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Abstract 
The brain learns an internal model of the environment through sensory experi-
ences, which is essential for high-level cognitive processes. Recent studies show 
that spontaneous activity reflects such learned internal model. Although compu-
tational studies have proposed that Hebbian plasticity can learn the switching 
dynamics of replayed activities, it is still challenging to learn dynamic spontane-
ous activity that obeys the statistical properties of sensory experience. Here, we 
propose a pair of biologically plausible plasticity rules for excitatory and inhibitory 
synapses in a recurrent spiking neural network model to embed stochastic dy-
namics in spontaneous activity. The proposed synaptic plasticity rule for excita-
tory synapses seeks to minimize the discrepancy between stimulus-evoked and 
internally predicted activity, while inhibitory plasticity maintains the excitatory-in-
hibitory balance. We show that the spontaneous reactivation of cell assemblies 
follows the transition statistics of the model’s evoked dynamics. We also demon-
strate that simulations of our model can replicate recent experimental results of 
spontaneous activity in songbirds, suggesting that the proposed plasticity rule 
might underlie the mechanism by which animals learn internal models of the en-
vironment. 

Significance Statement 
While spontaneous activity in the brain is often seen as simple background noise, 
recent work has hypothesized that spontaneous activity instead reflects the 
brain’s learnt internal model. While several studies have proposed synaptic plas-
ticity rules to generate structured spontaneous activities, the mechanism of learn-
ing and embedding transition statistics in spontaneous activity is still unclear. Us-
ing a computational model, we investigate the synaptic plasticity rules that learn 
dynamic spontaneous activity obeying appropriate transition statistics. Our re-
sults shed light on the learning mechanism of the brain's internal model, which is 
a crucial step towards a better understanding of the role of spontaneous activity 
as an internal generative model of stochastic processes in complex environments. 
 
Introduction 
The brain is thought to use its sensory experience to learn an appropriate internal 
model of the environment, which can improve perception and behavioral perfor-
mance. (Merfeld et al., 1999; Lewald and Ehrenstein, 1998; Bell et al., 1997; Ya-
sui and Young, 1975; Wolpert et al., 1995). Such learning is thought to be 
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fundamental to higher-order cognitive processes such as perception, decision 
making, and prediction of sensory stimuli. Recent computational and experi-
mental evidence suggests that the brain’s learned internal model may be re-
flected in spontaneous activity. For example, in the visual cortex of awake ferrets, 
spontaneous activity shows spatial similarity to activity elicited by natural scenes 
(Berkes et al., 2011). Furthermore, hippocampus generates sequential replay of 
place fields during rest and sleep (Wilson and McNaughton, 1994; Skaggs and 
McNaughton, 1996; Lee and Wilson, 2002). Such hippocampal replay occurs in 
a highly stereotyped temporal order, with the same sequence of replayed activi-
ties often observed across multiple events (Davidson et al., 2009; Diba and 
Buzsáki, 2007; Gupta et al., 2010; Wu and Foster, 2014). 

Several computational studies have proposed variants of Hebbian plasticity rules 
for learning deterministic or even stochastic switching dynamics of replayed ac-
tivities (Levy et al., 2001; Litwin-Kumar and Doiron, 2014; Triplett et al., 2018; 
Ocker and Doiron, 2019; Asabuki and Fukai, 2023). However, it has been chal-
lenging to extend these results to generate dynamic spontaneous activity obeying 
appropriate transition probabilities learned through sensory experience. Finding 
a plasticity rule which is capable of learning structured transitions in spontaneous 
activity could be instrumental for understanding the mechanism underlying cog-
nitive processes in the brain. 

In this paper, we propose a local biologically-plausible plasticity rule for learning 
the statistical transitions between assemblies in spontaneous activity. We use a 
recurrent spiking neural network model consisting of distinct excitatory and inhib-
itory populations. The proposed synaptic plasticity rule for excitatory synapses 
seeks to minimize the discrepancy between stimulus-evoked and internally pre-
dicted activity, while inhibitory plasticity maintains the excitatory-inhibitory bal-
ance. We explore the potential performance of our model by learning the Mar-
kovian transition statistics of evoked network states. Our results show that the 
trained model exhibits spontaneous stochastic transitions of cell assemblies, 
even after structured external inputs are removed. We show that the transition 
statistics of spontaneous activity show a striking similarity to those of the evoked 
dynamics. 

To further validate our model, we compare the model behavior with recent exper-
imental results in songbirds (Bouchard and Brainard, 2016), which show that the 
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uncertainty of upcoming states in a bird song modulates the degree of neural 
predictability. Our model replicates this experimental result, suggesting that the 
connectivity structure learned via the proposed plasticity mechanism could plau-
sibly underly the songbird’s learned internal model.  

 
Results 
Spontaneous replay of learnt stochastic sequences  
While most studies have investigated plasticity mechanisms for learning random 
switching (Litwin-Kumar and Doiron, 2014; Triplett et al., 2018; Ocker and Doiron, 
2019; Asabuki and Fukai, 2023) or deterministic transitions (Chadwick et al., 
2015) between cell assemblies, our objective is to create a network model that 
spontaneously generates stochastic sequences of assemblies following synaptic 
plasticity. To that end, we first design a simple task whereby stimuli undergo sto-
chastic transitions over time, and presentation of each stimulus increases excit-
atory drive to neurons targeted by that pattern (Fig.1a, top). We assume that a 
non-overlapping subset of excitatory network neurons receive its preferred stim-
ulus (Fig. 1b). After learning, the network should replay stochastic sequences of 
assemblies with transitions that are statistically consistent with evoked dynamics, 
without relying on external stimuli (Fig.1a, bottom).  

