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We developed a hierarchical Bayesian integrated life cycle model for Atlantic salmon that improves on the stock assessment approach

currently used by ICES and provides some interesting insights about the population dynamics of a stock assemblage. The model is

applied to the salmon stocks in eastern Scotland. It assimilates a 40-year (1971–2010) time-series of data compiled by ICES, including

the catches in the distant water fisheries at Faroes and West Greenland and estimates of returning fish abundance. Our model offers

major improvements in terms of statisticalmethodology for A. salmon stock assessment. Uncertainty about inferences is readily quantified

in the form of Bayesian posterior distributions for parameters and abundance at all life stages, and the model could be adapted to provide

projections based on the uncertainty derived from the estimation phase. The approach offers flexibility to improve the ecological realism

of the model. It allows the introduction of density dependence in the egg-to-smolt transition, which is not considered in the current ICES

assessment method. The results show that this modifies the inferences on the temporal dynamics of the post-smolt marine survival. In

particular, the overall decrease in the marine survival between 1971 and 2010 and the sharp decline around 1988–1990 are dampened

when density dependence is considered. The return rates of smolts as two-sea-winter (2SW) fish has declined in a higher proportion

than return rates as one-sea-winter (1SW) fish. Our results indicate that this can be explained either by an increase in the proportion

maturing as 1SW fish or by an increase in themortality rate at sea of 2SW fish, but the data used in our analyses do not allow the likelihood

of these two hypotheses to be gauged.

Keywords: Atlantic salmon, complex of populations, hierarchical Bayesian model, integrated life cycle, mixed stock fishery, North Atlantic, pre-

fishery abundance, stock assessment.

Introduction
Atlantic salmon (Salmo salarL.) is an anadromousfishwith a life cycle

that includes spawning in freshwater, up to 6 years of in-river juvenile

rearing, followed by a migration to sea to feeding grounds, and

typically 1–4 years of feeding before maturation and return to fresh-

water for spawning (Aas et al., 2011). Atlantic salmon populations

are assessed and managed at several scales, from river-specific stock

units (Chaput et al., 1999; Prévost and Chaput, 2001; Ó Maoiléidigh
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et al., 2004), tonationalorbroader regionalpopulationcomplexes that

combinepopulations supposedto sharecommondemographic trends

(Potter et al., 2004; Michielsens et al., 2008; Chaput, 2012).

Atlantic salmon that reproduce in rivers of easternNorthAmerica

and Northeast Atlantic countries of Europe undertake wide-ranging

migrations to common feeding grounds in the North Atlantic,

where theyareexposedtocommonmarineenvironmental conditions

(Friedland et al., 2013; Mills et al., 2013). When present at the West

Greenland feeding grounds and in the vicinity of the Faroe Islands,

they may be harvested in mixed stock fisheries, referred to as the

distant water fisheries (Chaput, 2012; ICES, 2012). To manage those

fisheries, advice is provided by the International Council for the

Exploration of the Sea (ICES) (ICES, 2013), based on a forecast of

A. salmon abundance prior to the high seas fisheries exploitation

(the Pre Fishery Abundance, i.e. post-smolt abundance on 1 January

of the first winter at sea prior to any fisheries, hereafter denoted

PFA). Afixed escapement strategy has been adoptedwith the objective

of achieving the spawner requirements for the contributing stocks on

both sides of the Atlantic Ocean (Crozier et al., 2003; Chaput, 2012).

Presently, ICEShas developedmodels for population assessment

at the scale of three multinational stock complexes: the Northwest

stock complex (NW) aggregating stocks of Northeast America,

and the southern and northern Northeast stock complexes (S.NE

and N.NE, respectively), aggregating stocks of Western Europe,

Iceland and Russia (Chaput, 2012; ICES, 2013). For each of the

three stock complexes assessment, models similar to classical

cohort analysis have been developed. The baseline sources of infor-

mation are the homewater catches, which are scaled by harvest and

declaration rates to estimate annual returns to homewaters. Starting

from the return estimates, the abundance of the cohort is then

reconstructed up to the PFA stage using data for high seas catches

and a fixed natural mortality rate (Rago et al., 1993; Potter et al.,

2004; Chaput, 2012). Abundance at PFA stage is disaggregated

into maturing and non-maturing components, associated with

the two most important sea-age classes of returns, fish that return

after one (1SW) and two winters (2SW) spent at sea, respectively.

Stock productivity and its evolution over time is assessed by the

ratio between the PFA of each year (the recruitment variable) and

the spawning stock size (spawners and eggs for NW and NE stock

complexes, respectively). The latter is directly derived from the esti-

mated returns minus the homewater catches. For each of the three

stock complexes, various statistical models [including phase shift

or autocorrelated random walk; (Crozier et al., 2003; Chaput

et al., 2005;Chaput, 2012)]havebeendeveloped to evaluate the vari-

abilityof the stockproductivityover time (beginning in1971) and to

forecast abundance up to three years forward. These models are

incorporated in a risk analysis framework to assess the consequences

of mixed stock marine fisheries on the returns at a stock complex

scale (Chaput et al., 2005; ICES, 2013).

In addition to their use for providing catch advices, results of

these assessment models have been used to analyse how abundance

and productivity have changed over time, and to characterize asso-

ciations with ecosystem conditions throughout the North Atlantic

Ocean (Beaugrand and Reid, 2012; Friedland et al., 2013; Mills

et al., 2013). Both the abundance of A. salmon and the stock prod-

uctivity have been declining throughout the species range. Decline

in stock productivity has been attributed to a decline inmarine sur-

vival (Aas et al., 2011), and recent analyses suggest a response of sur-

vival to changes in marine thermal conditions and in the lower

trophic levels of the marine ecosystem of A. salmon (Beaugrand

and Reid, 2012; Friedland et al., 2013; Mills et al., 2013).

Assessment models also show that the abundance of the 2SW com-

ponent of returns has declined more than the 1SW component, for

both the NW and the S.NE stock complexes (ICES, 2013), but the

mechanisms that would produce this differential decline for the

two sea-age classes have not been analysed.

The models developed to date assimilate extensive datasets and

provide some fundamental concepts for quantitative assessment

of A. salmon stocks at the scale of the Atlantic Ocean. However,

they also suffer frommethodologicalweaknesses and lackofflexibil-

ity that should be addressed in order to improve the A. salmon

population assessments.

First, the statisticalmethodology couldbe improved.Themodels

used by ICES do not explicitly represent the dynamic link between

PFA and subsequent spawning potential, and as a result are suscep-

tible to time-series bias (Walters, 1985; Caputti, 1988; Su and

Peterman, 2012), which may in turn result in biased estimates of

stock productivity.

Second, the modelling approach lacks flexibility, which pre-

cludes the assimilation of the large amount of ecological knowledge

and available data onA. salmonpopulation dynamics. The complex

life cycle of A. salmon is only coarsely represented. Strong hypoth-

eses on the demographic processes are implicitly made, and the

method does not allow estimating the extent to which results

depend upon these hypotheses to be assessed. In particular, the tran-

sition between the spawning potential and the post-smolt stage

(PFA) uses a single productivity parameter that integrates the demo-

graphic processes of the freshwater phase (egg-to-smolt) and the

first months of the post-smolt marine phase. The model implicitly

assumes that any changes in the stock productivity over time are a re-

sponse to changes in the marine phase, without taking into account

any effect of compensation in the freshwater phase. Available knowl-

edge and data about the density-dependent egg-to-juvenile survival

(Jonsson et al., 1998; Elliott, 2001) cannot be used because the fresh-

waterphase isnotseparatedout.Also, thematuringandnon-maturing

components of the PFA are directly estimated from the returns of

1SWand2SWfish, respectively, assumingaconstantnaturalmortality

rate at sea between PFA and returns. The implicit hypothesis is that

changes in the relative proportion of the two sea-age classes in the

returns result from changes in the proportion of maturing PFA and

not in the mortality rate at sea, although both hypotheses are still

discussed in the literature (Chaput, 2012).

To address these deficiencies, we embedded the stock assess-

ment model developed by ICES within an integrated hierarchical

Bayesian life cycle approach. Hierarchical Bayesian Models

(HBMs) are an effective approach for incorporating complexdemo-

graphic processes within statistical models assimilating multiple

sources of noisy and incomplete data (Thomas et al., 2005;

Buckland et al., 2007; Parent and Rivot, 2012). HBMs have been

applied to age- and stage-structured fish population dynamic

models (Rivot et al., 2004; Ruiz et al., 2009; Swain et al., 2009) and

fish stock assessment (Millar and Meyer, 2000; Lewy and Nielsen,

2003; Fleischman et al., 2013; Rochette et al., 2013). They provide

a fair appraisal of the uncertainty in estimates and predictions

(McAllister et al., 1999;HarwoodandStokes, 2003) andhave thepo-

tential to improve the biological realism of fish stock assessment

models (Kuparinen et al., 2012). HBMs have already been applied

to the A. salmon life cycle at the scale of single-river stocks (Rivot

et al., 2004) and are currently used for stock assessment at the

scale of the Baltic Sea (Michielsens et al., 2008).

