Verlag, July 1989.

[180] Alan Williams. Verification requirements analysis. Technical Report De-
liverable D2.1, University of Manchester, September 1990. Formal Verifi-
cation Support for ELLA IED 4/1/1357.

[181] Philip A Wilsey. Developing a formal semantic definition of VHDL. In Pro-
ceedings of the First European Conference on VHDL, Marseille, September
1990. IMT.

BIBLIOGRAPHY 209

[182] Philip A Wilsey, Timothy J McBrayer, and David Sims. Towards a formal
model of VLSI systems compatible with VHDL. In A Halaas and P B
Denyer, editors, VLSI ’91, pages 6a.2.1–6a.2.12, Edinburgh, Scotland,
August 1991. IFIP TC 10/WG 10.5.

[183] Phillip J Windley. Abstract hardware. In 1991 International Workshop
on Formal Verification in VLSI Design. ACM IFIP WG 10.2, January
1991.

[184] Phillip J Windley. Abstract theories in HOL. In Luc Claesen and Michael
Gordon, editors, Higher Order Logic Theorem Proving and Its Applica-
tions, Leuven, Belgium, September 1992.

[185] Glynn Winskel. Models and logic of MOS circuits. In M Broy, editor,
International Summer School on Logic of Programming and Calculi of
Discrete Design, volume 36 of NATO ASI Series. Springer Verlag, July–
August 1986. Also as University of Cambridge Computing Laboratory
technical report number 96.

[186] Ching-Farn E Wu, Anthony S Wojcik, and Lionel M Ni. A rule-based cir-
cuit representation for automated CMOS design and verification. In 24th
Design Automation Conference, pages 786–792, Miami Beach, Florida,
1987. ACM/IEEE.

[187] William D Young. A mechanically verified code generator. Journal of
Automated Reasoning, 5:493–518, 1989.

[188] Zheng Zhu and Steven D Johnson. An example of interactive hardware
transformation. In 1991 International Workshop on Formal Verification
in VLSI Design. ACM IFIP WG 10.2, January 1991.

Stelling 52: Een voorwerp dat wij reeds vroeger gelijktijdig met an-
deren hebben gezien of dat naar onze voorstelling uitsluitend eigen-
schappen bezit, die het gemeen heeft met vele andere voorwerpen,
zullen wij niet zolang onze aandacht schenken als een waarvan wij
ons voorstellen dat het iets bijzonders heeft.

Spinoza
Ethica [164, p 171]

