
Embedding Health Management into Mission Tasking for UAV Teams

Mario Valenti, Brett Bethke, Jonathan P. How, Daniela Pucci de Farias, and John Vian

Abstract— Coordinated multi-vehicle autonomous systems
can provide incredible functionality, but off-nominal conditions
and degraded system components can render this capability
ineffective. This paper presents techniques to improve mission-
level functional reliability through better system self-awareness
and adaptive mission planning. In particular, we extend the
traditional definition of health management, which has his-
torically referred to the process of actively monitoring and
managing vehicle sub-systems (e.g., avionics) in the event of
component failures, to the context of multiple vehicle opera-
tions and autonomous multi-agent teams. In this case, health
management information about each mission system component
is used to improve the mission system’s self-awareness and
adapt vehicle, guidance, task and mission plans. This paper
presents the theoretical foundations of our approach and recent
experimental results on a new UAV testbed.

I. INTRODUCTION

Recently, unmanned vehicle mission systems have become

extremely important in aiding military and civilian organi-

zations for gathering information and assessing situations

from remote locations. As such, teams of unmanned vehicles

are being used to gather data from different locations, thus

providing operators with the most up-to-date situational

information for the areas they cover. These multi-vehicle

autonomous teams can provide incredible functionality, but

off-nominal conditions and degraded system components can

render their capabilities ineffective.

During a mission, how should teams of autonomous agents

be managed to meet scenario objectives while minimizing the

total cost of an operation?

This question directly relates to the health of the mission sys-

tem. In the past, the term “health management” was used to

define systems that actively monitored and managed vehicle

sub-systems (e.g., flight controls, fuel management, avionics)

in the event of component failures [1]. This definition can be

extended to the context of multiple vehicle operations and

autonomous multi-agent teams where multi-team mission

groups serve as a “vehicle system,” multi-agent teams are

sub-systems to the larger mission team, and each vehicle

is a sub-system of each multi-agent team. As with mission-

critical systems for a single agent, multi-agent task allocation

and mission management systems must account for vehicle-

and system-level health-related issues to ensure that these

Ph.D. Candidate, EECS Dept., Massachusetts Institute of Technology,
Cambridge, MA 02139 valenti@mit.edu

S.M. Candidate, Dept. of Aeronautics and Astronautics, MIT
bbethke@mit.edu

Professor of Aeronautics and Astronautics, MIT, jhow@mit.edu
Assistant Professor of Mechanical Engineering, MIT, pucci@mit.edu
Technical Fellow, Boeing Phantom Works, Seattle, WA

john.vian@boeing.com

Fig.1: Eight autonomous UAVs shown in the MIT RAVEN

systems are cost effective to operate over the duration of a

mission. While this problem may be formulated as a very

large mathematical programming problem, this approach is

likely to be computationally intractable for any computer or

human operator to solve in real-time (even for a problem of

reasonable size).

Although many researchers have been discussing au-

tonomous multi-agent operations [2], [3], [4], [5], more work

is needed on how to perform multi-agent health management

for autonomous task groups. In principle, some of the issues

raised in this problem are similar to questions arising in

manufacturing systems [6], [7] and air transportation [8], [9].

There are three major differences between previous and on-

going research and our work. First, this research considers

issues related to vehicle health management (e.g., refueling,

vehicle failures). Our goal is to ensure that each agent safely

returns to the base location after a task is completed, thus

reducing operating costs over multiple missions. Second, this

work considers issues vital to continuous (24–7) operations

which include operator and shift changes, vehicle mainte-

nance periods, and extended theater operations. Third, we

present flight test results using these planning techniques

in multi-vehicle experiments using the RAVEN (Real-time

Autonomous Vehicle indoor test ENvironment) in the MIT

Aerospace Controls Laboratory (Figure 1). This testbed

was designed to enable continuous (24–7) operation of an

autonomous swarm of more than 10 UAVs.