The focus of this paper is on the improvements to the method-

ology and not to the data; the model therefore uses the same

1654 F. Massiot-Granier et al.
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dataset as the assessment model currently used by ICES (ICES,

2013). As an illustrative case, the model is applied to a subset of

the ICES data, accounting for the salmon stocks in the eastern

Scotland stock complex, the largest regional component of the

S.NE stock complex assessed by ICES. We demonstrate how the

flexibility of the approach has the potential to improve the popula-

tion assessment. The Bayesian framework offers a consistent prob-

abilistic rationale for estimating trends in abundance and

demographics together with the associated uncertainty. As HBMs

work by separating out the population dynamics (process equa-

tions) from the data assimilation (observation equations and in-

formative priors), the different hypotheses on the population

dynamics are explicit and can be assessed without changing the

data assimilation scheme. We rely on this flexibility to assess the

extent to which estimated trends in the abundance, and key transi-

tion rates, are sensitive to changes in somedemographic hypotheses,

andhow thismay lead to reconsidering the interpretations of demo-

graphic response to environmental forcing.

Material and methods
Outlines of the modelling approach
Thehierarchical (state–space) formulationof themodel accommo-

dates both the stochasticity in the population dynamics and obser-

vation errors. The population dynamics include both demographic

(between individual variability) and environmental (between-year

variability of transition rates) stochasticity (Engen et al., 1998).

The population dynamic (non-observed) is represented by an

age- and stage-structured life cycle model, including different life

histories and both natural and fishing mortalities (Figure 1).

Abundance at different life stages s and years t is denoted Ns,t.

Note the numeric subscripts used for the life stages s (1–14) are

qualitative values to track the life stages sequentially from the egg stage

(s¼ 1) to the spawning adult stages (s¼ 8 or 14, depending on sea

age of spawners) (Figure 1). The number of eggs potentially spawned

each year, t, denoted N1,t, are derived from the estimates of returning

females that survive the homewater fisheries. The egg-to-smolt transi-

tion is modelled without representing intermediate parr stages. N2,t

denotes the total number of smolts produced from reproduction in

year t. Smoltsofage i thatmigrate seawardafter1 to Iyears spent infresh-

water (I ¼ 4 for eastern Scotland) are denotedN3,i,t+i+1. Once at sea,

smolt ages are pooled together, and N3,t denotes the total number of

smolts migrating in the spring of year t. Return rates from smolts to

spawners of different sea ages result from the combination of natural

mortality,maturationandfishingmortality.Thenumberofpost-smolts

that survive to thePFAstage (i.e. thenumberofpost-smolts at 1 January

of their first winter at sea, just prior to the Faroes fishery) is denoted

N4,t+1. Only fish that mature after one or two winters at sea are repre-

sented. Fish maturing after one sea winter (1SW) are denoted from

N5,t+1 to N8,t+1 and fish maturing after the second sea winter at sea

(2SW) are denoted from N9,t+1 to N14,t+2. Fishing mortality is repre-

sented as a sequence of fisheries along their migration route, including

the fisheries at Faroes and West Greenland and those in homewaters.

Mature 1SW fish that escape the Faroes fishery (N6,t+1) survive their

migration back to homewaters (N7,t+1) and finally escape the home-

water fishery (N8,t+1) to spawn as 1SW fish. Non-mature 1SW fish

that successively escape the Faroes fishery (N10,t+1), the Greenland

fishery (N11,t+1), the Faroes fishery again as 2SW (N12,t+2), survive

through their migration back to homewaters (N13,t+2) and finally

escape the 2SW homewater fishery (N14,t+2) to spawn in their natal

rivers as 2SW fish.

The Bayesian framework is used to assimilate information

from the data and informative prior distributions to estimate the

number of fish in each age and life stage (Ns,t) and time-series of

key transition rates: the smolt-to-PFA survival rate, the proportion

of fish maturing after the first winter at sea, and the fishing mortal-

ities during the Faroes and Greenland fisheries. The main data

sources are the time-series (40 years; 1971–2010) of homewater

catches for the two sea-age classes and the catches at sea (Faroes and

Greenland fisheries), all derived from the ICES compilation.

Observation errors are only considered for homewater catches. The

latter are related to returns by observation equations that account for

uncertainty in the capture process and in the catch reporting rates.

No observation errors are considered for the distant water fisheries.

Informative prior distributions or fixed values are assigned to

several parameters of the demographic or observation processes.

In particular, an informative prior is used for the harvest rates of

the homewater fisheries (ICES, 2013). This is a critical component

in the model for estimating the abundance of returns. Also, because

no direct observations are available for the smolt production at the

scale of population complexes, and to avoid problems with model

identifiability, parameters for egg-to-smolt survival are fixed from

the literature, an informative prior is used for the average proportion

of smolts in each age class, and environmental stochasticity in the

egg-to-smolt transition is modelled with a very low variance.

Without changing the system described in Figure 1 or the data

assimilation scheme, the modelling framework is used to explore

how alternative demographic hypotheses can affect the inferences

(Table 1). First, we compare the influence of assuming density-

independent (H1; the hypothesis tacitly followed by the ICES Group)

and density-dependent (H2) egg-to-smolt survival. As the number of

eggsspawnedvaries inthetime-series, introducingadensity-dependent

egg-to-smolt survival results in variations in the egg-to-smolt survival

over time. This leads to different estimates of smolt numbers than

when considering a constant egg-to-smolt survival, and may in turn

modify inferences made on smolt-to-PFA survival rates. Second, we

explore the consequences of considering two alternative hypotheses

to explain the decrease in the proportion of fish returning as 2SW:

(i) an increase in the proportion of post-smolts maturing after their

first winter at sea (H3) (the hypothesis currently followed by the ICES

Group), or (ii) a constant proportion maturing but a decrease in the

marine survivalofnon-maturingfishafter the1SWFaroesfishery(H4).

In the next section, we first detail the equations for the popula-

tion dynamics (Figure 1) from eggs (stage N1) to 1SW and 2SW

spawners that escape all fisheries (N9 andN14, respectively). The ob-

servation equations that form the likelihood are then provided,

followed by justification of prior distributions assigned to para-

meters (Tables 2 and 3).

Population dynamics
A general structure for demographic stochasticity

Demographic stochasticity is modelled by means of Dirichlet–

Multinomial (DM) distributions that can be interpreted as overdis-

persed multinomial distributions, where overdispersion captures

some dependence among individuals (Mäntyniemi et al., 2012)

(Appendix 1). If N individuals face a random demographic transi-

tion with k outcomes with associated probability u = u1, . . . , uk( ),

then the number of individuals in eachoutcome N1, . . . ,Nk( ) is dis-

tributed as a DM distribution with an additional parameter h . 0

controlling the degree of overdispersion:

(N1, . . . ,Nk) ≏ DM (N, u,h) (1)

Hierarchical Bayesian model for A. salmon stock assessment 1655
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Figure 1. Structure and variables of the life cycle model. Light-shaded stages are transitions with non-informative priors, freely estimated.
Dark-shaded transitions have fixed parameters or very informative prior distribution. Asterisks indicate transitions that assimilate data. Letters
“a”, “b” and “c” correspond to eastern Scotland, Faroe Islands and West Greenland, respectively.
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For instance, Appendix 1 shows how a transition involving natural

and fishing mortality can be written as a DM with k ¼ 3 outcomes

for fish that survive, fish that die from natural mortality, and fish

that die from fishing (catches). The beta-binomial is a special case

of DM for k ¼ 2 (e.g. fish that survive or die from natural mortality

only), but to avoid multiple notations, the DM notation is kept

throughout the paper, even for k ¼ 2. The greater h is, the less

overdispersed the DM is. When h � 1, the DM tends toward a

multinomial distribution. No data were available to estimate h,

and to avoid confusion with environmental stochasticity, h was

then fixed to 104 so that our results are obtained with a variance

of demographic transitions in practice no different from multi-

nomial distributions (or binomial for k ¼ 2).

Eggs deposition

For each year t, the number of 1SW and 2SW spawners that escape

the homewater fisheries, denoted N8,t and N14,t, respectively, are

used to compute the total number of eggs potentially spawned,

denoted N1,t:

N1,t = N8,t × pf1SW × fec1SW + N14,t × pf2SW × fec2SW , (2)

where pf1SW and pf2SW are the proportions of females and fec1SW
and fec2SW the average fecundities of 1SW and 2SW female

salmon, respectively. These are considered known and constant

over the time-series (Table 2).

Egg-to-smolt transition

The egg-to-smolt transition consists of two steps: first, the survival

fromegg to smolt percohort, and second, thedistributionof the sur-

viving smolts according to their age at downstream migration.

