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Časopis pro pěstování matematiky, roč. 98 (1973), Praha 

EMBEDDING THE POLYTOMIC TREE INTO THE n-CUBE 

IVAN HAVEL, PETR LIEBL, Praha 

(Received October 13, 1972) 

In the whole paper a "graph" is a nondirected, possibly infinite graph without 
loops and multiple edges, expressed as an ordered pair 9 = <V, F>, where V is the 
set of vertices and E is the set of edges, a subset of V(2), the set of all unordered pairs 
of elements of V. 9' = <V', F'> is said to be the subgraph of 9 = <V, £> induced 
by V iff V' <= V, E' = E n V'(2). 9' = <V\ E'> is said to be a partial subgraph 
of 9 = <V, E> iff V' c V, E' c £ n V'(2). (Cf [3].) By ] [ we denote the post-office 
function. 

Definition 1. Let S be a set, by 2s denote as usual the set of all subsets of S. Put 
E(S) = {(A9 B) | A c= S, B cz S, card (A - B) = 1}. (A - B) denotes here the sym
metric difference of A and £. By the S-cube we understand the graph jf(S) = 
= <2*, £(S)>. 

Definition 2. By .ft(S) denote the class of all graphs isomorphic to some partial 
subgraph of JT(S). If S = {1, 2,. . . , n}, write 5t(S) = **„. Put K = {9 \ 3S, ̂  e ft(S)}. 
By .ft denote the class of all graphs 9 such that for any finite partial subgraph 9' 
of 9, 9' e £. 

Trivially, if 9 e ft(5) and 0' is a partial subgraph of 9, then 0 ' e $t(S). 

Definition 3. Let 9 = <V, E> be a graph, F a set. Assume there exists a mapping 
iA : E -> F such that 

(i) if (el9 ^25 • • -5 ^r) is ̂ e sequence of edges of a finite open path in 9, then there is 
an element of F that appears an odd number of times in the sequence ($(e^), 

*(«2)....,*or)). 
(ii) if (fl9 f 2 , . . . , fs) is the sequence of edges of a finite closed path in 99 then all the 

elements of F appear an even number (possibly null) of times in the sequence 

Wi),^),...,m)-
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Then we call \j/ a C-valuation of #. Let n be a natural number. If card (^(2-)) ^ n , 
we call \\f a Cn-valuation of <$. 

.* 
Definition 4. By S denote the class of all graphs ^ such that there exists a C-

valuation of 0, by (£ denote the class of all graphs <S such that for any finite partial 
subgraph <$' of <$, <3' e E. Let n be a natural number. By (£n denote the class of all 
graphs <$ such that there exists a Cn-valuation of <&. 

Remark 1. If <$ e S is finite, then for some n, 0 e (£n. Further, (£n c E c= (£. 

Theorem 1 in [2] asserts that 

(a) ftn cz <£„ 
(b) ^ e Gn connected => <S e ftn 

(c) C = ft. 

Remark 2. Let F be an arbitrary tree. Then condition (ii) of Def. 3 is empty and 
moreover, putting F = E, xj/ the identity map, we have ,f e S and hence !f e ft. 
Also, ^ e ftn o F e (£n. 

In what remains, we shall be concerned with trees only, and with the problem to 
find to a tree ST the smallest n such that 2T e ftn. We shall denote this n by dim (ZT). 

Fig. 1. 



To study trees the vertices of which have their degree bounded from above by 
a given number, we introduce three infinite classes of trees, closely related to each 
other. «̂ "(j*>, the "polytomic tree", is a straightforward generalization of the dichoto
mic tree 2X of [ l ] . £T{k) may be considered to be a star of fc rays, each endpoint of 
a ray being again the center of a new fc-star, and this procedure repeated Z times. So, 
there are vertices of "level" 1 to (Z + 1), where the (single) vertex of level 1 has 
degree fc, the vertices of the outermost level (I + 1) have degree 1 and the remaining 
vertices have degree (fc + 1). ̂ 3T{k) and *2T{k) arise from 9~{k) if it is completed in such 
a way that all its vertices have either degree 1 or degree (fc + 1). 

