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EMBEDDING THE DIAMOND LATTICE IN THE RECURSIVELY

ENUMERABLE TRUTH-TABLE DEGREES

CARL G. JOCKUSCH, JR.1 AND JEANLEAH MOHRHERR

Abstract. It is shown that the four element Boolean algebra can be embedded in

the recursively enumerable truth-table degrees with least and greatest elements

preserved. Corresponding results for other lattices and other reducibilites are also

discussed.

For sets A, B ç co, we say that A is a truth-table (tt) reducible to B if there exists

an effective procedure for reducing any question of the form "m e A?" to an

equivalent finite Boolean combination of questions of the form "/c e BT' Then, A, B

are said to have the same tt-degree if each is tt-reducible to the other, and tt-degrees

have a natural ordering induced by tt-reducibility. (See [1, 6 and 8] for information

on tt-degrees.) We show the existence of two incomparable recursively enumerable

(r.e.) tt-degrees with supremum 0' (the highest r.e. tt-degree) and infimum 0 (the

lowest). In other words, the four-element Boolean algebra (known also as the

diamond lattice) can be embedded as a lattice in the r.e. tt-degrees with least and

greatest elements preserved. We also obtain analogous results with the diamond

lattice replaced by each of the two five-element nondistributive lattices (pentagon

and 1-3-1) and with tt-reducibility replaced by many of its restricted forms, such as

bounded truth-table and positive reducibility [2].

The history of this problem is as follows. A. H. Lachlan proved in his well-known

"nondiamond theorem" [5, Theorem 5] that the diamond lattice cannot be em-

bedded in the r.e. Turing degrees with 0 and 1 preserved. His proof simultaneously

establishes the corresponding result for r.e. weak truth-table (wtt) degrees [6].

Lachlan also showed in [4] that no two incomparable r.e. many-one (m) degrees can

have supremum 0', so the diamond lattice cannot be embedded in the r.e. w-degrees

with 1 preserved. The trend of these results makes it reasonable to conjecture that

the diamond lattice cannot be embedded in the r.e. tt-degrees with 0 and 1

preserved, although in the other direction D. Posner [7] proved that the Turing

degrees below 0' are complemented. In [6, Theorem 6.6] P. G. Odifreddi announced

that in fact the diamond lattice can be embedded in the r.e. tt-degrees with 0 and 1

preserved. His construction involved splitting a creative set K into two disjoint r.e.

-
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sets A, B in such a way that every C tt-reducible to each of A, B is recursive.

However, as R. Shore pointed out, there is a serious difficulty with his sketched

proof since the strategy for a given set C as above, with given potential tt-reductions

from C to A, B, may permanently restrain infinitely many numbers from A in the

case when C is recursive. This restraint may force A to be recursive, so that the

incomparability requirements cannot then be satisfied. Our proof uses the basic

approach devised by Odifreddi, but we modify his strategy to ensure that each

requirement imposes only a finite amount of restraint over the entire construction.

The modification involves giving up the disjointness of A and B and also making

strong use of the truth-table nature of the reductions by checking in advance the

effect on C (under the given truth-table reductions) of putting a given number into A

or B (or both). We still do not know whether there are disjoint tt-incomparable r.e.

sets A, B, such that A U B is creative and every r.e. set C tt-reducible to each of A, B

is recursive.

Our results combined with those of Lachlan already mentioned solve the problem

of the embeddability of the diamond lattice (preserving 0 and 1) in the r.e. degrees

for almost every reducibility between many-one and Turing reducibility that has

been studied. What emerges is a curious pattern of negative results for the strongest

and weakest reducibilities (m, wtt and T) and positive results for intermediate ones

(tt, btt, and p). Thus it is not clear whether embeddability or nonembeddability is

more "pathological."

We are grateful to P. Fejer for helpful conversations on the subject of this paper.

Our notation is quite standard. We let <pe, {e}A be the eth partial recursive

function and the eth A -partial recursive function, respectively. If <p,(.x) is defined,

we let [/^(x) = 1 if A satisfies the truth-table condition with index <p¡(x) (denoted

A t= <pt(x)) and [i]A(x) = 0 if A fct <pt(x). Thus the sets truth-table reducible to A

are precisely those whose characteristic functions are of the form [i]A for some i with

<p, total. We henceforth identify sets with their characteristic functions. We write

[e}A, [i]A for the portions of {e}A, [i]A respectively which can be computed in at

most s steps.

Theorem. For any r.e. set D, there are r.e. sets A, B such that A U B = D, A' < T

0', B' < T 0', and every set tt-reducible to each of A, B is recursive.