Two alternativemodelling hypotheses (Table 1) are tested for the

egg-to-smolt survival. Thefirst (H1) considers a density-independent

egg-to-smolt survival denotedmu2
(Eq. 3).The second (H2) considers

the survival to be density dependent according to a Beverton–Holt

relationship with parameters (au2 ,bu2
) (Eq. 4). In both hypotheses,

environmental stochasticity is modelled by Lognormal random

noise with variance s2
u2
.

H1: No density dependence:

log(N2,t) ≏ N(log mu2
× N1,t

( )

−
s2
u2

2
,s2

u2
) (3)

H2: Density dependence:

log(N2,t) ≏ N(log
au2 · N1,t

1+ bu2
· N1,t

( )

−
s2
u2

2
,s2

u2
) (4)

In the absence of observations relevant to the smolt abundance,

fixed values are assigned to mu2
, au2 , bu2

and s2
u2
to avoid problems

withmodel identifiability (Table 2). Inmodel configurationH1, the

average egg-to-smolt survival mu2
is set at 0.7%, according to

Hutchings and Jones (1998).When considering density-dependent

survival (H2), two sets of parameter values characterizing different

intensities of density dependence are considered. The variability

of the egg-to-smolt survival cannot be separated from that of the

smolt-to-PFA survival. The variance s2
u2
is fixed so that the CV of

the between-year variability of the egg-to-smolt survival is arbitrar-

ily set to 5%, so most of the between-year variability in the survival

from egg-to-PFA is captured by the smolt-to-PFA survival.

The distribution of the total number of smolts N2,t in I ¼ 4

smolt age classes is modelled as a DM distribution, with the

probability of a smolt in the cohort t to migrating at age i+ 1

denotedu3,i,t (with
∑i=4

i=1 u3,i,t
( )

= 1)andoverdispersionparameterh.

N3,1,t+2, ...,N3,4,t+5

( )

≏ DM N2,t, u3,1,t, ..., u3,4,t
( )

,h
( )

(5)

The u3,1:4,t are drawn a priori in a tight informative Dirichlet prior

(Table 2) that allows very little between-year variability in the smolt

age proportions.

Henceforth, the river-age of smolts is no longer tracked. N3,t

denotes the total number of smolts migrating in the spring of year t.

Marine phase (before homewater fishery)

Themarine phase, from smolts (stageN3,t) to 1SWand 2SWreturn-

ing adults that escape the marine fishery but before the homewater

fishery (N7,t+1 and N13,t+2, respectively), is modelled as a sequence

of three sea phases: the survival from smolts to the PFA stage, the

maturation of fish at the PFA stage, and the natural andfishingmor-

talities during the PFA to return phase.

Below, we first give the general modelling structure for the se-

quence of these three phases. Equations (4)–(11) are first written

in a general form with parameters that all vary with time. Such a

general model, however, is overparameterized, as available data

allow the estimation of two rates for each year of smolt migration:

the return rate from total smolts (N3,t) to 1SW (N7,t+1) and 2SW

fish (N13,t+2), respectively. To avoid problems ofmodel identifiabil-

ity, some additional hypotheses must be applied by considering

some parameters as known and/or constant in time and/or
equal for 1SW and 2SW fish. Equations for those additional con-

straints corresponding to two contrasted demographic hypoth-

eses, H3 and H4, (Table 1) are presented in a second step.

Smolt-to-PFA survival and proportion maturing

The survival from smolt (N3,t) to PFA stage (N4,t+1. ) and the mat-

uration of fish at PFA stage are modelled sequentially as DM distri-

butions with probability parameters u4,t and u5,t, respectively:

Table 1. Alternative hypotheses tested for the population dynamics.

Fresh water phase

Egg-to-smolt survival

H1 Density independent. Fixed parameters

H2 Density dependent (Beverton&Holt). Fixed parameters

Marine phase

Proportion PFA maturing Natural mortality rate after

PFA stage

H3 Variable among years

Estimated (weakly informative

prior)

Equal for 1SW and 2SW fish

Constant in time

Very tight informative prior

H4 Constant in time

Very tight informative prior

Differ between 1SW and 2SW fish

(after 1SW Faroe fishery)

1SW : Constant in time

Very tight informative prior

2SW : Variable among years

Estimated (weakly informative

prior)

The model run with hypotheses H1 (freshwater phase) and H3 (marine phase)
corresponds to the hypotheses in the assessment model currently used by ICES.

Hierarchical Bayesian model for A. salmon stock assessment 1657
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(N4,t+1,D4,t+1) ≏ DM(N3,t, u4,t, 1− u4,t
( )

,h) (6)

(N5,t+1,N9,t+1) ≏ DM(N4,t+1, u5,t+1, 1− u5,t+1

( )

,h), (7)

whereD4,t+1 are the smolts that died before PFA stage (not tracked)

andN5,t+1 andN9,t+1 are the maturing and non-maturing compo-

nents of the PFA, respectively.Models for the between-year variabil-

ity of u4,t and u5,t are presented in the section detailing H3 and H4.

Sequential marine fisheries

After the PFA stage, salmon are exposed to sequential fisheries and

simultaneously experience naturalmortality. As detailed in Eq. A1.4

(Appendix 1), these transitions are modelled using DM distribu-

tions with rates depending upon fishing mortalities (F), natural

mortalities (M) and durations (D t), all specific to each age class

and fishery. Fixed durations specific to each transition are those

reported from ICES (2013) (Table 3).

During the 1SW Faroes fishery, maturing (N5,t+1 to N7,t+1) and

non-maturing fish (N9,t+1 toN10,t+1) are assumed to have the same

natural mortality rate M1,t+1 because they face the same environ-

mental conditions. After the 1SW Faroes fishery, the migration

routes of maturing and non-maturing fish differ, and the two

groups of fish are assigned different mortality rates, denoted M2,t+1

from stages N10,t+1 to N12,t+2 (Greenland fishery) and M2,t+2 from

N12,t+2 toN13,t+2 (2SW Faroes fishery).

Fishmaturing in theirfirstyear at sea (N5,t+1) are assumed topass

through the Faroes fishery before making their way back to home-

waters. Fish escaping the Faroes fishery (N6,t+1), that die from

natural mortality (D6,t+1; not tracked) or are caught (C6,t+1;

observed), are jointly modelled through a DM distribution with

rates (u6,1:3,t+1) derived fromparametersM1,t+1, F6,t+1 and duration

D t526:

N6,t+1,D6,t+1,C6,t+1

( )

≏DM(N5,t+1, u6,1,t+1,u6,2,t+1,u6,3,t+1

( )

,h)

(8)

Fish that escape the Faroes fishery and then migrate back to their

homewaters have a survival probability of u 7,t+1, derived from the

natural mortality rateM1,t+1 and the duration D t627:

(N7,t+1,D7,t+1)≏DM(N6,t+1, u7,t+1,1−u7,t+1

( )

,h) (9)

Fish that mature in their second year at sea (N9,t+1) will face succes-

sively the Faroes fishery as non-maturing 1SW fish (N9,t+1 to

N10,t+1), the West Greenland fishery (N10,t+1 to N11,t+1) and then

the Faroes fishery for a second time at the 2SW stage (N11,t+1 to

N12,t+2). Escapement, natural mortality and catches for the three

fisheries (C10,t+1, C11,t+1 and C12,t+2, respectively, observed) are

modelled sequentially with DM distributions, with rates denoted

as u10,1:3,t+1, u11,1:3,t+1 and u2,1:3,t+2, respectively. These rates are

derived from natural mortality, fishing mortality and stage

durations (M1,t+1,F10,t+1, Dt9−10), (M2,t+1,F11,t+1,Dt10−11) and

(M2,t+2,F12,t+2,Dt11−12), respectively.

N10,t+1,D10,t+1,C10,t+1

( )

≏DM(N9,t+1, u10,1,t+1,u10,2,t+1,u10,3,t+1

( )

,h) (10)

N11,t+1,D11,t+1,C11,t+1

( )

≏DM(N10,t+1, u11,1,t+1,u11,2,t+1,u11,3,t+1

( )

,h) (11)

N12,t+2,D12,t+2,C12,t+2

( )

≏DM(N11,t+1, u12,1,t+2,u12,2,t+2,u12,3,t+2

( )

,h) (12)

Those that survive (N12,t+2) migrate back to their homewaters

with a probability of surviving of u3,t+2 defined by the natural

mortality rateM2,t+2 and duration D t12213:

(N13,t+2,D13,t+2) ≏ DM(N12,t+2, u13,t+2, 1− u13,t+2

( )

,h) (13)

H3: Variable proportion maturing and constant natural
mortality rate after PFA stage

As in most stock assessment models, the natural and fishing

mortalities cannot be separated without additional hypotheses.

