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Abstract

Complex adaptive systems (CAS) are composed
of interacting agents, exhibit nonlinear proper-
ties such as positive and negative feedback, and
tend to produce emergent behavior that cannot
be wholly explained by deconstructing the system
into its constituent parts. Both system dynamics
(equation-based) approaches and agent-based ap-
proaches have been used to model such systems,
and each has its benefits and drawbacks. In this
paper, we introduce a class of agent-based mod-
els with an embedded system dynamics model, and
detail the semantics of a simulation framework for
these models. This model definition, along with the
simulation framework, combines agent-based and
system dynamics approaches in a way that retains
the strengths of both paradigms. We show the ap-
plicability of our model by instantiating it for two
example complex adaptive systems in the field of
Computational Sustainability, drawn from ecology
and epidemiology. We then present a more detailed
application in epidemiology, in which we compare
a previously unstudied intervention strategy to es-
tablished ones. Our experimental results, unattain-
able using previous methods, yield insight into the
effectiveness of these intervention strategies.

1 Introduction

Complex adaptive systems are pervasive: from energy grids
to supply chain networks, ecosystems, social diffusion and
disease dynamics, we are surrounded by and personally en-
gaged in complex adaptive systems of varying scales every
day [Miller and Page, 2007]. Complex adaptive systems
(CAS) are composed of interacting agents, exhibit nonlin-
ear properties such as positive and negative feedback and
tend to produce emergent system-level behavior. The field
of Computational Sustainability, seeks to develop computa-
tional models and methods to study complex natural and en-
gineered systems in the hopes of guiding them toward long-

term, sustainable outcomes [Gomes, 2009].
Historically, the field of system dynamics has used ordinary

differential equations to describe, analyze and qualitatively
predict the macro-level behaviors of CAS [Sterman, 2000],
but as computational costs have decreased agent-based mod-
eling has gained popularity as an alternative experimental
technique in CAS research [Miller and Page, 2007]. When
studying CAS in which the quantities of interest are discrete
(such as people or businesses), then the values of state vari-
ables in a system dynamics model of the CAS directly corre-
spond to subpopulations of agents in an agent-based model of
the same CAS.

The top-down approach of system dynamics allows for
easy model construction and validation, while the bottom-
up approach of agent-based modeling allows for sophisti-
cated interactions between agents with heterogenous state
space [Schieritz and Milling, 2003; Osgood, 2007]. On the
other hand, both methods have significant drawbacks: system
dynamics makes strong assumptions about the homogeneity
of agents and complexity of agent interactions in order to
achieve mathematical rigor, whereas agent based models are
difficult to construct, parameterize, and validate [Rahmandad
and Sterman, 2008]. A class of agent-based models with em-
bedded system dynamics models can overcome these difficul-
ties and provide new insights into complex adaptive systems.

Embedded (hybrid) models provide several advantages
over pure system dynamics or agent-based models. A com-
plete agent-based model need not be fitted, but individual-
level granularity in the model is maintained and heterogene-
ity in agents can be exploited. This heterogeneity allows for
the simulation of novel, complex intervention strategies at the
level of agents that might otherwise be difficult or impossi-
ble to express succinctly in system dynamics terminology.
Few studies, however, present hybrid models for complex
phenomena [Martinez-Moyano et al., 2007]. Although the
software AnyLogic [Borshchev and Filippov, 2004] claims
to have the capability of constructing such hybrid models,
no work has resolved the issues behind the construction of
embedded models by producing a general definition for such
models or giving a formal semantics for their simulation.
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Figure 1: An example stock and flow diagram.

Herein we introduce a class of agent-based models with
an embedded system dynamics model, and detail the seman-
tics of a simulation framework for these models. The model
definition and simulation framework integrate agent based
and system dynamics approaches in a way that retains the
strengths of both paradigms. Our embedded model definition
streamlines model construction, eases validation, and pro-
vides new agent-level information that can be used to discover
novel management and intervention strategies based on more
realistic motivations and goals.