We examined the possible learning mechanisms of stochastic neural sequences 
with a recurrent spiking network. Our network model consists of excitatory (E) 
and inhibitory (I) model neurons (Fig. 1b). Only excitatory neurons are driven by 
external stochastic sequences. Initially, neurons in the network have random re-
current connections.  
 
To learn a network model to obtain transition statistics of evoked dynamics, we 
proposed different local plasticity mechanisms for excitatory and inhibitory syn-
apses. We assumed that only connections onto excitatory neurons were plastic 
(Fig. 1b), while all others (i.e., connections onto inhibitory neurons) were fixed. In 
the excitatory recurrent connectivity, all synaptic weights were modified to reduce 
the error between internally generated and stimulus-evoked activities (Fig. 1c, 
blue square). This plasticity rule is mathematically similar to that proposed in 
(Pfister et al., 2006; Urbanczik and Senn, 2014). Through this process, excitatory 
synapses that contribute to predicting neural activity will be strengthened, thereby 
increasing the similarity between spontaneous and evoked activity. Instead of  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 1, 2023. ; https://doi.org/10.1101/2023.05.01.538909doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.01.538909
http://creativecommons.org/licenses/by/4.0/


 5 

 
Figure 1. Task to be learned (a, top) An example of a task used to test the model. Stimulus pat-
terns evolve in time according to structured transition probabilities. The presentation of each stim-
ulus pattern activates the corresponding group of neurons. Recurrent connections are learned by 
synaptic plasticity (a, bottom). The learned network should replay assemblies spontaneously, 
where the transition statistics are consistent with the evoked stimuli. (b) A network model with 
distinct excitatory and inhibitory populations. Only excitatory populations are driven by external 
inputs. Only synapses that project to excitatory neurons are assumed to be plastic. (c) A sche-
matic of the proposed plasticity rules. Excitatory (blue) and inhibitory (orange) synapses project-
ing to an excitatory neuron (triangle) obey different plasticity rules. For excitatory synapses, errors 
between internally driven excitation (blue sigmoid) and the output of the cell provide feedback to 
the synapses and modulate plasticity (blue square). All excitatory connections seek to minimize 
such errors. For inhibitory synapses, the error between internally driven excitation (blue sigmoid) 
and inhibition (orange sigmoid) should be minimized to maintain excitatory inhibitory balance (or-
ange square).  

 
predicting the firing rate of neurons, the inhibitory synapses were modified to pre-
dict the recurrent excitatory potential (Fig. 1c, orange square). This inhibitory 
plasticity is crucial for the network to maintain excitatory-inhibitory balance and 
generate spontaneous replay of stochastic assembly sequences, as we will see 
later. All feedforward connections were fixed and receptive fields were preconfig-
ured. Finally, as in previous studies (Asabuki and Fukai, 2023), parameters of the 
response function are regulated according to the activity history of individual neu-
rons (Methods). This regulation maintains the appropriate dynamic range of ac-
tivities irrespective of the strength of external stimuli. 
 

To examine how external stochastic sequences can influence network wiring, we 
trained a network model driven by stochastic external inputs. These inputs were 
generated by first-order Markovian chains with three 200ms long states, 
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governed by fixed transition probabilities (Fig. 2a). During training, excitatory syn-
apses were modified much quicker than inhibitory synapses (Fig.2b). This differ-
ence in plasticity timescales follows from the nature of our learning rules: the wir-
ing of excitatory synapses is reorganized by external stimuli, while inhibitory syn-
apses only change to rebalance excitation. As such, excitatory plasticity in our 
model occurs before inhibitory plasticity, consistent with the experimental results 
(D'amour JA and Froemke, 2015). We then asked how plasticity affects the neural 
dynamics by comparing the spontaneous activities of the network before and af-
ter learning. Here, we simulated spontaneous activity by replacing the temporally 
structured stimulation (i.e., the Markovian chain in Fig.2a) with constant back-
ground input. Further, all synapses were kept fixed during spontaneous activity. 

 

Figure 2. Spontaneous replay of stochastic transition of assemblies. (a) First, we considered a 
simple stochastic transition between three stimulus patterns. (b)  Dynamics of weight change via 
plasticity. Excitatory synapses (blue) converged quicker than inhibitory synapses (orange). (c) 
Example spontaneous assembly reactivations (top) and raster plot (bottom) of the learned net-
work are shown. Colors indicate the corresponding stimulus patterns shown in a. (d) Distribution 
of assembly reactivations. (e, left) The network currents to assembly 1 (green) and assembly 2 
(orange) immediately after the reactivation of assembly 3 ceased. Both currents were similar in 
magnitude. (e, right) Currents to assembly 2 (orange) and assembly 3 (blue) immediately after 
the reactivation of assembly 1 ceased. The current to assembly 3 was stronger than that to as-
sembly 2. (f) Relationship between the transition statistics of stimulus patterns and that of re-
played assemblies. The spontaneous activity reproduced transition statistics of external stimulus 
patterns. 
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Before learning, due to uniform initial connectivity, all excitatory neurons showed 
synchronous and spatially unstructured spontaneous activity (Supplementary 
Fig.1). However, after learning, three cell assemblies emerged in the network, 
each of which encoded one external stimulus. Sequences of these cell assem-
blies were replayed stochastically in spontaneous activity (Fig. 2c), and durations 
of given assembly reactivations were biased toward shorter durations but distrib-
uted broadly (Fig.2d). 