Definition 5. Let fc ̂  2 and Z ;> 1 be natural numbers. Define 

erf = <V(*>, £<*>> , ><r{k) = <bV(*>, >£(*>>, *er{k) = <*V(*>, *E{k)) 

as follows: 
Put 

V{k) = {vfi | 1 ^ i = * + 1, 1 .= j S k1"1} 
>Vf = {*(f> | (1 g i ^ I + 1) v (-Z ^ i^ -1) , 1 ̂  j = fcW-1} 
*V{k) = {vfi | 1 ̂  \i\ ̂  I + 1, 1 g j = fc^-1} . 

Further, for t>(i> e *V(*>, t>(P e *V{k\ (v<f\ v<fi>) e *E{k) o (\if\ = \i\ - 1 ) & ( / = 

= ]I7fe2[ v (0 = 1 ) & (^ ' = - 1 ) ) - D e n o t e (*{i\ »(f1}) by 4 0 ) and further (v{/\ 
u(i/>) e £<*> by efi, if |i| < |i'|. ̂ {k) resp. 3r(k) are defined as the subgraphs of *3T{k) 

induced by >V(/° resp. V(,*>. 
Fig. la, b, c shows *;T2

4>, b«r(
2
4) and «T2

4>. 

As is seen, *J'{k) consists of two trees ^\k) with their "roots" joined by a new edge 
whereas b "̂(

/*> arises in a similar manner from one 2T{k) and one 3T{klY (for I ^ 2). 
As for the number of vertices, card*V/*> = 2(fc,+1 - l)/(fc - 1), card bV/*> = 
= (fcI+1 + fc' - 2)/(fc - 1) and cardV/*> = (kl+1 - l)/(fc - 1). In [ l ] , F{2) is 
denoted by ®x. Theorem 3 of [1] asserts that for I ^ 2, dim 3T{2) = Z + 2 (dim 3T{2) = 
= 2 being trivial). Another partial result of the general problem of dim ^{k) is sup
plied by the following theorem. But first a 

Remark 3. */JT<*> e 5tn ==> ̂ \k) e ft„ => $~(k) e Stn =-> *^(k) e&n+v The first two 
implications being trivial, consider for the third the two constituent ^(k) of *3r{k) 

as having a Cn-valuation with the same F and the joining edge being assigned a.new 
•element/n+i. 

Theorem 1. 

dim (*^ЧP)) = dim (¥^ү'ү) = dim (.Г2

2p>) = Зp + 1, 
d i m ^ 2 ^ 1 ) ) = dim(^ (

2

2 p + 1 )) -* Зp + 3, 
dim(^2

2>+1>) = Зp + 2 . 

309 



Proof. In view of Remark 3, it is sufficient to prove 

$f(2p)eS<3p+1, ^(
2
2p+1)eR3p+2, ^(

2
2p)$X3p, *r(}*^ * « 3 , + 1 , 

1. To construct a C3p+1-valuation ij/ of *y(2P), put 

F — Wp+u a'P+2> •••> a2P»
 ai> a2> •••> a2p+1} . 

Further define 

(*) *(«i0)) = - - , + i . 

<A(4_1)) = «i ( l ^ j ^ 2 p ) , 

where we write for short 

a"t = at(lgt£p)9 a"t = a't(p+l^t^ 2p) , a£p+1 = a2p+1 . 

Instead of proceeding by defining explicitly il/(e(2)) and *j/(e(f2)), observe that the 
edges e(2) and e(f2) are classified naturally into groups of 2p by the j of the e(jl) they 
are adjacent to: 

G(jl) ={e(2)\2p(j~l) + l^t<^2pj}, l^j^2p, 

G(fX) - {e(f2)\2p(j -l) + l£t£2pj}9 1 gj ^ 2p. 

Obviously a permutation of the valuation \J/ inside one group is immaterial. So, we 
define merely a set of 2p values for each group putting 

(**) i/,(G(l)) = {at | j + 1 ̂  t ^ min ((j + p), (2p + 1))} u 

v {at\l £ t gj - p - 1} u {a't\p + 1 £ t £2p} 9 

HG(fX)) = {< | J + 1 ̂  t£ min ((/ + p), (2p + 1))} u 

u {af; | 1 ^ f ^ j - p - 1} u {at | jp + 1 ^ f ^ 2p} . 