We demonstrate the benefits of our approach by first instan-
tiating it for two example complex adaptive systems in the
field of Computational Sustainability, drawn from ecology
and epidemiology. We then present a more detailed applica-
tion in the field of epidemiology, and give novel experimental
results that compare the epidemiological and economic im-
pacts of two disease control intervention strategies, one pre-
viously studied and one proposed by our research. Finally,
we conclude by outlining future work that seeks to solve op-
timization problems defined on embedded models.

2 Background

System dynamics views a system as a set of stocks (vari-
ables) changing through flows (derivatives). When stocks
are discrete quantities, they represent homogenous groups of
well-mixed agents, whereas flows represent the movement of
agents between these groups [Sterman, 2000].

dX

dt
= (Fgen + Fin)− (Fdes + Fout)

System dynamics uses systems of ordinary differential equa-
tions (ODEs) to mathematically express models of stocks and
flows [Brauer and Castillo-Chavez, 2001]. For a stock X , let
Fgen stand for generative flow that increases the stock X with
agents from outside the system, Fdes for destructive flow that
decreases X and removes agents from the system, Fin for
the flow of agents from other stocks to X , and Fout for the
flow of agents from X to other stocks. We note that the terms
Fgen, Fdes, Fin, and Fout may be nonlinear functions of other
stocks and parameters that may change with time.

Figure 1 shows a simple stock and flow diagram of a sys-
tem that contains two stocks X and Y . A generative flow
introduces new agents to the system and stock X at a rate
r1. Agents flow out of stock X and into stock Y at a rate r2.
Finally, a destructive flow removes agents from stock Y and
the system, occurring at a rate r3. The diagram also indicates
feedback loops within the system, in which r2 depends on the

sizes of stocks X and Y . The identification and modeling of
such feedback loops is a critical part of system dynamics.

Although closed-form analytic solutions cannot be ob-
tained for most systems of ODEs, system dynamics has many
advantages: models can be constructed and validated rela-
tively quickly using available data and simulation methods
are computationally efficient. However, the expressive power
of system dynamics is limited by its underlying assumptions
of a homogenous and well-mixed population [Brauer and
Castillo-Chavez, 2001], meaning that these models capture
only the average behavior of a system.

One may improve the granularity of ODE models by in-
creasing the number of variables (stocks) in order to represent
a finer division of the state space. For instance, rather than as-
sume all agents in stock X are identical in every respect, X
may be divided into smaller stocks denoted by X1, . . . , Xn

based on another characteristic (e.g. age, see for instance
[Medlock and Galvani, 2009]). Each of these stocks could be
further divided into smaller stocks based on a secondary char-
acteristic, and this process could conceivably lead to an ex-
plosion in the number of equations and parameters that would
need to be fitted. It is difficult to know when to truncate this
division of stocks in order to obtain the desired complexity
and expressiveness of the model. Additionally, the amount
of data needed to parameterize the model also increases with
model complexity.

When modeling CAS, it is sometimes important to con-
sider interventions (actions by outsiders), which can influence
flows in the ODE model in predictable or unpredictable ways.
Interventions may be included in an ODE model as a param-
eter that affects one or more flows in the model, or included
as a new term in one or more equation. Such parameters may
be difficult to compute for innovative strategies for which no
data exist. Additionally, the homogenous nature of transi-
tion events provides no information on how to select agents
for targeted interventions, nor the consequences of such in-
terventions to the agent.

In contrast to system dynamics modeling, agent-based
modeling views a system as a population of heterogenous
agents with a state space that evolves through local interac-
tions. From these interactions, complex emergent behavior
often arises. The ability of heterogeneous agents to main-
tain a large state space also yields greater and more intu-
itive information that can be used by researchers and policy-
makers. Agent-based modeling, however, has several draw-
backs. First, maintaining a larger state space decreases com-
putational efficiency. Model construction is also more dif-
ficult, as it is hard to link observed behavior to local inter-
actions and to capture all critical feedback loops. Finally,
since agent-based models are composed of many interactions,
model calibration, validation, and sensitivity analysis require
large amounts of data and time [Osgood, 2007].