We next asked whether or not the statistics of assembly switching were influ-
enced by the temporal structure of the external sequence received by the network 
while it was learning. Since each assembly reactivation was contingent upon pre-
vious assembly, statistics of external sequence may influence the strength of syn-
aptic currents via recurrent connectivity. To test this prediction, we first investi-
gated how spontaneous reactivation of assembly 3 drives the subsequent as-
semblies (i.e., assemblies 1 and 2). Immediately after the reactivation of assem-
bly 3 ceased, currents onto both subsequent assemblies increased gradually, 
without showing significant difference (Fig.2e, left). This is due to the fact that 
state 1 and 2 are structurally symmetrical in our setting (Fig.2a). We then asked 
how reactivation of assembly 1 drives the subsequent assemblies (i.e., assem-
blies 2 and 3). We note that the transition probabilities in the stimulus patterns 
were biased towards state 3 in this case (Fig.2a). Consistent with this bias be-
tween transition probabilities, we found that assembly 3 was driven much strongly 
than assembly 2 (Fig.2e, right). These results suggest that the temporal statistics 
of the trained external sequence influence the strength of synaptic currents that 
drive each assembly. We then quantified the similarity between the transition sta-
tistics of stimulus patterns and that of the replayed assemblies. We defined the 
transition probabilities between assemblies by simply counting the occurrence of 
switching events over all possible pairs of assemblies (Methods). Comparison 
between transition probabilities of stimulus patterns and that of the reactivated 
assemblies revealed a clear alignment of temporal statistics (Fig.2f). 

In summary, the plasticity rules in our model learn the transition statistics of 
evoked patterns while maintaining excitation-inhibition balance. Our results show 
that the this prediction-based plasticity rule allows the model to learn and spon-
taneously replays the transition statistics of evoked patterns. 

Learned excitatory synapses encode transition statistics  
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To further understand the mechanism underlying the statistical similarity between 
the evoked patterns and spontaneous activity, we next asked how the transition 
statistics of stimulus patterns can influence network wiring. Over the course of 
training, the average weights of connections in each of the 3 cell assemblies in-
creased gradually and converged to a strong value (Fig.3a middle and Fig.3b, 
top), indicating the formation of assemblies. On the other hand, we found that the 
average weights between each pair of assemblies decreased settled at different 
stationary values (Fig.3a, right and Fig.3b, bottom). After training, we reasoned 
that the transition probabilities between states should be encoded exclusively via 
between-assembly connections, as none of the states in the Markovian chain 
have self-transitions. To test this prediction, we first compared the average be-
tween-assembly connection matrix (Fig.3a, right) and the ground truth transition 
aligned well to the ground truth probabilities (Fig.3d). These results indicate that 

 

Figure 3. Learned excitatory synapses encode transition statistics. (a) A 3 by 3 matrix of excitatory 
connections, learned with the task in Fig.2a (left). The matrix can be decomposed to within- (mid-
dle) and between-assembly connections (right). (b) Strength of within- (top) and that of between-
assembly excitatory synapses (bottom) during learning are shown. (c) True transition matrix of 
stimulus patterns. (d) Relationship between the strength of excitatory synapses between assem-
blies and true transition probabilities between patterns.  
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the network learns the temporal statistics of sequences by modifying the structure 
of inter-assembly excitatory connections.  

The above analysis of excitatory weights revealed its crucial role in learning tran-
sition probabilities. Next, we examined the role of inhibitory plasticity in our 
model’s function. To do so, we first simulated the network with fixed inhibitory 
weights performing the same task shown in Figure 2. We found that such a model 
exhibited spontaneous activity with blurred assembly structures compared to the 
original model (Supplementary Fig.2a). Furthermore, the transition probabilities 
between replayed assemblies in this case did not show clear alignment with true 
transition (Supplementary Fig. 2b), though the excitatory weights reached values 
which did encode transitions (Supplementary Fig. 2c, d). These results suggest 
that maintenance of EI balance through inhibitory plasticity is necessary for gen-
erating structured spontaneous activity, even if excitatory connections learn tran-
sition probabilities.  

Network can adapt fast to task switching 

In the above results, transitions between stimulus patterns obeyed fixed transition 
probabilities. We then wondered how the network learning would be affected if 
transition structures of stimulus patterns changed over time. To test such a sce-
nario, we considered a case where the transition matrix in a Markovian chain 
switches between the first half and the second half of the learning phase (Sup-
plementary Fig. 3a). We will refer these matrices as task1- and task2-matrix, re-
spectively, and examine whether switching of transition matrixes influences the 
connectivity. During the first half of learning phase, between-assembly connec-
tions converged to certain values to encode task1-matrix (Supplementary Fig. 3b, 
bottom, 0-500 seconds). However, such stable connectivity reorganized quickly 
once the imposed task was switched to task2-matrix (Supplementary Fig. 3b, bot-
tom, 500-1,000 seconds). Note that in contrast to between-assemblies connec-
tions, within-assembly connections did not show such reorganization (Supple-
mentary Fig. 3b, top). These results indicate that our model adapted to the sec-
ond task even if distinct assembly structures were already formed during the first 
task.  
 
