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1. Introduction

Although the term ‘restriction semigroup’ is fairly recent, these algebraic
structures have been studied, under different names, for more than 40 years.
For a historical overview, the reader is referred to [4] and [7].

From algebraic point of view, a restriction semigroup is a semigroup
equipped with one or two unary operations. According to the number of the
unary operations, we consider it a one-sided (left or right) or a two-sided
restriction semigroup. In semigroup theory, it is regarded as a non-regular
generalization of an inverse semigroup. The well-developed structure theory
of inverse semigroups gives strong motivation to investigate the structure of
restriction semigroups. Since the late 1970’s much effort has been devoted
to extending the most important structure theorems of inverse semigroups
for restriction semigroups. For a summary of these results, the reader might
consult [5]. This paper is a contribution to this area in the context of two-
sided restriction semigroups, from now on simply referred to as restriction
semigroups.

It is well known ([9], [10], see also [8]) that each inverse semigroup has
an E-unitary cover, and the E-unitary inverse semigroups are just the in-
verse subsemigroups of the semidirect products of semilattices by groups.
On the other hand, each inverse semigroup is embeddable into an almost
factorizable one, and the almost factorizable inverse semigroups are just the
homomorphic images of the semidirect products of semilattices by groups.

A construction analogous to the semidirect product of a semilattice by a
group and producing a restriction semigroup is W (T, Y ) with Y a semilattice
and T a monoid, called a W -product of Y by T .

This construction was introduced in [1] for T being a right cancellative
monoid as a construction of a special left restriction semigroup, called left
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ample semigroup. In [3], it was generalized for any monoid T (with no idem-
potent distinct from 1), and it was noticed that there is a natural unary
operation ∗ on W (T, Y ), so that it becomes a restriction semigroup (a so-
called weakly ample semigroup). Moreover, the main result of [3] (see also
[13]) said that the almost left factorizable restriction semigroups are just the
homomorphic images of the W -products of semilattices by monoids, thus fo-
cusing the attention to this construction. Recently, the author has proved
in [12] and [13] that each restriction semigroup has a proper cover embed-
dable into a W -product of a semilattice by a monoid, and each restriction
semigroups is embeddable into an almost left factorizable one.

In this paper we give a necessary and sufficient condition for a restriction
semigroup so that it be embeddable into a W -product of a semilattice by a
monoid. At the end of the paper, we relate our result to that in [12] and
to the conditions obtained in [6] for the analogous question in the one-sided
case.

2. Preliminaries

By a left restriction semigroup we mean an algebra S = (S; ·,+) of type
(2, 1) where (S; ·) is a semigroup and + is a unary operation such that the
following identities hold:

x+x = x, x+y+ = y+x+, (x+y)+ = x+y+, xy+ = (xy)+x.

The following consequences of them are also frequently applied in the paper:

x+x+ = x+, (x+)+ = x+, x+(xy)+ = (xy)+,

(x+y+)+ = x+y+, (xy)+ = (xy+)+.

A right restriction semigroup S = (S; ·, ∗) is defined dually, and a restriction
semigroup S = (S; ·,+, ∗) is an algebra of type (2, 1, 1) where S = (S; ·,+)
is a left restriction semigroup, S = (S; ·, ∗) is a right restriction semigroup,
and the identities

(2.1) (x+)
∗

= x+, (x∗)+ = x∗

are valid. For restriction semigroups, the notions of a subalgebra, homo-
morphism, congruence and factor algebra are understood in type (2, 1, 1).
In order to avoid confusion, we call them (2, 1, 1)-subsemigroup, (2, 1, 1)-
morphism, (2, 1, 1)-congruence and (2, 1, 1)-factor semigroup, respectively.

If a restriction semigroup S has an identity element with respect to the
multiplication, usually denoted by 1, then 1+ = 1∗ = 1 necessarily holds.
Such a restriction semigroup is often called a restriction monoid.