The proportionmaturing is also confoundedwith themortality dif-

ferential between 1SW and 2SW fish (Chaput, 2012). Based on the

Table 2. Summary of the parameters associated with the freshwater phase.

Parameters Definition Value/Prior

C
o
m
m
o
n
p
ar
am

et
er
s fec1SW, fec2SW Fecundity (egg number) of 1SW and 2SW females 5000, 10 000

pf1SW, pf2SW Proportion of females in 1SW and 2SW 0.40, 0.60

(u3,1,t, . . . , u3,4,t) Probability of becoming smolt of age i ¼ 1,. . .,4 ≏Dirich(hs × (p1, p2, p3, p4)) with

(p1, p2, p3, p4) = (0.05, 0.45, 0.45, 0.05)

and hs ¼ 100

Specific to H1 mu2
Constant average egg-to-smolt survival rate 0.7%

su2 Standard deviation su2 =

���������������

log(CV2
u2
+ 1)

√

with CVu2 ¼ 5%

Specific to H2 au2 Maximum survival rate 2.2% or 9%

bu2
Intensity of density dependence 2.1 1029 or 1.2 1028

su2 Standard deviation su2 =

���������������

log(CV2
u2
+ 1)

√

with CVu2 ¼ 5%

Parameters specific to alternative model structure H1 and H2 are indicated. Parameters are fixed or drawn in very tight informative distributions (shaded).
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modelling structurepresentedabove, supplementaryhypotheses are

made to define two models associated with two contrasting

ecological hypotheses, to explain the time variability of return

rates by sea-age class.

The first hypothesis (H3; Tables 1 and 3) corresponds with the

approach taken in the stock assessment model used by ICES (ICES,

2013). Both the smolt-to-PFA survival (u4,t) and the proportionma-

turing (u5,t) are estimated and allowed to vary in time. Natural mor-

tality rates after the PFA stage are assumed constant and identical for

maturing and non-maturing fish (M1,t = M2,t = M1 for all year t),

withM1 drawn in a very tight informative prior distribution. Under

these premises, the temporal variability of the return rates for both

1SW and 2SW fish combined is captured by changes in the

smolt-to-PFA survival, and the variability of the ratio of return rates

of 2SWrelative to 1SWfish is captured by changes in the proportion

maturing. To eventually capture the effect of smoothed environmen-

tal fluctuations, both series of smolt-to-PFA survival (u4,t) and the

proportion maturing (u5,t) are a priori modelled with a first order

autoregressive process in the logit scale, with, respectively, stationary

means ofmu4
and mu5

, and stationary variances ofs 2
iu4
/(1− ru4 ) and

s2
iu5
/(1− ru5 ), as defined in Appendix 2.

logit(u4,t) ≏ AR1( mu4
, ru4 ,s

2
iu4
) (14)

logit(u5,t) ≏ AR1( mu5
, ru5 ,s

2
iu5
) (15)

H4: Constant proportion maturing and variable mortality of 2SW
fish after the 1SW Faroes fishery

Thealternativehypothesis (H4; Tables 1 and3) assumes that changes

in the ratio of return rates of 2SW relative to 1SW fish result from

variations in the natural mortality rate of 2SW fish after the 1SW

Faroes fishery, rather than from changes in the proportion matur-

ing. The proportion maturing is assumed constant (u5,t ¼ u5 for

all years t), as is the natural mortality rate of 1SW fish (M1,t ¼

M1), but between-year variability of the natural mortality rates of

2SWrelative to 1SWfish is accounted for through an autoregressive

process on the log-ratio of mortality rates:

M2,t = lt ×M1

log(lt) ≏ AR1(ml, rl,s
2
il)

{

(16)

To facilitate the comparisonof inferences betweenmodel configura-

tions H3 and H4, the proportion maturing u5 in H4 is drawn from a

tight informative prior corresponding to the posterior of u5,t¼1
obtained with the model configuration H3.

Homewater (coastal and freshwater) fishery

As a final step to the life cycle (and independently from hypotheses

H3 and H4), returning adults (N7,t,N13,t) are fished in their

homewaters before entering freshwater to spawn (N8,t,N14,t). The

homewater fishery is a rather punctual process, and soDMdistribu-

tions are used to model escapement and catches directly from

harvest rates (denoted h1SW,t and h2SW,t for 1SW and 2SW fish,

respectively), assuming that no natural mortality occurs:

(N8,t,C8,t) ≏ DM(N7,t, h1SW,t, 1− h1SW,t

( )

,h)

(N14,t,C14,t) ≏ DM(N13,t, h2SW,t, 1− h2SW,t

( )

,h)

{

, (17)

where C8,t and C14,t are the number of fish caught by homewater

fisheries derived from declared catches (see below). As a critical

component of estimating the abundance of returns, informative

priors are assigned to the harvest rates h1SW,t and h2SW,t (see below).

Table 3. Summary of parameters associated with the marine water phase.

Parameters Definition Value/Prior

C
o
m
m
o
n
p
ar
am

et
er
s u4,t Smolt-to-PFA survival rate logit u4,t

( )

≏ AR1
mu4

Stationary mean ≏ N(0, 1)

ru4 Correlation ≏ Unif (−1, 1)

siu4 Standard deviation ≏ Unif (0, 1)

F f,t Fishing mortality of the fishery f log(F f,t) ≏ N(−3, 1)

Dt5−6 & 9−10 Time from 1 January to Faroes fishery 0.5 month

Dt6−7 Time from end of Faroes fishery to returns as 1SW 7.5 months

Dt10−11 Time from end of Faroes fishery to Greenland fishery (2SW) 8.5 months

Dt11−12 Time from end of Greenland fishery to Faroes fishery (2SW) 5 months

Dt12−13 Time from Faroes fishery (2SW) to returns as 2SW 3.5 months

Specific to H3 u5,t Probability of post-smolt maturing the first year at sea logit u5,t
( )

≏ AR1
mu5

Stationary mean ≏ N(0, 1)

ru5 Correlation ≏ Unif (−1, 1)

siu5 Standard deviation ≏ Unif (0, 1)

M1,t = M1 Natural mortality rate (per month) for 1SW maturing fish log M1( ) ≏ N(log(0.03), 10−4)

M2,t = M1 Natural mortality rate (per month) for non-maturing fish after Faroes 1SW fishery

Specific to H4 u5,t ¼ u5 Probability of post-smolt maturing the first year at sea logit u5( ) ≏ N(logit 0.34( ), 10−4)

M1,t = M1 Natural mortality rate (per month) for 1SW maturing fish log M1( ) ≏ N(log(0.03), 10−4)

M2,t Natural mortality rate (per month) for non-maturing fish after Faroes 1SW fishery up

to returns

M2,t = lt ×M1

lt Natural mortality ratio log lt( ) ≏ AR1
ml Stationary mean ≏ N(1, 0.1)

rl Correlation ≏ Unif (−1, 1)

sil Standard deviation ≏ Unif (0, 2)

Parameters specific to alternative model structures H3 and H4 are indicated. Parameters fixed or drawn in very tight informative prior distributions are shaded.
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Data and observation equations
Themodel uses several time-series (1971–2010)of catches.Thoseof

the distantwater (C6,t,C10,t,C11,t andC12,t) aredirectly derived from

declared catches reported by ICES (ICES, 2013) (Appendix 3). No

observation error is considered, i.e. formally, the DM distribution

of Eqs. (9)–(13) and (17) define demographic stochasticity and

not observational errors.

Time-series of declared homewater catches are available for 1SW

and 2SW fish (ICES, 2013), and denoted cdec1SW,t and c
dec
2SW,t , respect-

ively. A binomial observation model is used to capture observation

errors arising from uncertainty in the declaration of homewater

catches, with informative priors for declaration rates r1SW,t and

r2SW,t (Appendix 4).

cdec1SW,t ≏ Bin(C8,t, r1SW,t)

cdec2SW,t ≏ Bin(C14,t, r2SW,t)

{

(18)

Hence, the likelihood function used to assimilate the time-series

of data within the Bayesian model results from the product of Eq.

(18) and DM equations (8) and (10)–(12) for the mixed stock

catches.

Priors
The proportions of smolts in each age class [the u3,1:4,t in Eq. (5)] for

all cohorts at time t are drawn a priori in independent informative

Dirichlet prior distributions, with parameters hs × ( p1, p2, p3, p4)

with
∑i=4

i=1 pi
( )

= 1 and hs ¼ 100 (Table 2). Empirical proportions

of smolt age classes (p1, p2, p3, p4) are set according to ICES (2013)

and considered fixed among cohorts. The degree of the Dirichlet

distribution is arbitrarily fixed to hs ¼ 100, and corresponds to the

precision in the estimates of the proportions that would have been

learned frommultinomial samples of size hs ¼ 100.

