Embedding Knowledge Patterns into OWL

Luigi Tannone, Alan Rector, and Robert Stevens

School of Computer Science,
University of Manchester,
Manchester,
M13 9PL UK
{iannone,rector,robert.stevens}@cs.manchester.ac.uk

Abstract. We describe the design and use of the Ontology Pre-Processor
Language (OPPL) as a means of embedding the use of Knowledge Pat-
terns in OWL ontologies. We illustrate the specification of patterns in
OPPL and discuss the advantages of its adoption by Ontology Engineers
with respect to ontology generation, transformation, and maintainabil-
ity. The consequence of the declarative specification of patterns will be
their unambiguous description inside an ontology in OWL. Thus, OPPL
enables an ontology engineer to work at the level of the pattern, rather
than of the raw OWL axioms. Moreover, patterns can be analysed rigor-
ously, so that the repercussions of their reuse can be better understood
by ontology engineers and tools implementers. Thus the delivery of pat-
terns with OPPL can provide a means of addressing the opacity and
sustainability of OWL ontologies.

1 Introduction

The current focus of discussion about ontology engineering is on topics such
as: the sustainability of the knowledge maintenance process; the opacity of the
design of the underlying reusable knowledge models; and the lack of tool support
in these and other areas. To cite one recent work:

Today, one of the most challenging and neglected areas of ontology design
is reusability. The possible reasons include at least: size and complexity
of the major reusable ontologies, opacity of design rationales in most
ontologies, lack of criteria in the way existing knowledge resources (e.g.
thesauri, database schemata, lexica) can be reengineered, and brittleness
of tools that should assist ontology designers. [I]

The evidence that knowledge models expressed in OWL can be, and indeed
are, opaque to their users comes (indirectly) from the interest sparked by work on
entailment justifications. Some models are so hard to interpret that researchers
have recently focused on automatically generating explanations that are bet-
ter suited for users’ interpretation and understanding [2]. Whereas justifications
seek to make the inferences from the raw OWL more comprehensible, patterns
seek to raise the level of abstraction at which the ontology is formulated. This is

L. Aroyo et al. (Eds.): ESWC 2009, LNCS 5554, pp. 218 20009.
© Springer-Verlag Berlin Heidelberg 2009

Embedding Knowledge Patterns into OWL 219

achieved by encapsulating a particular pattern of axioms that captures a particu-
lar modelling issue and enables the desired inferences to be made. Understanding
may still be required, but the solution is ready-made and its reuse provides con-
sistency of style.

Knowledge Patterns, introduced in [3], have been succinetly described, in [4],
as:

[...] namely representations which capture recurring structure within
and across ontologies

This notion, coupled with the concept from Software Engineering of Design
Patterns, led to the introduction of Ontology Design Patterns (ODPs) [5] that
are collections of best practices in modeling knowledge. ODP have been further
categorised into Logic and Content patterns [I]. Current work in ODPs aims to
collect reusable fragments of patterns of knowledge representation that can be
accessed, documented, validated, and, finally, deployed by knowledge engineers.
Portald] have recently been launched to host centralised collections of ODPs to
facilitate their uptake. Although this could be beneficial for the creation of pat-
terns validated by the community, we argue that the aspects more strictly related
to the pragmatics of the reuse are still largely unaddressed. We observe that,
apart from the documentation, there is no way, to the best of our knowledge,
to specify that an ontology uses a pattern or the way a pattern should be used.
This means that if ontology engineers use a pattern in an ontology they might
have to document the details of its application or, in case of reuse, the ontology’s
maintainers will have to examine the knowledge model to understand the pat-
tern instantiation. We argue that what is needed is a language and a framework
that allows the explicit definition of patterns and the ability to refer to them in
OWL ontologies. Such a language would have the following advantages:

— Declarative specification of patterns provides the possibility to describe un-
ambiguously what it means, in OWL, to use a pattern inside an ontology
and therefore

e to produce pattern instantiations automatically;
e to add pattern support to ontology engineering tools.

— Patterns can be analysed formally, and the repercussions of their reuse can
be better understood by ontology engineers.

— Specifying those patterns that are to be reused in an ontology represents
a viable means (besides natural language documentation) of expressing the
ways such ontology should evolve according to the intentions of its original
modelers.