II. HEALTH MANAGEMENT TECHNIQUES FOR THE

MULTI-VEHICLE MISSION PROBLEM

The multi-vehicle mission problem is very complex, so

we first consider health management techniques that can

be added to existing mission problem formulations to im-

prove system performance during mission operations. First,

note that most planning techniques are decomposed into a

Fig. 2: Health management-based hierarchical architecture

model for multi-vehicle mission systems

multi-tiered architecture where missions, tasks and vehicle-

specific activities are managed by different components to

meet real-time computational deadlines. Similar architectures

have been used in other multi-vehicle systems and testbeds

(see references in [10], [11]); however, most systems lack

health monitoring components to evaluate the subsystem

performance. As a result, adding system health monitors

to a simple hierarchical design (as shown in Figure 2) can

improve a system’s run-time capabilities by ensuring that it

maintains a basic, functional capability during a mission in

accordance with system goals.

In using the hierarchical architecture as shown in Fig-

ure 2, a number of implementation concerns arise that can

reduce performance and possibly jeopardize the success of

a mission in a real-time environment. Some of these real-

time challenges include communication, computational, and

control issues, human/operator interaction, integration issues,

safety and system health concerns among many others. In

addition, external and environmental conditions also affect

system performance. In most real-life situations these condi-

tions are not controlled and the operational environment is

only partially known. Therefore, as explained in [12], real-

time implementations of mission system technology must

be robust to external and unexpected conditions. Systems

lacking vehicle and system component performance feedback

loops become reactionary to problems that occur in a mission

system, which can cause a reduction in system performance.

For this reason, health management feedback and monitoring

in a mission system is essential in maintaining a proactive

approach to mission planning.

III. VEHICLE LEVEL HEALTH MANAGEMENT MODULES

First, subsystems (e.g., the vehicles) in the mission system

must contain health monitors to provide status information

to aid in higher level decision making. For example, most

vehicles have flight time limitations based on fuel and

maintenance constraints. This concern is a very important

for small, electric-powered air helicopters and quadrotors

where vehicle endurance scales with battery size, and thus

battery weight (which has a negative effect of vehicle

endurance). Although battery technology has improved in

recent years (for example, a 3-cell, 11.1 V 1320 mAh Li-Poly

battery from Thunder Power Batteries [13] is approximately

100 gms), an electric powered air vehicle’s flight time is

largely impacted by the vehicle’s lift capabilities. In addition,

the average flight time of electric-powered helicopters and

quadrotors (such as the Draganflyer V Ti Pro [14]) are

limited by the motors used and desired payload capacity.

Fig. 3: Comparison between battery voltage and collective

stick position during a hover test

As part of our testing, the relationships between power

usage, battery charge and other parameters where examined

for a set of off-the-shelf electric-powered quadrotor vehicles

in the MIT RAVEN [10]. This testing showed that there

is a strong correlation between the battery voltage and the

average collective stick position value. As the voltage of the

battery decrease over time (due to battery use), the collective

stick command is increased (as shown in Figure 3). Figure 4

shows that as the battery’s charge level decreases, the average

collective command must increase over time for the vehicle

to maintain its current position. Notice that for this vehicle

(using a 11.1 V 1320 mAh battery, flying without a camera),

the collective command increases rapidly initially during

take-off of the vehicle and steadily increases almost linearly

until the vehicle’s battery begins to rapidly lose charge near

the end of the flight. Therefore, using experimental data, a

model (based on real flight data) could be generated using the

vehicle’s current altitude and collective position to estimate

the vehicle’s remaining flight time non-invasively. Here, the

model does not use sensors on the vehicle to generate this

estimate of remaining flight time. This model was tested

against actual vehicle hover flights to determine whether the

model could be used in practice.

For this task, a support vector regression (SVR) model

(based on real flight data) was generated using the vehicle’s

altitude and collective position to estimate the vehicle’s

remaining flight time. The main idea behind an SVR model

is that a model is created (using experimental data) from

input-output pairs that can be used to predict the output to a

system given an input without explicitly knowing the model

of the system [15], [16], [17]. A model of the form

f (x) = ∑
i∈SV

(ᾱi − ᾱ∗
i)K(x,xi)+ b̄ (1)

is used to generate a non-linear mapping into a higher-

dimensional feature space of the form used to perform a

regression on any data point x ∈ R
n [16]. Here, K(x,xi) is

defined as the kernel function which generates the inner

product in the high-dimensional feature space and b̄ is a

constant [15]. In addition, the weighting parameters ᾱ∗
i ,

ᾱi for all i ∈ SV for the ε-insensitive SVR problem are

Fig.4: Collective stick pstn vs time during five hover tests

Fig.5: Predicted vs actual remaining flight for a hover test

determined by solving the optimization problem [16]:

max
α, α∗

r

∑
i=1

α∗
i (yi − ε)−αi(yi + ε)