The class of restriction semigroups is fairly wide. For example, each
inverse semigroup Sinv = (S; ·,−1) determines a restriction semigroup S =
(S; ·,+, ∗) where the unary operations are defined by the rules

a+ = aa−1 and a∗ = a−1a for every a ∈ S.
On the other hand, each monoid M becomes a restriction semigroup by
defining a+ = a∗ = 1 for any a ∈M . Such a restriction monoid is often called
reduced. Notice that the congruences and homomorphisms of inverse semi-
groups and the (2, 1, 1)-congruences and (2, 1, 1)-morphisms, respectively, of
the restriction semigroups obtained from them coincide. Monoids and the
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reduced restriction monoids obtained from them relate to each other in the
same way. This allows us to ease our terminology by saying just ‘inverse
semigroup’ (in particular, ‘semilattice’) and ‘monoid’ instead of introducing
a new name for a restriction semigroup obtained from an inverse semigroup
(in particular, from a semilattice) and of saying ‘reduced restriction monoid’,
respectively.

Let S be any restriction semigroup. By (2.1), we have {x+ : x ∈ S} =
{x∗ : x ∈ S}. This set forms a (2, 1, 1)-subsemilattice in S with both unary
operations being equal to the identity mapping. Therefore it is a restriction
semigroup obtained from a semilattice considered as an inverse semigroup.
So we call it, in the above sense, the semilattice of projections of S and
denote it by P (S).

Given a restriction semigroup S, we consider the following relation σ on
S: for any a, b ∈ S, let

a σ b if and only if ea = eb for some e ∈ P (S),

or, equivalently, if and only if af = bf for some f ∈ P (S).
This relation is the least congruence on S = (S; ·) where P (S) is in a

congruence class, and is the least (2, 1, 1)-congruence ρ on S = (S; ·,+, ∗)
such that the (2, 1, 1)-factor semigroup S/ρ is a monoid.

A restriction semigroup S is said to be proper if the following condition
and its dual are fulfilled:

a+ = b+ and a σ b imply a = b for every a, b ∈ S.

Note that each (2, 1, 1)-subsemigroup of a proper restriction semigroup is
proper.

It is worth mentioning that if a restriction semigroup S is obtained form
an inverse semigroup Sinv as above then σ is the least group congruence on
Sinv, and S is proper if and only if Sinv is E-unitary. Therefore the relation
σ generalizes the least group congruence on an inverse semigroup, and the
notion of a proper restriction semigroup generalizes that of an E-unitary
inverse semigroup. Moreover, the role played among inverse semigroups by
groups is taken over among restriction semigroups by monoids.

Now we introduce a construction producing a restriction semigroup from
a semilattice and a monoid which generalizes semidirect products of semi-
lattices by groups.

Let T be a monoid and Y a semilattice. We say that T acts on Y on the
right if a monoid homomorphism is given from T into the endomorphism
monoid EndY of Y , or equivalently, if, for any a ∈ Y and t ∈ T , an element
at ∈ Y is given such that

(2.2) (ab)t = atbt, (at)u = atu, a1 = a

hold for every a, b ∈ Y and t, u ∈ T . We say that (T, Y ) is a W -pair if T
acts on Y on the right by injective endomorphisms such that the range of
each endomorphism corresponding to an element of T forms an order ideal
in Y , or equivalently, if additionally to (2.2), conditions

(2.3) at = bt implies a = b,
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and

(2.4) a ≤ bt implies a = ct for some c ∈ Y
are fulfilled for any a, b ∈ Y and t ∈ T .

Given a W -pair (T, Y ), consider the set

W (T, Y ) = {(t, at) ∈ T × Y : a ∈ Y, t ∈ T},
and define a multiplication and two unary operations on it in the following
manner: for any (t, at), (u, bu) ∈W (T, Y ), let

(t, at)(u, bu) = (tu, atu · bu),

(t, at)+ = (1, a),

(t, at)∗ = (1, at).

It is straightforward to see that W (T, Y ) is a subsemigroup in the reverse
semidirect product T n Y . Moreover, this construction has the following
basic properties.

Result 2.1. For any W -pair (T, Y ), the following statements hold.

(1) W (T, Y ) = (W (T, Y ); ·,+, ∗) is a restriction semigroup, and its semi-
lattice of projections is P (W (T, Y )) = {(1, a) : a ∈ Y }, which is
isomorphic to Y .

(2) The first projection W (T, Y ) → T is a surjective (2, 1, 1)-morphism
whose kernel is σ. Consequently, W (T, Y )/σ is isomorphic to T .

(3) W (T, Y ) is proper.

The restriction semigroup W (T, Y ) is called a W -product of the semilat-
tice Y by the monoid T .