Note that the word pattern is more often used as a synonym for Ontology
Design Pattern than in its general accepted meaning of knowledge pattern. From
what we said above, an ODP is a knowledge pattern, but the converse does not
necessarily hold in general. The main contribution of this work is to propose a

! E.g.: http://ontologydesignpatterns. org

http://ontologydesignpatterns.org

220 L. Iannone, A. Rector, and R. Stevens

language to specify knowledge patterns in OWL, therefore, in the following, the
occurrence of the term pattern will not refer to an ODP, unless it is explicitly
indicated.

The remainder of this paper is organised as follows:

— we specify our proposal for such a language;

— we propose a framework for embedding it into OWL ontologies;

— we present some example of patterns coming from various ontologies and try
to give an idea of the extent of the impact of pattern introduction;

— we discuss briefly some motivating applications;

— finally, we discuss some promising research directions that the introduction
of this or a similar language could enable.

2 OPPL for Patterns

In [6] we introduced the new version of the Ontology Pre-Processing Language
initially proposed in [7] and applied in [§] as a declarative manipulation language
for ontologies. In [§] OPPL was initially motivated by the need of ontology
developers to transform one ontology to an axiomatically richer form. Here the
aim is to design a language to encapsulate recurring knowledge structures (set of
parametrized operations on OWL axioms) expressed in OWL. The OWL axiom
is the basic unit upon which OPPL acts. Each OPPL construct and its effects
can be simply expressed in terms of additions and removals of axioms. This
means that:

a. The semantics underneath patterns in OPPL are OWL-DL semantics, which
is both familiar to both OWL users and well-understood by implementers
and language designers;

b. The effects of using a pattern can be immediately computed /visualized with-
out needing any intermediate translation.

The grammar for the whole of OPPL can be found at http://www.cs.man.
ac.uk/~iannonel/oppl/documentation.html. Here, we limit ourselves to illus-
trating, by means of examples, the most relevant features of the language when
used for pattern specification. (Examples can be found in Figures [l and [2J).

2.1 Language Overview
The pattern sub-language of OPPL has two main components, namely:

1. Variables;
2. Actions.

Variables, just as in full OPPL, can have the following types:

1. CLASS;
2. OBJECTPROPERTY;

http://www.cs.man.ac.uk/~iannonel/oppl/documentation.html
http://www.cs.man.ac.uk/~iannonel/oppl/documentation.html

3. DATAPROPERTY;
4. INDIVIDUAL;

5. CONSTANT.

Embedding Knowledge Patterns into OWL 221

they cover all the logical entity types in an OWL ontologyﬁ.

Actions can either ADD or REMOVE an axiom that, in its turn can be any
axiom in OWL-DL built upon a combination of variables and entities from an
ontology. We will introduce the OPPL syntax with an example pattern using the
widely known Wine Ontology from W3C OWL Guiddd. Suppose a knowledge
engineer wants to provide a pattern to build new sub-classes of wine:Wine, so
that the ontology could be enriched with wine classes that do not a%ear in the

initial model. He could specify the OPPL Pattern shown in Figure

ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD

?region:CLASS,
?winery:CLASS [subClass0f Wineryl,
7grape:CLASS,
?body: INDIVIDUAL,

?color:INDIVIDUAL,
?flavor: INDIVIDUAL,

?suEar:INDIVIDUAL
BE!Z: N Actions

$thisClass
$thisClass
$thisClass
$thisClass
$thisClass
$thisClass
$thisClass
$thisClass

subClassOf
subClassOf
subClassOf
subClassOf
subClassOf
subClassOf
subClassOf
subClassOf

END;
e
Wine with located in ?region made by ?winery from ?grape grape fendeiig
with 7body body, 7color, color , 7flavor flavor, and 7sugar sugar

Variables

Wine,

locatedIn some ?Pregionm,
hasMaker some ?winery,
madeFromGrape some 7grape,
hasBody value ?body,
hasColor value ?color,
hasFlavor value 7flavor,
hasSugar value 7sugar

Fig. 1. Hypothetical pattern for the creation of a kind of Wine in the W3C Wine
ontology

2 With entity here we denote: named classes, object and data properties, individuals,
and constants. Note that annotations are not considered as they are currently not
part of the logical structure of OWL and their specification is changing rapidly in
the revision from OWL 1.0 to OWL 2.0.

