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Embedding of Real Varieties and their
Subvariet¡es into Grassmannians

MA. BUCHNER

ABSTRACT. Given a compact affine nonsingular real algebraic variety X
and a nonsingular subvariety Z C X belonging to a large class of subvarieties,
we show how to embed X in a suitable Grassmannian so that Z becomes the
transverse intersection of the zeros of a section of the tautological bundle on
the Grassmannian.

In [2] Bochnak and Kucharz prove tIte following characterization
of a compact nonsingnlar algebraic hypersurface Z in a compact afflne
nonsingular real algebraic variety X: There is an algebraic embedding
f : X .-.* RE» (for sorne u) and a projective hyperplane H C RP»
transverse to 1(X) such that H O f(X) = 1(Z). TItis fact (or rather
a closely related statement about strongly algebraic real lime bundies)
plays a crucial role in their construction of algebraic models Y of a
compact, connected, smooth manifoid M of dimensions m> 3 siich that
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tlie algebraic homology elements in H1(Y, Z/2) — H’(M, Z/2) form a
prescribed subgroup G c H1(M, Z/2). If we wish to extend this resuit
to snbgroups of Hk(M, Z/2) for k > 1 it seems desirable, as a first step,
to extend the aboye characterization of hypersurfaces to subvarieties of
higher codimension.

Let Gn,k(R) denote tIte Grassmannian of k-planes in R~. Let Yn,k
denote the universa] bundle over G»,k(R). For definitions and results
concerning real varieties, strongly algebraic vector bundies etc. see [1].

Theorem 1. Leí X be a compací nifine nonsingular real algebraic
varieíy. Let ( be a strongly algebraic real vector bundle ayer X of rank
k. Leí a be a regular section of ( iransverse to ihe zero section. Leí
Z=a1 (O). Then

(U Viere exisis a regular ernbedding 1 X —~ G»,k(R) for suitable n
such that ( and 1 b’»,k) are zsomorphic.

(u) There exists a regular section s of 7»,k such thai s is transversal lo
the zero section and s—1(Q) o 1(X) = 1(Z) (ihe intersecíion r’(O) O
1(X) being transverse intersection).

Proof. We can assume that X is a subvariety of real projective q
space RE” for some q. By theorem 12.1.7 of [1] there is a regular map
g: X —* Ge,k(R) (br suitable 1) such that 95Q7e,k) and (are isomorpbic.
Let G,,k(C) denote tIte Grassmannian of complex k-planes in C’ and
Y{k tIte corresponding universal complex bundle. Let Xc denote the
complexification of X in ~ Ihen g extends to a regular map ~
U —~ G,~<(C) where U c Xc is a Zariski open set containing X. We
can assume U and ~ are defined over R. By resolution of singularities we
can tind a complex nonsingnlar subvariety Y of sorne complex projective
space CFtm with Y defined over R and a regular map (defined ayer R)
r Y —* Xc where r is the composition of a sequence of blowings-up
with real centers outside U such that ~ o r extends to a regular map
on Y. Denote this extension by h. To simplify notation we identify X
with c1(X). TIten hYJk) is a bundle defined ayer R aud h(-yf~)¡X
is isomorphic to (® C.

Now, for E —* M a holomorphic vector bundle of rank k ayer
the compact complex manifold M, let H0(M, E) denote tIte space of
holomorphic sections. Denote the dimension of ff0(M, E) by ti. Let
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iE(x) = { sections vanishing at 4. Assume that each fiber of E is
generated by global sections. Then identifying H0(M, E) with C» we
see that tE maps M to Cn,n—k(C) ~ Gfl*(C). If E —* M is a posi-
tive holomorph.ic une bundle then fin p sufficiently large ~E®F~ is an
embedding of M into Gn,k(C) where, now, ti = dimcH0(M, E ® F”)
and <E®FPUYSk) is isomorphic to the bundie E ® E” —. M. Apply
Uds to E -.. M replaced by htyVk) (so M is replaced by Y) and E
replaced by Y~,i Y. In this case ~E®F~ is a regular map defined over 1?.
Abbreviating 1E®F’ by 1, we can write

(as complex bundies). We now restrict both sides to X and obtain

(iIX)*bn,k) ® C (C ® C) ® ((y,n,í~X) ® C)~’

and hence

We can assurne p is even. Then (-y~,~iX)~ is topologicaily trivial. Hence
(iIX)(y»,k) is topologically and hence algebraica]ly isomorphic to (.
TItis completes the proof of (i) with f = i¡X.

To simplify notation we now ídentify X with 1(X) and ( with
yfl,klX. Let si,~.. , s~ be sections of 7n,k (over G»,k(R)) spanning
the fiber at each point of G»,k(R). Write a = SA¿(si¡X) where A

1
are regular real-valued functions on X. Let A be a regular exten-
sion of Aj to G»,k(R). Let ~ be a regular real-valued function on
Gn,k(R) such that 4>—1(O) = Z(= aí(O)). For 1 = (ti,.. .,t,j, de-
fine St =.EL1(\< + ¾#2)sl. We can flnd 1 (suitably sma]l) so that St 18
transverse to tIte zerosection, ~7í(Q) is transverse to X and s7

1(O)flX =
01(O)(= Z). This completes the proof of (ji).
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