3. Embeddability into a W -product

In this section we give a necessary and sufficient condition for a restriction
semigroup to be embeddable into a W -product of a semilattice by a monoid.

First, for a restriction semigroup S satisfying certain conditions, we con-
struct a W -product W (T,Y) and an injective (2, 1, 1)-morphism from S into
W (T,Y).

Let S be a restriction semigroup and, for brevity, put P = P (S) and
T = S/σ. Define a relation � on the set X = P × T as follows: for any
(e, u), (f, v) ∈ X, let

(e, u) � (f, v) if a+ = e, u = aσ · v and a∗ = f for some a ∈ S.

Lemma 3.1. The relation � is a preoder.

Proof. It is clear that � is reflexive. To prove transitivity, assume that
(e, u) � (f, v) and (f, v) � (g, w) in X. Then there exist a, b ∈ S such that
a+ = e, u = aσ · v, a∗ = f and b+ = f, v = bσ · w, b∗ = g. Therefore we
have (ab)+ = (ab+)+ = (aa∗)+ = a+ = e, (ab)σ ·w = aσ(bσ ·w) = aσ · v = u
and (ab)∗ = (a∗b)∗ = (b+b)∗ = b∗ = g, whence (e, u) � (g, w). �

In the sequel, we intend to introduce a factor set of X which is partially
ordered in a natural way and is acted upon by T in an appropriate way. The
construction is motivated by Munn’s proof of McAlister’s P -theorem ([11]),
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but it is more complicated, due to the fact that the structure of restriction
semigroups is much more complicated than that of inverse semigroups.

First we consider the least equivalence relation ρ on X containing �, and
having the property that, for every (e, u), (f, v) ∈ X and t ∈ T , we have
(e, u) ρ (f, v) if and only if (e, ut) ρ (f, vt). Recursively, we define a sequence
of relations ηj (j ∈ N0), and whenever ηj is defined, we denote its transitive
closure by ϑj . Let η0 = � ∪� and, for every j ∈ N0, put

ηj+1 =

{
{((e, u), (f, v)) ∈ X ×X : (∃t ∈ T ) (e, ut)ϑj (f, vt)} if 2 | j,
{((e, ut), (f, vt)) ∈ X ×X : t ∈ T and (e, u)ϑj (f, v)} if 2 - j.

Finally, define ϑ =
⋃∞
j=0 ϑj .

Lemma 3.2. The relation ϑ is the least equivalence relation ρ on X con-
taining �, and having the property that, for every (e, u), (f, v) ∈ X and
t ∈ T , we have (e, u) ρ (f, v) if and only if (e, ut) ρ (f, vt).

Proof. First we check that ϑ is an equivalence on X such that � ⊆ ϑ and,
for every (e, u), (f, v) ∈ X and t ∈ T , we have (e, u)ϑ (f, v) if and only if
(e, ut)ϑ (f, vt). By definition, it is clear that � ⊆ η0 ⊆ ϑ0 ⊆ ϑ and, for
every j ∈ N0, the relation ηj is reflexive and symmetric, and so ϑj is an
equivalence. Moreover, since T is a monoid, we have ϑj ⊆ ηj+1 (j ∈ N0),
and so

(3.1) ϑ0 ⊆ ϑ1 ⊆ ϑ2 ⊆ . . . ⊆ ϑj ⊆ ϑj+1 ⊆ . . . .

This implies that ϑ is an equivalence relation.
If (e, u)ϑ (f, v) then, by definition and (3.1), we have (e, u)ϑj (f, v) for

some odd j. Therefore (e, ut)ϑj+1 (f, vt) and (e, ut)ϑ (f, vt) follow for every
t ∈ T . Similarly, we also see that (e, ut)ϑ (f, vt) implies (e, u)ϑ (f, v) for
any (e, u), (f, v) ∈ X and t ∈ T .

Conversely, let ρ be any equivalence relation on X such that � ⊆ ρ and,
for every (e, u), (f, v) ∈ X and t ∈ T , we have (e, u) ρ (f, v) if and only if
(e, ut) ρ (f, vt). We intend to show that ϑ ⊆ ρ, that is, ϑj ⊆ ρ for every
j ∈ N0. We proceed by induction on j. Since ρ is an equivalence, it suffices
to verify that ηj ⊆ ρ for every j ∈ N0.