3 http://wuw.w3.org/TR/2003/PR-owl-guide-20031209/wine

* Notice that OPPL relies on Manchester OWL Syntax [9], from which its own syntax
has been derived by adding variable support. Hence, all the axioms in the example
ontologies in this paper will also be reported using their Manchester OWL Syntax
rendering, with the exception of Figure [l that uses RDF/XML-ABBREV as axiom
annotations are not yet supported in Manchester Syntax.

http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine

222 L. Iannone, A. Rector, and R. Stevens

The pattern above defines the new wine in terms of 7 variables that correspond
to the features specified, in the starting ontology, by the class wine:Wine whose
description we report below for completeness:

Wine subClass0f PotableLiquid

Wine subClass0Of locatedIn some Region
Wine subClassOf hasMaker only Winery

Wine subClass0f madeFromGrape min 1 Thing
Wine subClass0f hasBody exactly 1 Thing
Wine subClass0f hasColor exactly 1 Thing
Wine subClassOf hasFlavor exactly 1 Thing
Wine subClassOf hasMaker exactly 1 Thing
Wine subClass0f hasSugar exactly 1 Thing

After the variable definition block, the OPPL pattern specifies the operations
on the ontology that its use (henceforth instantiation) requires to be executed.
In our case they consist of adding 8 axioms. This pattern is peculiar because
it is supposed to be applied to a class description. It means that the ontology
engineer, in order to use this pattern, will have to pick a class already present
in the ontology to which the pattern will be applied. The way to refer to such
a class inside a pattern is to use the reserved variable name $thisClass. An
equivalent pattern that is not supposed to be applied to a class can be obtained
by adding another variable to the one in Figure [I, and editing the pattern as
reported in Figure 2

The block after the actions is called rendering. Its purpose is merely to provide
tools with more user-friendly presentations for patterns. Its content is, in fact,
free text in which variable names could be inserted. In a pattern instantiation,
such variable names will be replaced with the values assigned to them.

Now suppose our knowledge engineer decides to instantiate the pattern in
Figure 2] assigning to its variable the following values:

?wine — PrimitivoManduriaDolceNaturale
?region — PugliaRegion

?winery — PuglieseWinery

?grape — Primitivo

?body — Full

?color — Red

?flavor — Strong

?sugar — Sweet

The effects of such an instantiation will be the addition of the following
axioms:

ADD PrimitivoManduriaDolceNaturale subClassOf Wine

ADD PrimitivoManduriaDolceNaturale subClass0f locatedIn some PugliaRegion
ADD PrimitivoManduriaDolceNaturale subClass0f hasMaker some PuglieseWinery
ADD PrimitivoManduriaDolceNaturale subClass0f madeFromGrape some Primitivo
ADD PrimitivoManduriaDolceNaturale subClass0f hasBody value Full

Embedding Knowledge Patterns into OWL 223

?wine:CLASS,

?region:CLASS,

?winery:CLASS [subClassOf Wineryl],

?grape:CLASS,

?body: INDIVIDUAL,

?color:INDIVIDUAL,

?flavor:INDIVIDUAL,

?sugar: INDIVIDUAL

BEGIN

ADD ?wine subClass0Of Wine,

ADD ?wine subClassOf locatedIn some 7region,

ADD ?wine subClassOf hasMaker some 7winery,

ADD ?wine subClass0f madeFromGrape some ?grape,

ADD ?wine subClassOf hasBody value 7body,

ADD ?wine subClass0f hasColor value 7color,

ADD ?wine subClass0f hasFlavor value 7flavor,

ADD ?wine subClassOf hasSugar value 7sugar

END;

?wine Wine with located in 7region made by 7winery from 7grape grape
with ?body body, ?color color , ?flavor flavor, and 7sugar sugar

Fig. 2. Pattern for the creation of a kind of Wine in the W3C Wine ontology not
applicable to a class

ADD PrimitivoManduriaDolceNaturale subClass0f hasColor value Red
ADD PrimitivoManduriaDolceNaturale subClass0f value Strong
ADD PrimitivoManduriaDolceNaturale subClass0f value Sweet

And its rendering will be:
PrimitivoManduriaDolceNaturale Wine located in PugliaRegion made by
PuglieseWinery from Primitivo grape with Full body, Red color, Strong fla-
vor, and Sweet sugar.