− 1
2 ∑r

i, j(α
∗
i −αi)(α

∗
j −α j)K(xi,x j) (2)

subj. to
r

∑
i=1

(αi −α∗
i) = 0, ∀i ∈ {1, . . . ,r}

0 ≥ αi, α∗
i ≥C ∀i ∈ {1, . . . ,r}

where {(x1,y1),(x2,y2), ...,(xr,yr)} is the set of training pairs

introduced into the optimization problem. Note that this

model can be improved by regenerating the SVR model

based on new data, thus ensuring that the model is up-to-

date and representative of the current situation.

For the battery model, the input vectors x contained two

pieces of information: the collective input to the quadrotor

and the altitude difference between the vehicle’s current

and desired location. The output constant y generated by

this model is the vehicle’s predicted flight time remaining.

Over 10,000 data points were used to generate the SVR

battery model using the LibSVM library in C [18]. As shown

in Figure 5, the predicted flight time generated from the

collective stick position and the vehicle altitude provides a

reasonable estimate of the vehicle’s remaining flight time.

In fact, by filtering the vehicle’s collective stick position and

changes in altitude, a better estimate is generated. This model

is currently being used by the mission planning systems in

the MIT RAVEN to estimate the vehicle’s remaining flight

time and determine when UAVs should automatically land

and recharge (as shown in Figure 6).

IV. TASK ASSIGNMENT WITH HEALTH CONSTRAINTS

The previous section illustrated how a health monitor can

be implemented for vehicle components. This section will

examine the task assignment problem under consideration

and develop a framework for integrating health management

and maintenance scheduling information into task assign-

ment algorithms.

First, a task is defined as a tuple (wi, pi), where wi is

the location of task i and pi is the priority (or value) of

task i. The tasks may be known to the planning system

beforehand, but more commonly, they are generated in real-

time as the mission progresses. For example, during a search

and track mission, new tasks are generated at the predicted

future locations of the target as new information about the

target velocity and position is acquired. There is a set of

n vehicles V = {v1, . . . ,vn} originating from a base location

xbase, each with first-order dynamics and maximum speed

vmax. A task is called active if it has not been visited by a

vehicle, and the set of currently active tasks is denoted by W .

Formally, the task assignment problem is to compute a

mapping T : V → W which assigns a task for each vehicle

to visit. The goal is to compute the map T which minimizes

the total weighted service time over all the tasks:

min
T

∑
(wi,pi)∈W

pi ti

where ti is the wait time before task i is performed by a

vehicle. The task assignment problem in this form has re-

ceived considerable attention (see [19], [20], [21], [22], [23]).

However, the vehicle health state is not incorporated into

these formulations. For this paper, health state information

is represented by adding a fuel state to the vehicle model.

In this case, the fuel model is straightforward:

• First, the vehicle’s fuel level fi decreases at a constant

rate kfuel anytime the vehicle is flying.

• If fi reaches zero before the vehicle refuels, the vehicle

crashes and is lost.

• In addition, the occurrence of failures is modeled as a

Poisson process with time intensity ρ f ; when a failure

occurs, the rate of fuel burn increases to kfuel,failure >

kfuel. Thus, this failure mode increases the rate at which

fuel is burned (and thus decreases the time a vehicle

can complete tasks).

The following section illustrates how the Receding Hori-

zon Task Assignment (RHTA) algorithm (defined in [24])

can be modified to include the vehicle’s fuel state and how

this can improve the algorithm’s performance in situations

where vehicles can experience failures, need refueling or

require repair. The main idea - to consider the health data as

information that constrains the possible list of activities each

UAV can perform - can be extended to many different types

of health data (engine performance, sensor performance, etc)

and tasking algorithms.