To further understand how the model adapts to the new task, we next asked how 
error terms in excitatory and inhibitory plasticity (Eqs.11 and 13) change through 
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learning. As expected, the low-pass filtered errors PE!"# and PE$%& decreased 
as the network trained on task1 (Supplementary Fig.3c, 0-500 seconds). How-
ever, once the task was switched, errors showed an abrupt increase followed by 
a gradual decrease as the network learned the second task (Supplementary 
Fig.3c, 500-1,000 seconds; Supplementary Fig.3d). Consistent with the previous 
result (Figure 2b), the peak of inhibitory error occurred delayed after that of excit-
atory one in each task (D'amour JA and Froemke, 2015; Vogels et al., 2011) 
(Supplementary Fig. 3d). In summary, our model is also capable of task switching, 
via the reorganization of its weight structures through continuing plasticity. 

The network can learn complex stochastic sequences  
So far, we have considered the capabilities of our model in regard to the relatively 
simple class of stochastic dynamics. In particular, the task we considered above 
contains only three states, and the transition structure was symmetric. In a real-
istic sequence, like the song of a bird, transition statistics are typically heteroge-
neous and more structured. To evaluate the model performance over a wide va-
riety of structures, we now consider a transition diagram with more complex struc-
ture (Fig.4a). Despite its complex structure, the learned network showed sponta-
neous reactivations of all assemblies evoked during learning (Fig.4b), and the 
transition dynamics between these assemblies were governed by learned transi-
tion probabilities (Fig.4c). Indeed, the learned weight structures were consistent 
with the transition probabilities between states as we have seen in simpler task 
(Supplementary Fig.4).  
 
Recent experimental studies which examined temporal community structure (i.e., 
highly structured graph structure consisting of clusters of densely interconnected 
nodes; Fig.4d) found that human subjects tend to associate a given visual stimu-
lus with other stimuli within the same “community” (Schapiro et al., 2013; Pudhiyi-
dath et al., 2022). To investigate whether the model can learn to associate states 
within a stimulated community, we first trained the network with a stochastic se-
quence of inputs, generated by a random walk over graph with temporal commu-
nity structure (Fig.4d). The learned model showed stochastic assembly transition 
during spontaneous activity (Fig.4e) relying on the appropriate weight structure 
(Fig.4f). Although transition occurred between all pairs of assemblies, transitions 
between connected states in the diagram occurred much frequently than transi-
tions between disconnected states (Fig.4g). This is because plasticity formed 
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Figure 4. Learning complex structures. (a) Transition diagram of complex task. (b) Spontaneous 
activity of learned network. (c) Transition statistics of assemblies reproduce true statistics. (d) 
Transition diagram of temporal community structure. (e) Raster plot of spontaneous activity of the 
network trained over structure shown in (d). (f) Structure of learned excitatory synapses encode 
the community structure. (g) Spontaneous transition between assemblies connected in the dia-
gram shown in d occurs much frequent than disconnected case. (h) Low dimensional represen-
tation of evoked activity patterns shows high similarity with community structure. (i) Time courses 
of replayed activities transitioning within (red) and between (blue) communities. (j) Comparison of 
mean durations in (i). P-value was calculated by two-sided Welch’s t-test.  

strong excitatory connections between assemblies with nonzero transition prob-
abilities, as shown in Figure 4f.  
 
In human participants, low-dimensional representations of evoked activities in dif-
ferent cortical regions have been reported to show clusters consistent with the 
structure of communities (Schapiro et al., 2013). To test whether our model could 
reproduce such representation of communities, we analyzed the low-dimensional 
representation of evoked activities in our model by applying principal component 
analysis (PCA) (see Methods). Such analysis revealed that the representation of 
stimulus patterns were grouped together into clusters or communities of mutually 
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predictive stimuli, consistent with the experimental results (Fig.4h). We found that 
the clustered representations still exist even if the input sequences were scram-
bled after learning (Supplementary Fig.5), indicating that this result does not rely 
on the stimulus protocol, but instead on the learned weights. 
 
We further asked whether within- and between-community reactivations showed 
any differences in terms of their behavior. To this end, we perturbed an assembly 
corresponding to non-boundary states in the first community (states 2-4 in the 
transition diagram shown in Fig.4d) and monitored the behavior of subsequent 
autonomous network activities. According to the above results, we expect that 
within-community reactivations should occur quicker than between-community 
assemblies, due to strong within-community coupling. To test this hypothesis, we 
calculated the duration from the end of the perturbation until subsequent activity 
reached a certain threshold (Fig.4i). As expected, the transition to within-commu-
nity states showed much shorter durations than to between-community case 
(Fig.4j), indicating that between-community transition occurred with much slower 
time scale compared to within-community case. Together, these results indicate 
that our network can learn complex temporal structures in spontaneous activity 
and reproduce the neural representation of the temporal community structure ob-
served in the experiment. 
 