An OPPL pattern may reference other OPPL patterns. To illustrate this con-
sider another example ontology, this time about food. For the sake of simplicity
let us reduce it to the following axioms:

Food subClassOf Thing

Meat subClass0Of Food

Egg subClass0f Food

Vegetables subClass0f Food
Objectproperty contains

Course subClassOf contains some Food
Menu subClass0f contains some Course

Let us suppose that we want to specify sub classes of Course and Menu on the
basis of what they do or do not contain. Let us consider the following pattern
(called freeFromCourse and shown in Figure [3]).

This pattern uses the RETURN clause. This clause defines a particular sub-
set of patterns that, when instantiated, not only executes their actions, but

224 L. Iannone, A. Rector, and R. Stevens

?x:CLASS,

?forbiddenContent : CLASS=createUnion(?7x.VALUES)

BEGIN

ADD $thisClass equivalentTo Food and contains only (not ?forbiddenContent)
END;

A ?x free stuff;

RETURN $thisClass

Fig. 3. Our FreeFromPattern

also returns a value. The instantiation of the pattern above, when applied
to a given class, makes it equivalent to the class of all the individuals whose
fillers, for the property contains, are all in the complement of the class variable
?forbiddenContent. This variable is ‘generated’-this means that its values will
not be provided by the users in the instantiation, but will come from other vari-
ables/entities in the pattern. In our case, this variable is the disjunction of all
the values assumed by the CLASS variable ?x. Now suppose we instantiate this
pattern, assigning Meat and Egg to 7x, and apply it to VegetarianCourse. The
ontology, after the instantiation will include the following axioms:

VegetarianCourse equivalentTo contains only (not (Egg or Meat))

Although kept simple for the sake of clarity, this example shows the potential
of patterns and the advantages of having a language for their expression. The
only thing the knowledge engineer had to specify was a single pattern. After
that, enriching the ontology with all the plausible combinations of food content
one may need does not require an understanding of all of the underlying model.
All that needs to be done is the assignment of the desired values to the (in this
case) unique input variable.

The return clause, however, makes the above pattern suitable to be referenced.
This means that other patterns can refer to it in their actions. For instance, let
us say we want to specify a pattern for creating Menu sub-classes that do not
contain a certain food. We can build that pattern upon the pattern already
created, using the syntax in Figure [

7x:CLASS [subClass0f Food]

BEGIN

ADD $thisClass subClassOf Menu,

ADD $thisClass subClassOf contains Course and only ($FreeFromPattern(?x))
END;

A 7x - free Menu

Fig. 4. Pattern on Menu reusing the pattern in Figure Bl FreeFromPattern

Let us suppose we want to create a VegetarianMenu class and instantiate it
using again Egg and Meat as values for our input variable 7x.

Embedding Knowledge Patterns into OWL 225

The following axioms would be added to the ontology on instantiation:

VegetarianMenu subClassOf Menu
VegetarianMenu subClassOf contains Course and only
(contains only not (Egg or Meat))

In other words, an inner pattern instantiation retrieves all the class equivalence
axioms that have the return variable as member and in place of the reference
in the outer patterrﬁ it puts the conjunction of all the equivalent classes that
appear in such axiomsﬁ.

2.2 Embedding Patterns into OWL Ontologies

This section briefly describes our framework that allows the embedding patterns,
specified using OPPL, and their instantiations into ontologies. We will illustrate
it using screenshots from a tool we developed as a plug-in for Protégé 4 (http://
www.cs.man.ac.uk/~iannonel/oppl/patterns). This tool allows the creation,
editing and instantiation of such patterns. This therefore facilitates the main-
tenance of an ontology when using Protégé 4. Trivial as it may appear in the
examples above, we provided a way to encapsulate the semantics of being some-
thing which does not contain 7x, in the pattern described in Figure[3l Should the
way of modeling that change in the ontology, knowledge engineers would need
to maintain only the pattern and the framework should update the referencing
entities accordingly.

There are three main pieces of information that need to be stored into an
ontology in order to enable the use of OPPL patterns, they are:

1. Pattern definitions, i.e.: the OPPL specifications, rendering, and, optionally,
return clauses described in the previous section;

2. Pattern instantiations, i.e: the set of values assigned to each variable when
using a pattern;

3. Pattern generated effects, i.e.: the reference to the creating pattern for each
axiom generated by a pattern instantiation.

