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BOUNDARY VALUE PROBLEMS FOR UNBOUNDED DOMAINS

BY

MELVYN S. BERGER AND MARTIN SCHECHTER(!)

ABSTRACT. The Sobolev-Kondrachov embedding and compactness theorems are
extended to cover general unbounded domains, by introducing appropriate weighted
Lp  norms.  These results are then applied to the Dirichlet problem for quasi-linear
elliptic partial differential equations and isoperimetric variational problems defined
on general unbounded domains in  R".

The general study of boundary value problems for quasi-linear elliptic partial

differential equations has been generally limited to bounded domains.   Perhaps

one reason for this fact is that such compactness theorems as that of Sobolev-

Kondrachov and its extensions are no longer valid for general unbounded domains

in  R   .  Consequently the degree theory of Leray-Schauder and the critical point

theory based on such compactness properties as Condition (C) of Palais-Smale

are not applicable in the study of quasi-linear elliptic problems defined on such

general domains.  In this article, we extend the Sobolev-Kondrachov compactness

and embedding theorems to general unbounded domains and apply these results to

quasi-linear Dirichlet problems and to nonquadratic isoperimetric variational prob-

lems.   For quadratic isoperimetric problems some special embedding and compact-

ness theorems of the type discussed here have been obtained recently ([l], [2],

and [3]) in conjunction with the study of discrete spectra of linear elliptic partial

differential operators of order 2tt2 defined on  R'  .  Our embedding theorems also

extend some research of Glusko and Kreïn [4].  Some of the results presented here

were announced by us in [O].

The present article is organized as follows: In §1, we mention the types of

elliptic boundary value problems to be discussed. In §2, we state the  L     embed-

ding and compactness theorems that extend the results of Sobolev-Kondrachov.

Applications of these theorems to quasi-linear elliptic boundary value problems

are given in §3. Finally, in §4, we prove the embedding theorems of §2.

1. Quasi-linear elliptic problems on unbounded domains.  Let ß  be an open

set in  R"  with boundary ail.  In this section we mention some problems that arise
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262 M. S. BERGER AND MARTIN SCHECHTER [October

in the study of quasi-linear elliptic partial differential operators of the form

Au=    Y    i-l)la\D*(aaix,u,.-.,Dmu))
|a|S777

defined on Í1.
(a)  The Dirichlet problem.   Let f(x) he a smooth function defined on Í1   and

approaching a limit as  |x| —> <x>.   We seek a solution of

(1.1) Au = f    in Q;       Dau\dn = 0,     |a|<772,

such that  D  u —>0 as  |x| —» °o  for  |a| < m.   For bounded domains and coefficients

a Ax, z A satisfying natural smoothness and growth conditions, the solvability of

(1.1) is known to depend on a positivity condition on the form

^m^ß1 = X WX>  Zß>  Zyï - aJ~X'  Zß>  z'yï\iZy  - ¿y)
\a\,\y\=m; |/3|<777

and a coerciveness condition on the form

iAu,u)=   J2   ("ai*'".Dmu),Dau)

stating that

(Au, u)/\\u\\m¡p -, -    as   \\u\\m¡p - ~, u « H"»'*(Q)

(cf. [5]).   In other words, as in the theory of linear elliptic equations, the presence

of "small" lower order terms in A   does not alter the solvability of (1.1).   It is

well known in the linear case that if Í1  is unbounded, the situation is quite dif-

ferent (cf., e.g., [6]).   In particular, the notion of "smallness" must be reconsidered.

Furthermore, applications require that the coefficients of A  be allowed to contain

singularities while the solutions of (1.1) must be smooth.

(b) Isoperimetric variational problems.   Given two smooth functionals

![(s)=ÍF(x,s. Dmu),        S(zz)= [ Gix, u,---, Dm~lu),
Ja Ja

we seek critical points (in a suitable class  C) of ?I(zz)  subject to the constraint

53(zz) = constant, as well as critical points for the conjugate problem (i.e. critical

points of B(zz) subject to the constraint  ?I(zz) = constant).   If C  is the Sobolev

space  U'm,i'(fl),  the Euler-Lagrange equations for this problem give rise to a

Dirichlet problem analogous to (1.1) of the form Azz = ÀBzz,  where  À is a real par-

ameter.   If both functionals  ?I  and  5B   are quadratic, the critical points desired

correspond to the spectral points of  Au = ÀBzz.    For unbounded domains, even if

the quadratic functionals  u  and 33   satisfy suitable ellipticity and positivity con-

ditions, the proof of the existence of the spectral values is a difficult problem.

(c) Stationary states for nonlinear wave equations.   Consider complex-valued

solutions of the nonlinear wave equation

(1.2) 17= Lv + fix, \v\2)v
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which are of the form v(x, t) = el    u(x)  subject to appropriate homogeneous bound-

ary conditions on  dû.   Here  À is a real number,  u(x) is real-valued, and  L  is a

formally selfadjoint linear elliptic operator of order 2t72.   Such solutions are called

stationary states.   In the linear case they are of importance due to the principle of

limiting amplitude [7] which gives conditions under which any solution w(x, t) of

(1.2) is asymptotic to a stationary state as  Í —► ¡» (i.e., w(x, t) = el    u(x) + o(l)

as  t —> oo).