Fig.6: Automated landing and recharge using the RAVEN at MIT [10]

V. RHTA MODIFICATIONS

Briefly, the RHTA algorithm works as follows. Given the

set of waypoints W and distances D(i, j) between waypoints,

RHTA enumerates all possible waypoint sequences, or petals,

Pv j up to a specified length nc. The cost of each petal is

estimated as

Svp = ∑λ Tdi swd (3)

where Tdi is the time between waypoint visits, swd are the

waypoint values, and λ is a time discount factor. Given the

values of all the petals Svp, RHTA solves this optimization

problem to select the optimal petal for each UAV:

maxJ =
Nv

∑
v=1

Nvp

∑
p=1

Svpxvp (4)

subj. to
Nv

∑
v=1

Nvp

∑
p=1

Avpixvp ≤ 1, xvp ∈ {0,1} (5)

Nvp

∑
p=1

xvp = 1, ∀ v ∈ {1, ...,Nv} (6)

The RHTA algorithm was extended to the health informa-

tion embedded in the fuel state to the vehicle model. This

was accomplished by including an estimate of each vehicle’s

operational radius [24], which is defined here as

ri ≡ vmax
fi

kfuel

The quantity ri represents the maximum distance a vehicle

can fly given its current fuel state, before running out of

fuel. This information can be used to effectively prune the

list of petals that RHTA considers in order to ensure that

the vehicle can always safely return to base before its fuel is

exhausted. More specifically, the following pruning criterion

was added to the RHTA algorithm (Algorithm 2.3.1 in [24]):

For every petal under consideration, reject the petal if

Li +d(wnc ,xbase) ≥ ri

Here, d(wnc ,xbase) represents the normal Euclidean distance

between the last waypoint in the petal and the base, and

Li = d(v,w1)+
nc

∑
j=2

d(w j−1,w j)

is the total length of the petal. The pruning criterion rejects

a petal if the length of the petal plus the distance from the

terminal waypoint wnc to base is greater than the current

operational radius of the vehicle. This ensures that the vehicle

only visits waypoints that allow it to return safely to base.

With this extension, RHTA will assign a vehicle to return

to base when every possible permutation of waypoints is

rejected by the pruning criterion. Thus, this method provides

a simple rule that determines when a vehicle should return

to base for refueling since it cannot safely service any of

the remaining tasks. Note that this method can create some

problems if the above rule is followed too strictly since

too many vehicles may be sent back to base unnecessarily

(i.e. when they still have large operational radii) if there

are few or no active tasks. This problem can be solved by

inserting artificial loiter tasks (wloiter, ploiter) into W . These

tasks are treated in the same way as real tasks by the RHTA

algorithm, but their purpose is to force the vehicles to remain

in advantageous areas.

VI. MISSION-LEVEL MAINTENANCE SCHEDULING

In addition to vehicle- and task-level health monitors,

mission-level health monitors can also be used improved

the system’s effectiveness over the duration of an operation.

Monitors that evaluate mission performance, task group

efficiency, team service rates and capability can be used to

tune system parameters online, thereby providing a real-time

evaluation of system capabilities. As shown in Figure 7,

system health feedback combined with environmental data

can be used to revise mission system strategies

For example, the simplified persistent surveillance mission

(PSM) resource management problem can be posed as a

Markov Decision Process (MDP) and formulated as an

Approximate Linear Programming (ALP) problem that can

be solved in real-time [25]. Here, the state x ∈ S in the

simplified three vehicle PSM problem is defined as the

vector x = (z1,z2,z3,h1,h2,h3), where zi indicates the task

to which each agent is allocated, hi indicates each agent’s

maintenance/health state, and S is the state space for the

problem.

Next, each action a ∈ Ax is defined as the vector a =
(a1,a2,a3) where ai indicates the system’s desired allocation

for agent in the task space and Ax is the action space

associated with the state x ∈ S. Each state x will transition

under action a to the future state y ∈ S with probability

Pa(x,y). Note that the agents in this problem can experience

failures that cause them to be unavailable. In addition, agents

are available for flight operations for a limited period of time

(because of fuel, failure and maintenance concerns). Finally,

a local cost for being in state x under action a is defined by

the function ga(x) ∈ R.

Since this problem is posed as an MDP, an Approximate

Linear Programming problem formulation can be used to

Fig.7: Updates to the mission planning subsystem in Figure 2

via health and performance data

find a feasible policy. The ALP formulation of the original

Dynamic Programming problem is of the form

max
r

cT Φr (7)

s.t. ga(x)+α ∑
y∈S

Pa(x,y)Φ(y)r ≥ Φ(x)r, ∀x ∈ S, a ∈ Ax

such that a set of M basis functions φ1, ...φM where M ≪ |S|
are used to approximate the cost-to-go function J∗ ≈ Φr∗.

