Embedding of Real Varieties and their Subvarieties into Grassmannians

M.A. BUCHNER

Abstract

Given a compact affine nonsingular real algebraic variety X and a nonsingular subvariety $Z \subset X$ belonging to a large class of subvarieties, we show how to embed X in a suitable Grassmannian so that Z becomes the transverse intersection of the zeros of a section of the tautological bundle on the Grassmannian.

In [2] Bochnak and Kucharz prove the following characterization of a compact nonsingular algebraic hypersurface Z in a compact affine nonsingular real algebraic variety X : There is an algebraic embedding $f: X \rightarrow R P^{n}$ (for some n) and a projective hyperplane $H \subset R P^{n}$ transverse to $f(X)$ such that $H \cap f(X)=f(Z)$. This fact (or rather a closely related statement about strongly algebraic real line bundles) plays a crucial role in their construction of algebraic models Y of a compact, connected, smooth manifold M of dimensions $m \geq 3$ such that

[^0]the algebraic homology elements in $H^{1}(Y, Z / 2)=H^{1}(M, Z / 2)$ form a prescribed subgroup $G \subset H^{1}(M, Z / 2)$. If we wish to extend this result to subgroups of $H^{k}(M, Z / 2)$ for $k>1$ it seems desirable, as a first step, to extend the above characterization of hypersurfaces to subvarieties of higher codimension.

Let $G_{n, k}(R)$ denote the Grassmannian of k-planes in R^{n}. Let $\gamma_{n, k}$ denote the universal bundle over $G_{n, k}(R)$. For definitions and results concerning real varieties, strongly algebraic vector bundles etc. see [1].

Theorem 1. Let X be a compact affine nonsingular real algebraic variety. Let ζ be a strongly algebraic real vector bundle over X of rank k. Let σ be a regular section of ζ transverse to the zero section. Let $Z=\sigma^{-1}(0)$. Then
(i) There exists a regular embedding $f: X \rightarrow G_{n, k}(R)$ for suitable n such that ζ and $f^{*}\left(\gamma_{n, k}\right)$ are isomorphic.
(ii) There exists a regular section s of $\gamma_{n, k}$ such that s is transversal to the zero section and $s^{-1}(0) \cap f(X)=f(Z)$ (the intersection $s^{-1}(0) \cap$ $f(X)$ being transverse intersection).

Proof. We can assume that X is a subvariety of real projective q space $R P^{q}$ for some q. By theorem 12.1.7 of [1] there is a regular map $g: X \rightarrow G_{\ell, k}(R)$ (for suitable ℓ) such that $g^{*}\left(\gamma_{\ell, k}\right)$ and ζ are isomorphic. Let $G_{\ell, k}(C)$ denote the Grassmannian of complex k-planes in C^{ℓ} and $\gamma_{\ell, k}^{C}$ the corresponding universal complex bundle. Let X_{C} denote the complexification of X in $C P^{q}$. Then g extends to a regular map \tilde{g} : $U \rightarrow G_{\ell, k}(C)$ where $U \subset X_{C}$ is a Zariski open set containing X. We can assume U and \bar{g} are defined over R. By resolution of singularities we can find a complex nonsingular subvariety Y of some complex projective space $C P^{m}$ with Y defined over R and a regular map (defined over R) $\tau: Y \rightarrow X_{C}$ where τ is the composition of a sequence of blowings-up with real centers outside U such that $\tilde{g} \circ \tau$ extends to a regular map on Y. Denote this extension by h. To simplify notation we identify X with $\tau^{-1}(X)$. Then $h^{*}\left(\gamma_{\ell, k}^{C}\right)$ is a bundle defined over R and $h^{*}\left(\gamma_{\ell, k}^{C}\right) \mid X$ is isomorphic to $\zeta \otimes C$.