Proof. We enumerate D so that at each stage í exactly one new element, denoted

ds, appears in D. At stage s, ds is enumerated in A or B or both, and no other

element enters A or B. Hence D = A U B. At the same time we attempt to satisfy

the obvious negative requirements:

Ne(A): Preserve the computation of {e }f(e) by /1-restraint, if it is convergent.

Ne(B): Preserve (e}f(e) by 5-restraint.

Q(i, j): U[i]A = [j]B =/(/total), then/is recursive.

As usual, these requirements are assigned a priority ranking, say R3e = Ne(A),

R3e+X = Ne(B), and R3<i,/>+2 = ô('> j)- As in the Sacks splitting theorem [10,

Theorem 2.5], we let es be the least e < í such that enumeration of ds in A or B

might affect 7?^ and choose the action at stage s so as to preserve Re. It is obvious
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EMBEDDING THE DIAMOND LATTICE 125

how this is to be done if Re is Ne(A) or Ne(B). However there is a difficulty with

Q(i, j) because it restrains both A and B, and it is not possible to preserve both

restraints. In addition, we must choose our strategy for Q(i, j) so that it acts only

finitely often over the entire construction. Thus the strategy of preserving agree-

ments between the apparent values of [i]A, [j]B (as used in the usual r.e. Turing

minimal pair construction [10, Theorem 4.2]) is not suitable. Instead we only

preserve (or create) apparent disagreements between [i]A and [j]B. We then show

that if no disagreements between [i]A and [j]B aie permanently preserved and these

are total, then they are recursive.

Construction. At stage s, we assume As, Bs have been defined and define As+l,

Bs + l. Let ds be the unique number enumerated in D at stage s. We say that Ne(A) is

affected by ds if (e}f(e) is defined and ds is less than the use of this computation.

This is defined analogously for Ne(B). We say that Q(i, j) is affected by ds if there

is an x < s such that [i]f(y), lj]f\y) are defined for ally < x, [i]A' \ x = [j]B' \ x,

and further either

(1) A3 U {ds}t=<Pi(x) iff A'\*q>i(x)

or

(2) B> U {ds} N <pj{x) iff B'#%(x).

If noRe, e < s, is affected by ds, let As + 1 = As U {ds},Bs + l = Bs. Otherwise, let es

be the least e < s such that Re is affected by ds. If Re is of the form Ne(A), let

As+1 = As, Bs + 1 = Bs U {ds}. If Re is of the form Ne(B), let As + l = As U {•<*,-},
Bs + 1 = Bs.

Finally, suppose that 7?^ is Q(i, j). Then either (1) or (2) holds. If (1) holds, let

Bs + 1 = Bs U {ds} and choose As + l to be either/T or^'U {ds} in such a way that

(3) As + 1 \= <p,(x) « Bs+1 V= <pj(x).

This is possible because (1) holds. If (1) does not hold, proceed analogously,

replacing A by B and i by j. Then (3) still can be achieved because (2) holds. This

concludes the construction.

It is clear the A, B are r.e. sets and A U B = D.

Lemma 1. For each e, there are only finitely many s with es = e.

Proof. As usual the proof is by induction on e. The induction step is standard if

Re is of the form N¡(A) or Nt(B). Assume now that Re is Q(i, j), and choose s0 so

that es < e holds for noi> s0. Assume for a contradiction that es = e for infinitely

many s. If es = e, let xs denote the value of x used in the construction. By (3) and

the clause [i]A' Ï x = [j]B' Ï x we see that xs is nonincreasing in s for s ^ s0, es = e.

Thus there exists x* such that xs = x* for all sufficiently large s with es = e.

However, for sufficiently large s, ds is not involved in the truth-table conditions

(¡p,(x*) or <pj(x*), so that ds cannot affect Q(i, j). This contradiction establishes the

lemma.

From the lemma and the construction it follows that ee/ whenever {s:

{ e }f(e) defined} is infinite. Hence A' < T K by the limit lemma, and B' < T K by a

similar argument.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



126 C. G. JOCKUSCH, JR. AND JEANLEAH MOHRHERR

Lemma 2. If[i]A = [j]B = F, then E is recursive.

Proof. Let Re = Q(i, j) and choose s0 > e so that es < e holds for noo v To

compute E(x) simply search for s ^ s0, x with [i]f(y), [j]f'(y) defined and equal

for all y- < x, and then E(x) = [i]f(x). To see that this is correct, it suffices to show

(4) [/]f(x) = [z]r,(x) = [y]r,(^)
whenever x, s0 < 5 < t and [i]f(y) = [j]B(y) for all y < x. Suppose for a con-

tradiction that (4) fails and let x0 be the least x for which it fails. Fix any s > s0 for

which (4) fails with x = x0, and let t0 be the least t > s0 for which it fails. Then, by

minimality of x0, [i]f(y) and [j]f(y) are defined and equal for all y < xQ. By

minimality of t, we must have [i]A'* (x0) =t= [i]A'(x0) or [j]B * (x0) =£ [j]B(x0).