All three pieces of information are stored in different annotations. Pattern defini-
tions and pattern instantiations are serialized into ontology annotations, unless the
pattern to be instantiated uses the reserved $thisClass variable (pattern applica-
bleto classes). If $thisClassis used, the pattern instantiation refers to a particular
class in the ontology—therefore, it is stored as an annotation for that class.

Finally, every axiom added by a pattern instantiation is annotated with
enough information to reference what instantiation caused the assertion of such
an axiom. An example of the resulting OWL serialization of the pattern in
Figure[3] its instantiation and the corresponding annotated axiom is reported in
Figure [

5 Currently, in our language only class variables can be returned.
5 In our case, there is only one axiom and one equivalent class in the pattern in
Figure 3

http://www.cs.man.ac.uk/~iannonel/oppl/patterns
http://www.cs.man.ac.uk/~iannonel/oppl/patterns

226 L. Iannone, A. Rector, and R. Stevens

[...]
<owl:Ontology rdf:about="">
<patterns:Free rdf:datatype="&xsd;string"
>?x:CLASS, ?forbiddenContent : CLASS=createUnion(?x.VALUES)
BEGIN
ADD $thisClass equivalentTo contains only (not ?forbiddenContent)
END;
A 7?x free stuff ;
RETURN $thisClass
</patterns:Free>
</owl:0Ontology>

[...]

<!-- http://www.coode.org/patterns/examples/food#VegetarianCourse -->

<owl:Class rdf:about="#VegetarianCourse">
<rdfs:subClass0f rdf:resource="#Course"/>
<patterns:VegetarianCourseFreePatternInstantiation rdf:datatype="&xsd;string">
$Free(Meat)
</patterns:VegetarianCourseFreePatternInstantiation>
</owl:Class>
<rdf:Description>
<rdf:type rdf:resource="&owl;Axiom"/>
<rdf:subject rdf:resource="#VegetarianCourse"/>
<rdf :predicate rdf:resource="&owl;equivalentClass"/>
<rdf:object>
<owl:Restriction>
<owl:onProperty rdf:resource="#contains"/>
<owl:allValuesFrom>
<owl:Class>
<owl:complementOf rdf:resource="#Meat"/>
</owl:Class>
</owl:allValuesFrom>
</owl:Restriction>
</rdf :object>
<patterns:createdBy rdf:datatype="&xsd;string">
http://wuw.co-ode.org/patterns#VegetarianCourseFreePatternInstantiation
</patterns:createdBy>
</rdf:Description>

Fig. 5. Pattern specification, instantiation and storage effects in OWL excerpts

Methodologies have recently been proposed to create and reuse knowledge
patterns. In particular, in [I] (see Section 3), a common set of operations for
creating and using Ontology Content Patterns (OCPs) has been described. An
ontology content pattern, is, informally, a knowledge pattern that, although
domain specific, solves recurrent common modeling problems. In the same paper,
the authors illustrate the creation and the usage of patterns by means of two
examples extracted from the Dolce Ultra Light ontology (DUIE): namely the
Information Realization and the Time Indexed Person Role content patterns.
The proposed extraction process produces entries for an online catalogue to be
browsed by knowledge engineers. The typical entry of such a catalogue looks like
a form with fields specifying:

" http://www.loa-cnr.it/ontologies/DUL.owl

http://www.loa-cnr.it/ontologies/DUL.owl

Embedding Knowledge Patterns into OWL 227

Name;

— Intent;
Extracted from:;
— Examples;
Diagram;

— Elements.

There seems, however, not to be a concrete representation of the captured pat-
tern so that it could be reused off the shelf. We claim that besides the information
already provided by catalogues of patterns, encoding the patterns in OPPL could
further enhance their usability. Currently the instantiation technique suggested
by the authors relies on cloning (partially, or completely) entities from the pat-
tern origin ontology and constructing the resulting axioms using SPARQL B. The
authors acknowledge that the problem of cloning has not been fully addressed so
far and acknowledge it may happen that the ontology engineers have to manu-
ally edit SPARQL results. Using OPPL allows the expression of patterns in the
same ontological language and therefore avoids the need for custom SPARQL
adjustments as the patterns creators can specify which axioms will correspond
to a pattern instantiation.