3 Definition of Embedded Model

Here we identify and define a class of agent-based models
with embedded system dynamics models. We then provide an
algorithmic description of our simulation framework for these
models. The semantics of this framework solve the problem
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of embedding system dynamics within agent-based models
while retaining the advantages of both paradigms and avoid-
ing their pitfalls.

We use Gillespie’s τ -leap algorithm for stochastically sim-
ulating the embedded system dynamics model. The τ -leap
algorithm interprets the rates of flow from the ODE model as
probabilities per unit time for transition events between sys-
tem states (i.e. the movement of agents between stocks or
into and out of the system). For Δt small enough, each tran-
sition event Ei, i = 1, . . . , n occurs at rate ri (as given by the
ODE system) and is Poisson distributed with parameter riΔt
[Keeling and Rohani, 2008].

Algorithm 1 τ -leap Method
while Time < MaxTime do

for all event types i do
ΔEi ← Poisson(riΔt)

end for
Update size of each stock based on which transition
events occur.
Randomly select ΔEi agents uniformly from the appro-
priate stock and transition according to event Ei.
T ime ← T ime+Δt

end while

Our class of embedded models divides an agent’s state vari-
ables into two sets: local state variables that hold general
agent state and ODE state variables, one for each embed-
ded model, that take values corresponding to the stocks of the
ODE model. We use λ for the set of local state variables for
an agent, θ forthe set of ODE state variables for an agent, and
Λ and Θ for the updatable maps that store the values of state
variables for agents. Let Name denote a datatype of identi-
fiers (used to name variables, stocks, and agents). We reserve
the names Gen and Des for the source of generative flow and
the destination of destructive flow.

We define our class of embedded models as a tuple M =
(S,A,O,U,D, V ). S is a set of sets of local state variables
λ, one set of variables per agent ; A is a set of sets of ODE
state variables θ, again one set of variables per agent; O is a
set of tuples of the form (Name,Name,R), specifying rates
of flow in the ODE system (either between stocks, from Gen
to a stock, or from a stock to Des); U is a set of local state
update functions that use agent actions and interactions to up-
date local state variables λ and suggest the generation or de-
struction of agents; D is a set of demographic functions that
resolve suggestions on agent generation and destruction given
by other model components; and V is a set of intervention
functions that can model high-level actors by updating both
local state variables and ODE state variables. A complete de-
scription of notation used is shown in [Table 1].

Algorithm 2 shows the simulation of an embedded model
for one time step, given an initial set of agents and their state
space. The algorithm enforces a set of data access rules; a
function can read a variable if it receives it as an argument
and can write by returning an updated copy. Functions in U
can read both local state and ODE state variables in Λ and Θ,
but can only update local state. We use ODESimulation to

Algorithm 2 Execution of one time step for our simulation
framework
Input: Embedded model M = (S,A,O,U,D, V ), set of

agent names P , local state map Λ and ODE state map Θ.
Pgen ← Pdes ← {}
for all local state update functions u ∈ U do
(Pgen, Pdes,Λ) ← u(P, Pgen, Pdes,Λ,Θ)

end for
(Pgen, Pdes,Θ) ← ODESimulation(O,Pgen, Pdes,Θ)
for all demography functions d ∈ D do
P ← d(P, Pgen, Pdes,Λ,Θ)

end for
for all intervention functions i ∈ V do
(P,Λ,Θ) ← i(P,Λ,Θ)

end for

denote an algorithm for simulating a system of ODEs (such
as the τ - leap method given in Algorithm 1). Such algorithms
may only read and write to the ODE state map Θ. Demog-
raphy functions in D can modify the set P of agents in the
system. Finally, intervention functions, in accordance with
their role in modeling high-level actors that influence the sys-
tem, can read and update the entire state space, as well as the
set P of agents in the system.