To summarize, many well-known problems have analogues for unbounded do-

mains.   However, in all cases the following problems must be overcome:

1. A substitute must be found for the Rellich-Kondrachov compactness theo-

rem which is not valid for general unbounded domains.

2. For general unbounded domains Í!  it does not follow that q < p  implies
Lp(0.)CLq(U).

3. One must find conditions under which  W/m'p(Q)  can be embedded in
wm-T-s(tt).

2. The embedding theorems. Let C™ denote the set of infinitely differentiable

complex valued functions with compact supports in R . For 0 e C°?, s teal, and
1 < p < oo    we define the norm

(2.1) ¡^^^[JlFd + lcfl^^Ecól^x]1^,
where  E denotes the Fourier transform,  x = (x., • • • , x  ) is a coordinate system

in  R",  tf - (f., • • • , Ç ) is the argument of F<f> and E  denotes the inverse Fourier

transform.   For s   a nonnegative integer, the norm (2.1) is equivalent to the sum of

the  L'HR") norms of Y and all its derivatives up to order s  (cf. [8]).   The com-

pletion of CT with respect to the norm (2.1) will be denoted by Hs,t>.

Let w(x) be a measurable function on  R".   For a > 0 and   1 < p < °o we set

:\a-" for a<72,

i (x) = i 1 — log |x|     for a = 72,

1 for a> tz;

(2 2) Ma,p,S,x(w)=   f \w(x-y)\t>OJa(y)dy,
|y|<S

Ma,piw)=  SUP    Ma,p,l,x{w)>
x(Rn

NaS(w) =suPMa2 Zx(w),
* X •      »     »

Na(w) = NaA(w).

We let M„ .   [resp. NA denote the set of functions w  which satisfy M      (w) < oo",p * a j        ci p       '

[resp. Na(w) < oo].   Our first result is

Theorem 2.1. Assume that s>0, q >p> I  and l/q > l/p — s/n.   Let a> 0
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264 M. S. BERGER AND MARTIN SCHECHTER [October

be such that

(2.3) ia-n)/q<s-n/p.

Then there is a constant  C depending only on p, q, s, re  and such that

(2.4) W^K<q<CMaJw)Uq\\u\\s>p,       u£Hs'P,w£Matq.

Theorem 2.2.   Let p, q, s, re and a satisfy the hypotheses of Theorem 2.1.

Suppose  w(x) is a function in Ma     such that

(2.5) f \wix-y)\qdy -» 0    as   \x\ -> «>.
|y|<i

Then multiplication by w is a compact operator from Hs,t  to  Lq.    Thus if jzz.i  is

a sequence of functions in 77s''' with uniformly bounded norms, then \wu.\ has a

subsequence converging in  Lq(Rn).

Let fi be any domain in R".   For s > 0 we say that a function  zz(x) on fi  is

in TT^'^fi) if it is the restriction to fi  of a function in Hs,t>.   We set

Ml"., - i«* Ml.*.        v£HS'P,  v=uontt.

It is easily checked that this is a norm and that Hs,p(Çl) is a Banach space.   For

functions h(x) defined on fi,  let 7>„  be given by

)h(x)    fot x eil,
ha(x)-(o        fot x 4SI.

We set /V1„ Ah, fi) = M„ ^(hn) and let M„ _(fi) denote the set of those functionsa,p a,p    u a,p
h  on fi  such that M      (h, fi) < oo.   Employing these definitions, we obtain

,P

Theorem 2.3.   Let  fi  be any domain in  R".    Under the hypotheses of Theorem

2.1,

(2.6)        \\wu\\% q<CMatqiw,ti)1/q\\u\\^p,      u£Hs't>iQ), w e«     (Q),

where  C  is the constant in (2.4).

Theorem 2.4.   Under the hypotheses of Theorem 2.3, let w be a function in

M      (fi) szzcTj thata, q

72 71 ,   , \w(y)\q dy —» 0    as   \x\ —» <*>.

Tèew multiplication by w  is a compact operator from  Hs't'(Çl) to  L?(fi).

As a specific application we note the following:

Theorem 2.5.  Assume that s > 0, <7>p>l  flrez/ that  l/q > l/p — s/n.   Let
a be a positive number satisfying (2.3).   Then there is a constant C such that

Ax)\q(2.8) Jl™^Lrfx<C||a||°>í(,       u£Hs-HÜ).
\x\

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1972]     EMBEDDING THEOREMS AND BOUNDARY VALUE PROBLEMS       265

Moreover, if \u,} is a sequence of functions in HS,P(ÇL) with uniformly bounded
norms, then  \u,(x)/\x\aq\ has a subsequence converging in L9(0).