Clearly, η0 ⊆ ρ. Assume that, for some j ∈ N0, we have ϑj ⊆ ρ. If 2 | j
and (e, u) ηj+1 (f, v) in X then, by definition, there exists t ∈ T such that
(e, ut)ϑj (f, vt), and so (e, ut) ρ (f, vt). By assumption, the latter relation
implies (e, u)ρ(f, v), and so ηj+1 ⊆ ρ holds. A similar argument applies in
case 2 - j, completing the proof of the inclusion ϑ ⊆ ρ. �

In the sequel, the following condition will be important:

(SP) (e, 1) ϑ (f, 1) implies e = f for every e, f ∈ P.

For brevity, denote the set X/ϑ of all ϑ-classes by X , and the ϑ-class
containing (e, u) ∈ X by [e, u]. Moreover, put

[e, u]t = [e, ut] for any [e, u] ∈ X and t ∈ T.

Lemma 3.2 implies that this rule defines an action of T on the set X by
injective mappings.

Now we make preparations in order to introduce a partial order on X .
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Lemma 3.3. (1) If (e, u) � (f, v) in X and e′ ≤ e in P then there
exists f ′ ≤ f in P such that (e′, u) � (f ′, v).

(2) If (e, u) � (f, v) in X and f ′ ≤ f in P then there exists e′ ≤ e in P
such that (e′, u) � (f ′, v).

(3) For every j ∈ N0, if (e, u)ϑj (f, v) in X and e′ ≤ e in P then there
exists f ′ ≤ f in P such that (e′, u)ϑj (f ′, v).

(4) If (e, u)ϑ (f, v) in X and e′ ≤ e in P then there exists f ′ ≤ f in P
such that (e′, u)ϑ (f ′, v).

Proof. Let (e, u) � (f, v) in X. Then, by definition, there exists a ∈ S
such that a+ = e, u = aσ · v and a∗ = f .

(1) Let e′ ∈ P with e′ ≤ e, and define b = e′a. Then we easily see that
b+ = (e′a)+ = (e′a+)+ = e′e = e′, bσ · v = (e′a)σ · v = aσ · v = u and
b∗ = (e′a)∗ ≤ a∗ = f . Putting f ′ = b∗, we obtain that (e′, u) � (f ′, v).

(2) If f ′ ∈ P with f ′ ≤ f then, considering b = af ′, a similar argument
applies.

(3) We proceed by induction on j. Let (e, u)ϑ0 (f, v) in X. Then there
exists a sequence (ei, ui) (i = 0, 1, . . . , 2n) of elements in X such that

(e, u) = (e0, u0) � (e1, u1) � (e2, u2) � . . . � (e2n, u2n) = (f, v).

If e′ ∈ P with e′ ≤ e then put e′0 = e′, and by applying (1) and (2), we
obtain e′1, e

′
2, . . . , e

′
2n ∈ P with e′i ≤ ei (i = 1, 2, . . . , 2n) such that

(e′, u) = (e′0, u0) � (e′1, u1) � (e′2, u2) � . . . � (e′2n, u2n).

Thus, choosing f ′ to be e′2n, we see that f ′ ≤ e2n = f and (e′, u)ϑ0 (f ′, v).
Now suppose that j ∈ N0 such that, for every (e, u), (f, v) ∈ X, if

(e, u)ϑj (f, v) and e′ ≤ e in P then there exists f ′ ≤ f in P such that
(e′, u)ϑj (f ′, v). Furthermore, let (e, u), (f, v) ∈ X with (e, u)ϑj+1 (f, v) and
let e′ ∈ P with e′ ≤ e. If 2 | j then the latter relation means that there exist
elements (ei, ui) ∈ X and ti ∈ T (i = 0, 1, . . . , n) such that (e, u) = (e0, u0),
(f, v) = (en, un), and

(ei, uiti)ϑj (ei+1, ui+1ti) for i = 0, 1, 2, . . . , n− 1.

Let e′ ∈ P with e′ ≤ e. Then, by the induction hypothesis, there exist
e′0, e

′
1, e
′
2, . . . , e

′
n ∈ P with e′i ≤ ei (i = 0, 1, . . . , n) such that e′0 = e′ and

(e′i, uiti)ϑj (e′i+1, ui+1ti) for i = 0, 1, 2, . . . , n− 1.