Algorithm 2 also shows how predictions on agent gener-
ation and destruction from different model components are
resolved. The sets Pgen and Pdes temporarily hold agents
predicted by functions in U or the ODE simulation for gener-
ation or destruction, respectively. Demography functions D
use these predictions to update the population of agents in P .

Finally, the ordering of Algorithm 2 specifies that interven-
tion functions update Λ, Θ, and P last, overriding changes
made by other model components. This facilitates the role
of intervention functions in modeling high-level actors like
policy-makers or researchers who can influence the system.

3.1 Examples of Embedded Models

We present two complex adaptive systems from Computa-
tional Sustainability and give the embedded models for these
systems in order to demonstrate the flexibility of our model
definition, although we do not conduct any further analysis of
these systems. Our first example comes from ecology, where
logistic equations are used to model the population dynam-
ics of species [Brauer and Castillo-Chavez, 2001]. Here we
are interested in a species that occupies a number of habitat
patches. Assume that for each habitat i there is a known car-
rying capacity Ki that gives the maximum population size
that habitat i can support. Let rgen be the rate at which the
species reproduces, and rij be the rate of migration between
habitats i and j. The change in the stock of species members
at habitat i is modeled as:

dNi

dt
=

⎛
⎝∑

j �=i

rjiNj + rgenNi

⎞
⎠(

1− Ni

Ki

)
−

∑
j �=i

rijNi

Species distribution models are often used to inform con-
servation efforts. One intervention commonly undertaken is
translocation, in which species members are transported into
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Symbol Description

S Set of sets of local state variables λ

A Set of sets of ODE state variables θ

O Set of tuples of the form (Name,Name,R) specifying rates of flow in the ODE system (either between
stocks from Gen to a stock, or from a stock to Des)

U Set of local state update functions that use agent actions and interactions to update local state variables λ
and suggest the generation or destruction of agents

D Set of demographic functions that resolve suggestions on agent generation and destruction given by other
model components

V Set of intervention functions that model high-level actors by updating both local state variables
and ODE state variables

λ Set of local state variables for an agent

θ Set of ODE state variables for an agent

Λ Updatable map, mapping agents to local state variables

Θ Updatable map, mapping agents to ODE state variables

Table 1: Variables in the embedded model definition.

a habitat with the hopes that they will survive, reproduce, and
bolster the population there. Species members could be trans-
ported from another habitat in the system, or introduced from
outside the system. System dynamics models translocation
with new flows occurring at specified rates. Conservationists,
however, may wish to model selection policies for transloca-
tion targets based on characteristics about the current habi-
tat population. On the other hand, a completely agent-based
model of species reproduction and migration would be diffi-
cult to construct and verify.

An embedded model (S,A,O,U,D, V ) can solve these
problems. Agents represent species members, and the set of
local state variables S holds data such as age, weight, or spa-
tial location within the habitat. A contains one ODE state
variable taking values corresponding to the i habitat spaces
from the ODE model, indicating which habitat a species
member occupies. O specifies the logistic equations intro-
duced above. The functions in U would model the biological
behavior of species members to evolve local state variables.
We assume that only the logistic equations provide sugges-
tions on agent generation and destruction, and so D contains
one function which accepts these suggestions. Finally, V con-
tains functions to model translocation. Such functions would
use the current state space of agents to obtain a view of the
species population in each habitat. This view could then be
used to target translocation decisions.

The next example comes from epidemiology, the study
of the spread of an infectious disease through a population
[Keeling and Rohani, 2008]. Epidemics are well-studied
by both the agent-based and system dynamics communities
[Brauer and Castillo-Chavez, 2001; Barrett et al., 2005] and
representative of other types of diffusion processes, such as
innovation adoption, financial panics, and the spread of ru-

mors [Rahmandad and Sterman, 2008].
The SIR model, one of the simplest used to model epi-

demics, models the changes in three stocks: organisms sus-
ceptible to, infected by, and recovered from the disease in
question. Let β be the rate at which infected individuals trans-
mit the disease to susceptible individuals and γ be the rate at
which infected individuals recover from the disease. Then,
the SIR model is defined by the equations:

dS

dt
= −βIS

dI

dt
= βSI − γI

dR

dt
= γI

Consider a disease for which the SIR model is applicable
and vaccination is available as an intervention strategy for dis-
ease control. This control strategy could be modeled using
systems dynamics by introducing a rate of vaccination and
a new flow at this rate from the susceptible to the recovered
stock. In practice, however, policy-makers target vaccination
programs toward specific groups based on characteristics that
make the group vulnerable to the disease and require fore-
casts on how such targeting policies affect disease impacts.
We show here how an embedded model for this system can
solve these problems.