The theorems given above also hold for the Sobloev spaces  Ws,p defined as
follows.   Take  (zz)Q     = \\u\\0    ,  and for 0 < s < 1   set

\x - y\

For arbitrary s > 0 we let k be the largest integer < s  and set

<">s,p = MU.p+Z<d**>s-*.p>
where D     denotes an arbitrary derivative of order k.   One checks easily that
(zz)        is a norm.   The set of those functions u £ Lp   such that (u)    „ < oo  is de-

s ,P /, è      ,p
noted by Ws,p.   All of the theorems stated above hold with Hs,p replaced by
Ws'p.   In particular we have

Theorem 2.6.   Under the hypotheses of Theorem 2.1 there is a constant  C de-

pending only on p, q, s, n  and a  such that

(2.9) WwuK,q<CMa.a{w)1/<1<u}s,p'        u£W*-P,w£Ma¡q.

If w £ M        and (2.3) holds, then multiplication by w is a compact operator from
Ws'p to  Lq.

Let p = (p., • • • , p ) be a multi-index of nonnegative integers.   We set  \p\ =

Py + • • . + pn  and D^= a'Ml/d%j ' ... ax  ".   Thus  D^ is a partial derivative of

order  \p\.   For k  a nonnegative integer, we shall continue to let D     denote the

generic derivative of order k.

For fi  an arbitrary domain and ttz  a nonnegative integer, consider the norm

T<,- £ licito.*
|M|<777

and let Wm'p(Q.) [resp.  Wm'p(ñ)] denote the completion of C~(0) [resp.  C°°(ñ)]

with respect to this norm.   Note that we can embed  Wm'p(il) continuously in

Hm,p(Q,) and that the norms are equivalent.   To see this, let  4> be any function in

Oil).   Let E</5= cp in O and Ec6 = 0 outside Ü.   Then E<p"  £ C°° and ||E<¿||
is equivalent to  ||<p||m p = ||Eçi||^     .   Now if u  is any function in  Wm,p(Çl),  there

is a sequence of functions  \<fi,\ in  C^(fi) such that  \\<f>,  — u\\        —> 0.   Thus

\E(pk\ is a Cauchy sequence in  Hm,p.   Consequently, there is a w e Hm,p  which

is the limit of the  E<£fe.   Clearly,  u = w  on fi.   Thus  u £ Hm,p(û) and

l<# S Mi, =lim U^JL» < c ̂  Kt.p - c N" ,p-
On the other hand, if v £ Hm,p  and  v = u on  fi,

H° T, «lMn T, <1MR\ < NIR\ < c\\v\\   •11    "m9p        "     "mtp — "      'm,p —  "    "m,p —      "    "m,p
*"o       n o

Thus  llwll < C llwll     .«   We can therefore express our results in terms of the11    "m ,p —        "    um ,p r

spaces  Wm'p(ü).   We have
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Theorem 2.7. Let m be a positive integer. Assume that q > p > 1 and that

l/q > l/p — 772/re. Let a > 0 be such that (a —n)/q < m — n/p. Then there is a

constant  C depending only on p, q, m, n and a such that

\M*A<C*a^®l/*MliP,     new™-*®), w£MaJSl).

Moreover, if w eiM      (fi) satisfies (2.7), then multiplication by w  is a compact

operator from  W'm^(fi) to  L9(fi).

We now give an important application of Theorems 2.4 and 2.7.   For each

x £ E",  let S    denote the ball of radius 1 having center at x.

Theorem 2.8.  Assume that   1/p — s/n < l/q < l/p < 1.   Then the embedding of
HS,P(Q.) into Lq(Çl) is compact if and only if the volume of fi Cx S     tends to  0 as

\x\ —» 00.    This is also a sufficient condition for the embedding   WS'P(Q,) into Lq(il)

to be compact.

3.   Application of the embedding theorems to nonlinear problems.   Consider

the differential operator

(3.1) Azz=   £   (-l)UDa(«aUa,...,D-,)).
I a\<m

We shall determine conditions on the functions a     so that A   is a bounded and-er.
completely continuous operator on  \Vm'  (il).   To this end, we consider the form

(3.2) F(#a)=£    fQa(,x, u,..., Dmu)Dacf>
\a\<m

for <p £ C™(Q) and zz e Wm,i,(fi).   We first give conditions which guarantee that for

fixed zz £ W,m,i'(fi) the functional  F(</>, u) will be bounded in  <p  with respect to

the norm of Wm,p(Vl).   We then define the operator A  by

(3.3) Ficf>, u) = (çS, Au),       0 £ VVm'p(fi),

and then determine conditions such that A will be; (i) a bounded map from ll'm'''(fi)

to W~m't' (fi) and, (ii) map weakly convergent sequences into strongly convergent

sequences.   For these proofs the embedding theorems of §2 are essential.