Here, the approximate solution to the original problem can

be used to generate a policy that directs the vehicles to meet

the overall system goals, while maintaining the overall health

of the mission system.

One of the major obstacles faced when using an ALP

formulation of the original problem is the selection of

appropriate basis vectors and state relevance weights. In

many cases, selecting the appropriate parameters to find Φ
is based on experience. As a result, we have developed a

method allowing the autonomous mission system to auto-

matically generate basis functions for the underlying problem

to estimate the cost-to-go function that can be used in real-

time [26].

VII. RESULTS

A number of multi-vehicle tests have been flown using

the RAVEN at MIT (as described in [10]) to demonstrate

the mission, task assignment and control level health man-

agement algorithms. In this test suite, three UAVs equipped

with cameras and 2000 mAh batteries were used to search

for ground vehicles in the test area. Each vehicle-battery

combination had measured flight times of 11 to 12 mins

under normal operating conditions prior to these tests. The

initial vehicle layout for each test is shown in Figure 8. Each

UAV was placed 3 m north of the search area behind a

concrete column. Therefore, these UAVs had to avoid the

pole during transitions between the search and maintenance

areas. In addition, two ground vehicles were used in these

tests. The ground vehicle in the western end of the search

area could moved via remote control. Therefore, the actions

of the UAVs tracking this vehicle using vision had to

be coordinated via the task advisor (running the modified

version of RHTA described above) to estimate the ground

object’s position and velocity . Likewise, the second ground

object was placed on top of a box. To accurately detect its

position, UAVs had to make multiple observations of this

object (from different orientations) since the terrain of the

search area was not known to the mission system a priori.

Fig.8: Multi-vehicle mission flight test setup

Flight test data from one of these test flights is shown in

Figures 9 to 15. In this 12 min test flight, the camera from

UAV #3 was removed to demonstrate a complete camera

failure. At the beginning of this flight demonstration, the

mission system commanded one vehicle to search test area

for ground objects. Once airborne, the task advisor used the

UAV’s camera images to locate ground objects. Figure 9

shows the UAV detecting the ground objects during its

search from different observation locations. Each time a

ground vehicle was detected by the UAV’s vision system,

information of the object’s location to the task advisor for

future reference.

To verify the reported ground vehicle locations, the task

advisor requests a second UAV from the mission manager.

After the second vehicle reaches the search area, the task

advisor commands both vehicles to monitor the ground

vehicles. Figures 10 and 11 show UAVs #1 and #2 tracking

the ground objects during the flight test. These images were

generated using the RAVEN 3D operator interface playback

utility. In Figure 10 both vehicles are commanded by the task

advisor to remain about 90◦ from one another to identify the

ground vehicle’s location and orientation on the box. In this

figure, the yellow car-like object is the actual location of

the car (as determined by the RAVEN’s positioning system)

and the bobbin-like spherical object is the task advisor’s

estimate of the ground vehicle location (as generated using

the processed images by the camera). Likewise, in Figure 11

both vehicles are commanded by the task advisor to stay

about 90◦ from one another and track the moving ground

object in the western end of the search area.

During the test the system’s health monitors were used to

manage UAVs in the flight space. As shown in Figure 12,

the estimated flight time of UAV #1 was monitored by the

mission system to determine when it needed maintenance

during the mission. Here, the data shows that about 2.5 mins

into its flight, the vehicle’s battery started to degrade faster

than expected. This degradation can be attributed to the fact

that this vehicle was flown many times and had been involved

in collision prior to this experiment. Since the motors on the

vehicle were warn, UAV #1 had trouble flying with UAV #2

while tracking the moving ground vehicle (due to the fact that

it got caught in UAV #2’s propeller wash). Hence, 6 mins into

the experiment, UAV #1 required more power to maintain its

Fig.9: Single vehicle search

Fig.10: Two UAVs observing a ground vehicle on box

Fig.11: Two UAVs tracking a moving ground vehicle

position while observing the ground vehicles.