In this embedded model, S includes variables to track so-
cioeconomic factors like age, occupation, income, and health.
The set A contains one ODE state variable taking the val-
ues susceptible, infected, or recovered corresponding to an
agent’s state in the ODE model. O specifies the ODE model.
The update functions in U can model an agent’s socioeco-
nomic evolution, as well as the generation or destruction of
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Figure 2: Stock and flow diagram for Mycobacterium avium
subsp. paratuberculosis (MAP) in a typical dairy herd .
X1 and Tr1 are susceptible and transiently shedding calves,
resp.; X2, Tr2 and H2 are susceptible, transiently shedding
and latent heifers, resp.; X3, H3, Y1 and Y2 are suscepible,
latent, low-shedding and high-shedding adult cows, resp. See
text for detailed description.

agents through births and deaths (all of which can be influ-
enced by the ODE state of agents). Since the embedded SIR
model makes no suggestions regarding the generation or de-
struction of agents, the set D of demography functions can
consist of a simple function that accepts the changes proposed
by the functions in U . Functions in V can then model vac-
cination. Given the current state space of agents, machine-
learning could be used to produce a function that predicts
which agents seek vaccination. The effects of campaigns
targeted toward at-risk groups can also be modeled. Policy-
makers can test new vaccination strategies and forecast their
impacts on disease control by changing the functions in V .

4 Case Study: Dairy Herds

We conduct a detailed study of our model class definition and
simulation framework using an advanced application from
epidemiology. We focus on Mycobacterium avium subsp.
paratuberculosis (MAP) in dairy herds, a disease that is dif-
ficult to detect and control because of its slow progression.
MAP adversely affects the milk production of an infected
cow, and is estimated to cost $200 million to dairy herds in
the United States. MAP may also be connected to Crohn’s
disease in humans [Ott, 1997]. The primary disease control
strategy for MAP is a test-and-cull strategy implemented by
the dairy farmer, in which the farmer periodically tests the
herd for MAP and uses these results to decide which cows
to remove, or cull, from the herd. The dynamics of MAP on
a dairy farm can be considered a complex adaptive system.
The farmer is able to make culling decisions based on the ob-
served state of the system, and the system reacts accordingly,
creating a feedback loop which (the farmer hopes) will drive
the system to a disease-free equilibrium.

A fully parameterized and validated ODE model of MAP
on a dairy farm is shown in Figure 3 [Lu et al., 2010]. It is
a complex system of 9 ODEs and 24 parameters, and divides
the dairy herd into three age groups: calves (<1 year), heifers

(1-2 years) and adult cows. The disease progresses through
the following states: Susceptible, Transiently Shedding, La-
tent, Low Shedding and High Shedding. Calves are divided
into susceptible (X1) and transiently shedding (Tr1) stocks;
heifers are divided into resistant (X2), transiently shedding
(Tr2) and latent (H2) stocks; and cows are divided into resis-
tant (X3), latent (H3), low shedding (Y1) and high shedding
(Y2) stocks. Due to the long incubation period of the disease
and the comparatively short lifespan of dairy cows, not all
age groups are assumed to reach all disease states. For in-
stance, if a calf has not become infected within its first year,
it is assumed to be resistant to the disease for the remainder of
its lifetime, since infection as a heifer or adult cow does not
produce clinical signs of infection before the cow is removed
from the herd. In Figure 3 this is indicated by the dashed flow
lines λ2 and λ3; these parameters in the validated model are
set to zero. The force of infection (λ1) to susceptible calves is
parameterized as λ1 = βTr(Tr1+Tr2)+βY1