Throughout this section we let p he a fixed number satisfying  1 < p < °°  and

for any multi-index p we set

(3.4) l/p    = l/p - (777 - |p|)/re, |p|<777,
7*

i.e. (by the Sobolev embedding theorem) p    is the largest number with  H/m,i'(fi) C

W      '   ^(fi) (the inclusion being both in the algebraic and topological sense).   Our

first assumption is

(i) The coefficients aa(x, z) with z = (zy  , Zy   , • • • , Zy   ) are measurable
12 773

in x  and continuous in  z   fot almost all x £ fi  and

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1972] EMBEDDING THEOREMS AND BOUNDARY VALUE PROBLEMS 267

(3.5) \aa(x,z)\<ha(x)+   £    fayix)\zy\^a'7)
\y\<m

where the oia, y) ate positive constants satisfying

(3.6) o(ol, y) > p - 1,

and

(3.7) o-(a, y)/py+ l/pa< 1

(i.e.  a(a, y) is so chosen that  \Du\a{a'y) £ LP a with   l/pa+ Í/p'a~ 1), h a(x) £

LPa(Cl) and fay(x)eMs(a>y)A(ü), where

(3.8) s (a, y) < re(l - max [p/pa, a(a, y)/py + 1/pJ)

(in order to insure for zz € Wm,p(Q,) that f   f ay\D   u\ < °°)«   Moreover, when pa< 0

and  p    > 0 we stipulate that

(3.9) a(a, y)<p

and

(3.10) s (a, y) < re(l - (max [p, o (a, y)])/py).

Similarly, when pa> 0 and p    < 0 we assume that

(3.11) s (a, y) < re(l - p/p).

Lemma 3.1.   Under the above hypotheses, (I) there is a constant  C such that

(3.12) \F(<f>,u)\<C\\cp\\mip   (l+X!!aC,r))
V a,y '

arec7 (II) the mapping Ä": »'"'•''(fi) —> U'_m,p'(fi) (defined by (3.3)) IS bounded.

Proof.   Let a  and y be fixed.   We search for a number t  such that

(3.13) p < t,        l/pa<l/t,       s (a, y)<n(l - t/pa),

(3.14) p < t'a(a, y),       o (a, y)/p    < 1/t',       s (a, y) < re (l - z'a(a, y)/p    ).

Once we have a  í  satisfying (3.13) and (3.14) note that [fa y(x)]        is in

(a y\ A^'   Thus multiplication by this function is a bounded operator fromM

»""-Ia''"(fi) to  L'(fi) (Theorem 2.7).   Moreover,  [fay(x)]1/t'°ia'y)  is ir

^s(a y) t'cria <y\(^)»   Consequently, multiplication by this function is a bounded

operator'from'iV'"-M •''(fi)  to  Li,<T(<1-r)(fi).   Hence

/0 /ar!D^r(a,r)|D^I < !!/aV/iD^llo,zll/a1r''lDr"l<T(a,y)llo.z'

ai5)        < c||Daçs||_|a|tPii/ir/'^a.r)D^!i^v()>r) < c'u\\mju\\^y\

Now by (3.2) and (3.12)
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\F(cp,u)\<   £    J"  K<*. u,...,D"-u)\\Dacp\
\a\<m

(3-16)       <Z «yo,ft'!lD^i!o,ft + .    Z     C Ly\Dyu\^y^\D^\
\a\<m ¡a[<777;  \j\<m

\ a, y /

Now we show that under the hypotheses of the lemma we can find numbers t  and t
satisfying (3.13) and (3.14).   When pa and  p     ate both positive, (3-3) and (3.4)
are accomplished by setting t = p when

(3.17) oia, y)/py + l/pa < p/pa

and by setting

(3.18) t = paiaia,y)/py + l/pa)

otherwise.  If t - p,  then (3.13) follows.   This proves the first part of the lemma.

By the first part of Lemma 3.1, we see that for fixed  u £ Wm,p(Sl), the expres-

sion  E(c6, u) is a bounded linear functional on  Wm'  (Q) with respect to  <7J.   Thus

for each zz e Wm'p(Sl) there is an element A~u e Wm'p'(Q) such that  E(ci, u) =

(cp, "Xu).   This gives a mapping Â" of Wm'p(Sl)  into  W~m'p'(Sl) which is bounded,

by Lemma 3.1, i.e. A  maps bounded sets in  Wm' (SI) into bounded sets in

W~m-p'(Sl),  from (3.8).   Moreover, (3.15) implies  p'oia, y)/py < p/pa.    This inequal-

ity and (3.6) imply (3.14).   If t  is given by (3.18), then (3.13) follows from (3.7)
and (3.8).   Also t'a(a, y) = ta(a, y)/(t - 1) = tp   / pa.   Thus (3.14) holds as well.
When pa < 0  and py > 0,  we consider two cases.   If a(a, y) < p,  we take / =

p/(p - a(a, y)).   Then  t' = p/a(a, y)   and all of the inequalities in (3.13) and (3.14)
are satisfied.   If p <a(a, y), we take t   > 1   so close to 1 that t a(a, y) < p   ,

t> p  and s < 72(1 - t'oia, y)/p   ).   Then all of the inequalities of (3.13) and (3.14)
are satisfied.   If pa> 0 and p    < 0,  take  t = p.   Then (3.13) and (3.14) are satis-
fied by (3.6) and (3.11).   Do the same for case (d).