Let us consider, now, the first OCP, Information Realization. In a nutshell,
the DUL ontology says that:

[Information Realization] represents the relations between information
objects like poems, songs, formulas, etc., and their physical realizations
like printed books, registered tracks, physical les, etc.

In Figure[f we report the OPPL encoding of this pattern. Notice that this pat-
tern when instantiated in an ontology that imports the DUL will assert the op-
portune sub-class relationships between the variables and the classes/properties
in the DUL ontology (i.e: InformationRealization, InformationObject, and
realizationProperty) and then the required axiom that relates the informa-
tion object to its realization. The advantage of this is that it can be directly
stored in the ontology, and applied, just assigning values to the three variables.
Once validated by the ontology engineer, this pattern can be routinely instanti-
ated to produce as many InformationRealization sub-classes as required—all
its users have to know is what values they should assign to the variables.

Likewise, we can consider the other example in the paper referenced above:
Time Indexed Person Role described as:

a CP that represents time indexing for the relation between persons and
roles they play

Looking at the ontology, a Time Indexed Person Role is a sub-class of
Situation whose settings include a sub-class of Person, of Role, and of
TimeInterval. A generic pattern for Time Indexed Person Role could be the
one shown in Figure[ll Notice that there is no particular reason to interpret the

8 http://www.w3.org/TR/rdf-sparql-query/

http://www.w3.org/TR/rdf-sparql-query/

228 L. Tannone, A. Rector, and R. Stevens

?informationObject:CLASS,
7informationRealization:CLASS,
?realizationProperty:0BJECTPROPERTY
BEGIN
ADD 7informationRealization subClass0Of InformationRealization,
ADD 7informationObject subClassOf InformationObject,
ADD ?realizationProperty subProperty0f realizes,
ADD 7informationRealization subClassOf PhysicalObject
and ?realizationProperty some ?InformationObject
END;
Information Realization Pattern:
?informationRealization ?realizationProperty ?informationObject

DUL.owl (http:/ /www.loa-cnr.it/ont Jies/DUL.owl)
Pattern name

InformationRealization

4 TinformationObject:CLASS
A ZinformationRealization: CLASS
L 7realizationProperty. OBJECTPROPERTY

Add ?informationRealization subClassOf InformationRealizatian
Add ?informationObject subClassOf InformationObject
Add m’realizationProperty subPropertyOf realizes

Add 7informationRealization subClassOf PhysicalObject
ind PrealizationProperty some InformationObject

Rendering

Information Realization Pattern : 7informationRealization ?realizationProperty
?informationObject

Return

~ Allow Return Value

Cancel) [DK

Fig. 6. Information Object Pattern in OPPL

Embedding Knowledge Patterns into OWL 229

latter pattern as a class, the purpose was only to show an alternative to the
plain, class independent implementation of the previous Information Realization
example. There is, however, another important difference between the two ex-
emplar patterns: their level of generality. In the former both the classes and the
property involved have been replaced by variables. In the latter a fixed reference
to the property isSettingFor appears. The introduction of a 0BJECTPROPERTY
variable that replaces such property would produce a more general pattern. Con-
versely, the elimination of a variable and its replacement with an entity would
result in a more specific version of the Information Realization Pattern described
above. These two operations correspond to implementing in OPPL what, in [I],
is meant by pattern generalization and specialization.

3 Related Work

The literature about knowledge patterns, even when restricted to the work specif-
ically aimed at Semantic Web formalisms, is vast. Therefore, the survey in this
Section is not intended to be exhaustive. Its aim is rather to identify where our
contribution stands with respect to the state-of-the-art. Clark et al. were the first,
to the best of our knowledge, to use the label knowledge patterns, defining them as:

first order theories whose axioms are not part of the target knowledge-
base, but can be incorporate via renaming of their non logical symbols
(see Section 2 in [3]).