As shown in Figure 13, the mission system automatically

commands each vehicle to participate in the mission based

on the task advisor’s needs and the vehicle’s health. After

receiving the take off command by the mission manager,

vehicles required about 1 min to reach the search area. In

this case, the mission system proactively commands UAV #3

to take-off (as shown in Figure 14) and replace UAV #1

since the mission system recognized that UAV #1 was using

a abnormal level of collective to maintain its position during

the experiment.

Normally, after the “Fuel Low” message is sent, it takes

1.5 mins for the “Fuel Warning” message to be generated for

a vehicle in normal condition. However, Figure 12 shows a

similar time plot of the vehicles on location in the task area.

UAV #1 was commanded back to base early to ensure that

it safely arrived at base to receive maintenance. To prevent

Fig.12: UAV #1 estimated vs actual flight time

Fig.13: Mission system commands during flight

a collision, the task manager reactively modified UAV #3’s

flight path so that UAV #1 could safely exit the flight area,

thus delaying UAV #3’s entry into the search area (as shown

in Figure 15).

Finally, since UAV #3 did not have a camera, the system

operator manually commanded UAV #3 back to base. Since

the operator was able to replace the battery on UAV #1

before failing UAV #3, the mission system recognized that a

second vehicle was available. As shown in Figure 13, as soon

as UAV #3 is registered as unavailable, the mission system

reactively commands UAV #1 back to the search area for

the rest of the test. A video of a similar multi-vehicle search

test flight using vision, as well as other flights, can be found

online at http://vertol.mit.edu.

VIII. CONCLUSION

In conclusion, health management techniques can be used

to improve mission-level functional reliability through better

system self-awareness and adaptive mission planning. The

paper presents results and examples that demonstrate how

health management information is being used to improve the

mission system’s self-awareness and adapt vehicle, guidance,

task and mission plans. These algorithms, which determine

Fig.14: Two UAVs tracking a ground vehicle during vehicle

cycling for maintenance

Fig.15: UAVs over the search area during test

the health of each mission component in real-time, have been

successfully implemented and tested. These, and other health

management algorithms for each component, are currently

being used in the MIT RAVEN to improve strategic and tac-

tical level decision making in autonomous mission systems

while observing the impact of likely failures and maintenance

needs for extended mission scenarios.

ACKNOWLEDGEMENTS

The authors would like to thank Spencer Ahrens, Daniel

Dale and Caleb Hug for their assistance with this project.

Brett Bethke would like to thank the Hertz Foundation and

the American Society for Engineering Education for their

support of this research. Research has been supported by

the Boeing Company (Dr. John Vian at the Boeing Phantom

Works) and by AFOSR grant FA9550-04-1-0458.

REFERENCES

[1] M. Fudge, T. Stagliano, and S. Tsiao, “Non-Traditional Flight Safety
Systems and Integrated Vehicle Health Management Systems,” ITT In-
dustries, Advanced Engineering and Sciences Division, 2560 Alexan-
dria Drive, Alexandria, VA 22303, Produced for the Federal Aviation
Administration, August 2003.

[2] P. Gaudiano, B. Shargel, E. Bonabeau, and B. Clough, “Control of
UAV SWARMS: What the Bugs Can Teach Us,” in Proceedings

of the 2nd AIAA Unmanned Unlimited Systems, Technologies, and

Operations Aerospace Conference, San Diego, CA, September 2003.
[3] H. Paruanak, S. Brueckner, and J. Odell, “Swarming Coordination of

Multiple UAV’s for Collaborative Sensing,” in Proceedings of the 2nd

AIAA Unmanned Unlimited Systems, Technologies, and Operations

Aerospace Conference, San Diego, CA, September 2003.

[4] J. Bellingham, M. Tillerson, M. Alighanbari, and J. How, “Cooperative
Path Planning for Multiple UAVs in Dynamic and Uncertain Environ-
ments,” in Proceedings of the 41st IEEE Conference on Decision and

Control, Las Vegas, NV, December 2002.
[5] J. Wohletz, D. Castanon, and M. Curry, “Closed-Loop Control for

Joint Air Operations,” in Proceedings from the 2001 American Control

Conference, Arlington, VA, June 2001.
[6] D. P. Bertsekas, Dynamic Programming and Optimal Control. Bel-

mont, MA: Athena Scientific, 2000.
[7] J. C. Hartman and J. Ban, “The series-parallel replacement problem,”

Robotics and Computer Integrated Manufacturing, vol. 18, pp. 215–
221, 2002.