Remark.   It follows from the results of [9] that the map A  is also continuous.

We now consider hypotheses on the differential operator

(3.19) Vu=     Y,      i-D][a}[Daba(x,u,---,Dm~lu)
| 0.|<77Z - 1

sufficient to insure the complete continuity of the associated abstract operator

S: Wm'p(Sl) -* W~m'p'(9) defined in analogy with (3.2) by setting

Jn   a
|a|<m- 1

In fact, we suppose that  ba(x, •) is measurable in x, while  b  (x, 0) e L   a(fi).

(3.20) (Bh, <ß)=      Y       [  ba(x,u,---, Dm-lu)Dacp.

(ii)        \ba(x, z)-ba(x, z')\<      X       fayix)\\z7\+ Wy\ra>^-l\Zy-z'y\
\y\sm-\
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where, as in (i), a(a, y) and /       satisfy the inequalities (3.6), (3.7) and (3.8) for

|a|, |y| < 772 - 1, and

<"»> f\X-y\<l;xeafz7{y)dy-0     as   1*1 ~* ~-

Clearly, Lemma 3.1 implies that the operator SB  is well defined and bounded

since (ii) reduces to (i) when z     = 0.   Actually we shall prove

Lemma 3.2.   The abstract operator S  is completely continuous, i.e.   SB maps

weakly convergent sequences in  Wm' (fi) into strongly convergent sequences in

\u-m,p fQ^  provided that the differential operator SB  satisfies hypotheses (ii) and

(iii).

Proof.   Let «„ —» «  weakly in  Wm'p(ü),  then we show that  ||Bzzn - Ba|| —► 0

as re—» °o.   To this end, we estimate [with the definition (3.20)]

(8a-Bb, </»)=      V        f   [Ä(x, a  ,•■•, D'"-1?. )-b(x, a,..., D^-^^D^rp
|a|<m-l     "i    i-

as follows.   For fixed  |y|, |a| <m — 1,

{ [baix,u    ..., Dm~lun) - ba(x, u,. ■ ■ , Dm-lu)]Dacp

<     Z       C4yi|Oy«J + l'»r«l*tf<a,r)"l|l>y(«,->«)||i>a*l-
I7|<m-1

Proceeding as in the proof of Lemma 3.1, with the numbers  t, t    satisfying (3.13),

(3.14), and by Holder's inequality with p = a(a, y)/(a(a, y) — 1), q = a(a, y),

fufay\\Dyun\ + ^uW^'^-'lD^Un- u)\\Da<f>\

< Wf^D^hJfcl^'WD^J * \Dyu\\^'y^Dyiun - u)\\Q>t,
< ll/ir'DVHo.t{j[4r[lDr«-l + \Dy"\Y,cr{a'y)) 1/p

-{fafay\Dnun-u)\^'^Y^
< ity^UXy^'7^07^ + \Dr^n%{a,y)
-\\flVaia'y)D'y^n--nUa,yy

Now as in the proof of Lemma 3.1, since jay £ Msia,y),ii^^ fayV €Ms(a y),v^'

Theorem 2.7 implies that multiplication by f ¿L    is a bounded (linear) map from

"/m-!a|'"(fi) -, L'(fi),  while multiplication by f1Jyt'a(a'y) is a bounded (linear)

map from W"Hrl •''(fi) -. Lt>a(Çï).   Theorem 2.8 implies f1ayt'a{a'y) is a compact

map (which we denote Cay) from  Wm-Irl '"(fi)  into  L^'Cfi).   Thus there are

constants   Kay,  independent of  </> and zz   ,  such that
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y)< M^L-H*!*"«. + D7^m%\JC^n - «HS*«.
y y

Summing over a,  and noting that

< E ^(IkJL.^II^L.^^^II^r^-^II^U.r)-
a,y

Thus, since  !zz   ! is weakly convergent, there is a constant A4   such that   IItv   II     . •' » ' 6 ' ^ ^ I!     n" 777,ft   -

M;  so that as 72 —» oo,  \\Cay(u    — «)|| —► 0 and   ||33zz    — Bzz|| —» 0,  as required.

As a simple first example of the boundedness and compactness theorems just

proven, consider the following Dirichlet problem:

Nu+ Bu= f,
(3.21)

DHo=0' \0-\<m-l.
Here we suppose  N  is a quasi-linear elliptic differential operator of the form

/Vzz =   V    (-1)1a|DaNa(x, u,--.,Dmu)
\°-\<m

such that for zz e V/m,p(Sl),  with Na(x, z) measurable in  x,  and continuous in z

(a.e. for x e ÎÎ),

(i) £   j \Naix,Dyu)-Nix,Dyv)\Daiu-v)>ci\\u-v\\m<p)\\u-v\\,
\a\<m    ö

(ii) £   iaNaix,Dyu)Dau<cpi\\u\\mtp)
\°-\<m

where cp(r) and  c(r) ate finite real-valued functions of r with c(r) —> oo  as  r —► oo;

and   A3   is a differential operator as described in Lemma 3-2,   i.e.   ßzz =

Si   i,   _. (—lya'DaB a(x, u, ■•• , Dm~  u).   A simple example of an operator N

satisfying hypotheses (i) and (ii) is

Nu=   £   (-l)lalDaí|Dazz|í'-1 Sgn Dazzî.
|a.|<77!