Network dynamics consistent with recorded neural data of songbird 
Finally, we tested whether the spontaneous activity in our model resembles rec-
orded neural activity of HVC in Bengalese finch (Bf). Bf learns songs composed 
of multiple stereotyped short sequences, or syllables. The transitions between 
these syllables can be described via Markovian process with varying levels of 
certainty. Intuitively, given one syllable in a bird song, precise prediction about 
the neural response to the next syllable can be made if the transition from that 
syllable is highly certain, while imprecise transitions will lead to imprecise predic-
tions about the neural response. Indeed, recent experimental study reported that 
uncertainty of upcoming syllables in a Bf song modulates the degree of predicta-
bility of subsequent neural activation (poststimulus activity; PSA) in HVC (Bou-
chard and Brainard, 2016). We sought to test whether our model would exhibit a 
similar property. To this end, we analyzed the behavior of a network model that 
had already learned the task (shown in Figure 4a). The transition structure we 
chose is relatively simple compared to the real song of a Bf, yet captures 
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measured features of bird songs (i.e., both structures consist of highly certain and 
less-certain transitions). In the experiment, similarities were calculated between 
the trial-averaged PSA following a short sequence of stimuli, and the response to 
an isolated stimulus. To mimic this experimental design, we measured stimulus-
triggered averages of our autonomous network activity as a proxy for PSA 
(Fig.5a). To examine how uncertainty of state transitions in a sequence influence 
predictive strength in network activity, we first calculated the Pearson correlation 
coefficient between PSA and responses to next states in a sequence. We will 
refer to such correlations as “next-state correlations”. Note that if there were mul-
tiple next-states from a given state, all correlations corresponding to that state 
were averaged. We further calculated the correlation between PSA and re-
sponses to other states that did not follow the given state (“other-state correla-
tions”). Similar to the next-state correlations, other-state correlations were aver-
aged over all disconnected states from each state. We then compared next-state 
correlations and other-state correlations between highly certain (Fig.5b, left) and 
less-certain (Fig.5b, right) transitions. Here, highly certain transitions refer to 
those which have a transition probability greater than 1/2. Other transitions were 
classified as less-certain transitions. Consistent with experimental results, next-
state correlations were significantly greater than other-state correlations in the 
highly certain case (Fig.5b, left). This correlation difference was less significant 
in less-certain case (Fig.5b, right). These results indicate that transition uncer-
tainty modulated the degree to which PSA is predictive of upcoming states.  
 

 
Figure 5. Network dynamics consistent with recorded neural data of songbird (a) Example post-
stimulus activity (PSA) for low- (left) and high-entropy (right) transition cases. (b) Comparison of 
correlation coefficients between PSA and evoked single-syllable responses for next syllables and 
other syllables. For low entropy transition case, the next-syllables correlations were significantly 
higher than other-syllables correlations (p < 0.01, Wilcoxon signed-rank test) (left). In contrast, 
such correlation coefficients showed no significant difference for high entropy transition case (p 
> 0.3, Wilcoxon signed-rank test) (right). Red crosses are mean. (c) The difference in correlation 
coefficients between next and other syllables (ΔR) was significantly greater for low entropy tran-
sitions than for high entropy transitions (p < 0.01, two-sided Welch’s t-test). 
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We performed a more direct comparison of predictive strength by measuring the 
difference between two types of correlations (i.e., next- and other-state correla-
tions) over multiple levels of transition uncertainty. Here, for each state, next-state 
correlation was subtracted by other-state correlation. Transition uncertainties 
were quantified by calculating the conditional entropy of transition probabilities of 
stimulus patterns. Note that a higher value of entropy indicates less-certain tran-
sition, and vice versa. As expected, correlation differences increased as entropy 
decreased (Fig.5c), indicating that the predictive strength of network PSA was 
larger for low-entropy transitions (i.e., highly certain transitions) than for high-en-
tropy transitions (i.e., less-certain transitions). What is the underlying mechanism 
of such predictability differences? Although each trial of assembly perturbation 
lead to subsequent reactivation of one of the assemblies, trial-averaged activities 
(i.e., PSAs) marginalized all possible transitions in the transition diagram (Fig.5a). 
Due to this averaging process, similarities between PSA and stimulus-evoked 
activities increases if conditional entropy is low (i.e., certain transition), and vice 
versa. Overall, our results suggest that our model learns transition statistics of 
stimulus patterns, with transition uncertainty influencing predictive strength in the 
network activity. 

 

Discussion 

Understanding how the brain learns internal models of the environment is a chal-
lenging problem in neuroscience. In this study, we proposed synaptic plasticity 
rules for learning assembly transitions via sensory experiences. Our excitatory 
plasticity aims at minimizing the error between sensory-evoked and internally 
generated predictions of upcoming activity. We showed that the network learns 
the appropriate wiring patterns to encode the transition structure of states, and 
thus exhibits stochastic transitions between assemblies in spontaneous activity. 
We further showed that appropriate replay of stochastic transitions requires both 
excitatory and inhibitory plasticity. These plasticity rules showed a clear division 
of labor. For excitatory synapses, the connectivity learns transition probabilities 
during the evoked phase, and inhibitory plasticity seeks to maintain the excitatory-
inhibitory balance. We showed that network excitatory plasticity alone cannot ac-
count for stochastic replay of learned activity, even if excitatory synapses learn 
an appropriate structure. 
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Variants of the Hebbian plasticity rule have been widely used to learn the precise 
order of sequential reactivations. For example, a rate-based Hebbian rule has 
been proposed to generate trajectories along a chain of metastable attractors, 
each corresponding to a reactivation of a single network state (Fonollosa et al., 
2015). Another proposed mechanism is that the transitions are governed by theta 
oscillations, which form a temporal backbone of the sequential reactivation of as-
semblies (Chadwick et al., 2015). Despite the successes of these Hebbian rules 
in learning precise order in sequences, plasticity rules that learn structured tran-
sition probabilities and replay them in spontaneous activity were still unknown. 