The natural mortality rate for 1SW fish after the PFA stage, M1

(considered constant, and equal to the natural mortality rate of

2SW in H3), is drawn a priori in a very tight Lognormal prior that

corresponds to a mortality rate of 3% per month, similar to the

30% cumulated mortality per year (ICES, 2002). The sensitivity of

the inferences to the prior on M1 is assessed by comparing three

runs of the model with the median of a Lognormal informative

prior distribution set to 0.03 (baseline configuration), 0.01 and0.05.

Yearly and independent informative priors based on expertise

are set on the harvest rates (h1SW,t,h2SW,t) and declaration rates

(r1SW,t,r2SW,t) of the homewater fisheries (Appendix 4). Those in-

formative priors are critical to estimate abundance of returns in

the two sea-age classes. The declaration rate is assumed equal for

1SW and 2SW fish, and its expected mean increases from 0.75 to

0.90 in the time-series (Appendix 4). The harvest rates decrease

over the time-series from 0.80 to 0.10 for 1SW fish and from 0.50

to 0.10 for 2SW fish (Appendix 4). We assess the sensitivity of the

inferences to the priors for homewater harvest rates by considering

three different priors: (i) the baseline informative priors discussed

above; (ii) informative priors with a linear decline of the mean

between the first and last year of the time-series; (iii) informative

priors with a constant expected mean equal to the mean of the

first five years of the time-series.

Other parameters of the demographic process (Table 3) are given

weakly informative priors as defined by Gelman (2009), i.e. they are

loose enough tobeupdatedby the datawhile being strong enough to

exclude biologically unrealistic values.

Computational details
All computationsareperformedwithin theRplatform(RDevelopment

Core Team, 2012). Bayesian posterior distributions are approximated

via Monte Carlo Markov Chain (MCMC) methods through the

open-source JAGS software (http://mcmc-jags.sourceforge.net;

JAGS code provided in the Supplementary data (last accessed

6 June 2013)). Three independent MCMC chains with different

initialization points are used. After an adapting phase of 50 000

iterations, inferences are derived from a sample of 2 000 000 itera-

tions. One out of 100 iterations is kept to reduce the MCMC

sampling autocorrelation.

To check convergence of MCMC sampling, the Gelman–Rubin

test is applied to all posterior sampling (R ratio , 1.05 for all vari-

ables) as implemented in the Coda package of R (Brooks and

Gelman, 1998).

The consistency between the model and the data was checked

using Bayesian posterior checking procedures (Gelman et al.,

2004) designed to check the ability of the model a posteriori to

replicate homewater catches similar to those observed (detailed

in Appendix 5).

Results
We first describe the results obtained with a density-independent

egg-to-smolt survival (H1) and a probability of maturing at the

PFA stage that is allowed to vary over time (H3). This combination

corresponds to the hypotheses currently followed in the ICES stock

assessment model. We then examine the extent to which the infer-

ences on the time-series of abundance and key transition rates are

sensitive to changes of hypotheses in both the freshwater and the

marine phase.We successively examine the effects of (i) considering

a density-dependent egg-to-smolt survival (H2), and (ii) a natural

mortality rate for 2SW fish that varies in time but with a constant

probability of maturing at the PFA stage (H4). Last, we report the

results of the sensitivity analysis to the prior on the harvest rate of

homewater catches and on the natural mortality rateM1.

Results in model configuration (H1, H3)
Posterior checking reveals no inconsistency between the model a

posteriori and the data. The p-values are 0.487 and 0.452 for 1SW

and 2SW catches, respectively, thus showing that the model is able

to replicate homewater catches very similar to the observed declared

catches for both sea-age classes. Posterior checks obtained under all

other configurations (H3 and H4) reveal no inconsistency between

replicated and observed catches and are not detailed hereafter.

Estimates of the homewater returns of 1SW (N7) and 2SW fish

(N13) (Figure 2) (determined primarily from the homewater

catches adjusted by the informative priors for harvest and declaration

rates) decreased globally over the past 40 years. The number of 1SW

returning salmon in 2010 was less than half that in 1971, and

returns of 2SW salmon declined from 1971 to 1996 before dropping

to one-fifth of its level at the beginning of the time-series. Owing to

reductions in the exploitation rate (Figure A4.1), the number of

1SW spawners (N8) increased significantly in the 1990s and subse-

quently fluctuated around 125 000 salmon. The estimated abun-

dance of 2SW spawners (N14) fluctuated between 1971 and 1991,

before dropping to a relatively stable low level of about 100 000

fish after 1991.

The estimated egg deposition (N1), which accounts for fecundity

and female proportion among the returning fish, fluctuated widely

1660 F. Massiot-Granier et al.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/ic
e
s
jm

s
/a

rtic
le

/7
1
/7

/1
6
5
3
/6

6
6
0
3
2
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2

http://mcmc-jags.sourceforge.net
http://mcmc-jags.sourceforge.net
http://mcmc-jags.sourceforge.net
http://mcmc-jags.sourceforge.net
http://mcmc-jags.sourceforge.net


throughout the series, reaching a maximum in 1989, but did not

show any clear trends (Figure 2c).

The number of post-smolts at the end of the year, and before all

fisheries (PFA, N4) exhibited an overall decrease (Figure 3a), con-

sistent with the observed trends in returning fish abundance. The

abundance at the PFA stage reported by ICES (ICES, 2013) for the

entire Scotland area (Figure 3a) between 1971 and 2010, corrected

by the proportion of fish from west Scotland, is very close to the

abundance estimated by our model, and the evolution over time is

fully consistent with our estimates.

Estimated smolt-to-PFA survival (u4,t) demonstrates a sharp de-

crease since the early 1990s (Figure 3b). The proportion of 1SWfish

maturing after thePFA stage (u5,t) fluctuateswith anoverall increase

over the time-series (Figure 3b). ThePFAofmaturing 1SWfish (N5)

has decreased continuously since 1971 to,50%of the 1970s abun-

dance in the most recent years (not shown), while non-maturing

PFA (N9) declined until the mid-1990s before stabilizing at a very

low level (not shown). The joint distribution of (u4,t,u5,t) for each

year t does not exhibit any particular pattern of correlation, thus in-

dicating that the two parameters are not confounded, given the in-

formation assimilated in the model (not shown).

Estimates of fishing mortality after the PFA stage (not shown)

show that the Faroes fishery exploited a small fraction of the 1SW

fish (0.5% exploitation rate on average). The cumulative impact

of the three high seas fisheries on the non-maturing component is

much higher (25% cumulative exploitation rate on average), with

highest exploitation (18%) occurring in the Greenland fishery.

The return rates from smolt to 1SWor 2SWadult before home-

water exploitation (Figure 3c), which combine life history choices

(probability of maturing) and mortality (M and F) during the

marine phase, are very comparable between 1SW and 2SW fish

until the 1990s, after which the 1SWreturn rate is higher. Both time-

series fluctuate between 1% and 6% and follow the same general

Figure 2. Time-series of marginal posterior distributions of adult
returns (white boxplot) and spawners that escaped the homewater
fishery (grey boxplot) as 1SW (a) and 2SW (b), and of the resulting egg
deposition (c). The upper and lower limits of each box represent the
first and third quartiles of posterior distributions; the horizontal bar in
the middle of the boxes represents the median values.

Figure 3. Time-series of marginal posterior distributions of (a) the
Pre-fishery Abundance estimate derived from themodel we developed
for eastern Scotland (boxplot) and the Pre-fisheryAbundance estimate
for the whole of Scotland by the ICESmodel (corrected by proportions
of fish from West Scotland); (b) the marine survival during the first
months at sea (smolt-to-PFA) (boxplot) and the posterior medians
of the probability of maturing the first year at sea (solid line); and
(c) return rates of smolts as 1SW(solid line) andMSWfish (dashed line).
The upper and lower limits of each box represent the first and third
quartiles of posterior distributions; the horizontal bar in the middle
of boxes represents the median value.

Hierarchical Bayesian model for A. salmon stock assessment 1661
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time-trend as the smolt-to-PFA survival rate, with a sharp decline in

the late 1980s.

Effect of considering density-dependent egg-to-smolt
survival (H2)
Becausetheeggdepositionfluctuatesduringthetime-series (Figure2c),

introducing a density-dependent (Beverton–Holt type) egg-to-smolt

survival (H2; Figure 4a) leads to a fluctuating egg-to-smolt survival,

while it is constant in the baseline hypothesis (Figure 4b). Because the

egg-to-smolt survival is higher for low egg deposition and lower for

high egg deposition, considering a density-dependent egg-to-smolt

survival dampens the variation of egg abundance over the time-

series. This in turn affects the estimates of abundance and transition

rates of older life stages: the fluctuations of smolt abundance is

smoothed, which, ultimately, dampens the decline in the estimates

of the smolt-to-PFA survival (Figure 4c). Increasing the density de-

pendence in the egg-to-smolt survival tends to smooth the sharp

decline in the smolt-to-PFA survival rate in the late 1980s.