We attempt to find a generalized solution of (3.21) by which we mean a func-

tion  zz e Wm,p(Sl) that satisfies the following integral identity for all cp e C™(Sl):

(3.22)        £ f [Na(x, u,- • • , Dmu) + Ba(x, u,. ■ • , Dm-1u)]Dacp = f^ fcß.
|0!|<77¡

We shall prove the following result:

Theorem 3-2.  Suppose the operator Bu satisfies the condition of Lemma 3.2,

and in addition, that there is an absolute constant c such that, as  ||"||     ft —» °°,
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(3-23) £       f  \Ba(x, u,-..,Dm-1u)Dau\>-c\\u\\m
|o|Sm-l   S!

Then (3.21)   has a generalized solution for each f £ W~m,q(Sl).

Proof.   Lemma 3.1 above and standard results imply that generalized solutions

of (3.21) are in (1-1)  correspondence with solutions of an operator equation of the

form

(3.24) Nu+Bu=J

where ft  and B   are maps of Wm'p(Sl) -,W~m-q(Sl) defined implicitly by the for-
mulae

(ft«, 0)=   £   $ Na(x,u,..-,Dmu)Dacp,
\a\<m

(Bu,<p)=      £       f  Baix,u,.-.,Dm-1u)Dacp.
\*\<m-\    Ü

By virtue of [5, Theorem 2.8]  the operator N  is a homeomorphism of Wm,p(Sl) —>

W~m'q(Sl) with  ||Nzz||_m     >c||zz||m    .   Thus setting  v = ^~1u  the solutions of

(3.22) are in (1-1)  correspondence with the solutions of

(3.25) v+Bv = f

where  B = BN~     is a compact continuous map of W~m'q(Sl) into itself.   This last

fact is, of course, an immediate consequence of Lemma 3.2 and the continuity of

AV-   .   Furthermore, (3.23) implies that all solutions w of (3.24) satisfy the a

priori estimate  ||t77|| < AC   This follows since (3.23) can be rewritten as

(u, Nu + ßa)/||ft|| —> oo as ||zz||        —> oo.   Indeed if   \w   Sisâ sequence of solutions of

(3.24) with  ||i¿7   II     .. —♦ °°,  one finds that
"    r¡"77í,ft '

(wn, Bwn)/\\wJ - c < (wn, Nwn + Bwn)/\\wn\mtp

< ||/ || (a contradiction).

Consequently, all solutions  v of (3.25) also satisfy an a priori bound of the form

(3-26) IMI_mi?<K'
We are now in a position to apply the solvability theory centering around the Leray-

Schauder degree to (3.25).   First (3.26) implies that for K > max (AC", ||/||),  equa-

tion (3.25) does not have a solution  v with  ||tz|| = AC   Hence the Leray-Schauder

degree d(I + B, f,SR) is defined.   Here SK = \v\ v e W-"1'9, Jiz|| < K\.   We show
d(I + B, f, SK) 4 0,  and consequently, by [10, pp. 102],  (A + B)tz = / is solvable in

SK,  by proving that d(I + B, f, SK) = d(I, f, SK) =1.   To this end, by the homotopy
invariance of degree, we need only show that the solutions of the equations Nu +
tBu - f tot t e [0, 1]  all lie in a fixed sphere in  Wm'p(Sl).   Indeed suppose there
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was a sequence of numbers t    £ [0, 1]  and elements   a    with  lia   II —» °°  such that
n n "   77"

Nun + trBun = /.   Arguing as in (t),  we find that (3.7) implies as,   ||a   || —» °o,

(un, ftan)7||«J - c < 11/11
which contradicts hypothesis (i) on  N.   Consequently, for K  sufficiently large,

d(I + Tí, /, S A) - 1  so that (3.21) has a generalized solution as required.

Remark.  The hypotheses of Theorem 3.2 can be weakened somewhat if one

utilizes the theory of monotone mappings.   Indeed we prove

Theorem 3.2 .  Theorem 3.2 is still valid if the hypothesis (i) ore the operator

Nu  is weakened to

Z   f [Na(x, Dyu) - Naix, Dyv)]Daiu -v)>0,(a)
|a|<777      "

(i)'

(b) Z    í"¿x,Dyu)D«u>ci\\u\\mtp)\\u\\m<p.
\a\<m

Proof.  The result follows from the proof of [10, pp. 105—107, especially prob-
lem 3.8] or [5, p. 180, Theorem 2.7] by noting that if (i)' replaces (i) the resulting

operator T = TV + B  satisfies the properties (1) N is monotone and (2) (Ta, a)/||a||

—>cxi as ||a||        —► <*>   while (3)   B  maps  weakly convergent  sequences   in

»'"''''(fi) into strongly convergent sequences in  W~"!,<?(fi).