How does our plasticity mechanism differ from the Hebbian rule? In the Hebbian 
rule, synaptic strength is potentiated as long as pre- and postsynaptic neurons 
show correlated activities. Due to this nature of the Hebbian rule, after sufficient 
potentiation, synapses reach a predefined upper limit, making the strength uni-
form among strong synapses (Kempter et al., 1999; Song et al., 2000; Masquelier 
et al., 2008). Such connectivity is useful when the network learns deterministic 
sequences, but it alone is insufficient to learn transition probabilities. In contrast, 
our proposed model aims at predicting the evoked activities by internally gener-
ated dynamics, so that learning ceases when the prediction error is sufficiently 
minimized. This mechanism results in learned synaptic distributions that are not 
uniform as observed in STDP, but rather converge to values proportional to the 
transition probabilities between assemblies (as shown in Figure 3b). 

The proposed mechanism of learning stochastic transitions between cell assem-
blies may offer several advantages over deterministic transitions, as suggested 
by previous studies. One possibility is that the internal dynamics of stochastic 
transitions can be used as prior knowledge about the structure of the world. In 
particular, the learned information about the transition statistics can be used to 
make probabilistic predictions about upcoming sensory events. It may also pro-
vide a flexible representation of the environment. In a deterministic case, assem-
blies are replayed in a fixed temporal order, which may make the network sus-
ceptible to noise or unexpected changes in the environment. In contrast, stochas-
tic transitions may allow the network to generate rich repertoires of representa-
tions that could provide flexible computation against an uncertain environment. 

In reinforcement learning (RL), balancing the tradeoff between exploration and 
exploitation to maximize a long-term reward signal is one of the most challenging 
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problems. While both exploration and exploitation phases are crucial in RL, ex-
ploration is often much more difficult. This difficulty arises from the fact that ex-
ploration is especially important when the agent does not have an optimal policy. 
One way in which the agent might bypass or speed up this exploration phase is 
through prior knowledge of the environment’s transition statistics. Furthermore, 
learning transition statistics as an internal model may be beneficial when an agent 
solves a task in an environment where the reward distribution is sparse. Having 
an internal model of the transition statistics may allow an agent to predict the 
expected value of the future reward for taking a particular action in a given state. 
However, the relationship between the reward-based plasticity rule and our pro-
posed rule still needs further study. 

Our model results were also compared to experimental results of sequence pre-
dictability in a songbird. Recent experiments have shown that the predictive un-
certainty of the upcoming stimulus modulates the degree of similarity between 
stimulus-evoked and post-stimulus autonomous activity in the HVC of the Bengal 
finch (Bouchard and Brainard, 2016). However, the underlying mechanism is still 
unknown. Here, we have shown that a stochastic state transition in spontaneous 
activity can explain such a dependence of activity similarity on stimulus uncer-
tainty. Our model predicts that the PSA reflects a trial average of stochastic tran-
sitions of evoked activity from a given stimulus. Trial-averaged neural activity 
washes out the variability of all possible realizations of the stochastic transition. 
Thus, PSA of an uncertain stimulus results in a combination of multiple transitions, 
leading to activity less similar than that evoked by a single stimulus. Several stud-
ies have shown that Hidden Markov Models or other statistical methods could 
account for the transition statistics in bird song (Kogan and Margoliash, 1998; 
Katahira et al., 2011). However, our study suggests that trial averaging operations 
can influence the degree of similarity between stimulus-evoked and post-stimulus 
activity. 

Although we have shown that the proposed model can learn Markovian transi-
tions, several studies suggest that animals often exhibit behaviors with non-Mar-
kovian or hierarchical statistics (Seeds et al., 2014; Berman et al., 2016; Jovanic 
et al., 2016; Jin and Costa, 2015; Geddes et al., 2018; Markowitz et al., 2018; 
Kato et al., 2015; Kaplan et al., 2020). In principle, our learning rule cannot be 
applied to learning non-Markovian transitions, since it only learns local transitions 
between states (Brea et al., 2013). Another limitation of our model is that it cannot 
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learn transition statistics if the states are separated in time. Both of these prob-
lems could be solved by considering working memory (WM) (Baddeley, 1992; 
Miller and Cohen, 2001) in an activity-dependent (Funahashi et al., 1989; Gold-
man-Rakic, 1995; Fuster and Alexander, 1971; Amit and Brunel, 1997) or activity-
silent manner (Mongillo et al., 2008; Barak and Tsodyks, 2014; Zucker and Re-
gehr, 2002; Erickson et al., 2010). Clarifying the relationship between the pro-
posed prediction-based plasticity rule and plasticity rules that support memory 
traces, such as short-term plasticity, will warrant future computational studies. 

Our work sheds light on the learning mechanism of the brain's internal model, 
which is a crucial step towards a better understanding of the role of spontaneous 
activity as an internal generative model of stochastic processes in complex envi-
ronments. 

 

Methods 
 
Our recurrent neural networks consist of 𝑁' excitatory and 𝑁( inhibitory neu-
rons. During learning, the membrane potentials of neuron at time 𝑡 with external 
current 𝐼)!"* were calculated as follows:  

𝑢)'(𝑡) =*𝑊)+
''𝑥+'(𝑡) −* 𝑊),

'(𝑥,( (𝑡) +	 𝐼𝑖ext(𝑡)
-!

