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contrastive information [10] or triplets [27, 8]). For exam-

ple, Wang et al. [39] proposes a deep ranking model to di-

rectly learn the similarity metric by sampling triplets from

images. However, these strategies still have several lim-

itations in fine-grained datasets: 1) Although the features

learned from triplet constraints are effective at discovering

similar instances, its classification accuracy may be infe-

rior to the fine-tuned deep models that emphasize on the

classification loss, as demonstrated in our experiments. In

addition, the convergence speed using such constraints is

usually slow. 2) More importantly, previous methods for

fine-grained features do not embed label structures, which

is critical to locate images with relevance at different levels.

In this paper, we propose two contributions to solve these

issues: 1) A multi-task deep learning framework is designed

to effectively learn the fine-grained feature representation

without sacrificing the classification accuracy. Specifically,

we jointly optimize the classification loss (i.e., softmax) and

the similarity loss (i.e., triplet) in CNN, which can generate

both categorization results and discriminative feature rep-

resentations. 2) Furthermore, based on this framework, we

propose to seamlessly embed label structures such as hier-

archy (e.g., make, model and year of cars) or attributes (e.g.,

ingredients of food). We evaluate our methods on three fine-

grained datasets, i.e., the Stanford car, the Car-333, and a

fine-grained food dataset, containing either hierarchical la-

bels or shared attributes. The experimental results demon-

strate that our feature representation can precisely differen-

tiate fine-grained or subordinate classes, and also effectively

discover similar images at different levels of relevance, both

of which are challenging problems.

The rest of the paper is organized as follows. Section

2 provides a brief review of fine-grained image categoriza-

tion and the recent approaches of learning fine-grained fea-

ture representation. Section 3 introduces our method which

learns feature representation by multi-task learning and em-

bedding label structures. Experiments are presented in Sec-

tion 4, and we conclude the paper in Section 5.

2. Related Work

Fine-grained image understanding aims to differentiate

subordinate classes. Its main challenges are the following:

1) Many fine-grained classes are highly correlated and are

difficult to distinguish due to their subtle differences, i.e.,

small inter-class variance. 2) On the other hand, the intra-

class variance can be large, partially due to different poses

and viewpoints. Many methods have been proposed to al-

leviate these two problems. In this section, we emphasize

on the methods that are most relevant to our approaches,

particularly the ones on fine-grained feature representation.

Many algorithms have been proposed to leverage parts

of objects to improve the classification accuracy. Part based

models [46, 7, 3, 51, 50, 15, 43] are proposed to capture the

subtle appearance differences in specific object parts and re-

duce the variance caused by different poses or viewpoints.

Different from these part-based methods, distance metric

learning can also addresses these challenges by learning an

embedding such that data points from the same class are

clustered together, while those from different classes are

pushed apart from each other. In addition, it ensures the

flexibility of grouping the same category, such that only a

portion of the neighbors from the same class need to be

pulled together. For example, Qian et al. [30] proposed a

multi-stage metric learning framework that can be applied

in large-scale high-dimensional data with high efficiency.

In addition to directly classify the images using CNN, it is

also possible to generate discriminative features that can be

used for classification. In this context, DeCAF [13] is a

commonly used feature representation with promising per-

formance achieved by training a deep convolutional archi-

tecture on an auxiliary large labeled object database. These

features are from the last few fully connected layers of

CNN, which have sufficient generalization capacity to per-

form semantic discrimination tasks using classifiers, reli-

ably outperforming traditional hand-engineered features.

One limitation of the above mentioned methods is that

they are essentially driven by the fine-grained class labels

for classification, while it is desired to incorporate similar-

ity constraints as well. Therefore, other than using classi-

fication constraints alone (e.g., softmax), several similarity

constraints have been proposed for feature representation

learning. For example, siamese network [10] defines sim-

ilar and dissimilar image pairs, with the requirement that

the distance between dissimilar pairs should be larger than

a certain margin, while the one from similar pairs should be

smaller. This type of similarity constraint can effectively

learn feature representations for various tasks, especially

for the verification [42, 33]. An intuitive improvement is

to combine the classification and the similarity constraints

together for better performance. This is particularly rele-

vant to our framework. For example, [35, 48, 2] proposed

to combine the softmax and contrastive loss in CNN via

joint optimization. It improved traditional CNN because

contrastive constraints might augment the information for

training the network. Different from these approaches, our

method leverages the triplet constraint [27, 8] instead of

the contrastive ones, since triplet can preserve the intra-

class variation [31], which is critical to the learning of fine-

grained feature representation. Note that triplet constraint

has been used in feature learning [39, 23, 38], face represen-

tation [31], and person re-identification [12]. Particularly,

there are also efforts on combining this with the softmax. A

representative example is that [29] proposed to learn a face

classify first, and then use the triplet constraint to fine-tune

and boost the performance. It achieved promising accuracy

in face recognition. Although we also integrate triplet in-
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formation with the traditional classification objective, our

method jointly optimizes these two objectives simultane-

ously, which is different from [29]. As shown in the ex-

periments, this joint optimization strategy generates better

feature representations for fine-grained image understand-

ing. In addition, our framework can also easily support the

embedding of label structures in a unified framework, e.g.,

hierarchy or shared attributes, which have been proven use-

ful in various studies [5, 14, 1, 37, 44, 49, 9], but not well

explored in learning fine-grained feature representation that

can model similarity at different levels.