Therefore f ′ = e′n has the properties that f ′ ≤ en = f and (e′, u)ϑj+1 (f ′, v).
If 2 - j then the argument is similar.

(4) By the definition of ϑ, the statement immediately follows from (3).
�

Let us define a relation 6 on the set X by the following rule: for every
[e, u], [f, v] ∈ X , let

[e, u] 6 [f, v] if there exists f ′ ∈ P such that f ′ ≤ f and [e, u] = [f ′, v].

Lemma 3.3(4) ensures that the relation 6 is well defined.

Lemma 3.4. If condition (SP) is satisfied by S then the relation 6 is a
partial order on X .
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Proof. Reflexivity of 6 is obvious by definition. To prove transitivity, let
[e, u] 6 [f, v] and [f, v] 6 [g, w]. Then there exist f ′ ≤ f and g′ ≤ g in P
such that [e, u] = [f ′, v] and [f, v] = [g′, w]. By Lemma 3.3(4), there exists
g′′ ≤ g′ in P such that [f ′, v] = [g′′, w], and so g′′ ≤ g and [e, u] = [g′′, w].
This shows that [e, u] 6 [g, w].

To check antisymmetry, assume that [e, u] 6 [f, v] and [f, v] 6 [e, u]. By
an argument similar to that in the previous paragraph, we can see that
there exist f ′, e′, e′′ ∈ P such that f ′ ≤ f , e′′ ≤ e′ ≤ e and [e, u] = [f ′, v],
[f, v] = [e′, u], [f ′, v] = [e′′, u]. Thus [e, u] = [e′′, u] is implied, and so
(e, 1)ϑ (e′′, 1) follows by Lemma 3.2. Hence we obtain e = e′′ by (SP). Thus
e = e′ also holds, and we see that [f, v] = [e′, u] = [e, u]. �

From now on, we suppose that S has property (SP).
Next we verify that the action of T on X is compatible with the partial

order 6 in a strict sense. In particular, it turns out that T acts on the
partially ordered set X = (X ;6) by injective order preserving mappings.

Lemma 3.5. For any [e, u], [f, v] ∈ X and t ∈ T , we have [e, u]t 6 [f, v]t if
and only if [e, u] 6 [f, v]. Consequently, if [e, u], [f, v] ∈ X and t ∈ T then
[e, u]t = [f, v]t implies [e, u] = [f, v].

Proof. If [e, u] 6 [f, v] in X then there exists f ′ ≤ f in P such that
(e, u)ϑ (f ′, v), and so (e, u)ϑj (f ′, v) for some j ∈ N0. The definition of the
ϑj ’s and inclusions (3.1) imply (e, ut)ϑj′ (f

′, vt) for j′ = j + 1 or j′ = j + 2
whence we obtain that (e, ut)ϑ (f ′, vt), and so [e, ut] 6 [f, vt]. This shows
that if [e, u] 6 [f, v] then [e, u]t 6 [f, v]t follows for every t ∈ T . The reverse
implication is proved in a similar fashion. Due to the antisymmetry of 6,
the second statement is clear by the first one. �

By means of X , now we consider a semilattice Y acted upon by T so that
a W -pair be obtained.

Let Y be the semilattice of order ideals of the partially ordered set X with
respect to ∩, the usual intersection of subsets. In particular, 〈x] = {z ∈ X :
z 6 x}, the principal order ideal generated by x, belongs to Y for every
x ∈ X . If x = [e, u] then, instead of

〈
[e, u]

]
, we simply write 〈e, u]. For any

I ∈ Y and t ∈ T , define

(3.2) It = {xt : x ∈ I}.

We present several properties of these subsets.

Lemma 3.6. If x ∈ X , I, J ∈ Y and t ∈ T then

(1) 〈x]t = 〈xt],
(2) It ∈ Y,
(3) It ⊆ J t if and only if I ⊆ J , and consequently, It = J t implies

I = J ,
(4) (I ∩ J)t = It ∩ J t,
(5) J ⊆ It implies the existence of K ∈ Y with J = Kt.

Proof. (1) By Lemma 3.5, if y 6 x in X then yt 6 xt, implying that
〈x]t ⊆ 〈xt]. To prove the reverse inclusion, assume that y ∈ X such that
y 6 xt. Put x = [e, u] and y = [f, v]. Then [f, v] 6 [e, ut], that is, by
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definition, there exists e′ ≤ e in P such that [f, v] = [e′, ut] = [e′, u]t. Since
[e′, u] 6 [e, u] = x, we see that [e′, u] ∈ 〈x], and so y ∈ 〈x]t.