,./
,

-"

+./

											(1) 

𝑢)((𝑡) = ∑ 𝑊)+
('𝑥+'(𝑡) − ∑ 𝑊),

((𝑥,( (𝑡)
-!
,./

-"
+./ ,    (2) 

where 𝑢)' and 𝑢)( are the membrane potential of 𝑖-th excitatory and inhibitory 
neuron, respectively (see Table 1 for the list of variables and functions). The 
strength of external input 𝐼)!"* takes the value 1 if stimulus pattern targets neuron 
𝑖 was presented and 0 otherwise. This structured external input was replaced to 
constant inputs	𝐼)#0%1* of value 0.3 during spontaneous activity. We will describe 
the details of stimulus patterns later. 𝑊)+

23(𝑎, 𝑏 = 𝐸; 𝐼) is a recurrent connection 
weight from 𝑗-th neuron in population 𝑏 to 𝑖-th neuron in population 𝑎. All neu-
rons were connected with a coupling probability of 𝑝 =0.5. Initial value of 
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synaptic weights 𝑊)+
23 were uniformly set to 0.1/:𝑝𝑁3 if 𝑎 = 𝐸 and 1/:𝑝𝑁3 if 

𝑎 = 𝐼 . 𝑥)2  is a postsynaptic potential evoked by 𝑖-th neuron in population 𝑎, 
which will be described later. 

Spiking of each neuron model in population 𝐸 was modeled as an inhomogene-
ous Poisson process with instantaneous firing rate 𝑓)4 with a dynamic sigmoidal 
response function 𝜑 with parameters of slope 𝛽 and threshold 𝜃 as: 

𝑓)4 = 𝜑(𝑢)'; ℎ)) ≡ 	𝜑5 A1 + exp[𝑔𝛽(ℎ))(−𝑢)' + 𝑔𝜃(ℎ)))]E
6/
, (3) 

where 𝜑5 is the maximum instantaneous firing rate of 50 Hz and 𝑔 = 2. The 
slope 𝛽 and threshold 𝜃 of sigmoidal function of population 𝐸 was regulated 
by the memory trace ℎ) as: 

𝛽(ℎ)) = ℎ)
6/𝛽5	    (4) 

𝜃(ℎ)) = ℎ)𝜃5		,       (5) 
where the values of constant parameters are 𝛽5 = 5 and 𝜃5 =1. The memory 
trace tracks the maximum value of the short history of membrane potential 𝑢)𝐸 as 

ℎ̇) =	−𝜏76/ℎ) , 	if	ℎ) > 𝑢)𝐸,
ℎ) ← 𝑢)𝐸, otherwise,

     (6) 

where 𝜏7 = 10 s is a time scale of memory trace. Inhibitory neurons’ firing rate 
were assumed to be calculated with static sigmoidal function as: 

𝑓)8 = 𝜑V(𝑢)𝐼) ≡ 	𝜑5W1 + exp[𝛽5(−𝑢)𝐼 + 𝜃5)]X
6/,    (7) 

Where the maximum instantaneous firing rate 𝜑5 was assumed to be same with 
that of excitatory neurons (i.e., 50 Hz). The parameters 𝛽5 and 𝜃5 are the con-
stant values already appeared in Eqs. (4) and (5).  
Neuron 𝑖 in population 𝑎 generates a Poisson spike train at the instantaneous 
firing rate of 𝑓)9. Let us describe the generated Poisson spike trains as: 

𝑋)2(𝑡) = 	∑ 𝛿(𝑡 − 𝑡:);#∈;$
% ,       (8) 

where 𝛿 is the Dirac’s delta function and 𝑡)2 is the set of time of the spikes of 
the neuron. The postsynaptic potential evoked by the neuron (i.e., 𝑥)2) was then 
calculated as: 

𝜏=𝐼)̇2 = −𝐼)2 +
1
𝜏 𝑋)

2									(9)	
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𝑥̇)2 = − >$
%

?
+ 𝑥5𝐼)2 ,        (10) 

where 𝜏' = 5ms, τ = 15 ms, and 𝑥( = 25.        

 

The learning rules 
All excitatory synaptic connections onto excitatory neurons obeyed the following 
plasticity rule to predict the activity of postsynaptic neurons as: 

∆𝑊)+
'' = 𝜖[𝑓)4 − 𝑦)4] ∙ 𝑥+',         (11) 

where 𝑦)4 is a recurrent prediction of a firing rate, defined as: 

𝑦)4 =	𝜑V`∑ 𝑊)+
'' ∙ 𝑥+'

-"
+./ a,        (12) 

where the function 𝜑V(∙) is the static sigmoid function defined in Eq.7. In this study, 
the learning rate was set to 𝜖 = 106@ in all simulations.  
The inhibitory synapses onto excitatory neurons were plastic according to the 
following rule: 

∆𝑊)+
'( = 𝜖[𝑦)4 − 𝑦)8]𝑥+(,         (13) 

where 𝑦)8 was the total inhibitory input onto postsynaptic neuron: 

𝑦)8 =	𝜑V`∑ 𝑊)+
'( ∙ 𝑥+(

-!
+./ a.       (14) 

Through this inhibitory plasticity, inhibitory synapses were modified to maintain 
excitatory-inhibitory balance in all excitatory neurons. 
 