(One such valuation \J/ is shown for p = 2 on Fig. 2, where for transparency we write 
1 for al9 3' for a3 etc.) (Observe that considering the valuation induced by \\i on b ^ 2 p ) 

and looking at e(P as " 4 ^ " and at {^"^ | 1 ^ I ^ 2p} as "G#+ 1", î  on them 
meets the rules (*) and (**).) 

Let us now show that \j/ so defined is a C-valuation. For paths of odd length the 
condition (i) of Def. 3 holds trivially, so we concern ourselves only with paths of length 2 
or 4 in ^(

2
P). The paths of length 2 being well valuated by inspection, assume there 

is a path p of length 4 such that two elements of F, say x and y, appear on it twice 
each. The center of any path of length 4 in ̂ 2 p ) is either in v[X) or in v(f1}. Assume 
for p the former happens. Hence x and y must be both unprimed a's, say ar and a5~ 
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So it must simultaneously be ar e G(1), ase Gr
X), with possible r-=fc + l o r s = f c + 

+ 1. That however is impossible by definition of ^(G^). What concerns the case 
that the center ofp is in »(

1"
1), observe the symmetry in \J/ which permits us to repeat 

the former argument with interchange of aj and a) (p + 1 g j g 2p). Q.E.D. 

Fig. 2. 

2. To construct a C3p+2-valuation of <r2
2p+1), consider the valuation used for 

*^2
2p), specifically that induced on ^2

2p). 2T{
2

2p+1) arises from b/T2
2j7) by adding 

one e{2) in each G(1). The desked C3p+2-valuation is simply obtained by modifying i/> 
in the way that to each mentioned new e{2) the new value a2p+1 is assigned. Obviously 
this does not spoil the property (i) of Def. 3. Q.E.D. 

3. We proceed now to show that **T2
2P+1) £ Sk3p+2. Assume the contrary. Consider 

\>^-(2P+i) a s a partial subgraph of X3p+2- Without loss of generality assume »£X) is 
in the vertex 0 of Jf3p+2, and the 2p + 2 neighbours of v^ in *&'2

2p+1) are 
in the vertices {;} for 1 g j _ 2p + 2 of jf3p+2. It is now necessary to place the 
(2p + l)(2p + 2) = 4p2 + 6p + 2 vertices of degree 1 of the ^{2p+1) into the 

\ 2J~ (2) = 4p2 + 5p + 1 VerdceS V'fi ° f Jf3p+2 With l = ' - 3/> + 2* 
1 =2 j" -S 3-P + 2, 1 + j, such that not both i and 7 are >2p + 2. As this is not pos
sible by reason of numbers, the proof is complete. 

4. To complete the proof of the whole theorem, we have to show y2
2p) £ &3P> 

^"(
2

2p+1} $ St3p+ v To that purpose we show that from &*%> e Rn follows 2n ^ 3fe + L 
Indeed, if 2T2

k) is a partial subgraph of X„, there are certain fe2 vertices of ̂ (
2

k) to be 

placed into (9 ) - ( 9 J vertices of X n, hence fc2 <; f J - ( J and the 

desired inequality follows. 
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To be able to derive statements about much wider classes of trees than ^{k), 
^\k\ *^r(k), we observe that ^^{k) and *<T{k) are in a sense the most general trees 
with given diameter and given maximum degree of the vertices. Strictly speaking, the 
following holds: 

Lemma 1. Let the maximum degree of the vertices of the tree 2T bek + \.If the 
diameter of &~ equals 21 resp. (21 + 1), then 2T is a partial subgraph of *2T{k) 

resp. *T(,k). 

Proof is obvious. 

Corollary 1. Suppose the maximum degree of the vertices of the tree F is d ~ 1 
and the. diameter of ST is £5. If d = 2a then dim 3~ ^ 3a, if d = 2a + 1 then 
dim F ^ 3a + 1. There is, on the other hand, to any d = 1 a tree 2T with maximum 
degree of the vertices equal d and diameter _4 such that dim 2T = 3a for d = 2a 
resp. dim F = 3a -f 1 for d = 2a + 1. 

Proof. The inequalities follow, for d ^ 3, from L 1 and Th L On the other hand 
observe that ^"2

k) has diameter 4 and maximal degree of its vertices (fc + 1). The 
cases d = 1 and d = 2 are trivial. 