Y1+βY2
Y2, in-

dicating that susceptible calves (X1) are infected through one
of three transmission routes: calf-calf transmission (βTr), or
infection by either low (βY1 ) or high (βY2 ) shedding adult
cows. The herd birth rate (μ) takes into account that some
calves might be born with the disease (γ) as a result of in
utero infection, and (μ1, μ2, μ3) represent age-specific gen-
eral mortality rates. Additional test-based culling of low
shedding (δ1) and high shedding (δ2) adult animals is in-
cluded, as well as an extra culling rate (α) for removal of high
shedders (Y2) due to clinical signs of MAP infection. For a
more detailed description of this model, as well as a complete
list of parameter values, please see [Lu et al., 2010].

This model shows good fit to longitudinal data gathered as
part of MAP disease control programs [Smith et al., 2009].
However, the ODE model lacks the ability to identify or track
individual cows within the system. Ultimately, milk yield is
the measure of interest to the dairy farmer and the one used
to make most culling decisions, and in order to compute this
value for individual cows it is necessary to know their life
histories (e.g. number of pregancies, MAP disease state, etc).
If a modeler wished to analyze the effect that culling low-
yield milk cows had on MAP prevalence within a farm, or the
economic impact of test-and-cull strategies, the ODE model
presented above would be inadequate and agent-based tech-
niques would be more appropriate. On the other hand, the
longitudinal data used to fit and validate the ODE model is not
so detailed as to fully parameterize a complete agent-based
model of MAP transmission on a dairy farm. Therefore it is
in the modeler’s best interest to utilize the aggregated infor-
mation provided by the ODE model by embedding this model
within an agent-based model of MAP transmission on a dairy
farm.

We construct an embedded model M . In this model, the
set S of local state variables λ track biological information
about dairy cow agents, including reproductive history and
levels of milk production. The set of ODE state variables A
contains one variable θ that holds an agent’s current MAP dis-
ease state. The local state update functions in U are responsi-
ble for maintaining the biological state held by the variables
in S. For example, our model includes a local state update
function that uses an animal’s reproductive history and cur-
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(a) Comparison of MAP prevalence at endemic equilibrium between ODE
and embedded models with no intervention.

(b) Comparison of MAP prevalence at endemic equilibrium between ODE
and embedded models with a culling strategy.

Figure 3: Results for experiments validating the Embedded model for MAP against the ODE based Coupled Model.

rent MAP disease state to predict the animal’s current milk
production level. U also includes functions that model the
birth of new livestock. The demography functions in D ig-
nore suggestions from O and accept all other newly gener-
ated agents into the system. Population size is bounded by
culling animals with low production from the herd (a practice
analogous to that carried out by dairy farmers in reality). The
set of intervention functions V are aimed at controlling MAP.
Intervention functions use an agent’s local and ODE state to
simulate MAP testing and culling decisions.

Our embedded model provides significant advantages over
the existing ODE model. Our model includes a local state
update function, extrapolated from field data and responsive
to MAP infection, that predicts an animal’s milk produc-
tion [Smith et al., 2009]. This allows our model to include
functions that simulate the economically motivated actions of
farmers and to provide metrics on how MAP infection and
disease control impact the economic output of a farm. To
our knowledge, ours is the first model to provide forecasts of
herd-level economics under MAP infection.

We implemented our simulation framework in Java and
used it to run three sets of 100,000 simulations on a herd
of no more than 150 agents. Simulations differ in the inter-
vention strategies they employ. The no test-and-cull strategy
employs no control, while the test-and-cull strategy simulates

the semi-annual testing of cows for MAP, removing any test
positive individuals from the herd as replacements become
available. Last, we propose the milk-test-and-cull strategy
which simulates semi-annual testing of MAP, but delays the
removal of test positive cows who have high milk yield.