(2) Straightforward by (1).
(3) It suffices to verify the first statement since it clearly implies the

second one. It is clear by definition that if I ⊆ J then It ⊆ J t. Now
suppose that It ⊆ J t, and let x ∈ I. Since xt ∈ J t, we have y ∈ J with
xt = yt. Hence x = y ∈ J follows by Lemma 3.5 which verifies the reverse
implication.

(4) The inclusion (I ∩ J)t ⊆ It ∩ J t is obvious. To show the reverse
inclusion, let z ∈ It∩J t. Then z = xt = yt for some x ∈ I and y ∈ J , and so
Lemma 3.5 implies that x = y ∈ I ∩J . Thus the inclusion (I ∩J)t ⊇ It ∩J t
also holds.

(5) If J ⊆ It then put K = {z ∈ X : zt ∈ J}. By (1), we have zt ∈ J if
and only if 〈z]t ⊆ J , therefore K ∈ Y. Furthermore, we clearly have Kt ⊆ J .
Conversely, if y ∈ J then y ∈ It which implies that y = xt for some x ∈ I,
and so we obtain that x ∈ K and y = xt ∈ Kt. Thus J = Kt. �

Statements (2) and (4) of this lemma say that rule (3.2) defines an action
of T on the semilattice Y, and statements (3) and (5) imply that conditions
(2.3) and (2.4) are fulfilled by this action. This proves the following lemma.

Lemma 3.7. The pair (T,Y) is a W -pair.

This allows us to define the W -product W (T,Y) and the mapping

κ : S →W (T,Y), a 7→
(
aσ, 〈a+, 1]aσ

)
.

Note that, by definition, we have (a+, aσ) � (a∗, 1), and so

(3.3) [a+, aσ] = [a∗, 1] for every a ∈ S.

Lemma 3.8. If S is proper then the mapping κ is an injective (2, 1, 1)-
morphism.

Proof. Let a, b ∈ S. To show that κ is injective, assume that aκ = bκ,
that is, aσ = bσ and 〈a+, 1]aσ = 〈b+, 1]bσ. By Lemma 3.7, these equalities
imply 〈a+, 1] = 〈b+, 1], and so [a+, 1] = [b+, 1]. By (SP), we deduce that
a+ = b+ and, since S is proper, this equality and aσ = bσ imply a = b.

Applying Lemma 3.6(1) and (3.3), we see that

(aκ)+ =
(
aσ, 〈a+, 1]aσ

)+
= (1, 〈a+, 1]) = a+κ,

(aκ)∗ =
(
aσ, 〈a+, 1]aσ

)∗
=
(
1, 〈a+, 1]aσ

)
= (1, 〈a∗, 1]) = a+κ.

Therefore κ respects both unary operation. Furthermore, we have

aκ · bκ =
(
aσ, 〈a+, 1]aσ

)(
bσ, 〈b+, 1]bσ

)
=
(
(ab)σ, 〈a+, 1]aσ·bσ ∩ 〈b+, 1]bσ

)
,

=
(
(ab)σ,

(
〈a+, 1]aσ ∩ 〈b+, 1]

)bσ)
,

(ab)κ =
(
(ab)σ, 〈(ab)+, 1](ab)σ

)
=
(
(ab)σ,

(
〈(ab)+, 1]aσ

)bσ)
.

By Lemma 3.6(1), in order to prove that aκ · bκ = (ab)κ, it suffices to
show that 〈a+, aσ] ∩ 〈b+, 1] = 〈(ab)+, aσ]. Since (ab)+ ≤ a+, we see that
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[(ab)+, aσ] 6 [a+, aσ]. Furthermore, since (ab)∗ ≤ b∗, we obtain by (3.3) that
[(ab)+, aσ]bσ = [(ab)+, (ab)σ] = [(ab)∗, 1)] 6 [b∗, 1] = [b+, bσ] = [b+, 1]bσ.
Hence it follows by Lemma 3.5 that [(ab)+, aσ] 6 [b+, 1]. This implies the
inclusion 〈a+, aσ] ∩ 〈b+, 1] ⊇ 〈(ab)+, aσ].