For 9~{2) and ^{k) the results obtained are exact. For fc > 2, I > 2 we are only 
able to give bounds for dim 3T{k). From one side, we only succeeded in finding trivial 
bounds: 

Remark 4. dim $~{k)
 = fc/. The proof of this rests on the following Cu-valuation 

of <F{k). For the edges of each level of 2T{k), fc different elements of F are reserved 
and distributed in such a way that adjacent edges are assigned different values. In 
fact, an insubstantially better bound is obtained by using Th 1. for the first two levels, 
and applying a slightly finer reasoning to the remaining ones. For fc > 2, I > 2 it 
holds that dim 9^ = 3/2fc + 1 + (I - 2) (fc - 1). 

Theorem 2. dim F{k) > klje where e = 2,71 ... 

Proof. Assume ^{k) to be isomorphic to some partial subgraph of Xn. Then com
paring the number of vertices, 2n ^ card V{k) > kl and hence 

(1) n > I log2 fc . 

Consider first 2'<; fc ^ 8. Here we have e log2 fc > fc and hence n > I log2 fc > klje 
and the desired inequality holds. Assume now k > 8. It follows from (1) that 

(2) n > 31. 

The isomorphism may be assumed such that to the vertex v^ of !T{k) the vertex 0 
of Jf „ corresponds. Then to the fc1 vertices of distance / from v^ in ^{k) there must 
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correspond vertices of Jfn whose cardinalities are either / or less than I by an even 
number, hence 

« - ,<C)+(«:.)+(.^)+-
where the sum at the right is finite, ending either with n or 1 depending on the parity 
of I. As 

G-O/GИ-.)/© y - ±jJ \yj y ~ -«•// \*/ 

for p ^ /, we may write 

w (H^) + (^) + HH< + « ! + --K")/ ( , -«>-
Using (2) we have, however, 

$ = / ( / - l)j((n - / + 1) (n - / + 2)) < /(/ - 1)/((2Z + 1) (21 + 2)) < 1/4 

and this yields together with (3) and (4) 

<5> "<!©' 
For estimating ( I we use the trivial n(n — 1) ... (n — / + 1) < n* and Stirling's 

formula 
l\^^(2nl)(lje)lcxp(0l) 

where 10,1 < 1/(12/) and get from (5) 

kl < f exp(-0/)(ne//),(2;r/)-1/2 . 
Finally 

(w) > *V(2 7 CO e xP(0/) = V [ 9 / 8 7 c / e x P ( 2 ^ ) ] > V [ 9 / 8 7 c J e x p ( - 1 / 6 ) ] > 1 > 

Q.E.D. 

Corollary 2. Suppose the maximum degree of the vertices of the tree 2T is df ^ 3 
and the diameter of 2T is D > 5. Then dim 2T g £(d — 1) D. On f fee offter handy 

given d ^ 3 and D > 5, f/tere is a free ^ wifft maximum degree of the vertices 
equal d and of diameter gD such that dim & > ](D - l)/2[. (d - l)/e. 

Proof. The first inequality follows from Lemma 1, Remark 4 and Remark 3. 
The proof of the second statement follows by observing that for the tree ST we may 
take ST^ for / = ](D - l)/2[ and k = d - 1. 
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Compared with Theorem 3 in [1] and Theorem 1 of this paper, the result of 
Remark 4 and Theorem 2 is much less satisfactory. It would be desirable to narrow 
the bounds, if pot find an equality — which, however, seems difficult. It appears to 
us that while the lower bound is rather close to the actual value of dim ^(-k) there is 
much space for improvement with the upper bound. 

One remark more. It may be noted that we mention dim b^\2) or dim %2T(2) 

nowhere. Trivially, there is an inequality following from Remark 3 and from Theorem 
3 of [1], namely / + 2 g dim *f\2) ^ dim %ST{2) ^ / + 3. We have, however, 
a conjecture, which we were not able to prove and only succeeded in verifying for 
J = 2, 3, 4: 

Conjecture, dim $^\2) = / + 2. 

Added in proof. Meanwhile, L. NEBESKY in a paper to appear has proved the Con
jecture. Also, F. OLL£ in his M. Sc. thesis has substantially improved Remark 4, 
proving dim ST^ ^ \{k\ + 2/ + k - 2). 
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