Now, for $E \rightarrow M$ a holomorphic vector bundle of rank k over the compact complex manifold M, let $H^{0}(M, E)$ denote the space of holomorphic sections. Denote the dimension of $H^{0}(M, E)$ by n. Let
$i_{E}(x)=\{$ sections vanishing at $x\}$. Assume that each fiber of E is generated by global sections. Then identifying $H^{0}(M, E)$ with C^{n} we see that $i_{E} \operatorname{maps} M$ to $G_{n, n-k}(C) \simeq G_{n, k}(C)$. If $F \rightarrow M$ is a positive holomorphic line bundle then for p sufficiently large $i_{E \otimes F^{P}}$ is an embedding of M into $G_{n, k}(C)$ where, now, $n=\operatorname{dim}_{C} H^{0}\left(M, E \otimes F^{P}\right)$ and $i_{E \otimes F^{P}}^{*}\left(\gamma_{n, k}^{C}\right)$ is isomorphic to the bundle $E \otimes F^{P} \rightarrow M$. Apply this to $E \rightarrow M$ replaced by $h^{*}\left(\gamma_{\ell, k}^{C}\right)$ (so M is replaced by Y) and F replaced by $\gamma_{m, 1}^{C} \mid Y$. In this case $i_{E \otimes F^{p}}$ is a regular map defined over R. Abbreviating $i_{E Q F^{p}}$ by i, we can write

$$
i^{*}\left(\gamma_{n, k}^{C}\right) \simeq h^{*}\left(\gamma_{\ell, k}^{C}\right) \otimes\left(\gamma_{m, 1}^{C} \mid Y\right)^{p}
$$

(as complex bundles). We now restrict both sides to X and obtain

$$
(i \mid X)^{*}\left(\gamma_{n, k}\right) \otimes C \simeq(\zeta \otimes C) \otimes\left(\left(\gamma_{m, 1} \mid X\right) \otimes C\right)^{p}
$$

and hence

$$
(i \mid X)^{*}\left(\gamma_{n, k}\right) \simeq \zeta \otimes\left(\gamma_{m, 1} \mid X\right)^{p}
$$

We can assume p is even. Then $\left(\gamma_{m, 1} \mid X\right)^{p}$ is topologically trivial. Hence $(i \mid X)^{*}\left(\gamma_{n, k}\right)$ is topologically and hence algebraically isomorphic to ζ. This completes the proof of (i) with $f=i \mid X$.

To simplify notation we now identify X with $f(X)$ and ζ with $\gamma_{n, k} \mid X$. Let s_{1}, \ldots, s_{n} be sections of $\gamma_{n, k}$ (over $G_{n, k}(R)$) spanning the fiber at each point of $G_{n, k}(R)$. Write $\sigma=\Sigma \lambda_{i}\left(s_{i} \mid X\right)$ where λ_{i} are regular real-valued functions on X. Let $\tilde{\lambda}$ be a regular extension of λ_{i} to $G_{n, k}(R)$. Let ϕ be a regular real-valued function on $G_{n, k}(R)$ such that $\phi^{-1}(0)=Z\left(=\sigma^{-1}(0)\right)$. For $t=\left(t_{1}, \ldots, t_{n}\right)$, define $s_{t}=\Sigma_{i=1}^{n}\left(\tilde{\lambda}_{i}+t_{i} \phi^{2}\right) s_{i}$. We can find t (suitably small) so that s_{t} is transverse to the zero section, $s_{t}^{-1}(0)$ is transverse to X and $s_{t}^{-1}(0) \cap X=$ $\sigma^{-1}(0)(=Z)$. This completes the proof of (ii).

References

[1] Bochnak, J., Coste, M. and Roy, M.-F., Géométrie algébrique reelle. Ergebnisse der Math. Vol. 12, Berlin, Heidelberg, New York: Springer 1987.
[2] Bochnak, J. and Kucharz, W., Algebraic models of smooth manifolds. Invent. Math. Vol. 97, pp. 585-611 (1989).

Department of Mathematics and Statistics
University of New Mexico
Albuquerque, New Mexico 87131

Recibido: 19 de Abril de 1994

[^0]: Supported by Nato Grant CRG 930238.
 1991 Mathematics Subject Classification: 14P05
 Servicio publicaciones Univ. Complutense. Madrid, 1995.