Hence d, affects Q(i, j) at t, so e, < e. This contradicts the choice of s0, so the proof

is complete.

Corollary 1. The diamond lattice is embeddable in the r.e. truth-table degrees with

0 and 1 preserved.

Proof. Let D = K in the theorem. We have K = AuB^ttA®B, and A e5<„

K is automatic. Then 0<tt/4,2?<tt K and A, B are tt-incomparable by the

preceding and the lowness of A and B.

The proof of this corollary establishes the analogous result for a wide class of

reducibilities, namely all those intermediate between bounded disjunctive reducibil-

ity (<bd) and truth-table reducibility. (We say A <bd B if any question of the form

"w g AT' can be effectively reduced to disjunction ^efiv ■••V^ei, withy

independent of m. Clearly, A U B ^bdA ffi B for all sets A, B.)

Corollary 2. The diamond lattice can be embedded, with 0 and 1 preserved, in the

r.e. degrees of all of the following reducibilities: bounded disjunctive (also known as

bq-reducibility [3]) disjunctive (also known as q-reducibility [9]) bounded positive,

positive [2], and bounded truth-table.

The next result shows that the modular five-element nondistributive lattice known

as 1-3-1 can be embedded in the r.e. truth-table degrees.

Theorem 2. There are threepairwise incomparable r.e. truth-table degrees such that

any two of them have sup 0' and inf 0.

Proof. We use the method of Theorem 1 (with D = K) to construct low r.e. sets

A, B, C such that K is the union of any two of them and such that no nonrecursive

set is truth-table reducible to any two of them. Thus whenever a number is

enumerated in K, it must be put into at least two of the sets A, B,C. We have

lowness requirements for each set A, B,C and "minimal pair" requirements for each

pair from A, B, C and each pair of Gödel numbers i, j. As in Theorem 1, for

instance, the requirement Q(A, B, i, j) is that if [i]A = [j]B = E, then F is recur-

sive. This is handled essentially as Q(i, j) is handled in Theorem 1. In particular if

Q(A, B, i, j) plays the role of Re in Theorem 1, we set Ci + 1 = Cs U {ds} and

define As+X, Bs + l as in the proof of Theorem 1. The verification that the construc-

tion works is the same as in Theorem 1.
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Theorem 2 extends in an obvious way from triples to «-tuples so that the 1-zz-l

lattice is embeddable in the r.e. tt-degrees with 0 and 1 preserved. We now show that

the pentagon lattice is also so embeddable.

Theorem 3. There are low r.e. sets A, B, C such that C is strictly truth-table below

B, A © C is truth-table complete, and the truth-table inf of A, B is 0.

Proof. We make A, B, C low as in Theorem 1. We put every n in K into at least

one of A and C. Whenever we put n into C, put In into B. To ensure that B =£ tt C,

we use odd numbers as witnesses to ensure that B ¥= [e]c. Again the construction is

finite injury.

Let P be the class of lattices which can be embedded in the r.e. truth-table degrees

with least and greatest elements preserved. The results of this paper show that the

two-atom Boolean algebra and various other finite lattices are in P. It is an open

question whether all finite lattices are in P. However, the methods of this paper do

not seem adequate to show that there are any lattices in P which have pairwise

incomparable elements a, b and an element c < 1 such that (a fl b) U c = 1. For

example, we do not know whether the Boolean algebra with three atoms is in P. On

the other hand, it seems conceivable that any finite lattice not having three elements

a, b, c as above may be shown to be in P by combining the methods of this paper

with those of Fejer and Shore [1]. In particular, it is easy to see that the so-called

"double-diamond" lattice (obtained by identifying the greatest element of one

diamond with the least element of another) is in P. This gives an example of a lattice

in P having two incomparable elements with a nonzero infimum.

We close with a side remark on bounded disjunctive reducibility, which was

defined just before the statement of Corollary 2. It was proved independently by

P. R. Young [11, Part I] and A. H. Lachlan [3, Theorem 9] that there exist

noncreative sets which are bd-complete. We give a simpler proof here. Let A and B

be noncreative r.e. sets with A U B = K. (The existence of such A and B follows

from Theorem 1 and also from the Sacks splitting theorem [10, Theorem 2.5].) Then

A © B is bd-complete since K = A U B < bd A © B. On the other hand, A © B

cannot be creative since then either A or B would be creative, by Lachlan's universal

set theorem [4].
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