When a disease persists in a population over time rather
than naturally fading out, it has reached an endemic equilib-
rium. In our simulated herd we introduced an infected ani-
mal and simulated a run-up period of 50 years until endemic
equilibrium was reached. We then simulated a 25 year period
employing disease control strategies to study their effects.

We first verify that the embedded model produces accu-
rate disease transmission dynamics by comparison to the al-
ready validated ODE model. Each line in Figure 3(a) gives
the CDF of prevalence across 100,000 simulation runs ev-
ery five years after the run-up period. This figure visually
confirms that the two models produce similar distributions of
results for the prevalence of MAP in an uncontrolled setting
over time. We confirm this analytically by noting that the KL
divergence between the two distributions at the time horizon
is 0.0742.

We now turn to using the embedded model to measure
the impacts of the three interventions. Figure 4(a) gives the
mean prevalence of MAP infection in the simulated herd over
time. We first note that employing no control results in the
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(a) Comparison of mean MAP prevalence over time be-
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(b) Comparison of mean herd milk production over time be-
tween three control strategies.
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(c) CDFs of total herd milk production over 25 years for
three control strategies.

Figure 4: Results on epidemiological and economic impacts of MAP obtained with an embedded model.

persistence of the endemic equilibrium, as expected. Next,
we note that the test-and-cull and milk-test-and-cull strate-
gies both result in the disappearance of MAP from the herd
within 25 years, although fadeout under milk-test-and-cull is
slightly slower. Since both strategies result in the eradication
of MAP in similar time-frames, our results suggest that the
more economically-minded strategy can be chosen by farm-
ers for disease control in closed dairy herds (i.e. no movement
of cows between farms).

Figure 4(b) reveals the economic impacts of MAP under
the three control strategies by showing the mean total milk
production of the simulated herd over time. It is clear that
controlling MAP infection in the herd has an early cost: dur-
ing the first four years of control, milk production under the
two culling strategies is significantly decreased as infected
cows that produce more milk than their younger replacements
are removed. The milk-test-and-cull strategy suffers less from

this effect. It is also clear that in the long term disease con-
trol is vital to economic output: milk production is signifi-
cantly higher over time under the two strategies that control
for MAP vs. the uncontrolled strategy.

Figure 4(c) compares total economic output under the three
intervention strategies. Each line gives the CDF (across
100,000 simulations) of the total milk produced by the herd
under the strategies for the 25 year control period. The dis-
tributions of results when controlling for MAP are clearly
higher than with no control, demonstrating the economic ben-
efits of interventions. Furthermore, Figure 4(c) indicates that
the two culling strategies have similar performance in the
long term. Combining this with the results from Figure 4(b),
we conclude that the economically informed milk-test-and-
cull strategy can be employed to mitigate the short-term costs
of MAP control without sacrificing long term productivity
and disease eradication.
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5 Future Work

Future work will focus on solution techniques for optimiza-
tion problems defined on our class of models, in order to
provide policymakers with optimal intervention strategies for
complex adaptive systems. In our MAP application, farm-
ers must use the current state of their herd to make culling
decisions that result in the best future outcome. We define a
policy function ψ(Λ,Θ) that, given the current state of agents,
chooses a set of agents for culling. An optimal policy function
ψ∗(Λ,Θ) makes culling decisions resulting in the best eco-
nomic productivity across all possible stochastic outcomes.
Finding or learning an optimal policy function is computa-
tionally complex. The stochastic nature of simulations makes
any optimization problem defined on the embedded model
computationally difficult. In particular, we will focus on find-
ing optimal policies in this stochastic setting.

6 Conclusion

System dynamics and agent-based techniques, each with their
benefits and drawbacks, have been used to model many com-
plex adaptive systems. In this work, we defined and presented
a simulation framework for a class of embedded models that
leverage the advantages of both system dynamics and agent-
based modeling. Through examples and an advanced appli-
cation in epidemiology, we demonstrated the applicability of
our class of models, its ability to support novel intervention
strategies, and its potential to generate innovative forecasts.
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