Changes in egg-to-smolt survival are balanced by changes in

the smolt-to-PFA survival, but do not affect any other model

component after the PFA stages.

Effect of considering a constant probability
of maturing at PFA stage (H4)
The consequences of changing from the baseline hypothesis H3 to

H4 (aconstantprobabilityofmaturingat thePFAstagebut avariable

mortality rate of 2SW fish) are explored under the constant

egg-to-smolt survival hypothesis (H1). Estimates of abundance

and transition rates from eggs to PFA are not sensitive to changing

fromH3 to H4. UnderH3, the estimates of the probability ofmatur-

ing at PFA stage increase to fit the decreasing proportion of 2SWfish

in the total returns (Figure 5a). The alternativemodel configuration

H4 provides another hypothesis consistent with the decline in the

proportion of 2SW fish in returns. The proportion maturing is

assumed constant (≏34%) but themortality rates of non-maturing

fish after the 1SW Faroes fishery increase notably from 1991

(Figure 5b). The annual variations in the natural mortality rate of

2SW fish under H4 show a pattern of variation very similar to that

of the proportion maturing under H3.

Sensitivity analysis to changes in the informative priors
Posterior estimates of all model components are highly sensitive to

changes in the informative priors on the harvest rates for the home-

water fishery (Figure 6). Given the catches in the homewater fishery

(Appendix 4), changing the prior on the harvest rates directly affects

the estimates of returns, which in turn affect all life stage and tran-

sition rates in the model. The higher the prior expected mean of

the harvest rates, the lower the estimates of returns (not shown)

and the lower the estimates of the PFA abundance (Figure 6a).

This has important consequences for the estimates of the smolt-to-

PFA survival rate. At the limit, considering the harvest rate has been

constant in the time-series dampens the variations in the time-series

of estimated smolt-to-PFA survival rates (Figure 6b). In particular,

the drop in survival rate around 1988–1990 is no longer obvious.

The increasing trend in the probability of maturing after the first

year at sea is also much weaker (Figure 6b).

As expected,M1 is a scaling factor that balances the smolt-to-PFA

survival rate. The lower the expected mean of the prior onM1, the

lower the posterior estimates of the smolt-to-PFA survival

(Figure 7b). Changing the prior on M1 also affects the probability

of maturing as 1SW. A higherM1 slightly decreases the differential

of cumulated natural mortality between 1SW and 2SW fish, which

leads to higher estimates of the proportion maturing (Figure 7c).

Discussion
We developed an integrated life cycle model that improves on the

stock assessment approach currently used by ICES and provides

new insights about theA. salmonpopulationdynamics of a stock as-

semblage. Eastern Scotland is the largest component of the southern

stock complexwithin theNortheastAtlantic (ICES, 2013) and, thus,

is an ideal candidate to illustrate the value of applying our novel

modelling approach.

Improving the statistical methodology
As amajor improvement, themodel is built in a Bayesian state–space

framework. The population dynamics, considered as non-observed

Figure 4. Analysis of sensitivity to changes in the egg-to-smolt survival
function (H1 and H2). (a) Different egg-to-smolt survival functions
tested (bold) and associated smolts/eggs ratios (thin). Solid line:
average egg-to-smolt survival fixed to 0.7% (H1); dotted and dashed–
dotted lines: BH density-dependent function (H2) with different
intensity of density dependence with a equal to 2.2 and 9.0%,
respectively, and b equal to 2.1 × 1029 and 1.2 × 1028, respectively
(Table 2). The shaded area represents the range of egg abundances
estimated between 1971 and 2010. Time-series of posterior median
estimates of (b) egg-to-smolt survival rate, and (c) smolt-to-PFA
survival rate; line codes correspond to egg-to-smolt survival in (a).
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processes, areexplicitlymodelledasa lifecycle.Observationequations

allow the available data to be assimilated and prior knowledge of all

parameters and abundances at each life stage to be updated.

Our novel approach improves the estimates of stock produc-

tivity. The current assessment model (Chaput, 2012) relies on a

stock–recruitment concept that considers a statistical relationship

between spawning potential (lagged eggs) and recruitment (PFA).

A critical weakness of the approach is that it does not consider the

dependence between the PFA and the subsequent spawning poten-

tial, which can result in a time-series bias (Walters, 1985; Caputti,

1988; Su andPeterman, 2012) inproductivity estimates.By contrast,

our life cycle approach explicitly considers the correlation between

the abundance in the different life stages in the time-series.

Uncertainty is readily quantified through the posterior distribu-

tion of all parameters and abundance at any life stage. The life cycle

is developed in an estimation framework that could be adapted to

provide stock projections based on the uncertainty derived in the

estimation phase (Dorazio and Johnson, 2003) and could thus

be more powerful and useful in the context of decision and risk

analysis.

Owing to the Bayesian framework, the various sources of infor-

mation, data and informativepriors, are assimilated in a transparent

way. This makes it easier to assess the influence of the informative

priors for the inferences. Our results stress that inferences critically

depend upon the informative priors on the harvest rate associated

with homewater fisheries. When combined with these priors, the

time-series of catches for both sea ages provides the primary quanti-

tative information to scale the abundance of returns. Changing the

time trends in the priors for harvest rates drastically affects the

estimates of abundance at all life stages and the smolt return rates.

The natural mortality rate at sea after the PFA stage (M1) is also a

key prior affecting all quantities estimated by the model. This is a

scaling parameter for the abundance: a higher mean of the prior on

M1 increases estimated PFA abundance but does not affect trends in

time-series of estimated parameters. Management advice regarding

high sea fisheries, however, depends upon a prior hypothesis on

this parameter, as increasingM1 would diminish the impact of high

sea catches on the returns.

Improving the ecological realism of the
assessment model
Embedding themodel within a hierarchical integrated approach ex-

plicitly separates out the equations for the population dynamics and

the observations. This offers flexibility to improve the ecological

realism of the model as different hypotheses regarding the popula-

tion dynamics can be assessed without changing the data assimila-

tion scheme. With the aim of facilitating the comparison with the

current ICES approach, we first ran the model with the same infor-

mation (data anddemographic hypotheses) as implicitly or explicit-

ly applied in the current ICES stock assessment approachwith: (H1)

no density dependence in the freshwater phase; and (H3) between-

year variations in the smolt-to-PFA survival and probability of

maturing as 1SW fish, though with the natural mortality rate after

the PFA stage constant in time and equal for 1SW and 2SW fish.

We show how the flexibility of the approach offers the possibility

of challenging alternative demographic hypotheses, and we stress

how changing the demographic hypothesis can affect inferences

and interpretations of the trends.

A critical improvement in the ecological realism of the life cycle

model is the separationof the freshwaterand themarinephases.This

allows the introduction of density dependence in the freshwater

phase (H2). There is ample evidence from river-specific studies

that egg deposition is an important variable conditioning juvenile

abundance and that recruitment in freshwater ismost appropriately

modelled as a density-dependent function (Gibson, 1993; Kennedy

and Crozier, 1993; Chaput et al., 1998; Jonsson et al., 1998; Elliott,

2001). Considering egg-to-smolt survival as density dependent intro-

ducednon-linearity into thedynamicsandnotablymodified the tem-

poral dynamics of marine survival. Fluctuations in the numbers of

eggs spawned over time inducedfluctuations in the egg-to-smolt sur-

vival rate thatdampened the variationsof eggabundance.This in turn

affected the inferences made on the time-series of smolt-to-PFA sur-

vival bycomparisonwith thoseobtainedwithaconstantegg-to-smolt

survival. Interestingly, our results stress that the sharp decline in

smolt-to-PFA survival around 1988–1990 appears robust to the

modellinghypothesis for the freshwaterdynamics, although it isdam-

pened when density dependence is considered, meaning that part of

the between-year variability of natural mortality could be attributed

to density dependence in the stock–recruitment process.

The approach also offers the possibility of exploring alternative

hypotheses for the marine phase between smolt and return as

adult fish.