 
Table1. Definition of variables and functions. 
𝑢)', 𝑢)( Membrane potentials 
𝑥+', 𝑥,(  Postsynaptic potentials 
𝑋)2 Poisson spike train generated by network 

neurons 
𝑊)+

'', 𝑊),
'(, 𝑊)+

(', 𝑊),
(( Recurrent connections 

𝐼)!"* External current elicited by stimulus presen-
tation 

𝐼)' , 𝐼)( Synaptic currents generated by network neu-
rons 

𝑓)4, 𝑓)8 Instantaneous firing rates 
𝑦)4, 𝑦)( Recurrent predictions 
ℎ) Memory trace 
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𝜑 Dynamic sigmoidal function 
𝜑V  Static sigmoidal function 
PE!"#, PE$%& Filtered prediction errors 

 
Table2. Parameter settings. 
𝑝 Connection probability 0.5 
𝑔 Gain parameter in sigmoid function 2 
𝑁', 𝑁( Network size 500, 500 

(1500,1500  
in Figs 5e-j) 

𝜖 Learning rate 106@ 
𝜏= Synaptic time constant 5 ms 
τ Membrane time constant 15 ms 
𝛽5, 𝜃5 Parameters for sigmoid 5, 1 
𝜏7 Time constant of memory trace 10 s 
𝜑5 Maximal firing rate 50 Hz 
𝑥5 Scaling factor of synaptic current 25 
𝜏9AB Time constant for low-pass filtering the 

error 
30 s 

𝐼)#0%1* Constant external current during sponta-
neous activity 

0.3 

 
Simulation details 
The parameters used in the simulations are summarized in Table 2. All simula-
tions were performed in customized Python3 code written by TA with numpy 
1.17.3 and scipy 0.18. Differential equations were numerically integrated using a 
Euler method with integration time steps of 1 ms. 
 
Stimulation protocols 
In all simulations, each stimulus patterns had a duration of 200 ms and were 
presented without inter-pattern interval. We assumed each neuron in a network 
was stimulated by one of stimulus patterns and targeted assemblies were not 
overlapped. Presentation of each pattern triggers excitatory current to its targeted 
neurons of strength 1 and zero otherwise. During spontaneous activity, stimulus 
patterns were replaced with constant background input 𝐼)#0%1* for all excitatory 
neurons. In Figure 5, we assumed all excitatory neurons receive both structured 
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and constant background inputs over whole period. 
 
Calculation of transition probabilities in spontaneous activity 
In Figs. 2f, 4c, and 4g, we first calculated the population average of the instanta-
neous firing rates of all neurons in each assembly, during spontaneous activity. 
We will term such activities as assembly activities. We then defined the assembly 
reactivations by events that the assembly activities exceeded the threshold of 
which the value 50% of maximum value of each assembly activities. Transition 
probabilities between assemblies across all possible pairs were then calculated 
by counting the occurrences of reactivation of the subsequent assembly within 
100 ms of the end time of reactivation of the preceding assembly. In Fig. 2d, 
durations of each assembly reactivation event were defined as a period during 
each assembly activation exceeded threshold. 
 
Calculation of weight changes 
In Fig.2b, the weight changes were calculated every 2 s for excitatory and inhib-
itory synapses as: 

∆𝑾44(𝑡) ≔ 	f∑ W𝑊)+
''(𝑡) −𝑊)+

''(𝑡 − 𝑑𝑡)XC),+ 𝑁'Ch    (15) 

∆𝑾48(𝑡) ≔ 	f∑ W𝑊)+
'((𝑡) −𝑊)+

'((𝑡 − 𝑑𝑡)XC),+ (𝑁'𝑁()h ,    (16) 

where 𝑊)+
'2(𝑡)	(𝑎 = 𝐸; 𝐼) is a synapse at time 𝑡 and 𝑑𝑡 is a simulation time step 

of 1 ms. 
Calculation of error dynamics in task switching 
In Supplementary Figures 3c and 3d, two types of prediction errors for excitatory 
and inhibitory plasticity were calculated as follows. First, we obtained the low-
pass filtered errors ℇ)!"# and ℇ)$%& calculated by instantaneous error values in 
the plasticity rules (i.e., Eqs. 11 and 13) as:  

𝜏9ABℇ̇)!"# = −ℇ)!"# + [𝑓)4(𝑡) − 𝑦)4(𝑡)]      (17) 
𝜏9ABℇ̇)$%& = −ℇ)$%& + W𝑦)4(𝑡) − 𝑦)8(𝑡)X,      (18) 

where 𝜏9AB = 30 s is a time constant for low-pass filter and 𝑖 is a neuron index. 
We then calculated the averaged errors PE!"# and PE$%& as: 

PE!"#(𝑡) = 	 /
-"
∑ |ℇ)!"#(𝑡)|
-"
)./            (19) 

PE$%&(𝑡) = 	 /
-"
∑ lℇ)$%&(𝑡)l
-"
)./ ,           (20) 
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where |∙| is an absolute value. 
 
Analysis of the low-dimensional representation in network 
In Fig.4h, we first obtained matrix of network responses 𝑈 = (𝒓/, … , 𝒓/E), where 
𝒓) 	(𝑖 = 1,… ,15) is a trial-averaged response of a whole network to one of 15 stim-
ulus patterns shown in Fig.4d. Trial averaging was performed over multiple 
presentations of each stimulus. We then applied the principal component analysis 
(PCA) to matrix 𝑈 and visualized the low dimensional representation of multiple 
stimulus in the learned network. 
 
Correlation measure for comparison with a songbird 
In Fig 5, we calculated stimulus-triggered averages of autonomous network ac-
tivity to obtain poststimulus activity (PSA) of a network model. In Figs 5b and 5c, 
correlation between PSA and evoked activity triggered by one stimulus pattern 
was calculated neuron-wise and then averaged over all neurons.  
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