Now we turn to a study of the isoperimetric problems mentioned in §1.   For

a £ »'"'•''(fi),   we consider the critical points of the functional   21(a) =

J"n N(x, a, • • • , Dmu) subject to the constraint 93(a) = fa G(x, a, • • • , Dm~   u),

provided of course that 21(a), 53(a) < °o for each a £ »'"'•''(fi).   The associated

Euler-Lagrange equation associated with this isoperimetric problem can be written

£   (-l)]alDaNa(x,u,...,D™u) = \     Z      i-i)lßlDßGßix,u,---,Dm-1u),
\a\<m |/3|<77z-l

(3-27) D%\da=0, |/8|  <772-l,

where
Na.(x, Za       .. , z     ) = dN ix, za     . ■ . , z      )/dza

1 777 * '"

ate locally Lipschitz continuous functions in the  jzai  variables.

Theorem 3.3.   Suppose the Fréchet derivative of 21(a),

2I'(a)=   £   i-l)\a\DaNaix,u,...,Dmu),
\a\<m

satisfies the hypothesis mentioned at the beginning of Theorem 3.1, while  SB (a)

the Fréchet derivative of 93(a) satisfies

3B'(a)=       Z      (-D'alDaGa(x, a,-..,D"'-1a)
|Q-|<771-1
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defines a completely continuous map 93  of Wm,''(fi) —► W~m,?(fi)  z're accord with

Lemma 3.1 such that  93(0) = 0 and

Z      f Ga(x, a,...,Dn2-1a)Daa>0    /or fl77 a £»""•" (fi),
|a|<777-l     n

then for each positive number c,  inf.,   .      21(a)  is attained by some function a    £' c Bt"7=c J ' c

»'"'•''(fi), and is a critical point of the function '21(a) restricted to the surface

93(a) = c.   Furthermore,  a     is a generalized solution of (3.25) for some X > 0.

Proof.   By virtue of the arguments of Lemma 3.1 and Theorem 3.2, the result

follows by invoking the following general result of [10],

Theorem.  // Vp(0) = 0 and (VF(a) - VF(v), a - v) > k(\\u - v\\)\\u - v\\  where

k(x)—» oo as  \x\ —» oo while VG(a) z's completely continuous with  (VG(a), a) > 0

for a 4 0,  then inf F(a) ot7er the set S    = ja| G(a) = c, c > 01  is attained by some

a    £ S    and a    satisfies Vp(a  ) = AVG(a  ) for some  X > 0.c c c ' c c     '

Actually the result quoted is given only for Hilbert spaces, but the result

easily generalizes to any reflexive Banach space.   In the present case the formulae

(<p, F(a))=   £   f Na(x,u,...,Dmu)Dau
\a\<m

and

(<p, G(a))=      V       f Gaix, u,...,Dm-Xu)Da(f>
|a|<777- 1

implicitly define the maps VF  and VG  as operators from  Wm'p(ü)—> W~m'q(ü)

as in (3.1).
More interesting results can be obtained for the conjugate variational problem,

viz. the existence of critical points of the functional  93(a) on the surface  21(a) =

constant in  »'"'•''(fi).   To this end we prove

Theorem 3.4.  Suppose the derivatives  21 (a) and 93 (a) of the functionals

21(a) and 93(a) satisfy the hypotheses of Theorem 3.3, and are even in the vari-

able  a,   then 93(a) has a countably infinite number of critical points  ja   ! ore the

surface  a   — ja|2I(a) = const > 0},  these critical points satisfy (3-25) z're the weak

sense.

Proof.  We identify antipodal points of o  ,  and since the functional 93(a) is

even, the critical points of 93(a) on S     correspond to the critical points of 93(a)

on S  /Z.,    The set i)  /Z. C »'"'•''(fi) has a natural Banach manifold structure and,
c      ¿ c      ¿ 7

in fact, is homeomorphic to P°°(»'"''''(fi)) the infinite-dimensional projective space

defined on  »'"'•''(fi),  defined by the canonical mapping of §    —» d£. = ja|  ||a|| = 1!

along rays through the origin, see [11].  We now apply the Ljusternik-Schnirelmann

theory of critical points to the functional  j93(a)î~     and the manifold i>  /Z».   It

follows by Palais [12] that since  cat P°°(X) - oo for any Banach space X,    j93(a)S~
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will have a countably infinite number of distinct critical points on  c>  /Z.  provided

jB(zz)i~     satisfies condition (C) on o /Z-.