The smolts return rates aremodelled based on three key processes:

the smolt-to-PFA survival (the first months at sea after smolt

Figure 5. Sensitivity of the model configuration for the PFA-to-return
phase (H3, H4) under the configuration H1 for the freshwater phase.
(a) Time-series of posterior median estimates of the probability of
maturing the first year at sea (dotted line: H3; bold line: H4), and (b) the
integrated natural mortality faced by 1SW fish (dashed–dotted line)
and the integrated natural mortality faced by 2SW fish under H3

(dotted line) and H4 (bold line).
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migration), thematuration at PFA stage, and the PFA-to-return tran-

sition (for mature or non-mature fish). Combined with hypotheses

for the egg-to-smolt transition, the data assimilated in the current ap-

proachallow the estimationof the return rates fromsmolt to1SWand

2SW adults. The return rates exhibited an overall decreasing trend

over the time-series of between 1.5% and 5.0%, with a sharp

decline around the years 1988–1990. However, the magnitude of

the fluctuations in time may be overestimated: although not repre-

sented in our model, environmental variability also occurs during

the freshwater phase. The range of the estimated smolt-to-adult

return rates were consistent with those obtained from returns of

tagged smolts on index rivers. For the Southern NE stock complex,

return rates of 1SW fish ranged between 3 and 12% and for 2SW

fish between 1 and 3%, and the available time-series, covering a

broad spatial scale, exhibited a decreasing trend over the 1980–

2010period (ICES, 2010). The decline in the return rates is consistent

witha largebodyof literature that lends support to thehypothesis that

mortality has increased in the marine phase, associated with recent

changes in the Northeast Atlantic ecosystem. Potential drivers

include changes in the availability of prey affecting growth and sur-

vival (Friedland et al., 2000; Beamish and Mahnken, 2001;

Peyronnet et al., 2007, 2008). This would be connected with large

scale modification in the distribution and phenology of plankton

species in the Northeast Atlantic as a bottom-up response associated

with ocean warming (Beaugrand and Reid, 2003; Richardson and

Schoeman, 2004; Todd et al., 2012). The sharp decline in return

rates identified around 1988–1990 in all the model structures exam-

ined, corresponds to the shift in plankton communities in the eastern

Atlantic ocean described by Beaugrand and Reid (2003).

To avoid problems with model identification, additional hy-

potheses were made on the natural mortality rate after the PFA

stage; this made it possible to estimate the relative roles of the

Figure 6. Sensitivity analysis to changes in the informative prior on the
harvest rate of homewater fisheries. Time-series of posterior median
estimates of (a) abundance of PFA stage, (b) the smolt-to-PFA survival
rate, and (c) the probability of maturing. Three scenarios are explored;
the baseline scenario with priors used by ICES (see Appendix 4) (bold
line), a linear decline of the harvest rate between the first and the last
year of the time-series (dashed line), and a constant harvest rate equal
to the mean of the five first years (dotted line).

Figure 7. Sensitivity analysis to changes in the informative prior on
the natural mortality. Time-series of posterior median estimates of
(a) abundance of PFA stage, (b) the smolt-to-PFA survival rate and
(c) the probability of maturing the first year at sea. Three scenarios are
explored: the baseline (bold line) with the expected mean of the prior
distribution onM1 equal to 0.03; and two others with the expected
mean equal to 0.01(dotted line) and 0.05 (dashed line).
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smolt-to-PFA and the PFA-to-return phases in the mortality at sea,

and to gauge the importance of high seas mixed stock fishing mor-

talities.

Because the natural mortality at sea after the PFA stage for 1SW

fish (M1) is roughly fixed in allmodel configurations (drawn in very

tight informative prior), most of the between-year variability is

captured in the smolt-to-PFA survival, which varies between

3 and 15% with an overall decline over the time-series. The sharp

decline in return rates manifests itself as a similar decline in the

smolt-to-PFA survival during the 1988–1990 period. However,

the range of values (3–15%) critically depends on the hypothetic

value ofM1.

Our results also suggest that there has been a greater decline in

the return rate of 2SW fish compared with 1SW fish, at least in the

last two decades. This pattern has already been described in

Scotland (Youngson et al., 2002; Heddell-Cowie, 2005) and Wales

(Aprahamian et al., 2008). In the model configuration that repro-

duces the hypothesis currently made by ICES, the decreasing

smolt-to-PFA mortality rate, common to both life history groups,

is offset by an increasing probability of maturing, which brings

back relatively more smolts as 1SW versus 2SW fish. But as high-

lighted by Chaput (2012), without considering additional data,

there is confusion between the proportion maturing as 1SW fish

and the differential survival between fish maturing as 1SW fish

and2SWfish. To investigate this, we ran amodelwith the alternative

assumption of a constant proportionmaturing as 1SW, offset by an

increasing trend for the natural mortality rate of 2SW fish after the

1SW Faroes fishery.

Evaluating the support for these alternative (and not mutually

exclusive) hypotheses is not possible with the data used in the

current exercise. This is a critical issue, however, that future research

should address. The alternative hypotheses may have important

implications for the management of high seas fisheries. Indeed,

considering a higher mortality rate for 2SW fish after the PFA

stage would reduce the expected impact of catch regulations for

the distant water fisheries aimed at preserving future 2SW fish.

Alternative hypotheses also correspond to different ecological

mechanisms. An increase in the natural mortality of 2SW fish

relative to 1SW fish could be a response to environmental changes

that would only affect 2SW fish during their migration to and

from West Greenland, without affecting 1SW fish that return

after their sojourn around the Faroe Islands. We did not find

any evidence in the literature of such a change specific to the mi-

gration route. An increase in the proportion of maturing fish

could also be interpreted as an adaptive response to changes in

the environment (Summers, 1995; Friedland and Haas, 1996;

Blanchet and Dubut, 2012). Age at first maturity is known to be

environmentally plastic and mediated by growth in fish, and sal-

monids make no exception to this widespread process (Marshall

et al., 1998; Thorpe et al., 1998; Mangel and Sattertwaite, 2008).

An alternative explanation is that the increase in the proportion

maturing as 1SW fish could be an evolutionary response,

induced by the historic selective exploitation of older and bigger

fish (Thorpe, 2007).

Directions for future improvements
The approach presented provides a framework for structuring

further research and data collection. Only a few sources of data

besides time-series of homewater and high sea catches are assimi-

lated in themodel. Inferences are based on a number of informative

priors and a suite of modelling hypotheses, of which the adequacy

can hardly be appraised quantitatively. Embedding the assessment

approach within an integrated hierarchical Bayesian modelling

framework offers multiple possibilities of extending the model

by incorporating additional sources of data. This may result in

a reduced dependency of the inferences on strong modelling

assumptions and informativepriors.This canprovide improvement

in the ecological realism of the assessment model, and can help

learning more about the drivers of salmon abundance in the

Atlantic Ocean.

One of the most exciting prospects is taking fuller advantage

of the data available on the dynamics of the freshwater phase

of A. salmon. Time-series of egg-to-smolt data available from a set of

monitored rivers (Prévost et al., 2003; ICES, 2013) could be incorpo-

rated into the model, to provide information on density-dependent

egg-to-smolt survival rates and on smolt age compositions, and

could also help evaluate the hypothesis of non-stationarity in the para-

meters of the freshwater phase during the time-series. As shown in our

results, because inferences regarding trends in themarinephasedepend

upon the freshwater phase parameters, assimilating more data about

the egg-to-smolt transition would critically improve the approach.

Smolt tagging and recapture data available for several monitored

rivers (Miller et al., 2012; Sheehan et al., 2012; ICES, 2013) could also

be incorporated into themodel to improve the estimatesof return rates.

Themodel presented here also lays the foundation for integrated

life cycle modelling at the broader ocean scale. A future research

direction would be to consider a hierarchical model to jointly

analyse the dynamics of all the regions comprising the S.NE stock

complex as defined by ICES (France, Ireland, UK England &

Wales, UK Scotland, UK Northern Ireland and South West

Iceland). A multi-region model would be a useful tool for assessing

the effect of management measures on the distant-water mixed-

stock fisheries. Following an approach similar to the one developed

byMills et al. (2013) for theNorthAmerican stockcomplex, amulti-

regional model would also enhance our capacity to detect common

trends and to assess the relative effects of environmental factors

influencing populations at various spatial scales, such as marine

conditions on oceanic foraging areas for mixed stocks or more

local environmental factors influencing specific stock components

during the first month of life at sea (Friedland et al., 2000; Sharma

et al., 2013).

Supplementary data
Supplementary data are available at ICES Journal of Marine Science

online.
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Appendix 1: Dirichlet–multinomial distribution
Demographic transitions aremodelled usingDirichlet–multinomial

(DM) distributions that capture demographic stochasticity. The DM

distribution can be interpreted as an overdispersed Multinomial

distribution.

If N individuals face any demographic transition with k

possible outcomes (i = 1, . . . , k) with associated probability

m1:k = (m1, . . . ,mk) with
∑k

i=1 mi = 1, then, given the hypothesis

that all individuals are mutually independent and with the same

probabilities m1:k, the numbers of individuals in each outcome

(N1, . . . , Nk) are distributed as a Multinomial distribution, with

the variance–covariance structure in Eq. (A1.1). If k ¼ 2, then the

Multinomial in Eq. (A1.1) is replaced with a binomial.

(N1, ... ,Nk) ≏ M(N,m1:k)

E(Ni) = N mi

V(Ni) = N mi(1− mi)

cov Ni,Nj

( )

= −Nmimj

⎧

⎪

⎨

⎪

⎩

(A1.1)

A DM distribution is the distribution of (N1, . . . , Nk) that results

from the convolution of the Multinomial in Eq. (A1.1) with a
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Dirichlet distribution for m1, . . . ,mk

( )

(if k ¼ 2, the Dirichlet is a

beta and the DM is a beta-binomial distribution). The more dis-

persed the Dirichlet distribution, the more dispersed the DM.