Explicit functions called morphisms were required to use patterns in knowledge
bases. In the following years, researchers seemed to focus on pattern categori-
sation (see, for instance, [I0] and its references) aiming at creating organised
catalogues that engineers could browse and adopt in their knowledge bases.
Recently, patterns have also been employed in semi-automatic knowledge ac-
quisition tasks. In [I1], they are combined with Case-Based Reasoning in order
to guide the extraction of terminological knowledge from text documents. How-
ever, as far as we are aware, in the last decade, we can cite only two works
that investigate the problem we discussed in this paper: pattern representation
languages. Staab et al., in [12], propose a framework based on RDF for creating
catalogues of patterns that are (partially - according to the authors themselves)
executable/portable in any implementation language. Vrandecic, in [13], proposes
the creation of scripts (called macros in the paper) that, without changing the
semantics of the underlying knowledge representation language — OWL-DL in
this case — capture sets of axioms and can be reused. Our approach is less ambi-
tious than Staab et al.’s as our pattern specification language is targeted to cover
OWL-DL ontologies only. Therefore, in Staab et al’s framework, ours could be
the component responsible for translating a semantic pattern into OWL-DL.
With respect to Vrandecic’s work, by contrast, our framework seems a step
forward, providing a concrete language for encoding patterns, although we differ
in the interpretation of in what way a macro (pattern) should be dealt. Vrandecic
hypothesizes that patterns should be encoded into the ontology, then interpreted

230 L. Tannone, A. Rector, and R. Stevens

?person:CLASS,

?role:CLASS,

7timeInterval:CLASS

BEGIN

ADD $thisClass subClass0f Situation,

ADD $thisClass subClassOf isSettingFor some ?person,

ADD $thisClass subClassOf isSettingFor some 7role,

ADD $thisClass subClassOf isSettingFor some ?timeInterval,

END;
Situation where 7person play the role 7role during the time interval ?timelInterval
OO DUL.owl (http:/ /wew.loa-cnr.itfontologies/DUL.owl)

Patterm name

TimelndexedPersonRole

Ing

AL 7person:CLASS

L 7role CLASS

4 timelnterval: CLASS

Add ® $thisClass subClassOf Situation
Add 9 §thisClass subClassOf isSettingFor some 7person
Add $thisClass subClassOf isSettingFor some ?role

. Rendearing

'_Situ_ation where ?person play the role ?role during the time interval ?timelnterval
Return

1 Allow Raturn Valua

{ cancel " (OK \J

Fig. 7. Time Indexed Person Role Pattern

and resolved using external tools (maybe rule or template based) every time an
ontology is opened to be sent to any reasoning service. On the contrary, we
believe that patterns should be instantiated and references resolved as soon as
they are used in the ontology.

As we explained above, when a pattern is instantiated, our framework will
carry out the resulting actions on the ontology, and there will be no need of
interpreters after that point.

Embedding Knowledge Patterns into OWL 231

4 Conclusions and Future Work

In this paper we used OPPL as a means of encoding patterns. OPPL patterns
are a set of operations to be executed on the ontology to which they are applied.
Such operations are specified in terms of the axioms to be added/removed with
variables that have to be instantiated, assigning values to each. Having a lan-
guage and a concrete framework to encode patterns into ontologies has the added
value of enabling an ontology engineer to specify both what could be extended in
an ontology and how this could be accomplished. Patterns, besides representing
abstractions over recurrent modeling problems, could also function as ontology
extension points. Knowledge engineers could systematically create patterns that
indicate the way they foresee further axiomatizations in the ontology. this would
implement a sort if interface - in its software engineering accepted meaning - for
ontology expansion and at the same time hiding modeling details.

Furthermore, a declarative language for encoding patterns makes it possible
to explore its expressivity limitations as well as the effects that certain kinds of
patterns could have when instantiated within an ontology. Promising research
results on the evaluation of the impact of ontology modifications [T4JT5] could be
reused and applied to assess the consequences of the instantiation of a pattern.
Such analysis could be automated and embedded into knowledge engineering
tools that will provide more information, at a higher level of abstraction, to
their users interested in maintaining an ontology exposing patterns.

Introducing a pattern language opens another interesting direction: pattern
matching and induction. Matching is meant here as deciding whether either a given
ontology or its part is compliant (matches) with a given pattern. Pattern induc-
tion, in contrast, is intended as detecting the regularities in an ontology, seeking
recurring patterns. The application of Machine Learning techniques to study the
complexity of the induction for this language is certainly worth investigating.