To verify the reverse inclusion, let [e, u] ∈ 〈a+, aσ]∩ 〈b+, 1]. Then [e, u] 6
[a+, aσ] = [a∗, 1] and [e, u] 6 [b+, 1], so that there exist i, j ∈ P such that
i ≤ a∗, j ≤ b+ and [e, u] = [i, 1] = [j, 1]. By condition (SP), we obtain
that i = j, and so i ≤ a∗b+. Hence [e, u] 6 [a∗b+, 1]. Since (ab)+ = (ab+)+,
(ab+)σ = aσ and (ab+)∗ = a∗b+, the relation ((ab)+, aσ) � (a∗b+, 1) follows.
Therefore [e, u] 6 [a∗b+, 1] = [(ab)+, aσ], and so [e, u] ∈ 〈(ab)+, aσ]. This
shows the reverse inclusion, and so κ respects also the multiplication. �

So far, we have established the ‘if’ part of our main result:

Theorem 3.9. A restriction semigroup S is (2, 1, 1)-embeddable into a W -
product of a semilattice by a monoid if and only if S is proper and satisfies
condition (SP).

Proof. To verify the ‘only if’ part, assume that (R, Y ) is a W -pair and
φ : S → W (R, Y ) is an injective (2, 1, 1)-morphism. Result 2.1(3) immedi-
ately implies that S is proper.

Denote by π the first projection W (R, Y ) → R, (r, ir) 7→ r. By Result
2.1(2), φπ : S → R is a (2, 1, 1)-morphism into the monoid R, and so σ
is contained in the (2, 1, 1)-congruence of S induced by φπ. This implies
that there exists a unique monoid homomorphism ζ : T → R such that
aφπ = (aσ)ζ for any a ∈ S.

Moreover, consider the restriction φ|P : P → P (W (R, Y )) of φ to the
semilattices of projections. It is clearly an injective homomorphism and,
by Result 2.1(1), the second projection π′ : P (W (R, Y ))→ Y is an isomor-
phism. Hence φ|Pπ′ : P → Y is an injective homomorphism.

Notice that, for every a ∈ S, we have

(3.4) aφ =
(
aφπ, (a+φ|Pπ′)aφπ

)
=
(
aφπ, a∗φ|Pπ′

)
.

We extend φ|Pπ′ to X as follows: define

ξ : X → Y, (e, u)ξ = (eφ|pπ′)uζ .

We show that, for every (e, u), (f, v) ∈ X, if (e, u)ϑ (f, v) then (e, u)ξ =
(f, v)ξ. Denote by ρ the equivalence relation induced by ξ on X. First
assume that (e, u) � (f, v). Then we have a ∈ S with a+ = e, u = aσ ·v and

a∗ = f . By (3.4), we see that (eφ|Pπ′)(aσ)ζ = (a+φ|Pπ′)(aσ)ζ = a∗φ|Pπ′ =

fφ|Pπ′, whence (e, u)ξ = (eφ|Pπ′)uζ = (eφ|Pπ′)(aσ)ζ·vζ = (fφ|Pπ′)vζ =
(f, v)ξ. This shows that � ⊆ ρ, and since ρ is an equivalence, we obtain
that η0 ⊆ ϑ0 ⊆ ρ. Moreover, since (R, Y ) is a W -pair, it is easy to see
from the definition of ξ that, for any (e, u), (f, v) ∈ X and t ∈ T , we have
(e, u) ρ (f, v) if and only if (e, ut) ρ (f, vt). Thus Lemma 3.2 implies that
ϑ ⊆ ρ, whence we see that if (e, u)ϑ (f, v) then (e, u)ξ = (f, v)ξ.

Finally, notice that property (SP) is a direct consequence of this statement
since φPπ

′ is injective. This completes the proof of our theorem. �
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4. Miscellaneous remarks

In this section we make several remarks on the W -product introduced in
the previous section. We simplify the construction, and relate it to con-
structions introduced in [6] and [12].