Parameters of the Dirichlet distribution for m1, . . . ,mk

( )

are

denoted a1, . . . ,ak( ). A useful way to parameterize a Dirichlet dis-

tribution consists of introducing h =
∑k

i=1 ai, the degree of the

Dirichlet distribution, as shown in Eq. (A1.2).h controls the disper-

sion of the distribution. The largerh, the less dispersed the distribu-

tion is.

m1, . . . ,mk

( )

≏ (a1, ... ,ak)

with ai = hui,
∑

k

i=1

ui = 1 and h =
∑

k

i=1

ai

E(mi) = ui

V(mi) = ui(1− ui)
1

h+ 1

cov mi,mj

( )

= −uiuj
1

h+ 1

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Then, if m1:k = (m1, . . . ,mk) are distributed as a Dirichlet in Eq.

(A1.2), and if (N1, . . . , Nk) given m1:k are distributed as a

Multinomial in Eq. (A1.1), then the marginal distribution of

(N1, . . . , Nk) is DM with parameters u1:k = u1, . . . , uk( ) and h

(Eq. (A1.3)).

N1, . . . ,Nk( ) ≏ DM N, u1, . . . , uk( ),h
( )

E(Ni) = Niui

V(Ni) = Nui(1− ui)
N + h

h+ 1

cov Ni,Nj

( )

= −Nuiuj
N + h

h+ 1

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(A1.3)

The overdispersion factor of the DM distribution (by reference

with the variance–covariance of a Multinomial distribution) is

(N + h) /(1+ h). The higher h, the lower the variance of the

DM. At the limit when h � 1, this overdispertion factor �

and the DMdistribution converges to aMultinomial distribution.

Let us now show how a DM distribution can be applied to a

demographic transition, where natural and fishing mortality

occurs simultaneously. Let us define a number of fish Nt entering

a fishery where fish die from natural mortality M, and fishing

mortality F, both occurring simultaneously during a duration D t.

Then, the surviving fish Nt+Dt , the fish that die from natural mor-

tality Dt+Dt, and catches Ct+Dt can be modelled through a DM

distribution:

(Nt+Dt,Dt+Dt,Ct+Dt) ≏ DM(Nt, u1, u2, u3( ),h) (A1.4)

with

u1 = e−(F+M)Dt

u2 =
M

F +M
(1− e−(F+M)Dt)

u3 =
F

F +M
(1− e−(F+M)Dt)

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

u1, u2 andu3 represent the probability that afishwill survive, die nat-

urally or be caught, respectively, defined by a Baranov equation

(Baranov, 1918, 1925).

If only naturalmortality occurs (no fishing), Eq. (A1.4) then col-

lapses to:

(Nt+Dt,Dt+Dt) ≏ DM(Nt, u1, u2( ),h) (A1.5)

with
u1 = e−MDt

u2 = (1− e−MDt)

{

,

which is also a beta-binomial distribution for the survival, with u1
(respectively,u2 ¼ 12 u1) theprobabilityof surviving (ofdying, re-

spectively). The transition can be alternatively parameterized

directly with (u1, 1− u1) instead of (M, D t).

Appendix 2: First order autoregressive process
Time-series of several parameters are modelled a priori as a first-

order autoregressive process to capture smoothed fluctuations in

environmental variability. Let us define dt a parameter defined for

any t on the time-series t = 1, . . . , n. The prior distribution on dt
can be defined by the recursive equation (A2.1):

for t = 1, . . . , n− 1, dt+1 = md + rd dt − md

( )

+ idt, (A2.1)

with the innovations defined as independent random term

idt ≏ N(0,s2
id), and rd the coefficient of correlation with rd

∣

∣

∣

∣ , 1.

Equation (A2.1) defines a first order autoregressive process (AR1)

with a Normal asymptotic distribution with expected mean

md and variance s2
d = s2

id /(1− rd). To initialize the recursive

equation (A2.1), the first term canbe drawn a priori in the stationary

distribution:

dt=1 ≏ N(md,s
2
d) (A2.2)

Equations (A2.1) and (A2.2) define the prior distribution for the

time-series dt¼1:n that follows an AR1 parameterized by the asymp-

totic expected mean md, the coefficient of correlation rd, and the

variance of innovations sid
2 :

dt ≏ AR1 md, rd,s
2
id

( )

(A2.3)

If theparameterof interest is constrainedbetween0and1 (i.e. amat-

uration probability or a survival probability), then the AR1 can be

parameterized in the logit-scale. In the case of a parameter con-

strained to be .0, the AR1 can be parameterized in the log scale.

Appendix 3: Faroes and Greenland distant water fishery
Time-series of catches of Faroes andWest Greenland fisheries (C6,t ,

C10,t , C11,t and C12,t) are directly derived from ICES (2010) and no

observation errors are considered (Table A3.1). The number of fish

caught and declared in the Faroes, which are available by sea ages

(Cdec
F1,t andC

dec
F2,t), are corrected to account for the proportion of dis-

cardedcatches, theproportionofwildfish in catches, theproportion

ofmature fish (for 1SW) and the proportion of these catches attrib-

uted to eastern Scotland. Catches declared in thewesternGreenland

fishery (Cdec
WG2,t) are corrected to account for the proportion of

catches from European stocks and the proportion from eastern

Scotland (Figure A3.1). No correction for the declaration rate is

needed as estimates of reported catches have already been added

to the declared catches (for years 1993–2007).
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Appendix 4: Homewater catches
Time-series of declared homewater catches (Cdec

1SW,t andC
dec
2SW,t ) are

directly derived from ICES (2010) (Figure A4.1a). Informative

priors based on expertise are set for the harvest and the declaration

rates of homewater fisheries. The informative prior on declaration

Figure A3.1 Time-series of total catches of (a) 1SW salmon in the
Faroes (CdecF1,t ), (b) non-maturing fish in West Greenland (CdecWG2,t), and
(c) 2SW fish in the Faroe (CdecF2,t).

Table A3.1. Data used to compute the number of fish caught in the
mixed stock fisheries at Faroes and West Greenland.

Parameters Definitions Values

CdecF1,t Declared 1SW catches in Faroes fishery Time-series

CdecF2,t Declared 2SW catches in Faroes fishery Time-series

CdecWG2,t Declared catches in West Greenland fishery Time-series

Proportion of fish from Scotland in 1SW

maturing fish Faroes catches

0.20

Proportion of fish from Scotland in 1SW

non-maturing fish Faroes catches

0.192

Proportion of maturing fish in 1SW Faroes

catches

0.78

Proportion of unreported catch rate in Faroes

fishery

0.10

Proportion of wild fish in Faroes fishery Time-series

Proportion of fish from NE in West Greenland

catches

Time-series

Proportion of fish from Scotland within

catches of Northern European fish

0.645

Figure A4.1 Time-series of (a) declared homewater catches of 1SW
and 2SW (plain line and dotted line, respectively) and associated
(b) exploitation rate (same for both sea ages), and (c) declaration rate
for 1SW (white and grey boxplots, respectively).
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rates (Figure A4.1b) are based on best judgement estimatesmade by

local river/fisheries managers in some eastern areas of the country

(ICES, 2002). Unreported catches are argued to be greater in the

west of Scotland than in the east owing to less surveillance of the

reporting of salmon catches and to the smaller size and greater

number of rivers in the west. Informative priors on exploitation

rates (Figure A4.1c) are best estimates derived using reported

effort and estimate of standard fishing effort units based on net

fishery surveys (ICES, 2002).

Appendix 5: Posterior checking
The consistency between the model and the data is checked using

Bayesian posterior checking procedures (Gelman et al., 2004). For

each series of homewater catches, the chi-square statistic is com-

puted as a summary measure of the discrepancy over the whole

time-series (Eq. (A5.1)).

x2 Cdec
s,t , hs,t, rs,t

( )( )

=
∑

n

t=1

(Cdec
s,t − E(Cdec

s,t |hs,t, rs,t))
2

Var(Cdec
s,t |hs,t, rs,t)

, (A5.1)

wheren is the number of observations in the homewater catch series

and s the sea-age class. Foreach set of parametersdrawn in their joint

posterior distribution, the realized discrepancy x2obs computed with

the observed values of declared catches Cdec
s,t is compared with the

predicted discrepancy x2pred computed with the posterior predictive

replicates ofCdec
s,t . If the data and the model are consistent, observed

data should be similar to replicated data simulateda posterioriby the

model. TheBayesian p-value is the probability thatx2pred . x2obs esti-

mated fromasampleof hs,t, rs,t
( )

valuesdrawnin their jointposterior

distribution. Very high (. 0.95) or very low (, 0.05) p-values

provide serious warning about the possible inconsistencies between

the data and the model a posteriori (Gelman et al., 2004).

Handling editor: Shijie Zhou
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