Last, but not least, its adoption as a language for patterns will contribute in
steering the further developments of the OPPL language itself. OPPL was born as
a scripting language to automate bulk modifications to ontologies. The language
creators main concern was to maintain its decidability keeping a very parsimo-
nious attitude with respect to the set of possible language constructs. It is likely
that patterns will push in the opposite direction, demanding more and more ex-
pressivity. Reaching a useful trade-off will be an interesting research topic in itself.
We therefore see this new version of OPPL, with its ability to declare knowledge
patterns and instantiate them within an ontology, as the starting point for sup-
porting the sustainable development of richly axiomatised ontologies.

References

1. Presutti, V., Gangemi, A.: Content ontology design patterns as practical building
blocks for web ontologies. In: Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.) ER
2008. LNCS, vol. 5231, pp. 128-141. Springer, Heidelberg (2008)

232

2.

10.

11.

12.

13.

14.

15.

16.

L. Iannone, A. Rector, and R. Stevens

Horridge, M., Parsia, B., Sattler, U.: Laconic and precise justifications in owl.
In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T.W.,
Thirunarayan, K. (eds.) International Semantic Web Conference. LNCS, vol. 5318,
pp. 323-338. Springer, Heidelberg (2008)

. Clark, P., Thompson, J., Porter, B.W.: Knowledge patterns. In: KR, pp. 591-600

(2000)

. Clark, P.: Knowledge patterns. In: [16], pp. 1-3
. Gangemi, A.: Ontology design patterns for semantic web content. In: Gil, Y.,

Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729,
pp. 262-276. Springer, Heidelberg (2005)

. Tannone, L., Egana, M., Rector, A., Stevens, R.: Augmenting the Expressivity

of the Ontology Pre-Processor Language (2008), http://www.webont.org/owled/
2008/papers/owled2008eu_submission_16.pdf

. Egana, M., Antezana, E., Stevens, R.: Transforming the Axiomisation of Ontolo-

gies: The Ontology Pre-Processor Language. In: Proceedigns of OWLED 2008 DC
OWL: Experiences and Directions, Washington, DC (2008)

. Egana, M., Rector, A.L., Stevens, R., Antezana, E.: Applying ontology design

patterns in bio-ontologies. In: [16], pp. 7-16

. Horridge, M., Drummond, N., Godwin, J., Rector, A., Stevens, R., Wang, H.: The

Manchester OWL Syntax. In: Proceedigns of OWLED 2006 OWL: Experiences
and Directions, Athens GA, USA (2006)

Blomgqvist, E., Sandkuhl, K.: Patterns in ontology engineering: Classification of
ontology patterns. In: Chen, C.S., Filipe, J., Seruca, I., Cordeiro, J. (eds.) ICEIS
(3), pp. 413-416 (2005)

Blomgqvist, E.: Ontocase - a pattern-based ontology construction approach. In:
Meersman, R., Tari, Z. (eds.) OTM 2007, Part I. LNCS, vol. 4803, pp. 971-988.
Springer, Heidelberg (2007)

Staab, S., Erdmann, M., Maedche, A.: Engineering ontologies using semantic pat-
terns. In: IJCAI Workshop on E-business & The Intelligent Web (2001)
Vrandecic, D.: Explicit knowledge engineering patterns with macros. In: Proceed-
ings of the Ontology Patterns for the Semantic Web Workshop at the ISWC 2005,
Galway, Ireland (November 2005)

Grau, B.C., Horrocks, 1., Kutz, O., Sattler, U.: Will my ontologies fit together?
In: Parsia, B., Sattler, U., Toman, D. (eds.) Description Logics. CEUR Workshop
Proceedings, vol. 189, CEUR-WS.org (2006)

Grau, B.C., Horrocks, 1., Kazakov, Y., Sattler, U.: Ontology reuse: Better safe
than sorry. In: Calvanese, D., Franconi, E., Haarslev, V., Lembo, D., Motik, B.,
Turhan, A.Y., Tessaris, S. (eds.) Description Logics. CEUR Workshop Proceedings,
vol. 250, CEUR-WS.org (2007)

Gangemi, A., Euzenat, J. (eds.): EKAW 2008. LNCS, vol. 5268. Springer, Heidel-
berg (2008)

http://www.webont.org/owled/2008/papers/owled2008eu_submission_16.pdf
http://www.webont.org/owled/2008/papers/owled2008eu_submission_16.pdf

	Embedding Knowledge Patterns into OWL
	Introduction
	OPPL for Patterns
	Language Overview
	Embedding Patterns into OWL Ontologies

	Related Work
	Conclusions and Future Work