[8] D. Bertsimas and S. S. Patterson, “The Air Traffic Flow Management
Problem with Enroute Capacities,” Operations Research, vol. 46, no. 3,
pp. 406–422, May-June 1998.

[9] J. Rosenberger, E. Johnson, and G. Nemhauser, “Rerouting Aircraft
for Airline Recovery,” Transportation Science, vol. 37, no. 4, pp. 408–
421, November 2003.

[10] M. Valenti, B. Bethke, G. Fiore, J. How, and E. Feron, “Indoor Multi-
Vehicle Flight Testbed for Fault Detection, Isolation, and Recovery,”
in Proceedings of the AIAA Guidance, Navigation, and Control Con-

ference and Exhibit, Keystone, CO, August 2006.
[11] E. King, Y. Kuwata, and J. P. How, “Experimental Demonstration of

Coordinated Control for Multi-vehicle Teams,” International Journal

of Systems Science, vol. 37, no. 6, pp. 385–398, May 2006.
[12] M. Valenti, T. Schouwenaars, Y. Kuwata, E. Feron, J. How, and

J. Paunicka, “Implementation of a Manned Vehicle-UAV Mission
System,” in Proceedings of the AIAA Guidance, Navigation, and

Control Conference and Exhibit, Providence, RI, August 2004.
[13] Thunder Power Batteries, “Thunder Power Batteries Website,” Avail-

able at http://www.thunderpower-batteries.com/, September 2006.
[14] Draganfly Innovations Inc., “Draganfly V Ti Pro Website,” Available

at http://www.rctoys.com/draganflyer5tipro.php, January 2006.
[15] V. Vapnik, Statistical Learning Methods. J. W. Wiley and Sons, 1998.
[16] S. R. Gunn, “Support Vector Machines for Classification and Regres-

sion,” University of Southhampton, Tech. Rep., May 1998.
[17] A. J. Smola and B. Schölkopf, “A Tutorial on Support Vector Regres-

sion,” NeuroCOLT2,” Produced as part of the ESPRIT Working Group
in Neural and Computational Learning II, October 1998.

[18] C.-C. Chang and C.-J. Lin, LIBSVM: A Library for Support Vector

Machines, 2001, Software available at http://www.csie.ntu.edu.tw/
∼cjlin/libsvm.

[19] R. W. Beard, T. W. McLain, M. A. Goodrich, and E. P. Anderson,
“Coordinated Target Assignment and Intercept for Unmanned Air
Vehicles,” IEEE Transactions on Robotics and Automation, vol. 18,
pp. 911–922, 2002.

[20] A. Richards, J. Bellingham, M. Tillerson, and J. How, “Coordination
and Control of Multiple UAVs,” in Proceedings of the AIAA Guidance,

Navigation, and Control Conference and Exhibit, Monterey, CA,
August 2002.

[21] A. E. Gil, K. M. Passino, and A. Sparks, “Cooperative Scheduling of
Tasks for Networked Uninhabited Autonomous Vehicles,” in Proceed-

ings of the 2003 IEEE Conference on Decision and Control, Maui,
HI, December 2003, pp. 522–527.

[22] C. Schumacher, P. R. Chandler, S. J. Rasmussen, and D. Walker,
“Task Allocation for Wide Area Search Munitions with Variable Path
Length,” in Proceedings of the 2003 American Control Conference,
Denver, CO, June 2003, pp. 3472–3477.

[23] E. Frazzoli and F. Bullo, “Decentralized Algorithms for Vehicle
Routing in a Stochastic Time-Varying Environment,” in Proceedings

of the 2004 IEEE Conference on Decision and Control, 2004, pp.
3357–3363.

[24] M. Alighanbari, “Task Assignment Algorithms for Teams of UAVs
in Dynamic Environments,” Master’s Thesis, MIT Department of
Aeronautics & Astronautics, June 2004.

[25] D. P. de Farias, “The Linear Programming Approach to Approximate
Dynamic Programming: Theory and Application,” Ph.D. dissertation,
Stanford University, June 2002.

[26] M. Valenti, “Approximate Dynamic Programming with Applications
in Multi-Agent Systems,” PhD Dissertation, Massachusetts Institute
of Technology, Department of Electrical Engineering and Computer
Science, June 2007.