First we notice that, instead of the semilattice Y defined in Section 3,
it suffices to consider a subsemilattice of Y. For, by Lemma 3.6(1), the
injective (2, 1, 1)-morphism κ assigns, to any element of S, an element of
W (T,Y) whose second component is a principal order ideal of X , and the
set of all principal order ideals is closed under the action of T . Therefore
Y0 consisting of all finitely generated order ideals of X (i.e. of those being
intersections of finitely many principal order ideals) forms a subsemilattice
in Y which is closed under the action of T , and Sκ ⊆ W (T,Y0). So the
definition of κ can be modified by replacing Y with Y0.

Proposition 4.1. If S is a proper restriction semigroup satisfying condition
(SP) then (T,Y0) is a W -pair, and the mapping

κ0 : S →W (T,Y0), a 7→
(
aσ, 〈a+, 1]aσ

)
is an injective (2, 1, 1)-morphism.

As an example, let us consider the free restriction semigroup FRS(Z) on
Z as S, and find κ0 for it. According to [2], one can obtain a model for
FRS(Z) as a (2, 1, 1)-subsemigroup of the free inverse semigroup FI(Z) on
Z:

FRS(Z) = {(A, u) ∈ E × FG(Z) : u ∈ Z∗ ∩A} ≤ FI(Z)

with FI(Z) being the usual model for the free inverse semigroup on Z where
FG(Z) is the free group on Z, Z∗ is the free monoid on Z considered as a
submonoid in FG(Z), and E is the semilattice (with respect to ∪) of all
finite connected subgraphs of the Cayley graph of FG(Z) contaning vertex
1. Note that FG(Z) acts on the set C of all finite connected subgraphs of
the Cayley graph of FG(Z) by left multiplication. This action plays crucial

role in this construction, and C = FG(Z)E .
The elements of P can obviously be identified with those of E . It is easy

to see that if (A, u) � (B, v) in X = E × Z∗ then u−1
A = v−1

B. Based on
the fact that each element of FG(Z) is of the form w1w

−1
2 · · ·w2k−1w

−1
2k for

some k ∈ N0 and w1, w2, . . . , w2k−1, w2k ∈ Z∗, an inductive argument can

be applied to show that (A, u)ϑ0 (B, v) if and only if u
−1
A = v−1

B. Hence
it follows immediately that ϑ0 = ϑ, and so X can be identified with the
partially ordered set (Q;⊇) where

Q = {u−1
A ∈ C : u ∈ Z∗, A ∈ E}.

Since the Cayley graph of FG(Z) is a tree, this is, actually, a semilattice
with respect to the operation ∨ of forming the least connected subgraph con-
taining given finite connected subgraphs. This implies that the semilattice
(Q;∨) is isomorphic to Y0.

However, this is just the semilattice introduced in [12] to define a W -
product and give a model for FRS(Z) as a (2, 1, 1)-subsemigroup in this
W -product. Hence we easily obtain the following.
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Example 4.2. If S = FRS(Z), the free restriction semigroup on Z, then
W (T,Y0) is isomorphic to the W -product W (Z∗,Q) introduced in [12], and
so κ0 is, actually, the mapping

ι : FRS(Z)→W (Z∗,Q), (A, t) 7→ (t, At)

considered in the proof of [12, Theorem 3.3].

Finally, let us compare the condition and construction obtained in Sec-
tion 3 for restriction semigroups to those obtained in [6] for left restriction
semigroups. First of all the necessary and sufficient conditions proved in
[6, Theorem 3.3] for a left restriction semigroup to be (2, 1)-embeddable
into a W -product seem to be much simpler to check, especially, if we disre-
gard that the least right cancellative (2, 1)-congruence ω might be difficult
to determine. Similarly to the one-sided case, the least right cancellative
(2, 1, 1)-congruence ω exists also on any restriction semigroup S, and if S is
(2, 1, 1)-embeddable into a W -product then

τ = {(a, b) ∈ S × S : a+ = b+ and aω b}

is a projection separating (2, 1, 1)-congruence on S. However, theW -product
constructed in the proof of [6, Theorem 3.3] to (2, 1)-embed (S; ·,+) into it
is far from respecting the operation ∗ in general.

To illustrate this more clearly, as it might be seen from the constructions
applied in the one-sided and in the two-sided cases, we can modify our
construction of X, ϑ, X and Y in Section 3 by replacing σ with ω. Then X
becomes the same in the two constructions, but the complicated definition
of ϑ cannot be avoided.
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gary, H-6720; fax: +36 62 544548

E-mail address: m.szendrei@math.u-szeged.hu