3. Methodology

3.1. Jointly Optimize Classification and Similarity
Constraints

Traditional classification constraints such as softmax

with loss are usually employed in CNN for fine-grained im-

age categorization, which can distinguish different subordi-

nate classes with high accuracy. Suppose that we are given

N training images {ri, li}
N
i=1 of C classes, where each im-

age ri is labeled as class li. Given the output of the last fully

connected layer fs(ri, c) for each class c = 1, · · · , C, the

loss of softmax can be defined as the sum of the negative

log-likelihood over all training images {ri}i:

Es(r, l) =
1

N

N∑

i=1

− log
efs(ri,li)

∑C

c=1 e
fs(ri,c)

︸ ︷︷ ︸

P (li|ri)

, (1)

where P (li|ri) encodes the posterior probability of the im-

age ri being classified as the lith class. In a nutshell, Eq. 1

aims to “squeeze” the data from the class into a corner of

the feature space. Therefore, the intra-class variance is not

preserved, while such variance is essential to discover both

visually and semantically similar instances.

To address these limitations, we explicitly model the

similarity constraint in CNN using a multi-task learning

strategy. Specifically, the triplet loss is fused with the classi-

fication objective as the similarity constraint. A triplet con-

sists of three images, denoted as (ri, pi, ni), where ri is the

reference image from a specific class, pi an image from the

same class, and ni an image from a different class.Given an

input image ri (similarly for pi and ni), this triplet-driven

network can generate a feature vector ft(ri) ∈ R
D, where

the hyper-parameter D is the feature dimension after em-

bedding. Ideally, for each reference ri, we expect its dis-

tance from any ni of different class is larger than pi within

the same class by a certain margin m > 0, i.e.,

D(ri, pi) +m < D(ri, ni), (2)

where D(·, ·) is the squared Euclidean distance between

two ℓ2-normalized vectors ft(·) of the triplet network. To

enforce this constraint in CNN training, a common relax-

ation [27] of Eq. 2 can be defined as the following hinge

loss:

Et(r, p, n,m) =

1

2N

N∑

i=1

max{0,D(ri, pi)− D(ri, ni) +m}.
(3)

In the feature space defined by ft(·), it can group the
r and p together while repelling the n by minimizing
Et(r, p, n,m). The gradient can be computed as:

▽Wt = 2(ft(ri)− ft(pi))
∂ft(ri)− ∂ft(pi)

∂Wt

− 2(ft(ri)− ft(ni))
∂ft(ri)− ∂ft(ni)

∂Wt

, (4)

if D(ri, ni) − D(ri, pi) < m, otherwise 0. Different from

the pairwise contrastive loss [10] that forces the data of the

same class to stay close with a fixed margins, the triplet loss

allows certain degrees of intra-class variance. Despite its

merits in learning feature representation, minimizing Eq. 3

for recognition tasks still has several disadvantages. For

example, given a dataset with N image, the number of all

possible triplets is N3, and each triplet contains much less

information (i.e., similar or dissimilar constraints with mar-

gins) compared with the classification constraint that pro-

vides a specific label among C classes. This can lead to

slow convergence. Furthermore, without the explicit con-

straints for classification, the accuracy of differentiating

classes can be inferior to the traditional CNN using softmax,

especially in fine-grained problems where the differences of

subordinate classes are very subtle.

Given the limitations of training with the triplet loss

(Eq. 3) solely, we propose to jointly optimize two types of

losses using a multi-task learning strategy. Fig. 2 shows

the CNN architecture of our joint learning. The R,P,N

networks share the same parameters during training. Af-

ter the ℓ2 normalization, the outputs of the three networks

(i.e., ft(r), ft(p), ft(n)) are transmitted to the triplet loss

layer to compute the similarity loss Et(r, p, n,m). In the

meantime, the output of the network R, fs(r), is forwarded

to the softmax loss layer to compute the classification er-

ror Es(r, l). Then, we integrate these two types of losses

through a weighted combination:

E = λsEs(r, l) + (1− λs)Et(r, p, n,m), (5)

where λs is the weight to control the trade-off between

two types of losses. We optimize Eq. 5 using the stan-

dard stochastic gradient descent with momentum. The fi-

nal gradient is computed as a λ-weighted combination of

▽Ws from the classification constraint and ▽Wt from the

similarity constraint, and propagated back to lower layers.

This framework of unifying three networks through Eq. 5
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