To verify the Palais-Smale condition (C) in this case we take a sequence u    £

S    such that  l/53(zz) is bounded and show that if the gradient of the functional

l/iB(zz  ) with respect to the manifold §     tends to zero, then  \u   \ has a strongly

convergent subsequence  izz    1.   Indeed,

grade   ¡l/%z)S = -(l/B(zz))2grads    8(a) = - (l/S2(zv))i V 8(zz) - A V A(u)\
°c c

where  X = (VSzz, zz)/(VAzz, u) and  gradjj refer to the gradient of a functional rela-

tive to the manifold M.   Thus if

||gradSc iimun)\\\ = -(1/B2(^))||gradx B(zv„) - A„ gradx A (uJW - 0,

u    e o    is bounded in norm, and so has a weakly convergent subsequence zz      —►

ü and  gtady 33(zz    ) —► 0.   Hence, provided  X     -m 0, gtadxA(u   ) is strongly con-

vergent.   Thus by hypothesis,  u     —» zz  strongly and zz € o  /Z2  since this set is

strongly closed.   On the other hand, if À     = (VSR'zz    , u    )/(Va'zz    , zz    ) —» 0,   the° ' n: rij'     nj n.-'     n: '
hypotheses on  ?I(zz) imply that (VBzz    , u    ) —» 0,  i.e. that since the functional

(VBzz, zz) is weakly continuous and vanishes only if u — 0, u     —» zz  weakly so that
n j

1/B(zz    ) —» 0  since  3  is weakly continuous.   This contradicts the fact thatnj !
|B(zz   )!  is uniformly bounded above zero.

77 J

This last theorem has many interesting consequences for the problems raised

in §§1.3 and 1.4.   Let us consider the problems connected with the existence of

stationary states.   As mentioned in §1.3, if we set v - e1  *u(x) in equation (1.2),

we find the following equation for v and  X:

£u-X2u = f(x, \u\2)u,
(3.28)

Dau\d(l = 0,       |a|<77z-l.

Here
£zz =       £       (-D|a|Dal«a/3(x)D^!-

\«\,\ß\<m

We shall prove

Corollary 3.5.   Suppose the operator i_  possesses bounded, measurable coef-

ficients  aaÁx) and, for u e C^(Sl),  the estimate

«*•>-       Z        (aaß(x)DauD^u>_ß\   £   f\Dau\2\
\a\,\ß\<mJci (\a\=mJíl j

holds for some absolute value ß > 0, while the function f(x, \u\  )  z's homogeneous

of degree  p > 0 with f(x, \u\   )\u\    > 0 for u 4 0.   Then the equation  v    + if +

f(x, \v\   V = 0 possesses a countably infinite number of stationary states of the

form  v (x, /)= e     zz  (x) for each  X4 0 provided f(x, \v\   ) < g(x)\v\     where
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a < Am/'N — 2m) and g(x) —» 0 as   \x\ —» as.

Proof.   The nontrivial solutions of (3.28) (after a change of scale) are the

critical points of the functional Jß F(x, |a|   ) where F  (x, |a|2) = f'x, |a|2)a  sub-

ject to the constraint /fl (Lu-u + À a) = constant.   Under the given hypotheses on

f(x, \u\2), by virtue of Lemma 3.2, the nonlinear mapping N: ffra,2(fl) -» W~m,2(Q)

defined implicitly by the formula (TVa, v) = J"   f'x, \u\   )uv is completely continuous.

Thus by Theorem 3.4, there are an infinite number of distinct critical points a

for this variational problem.   Hence after rescaling, these critical points give rise

to the desired stationary states.   The fact that these critical points are smooth

enough to satisfy (3.28) pointwise is an immediate consequence of the  L     regu-

larity for linear elliptic differential equations as used in [13, pp. 168—172].

Corollary 3.5 can be considerably sharpened for the equation

(3.29) -ivt = Av + f(\v\2)v,

provided one restricts attention to radially symmetric stationary states of the form

v'x, t) - e'Xtu(\x\).   Indeed, setting  |x| = r and w(r) = r(N_ 1^/'2a(|x|),  the station-

ary states of (3.29) are determined by the nontrivial solutions of the following

equation on  [0, °o):

(3.30)   w„- ÍX + ÍN- 3)(/V- l)/4r2V + fir1~Nw2)w = 0,    wiO) = w (■*>) = 0.

The conclusions of Theorem 3.4 thus apply to the system (3.30) provided N > 2,

f(y)y2 > 0 for y 4 0, and  \f(s)\ < k^]* with 0 < a < A/(N - 2).   Consequently,
under the above proviso, the conclusions of Corollary 3.5 hold for the system

(3.29).   Actually we prove

Corollary 3.6.   For N > 1,  the system (3.29) possesses a countably infinite

number of distinct radially symmetric stationary states v (x, t) = ea  (|x[) for

each  X > 0 provided f(s) is a Lipschitz continuous function (homogeneous of

degree  p > 0) and such that f(y)y2 > 0 for y 4 0 with   \f(s)\ < /é|s|cr for   0 < a <

4/(N - 2).

Proof.   By the above remarks, it suffices to consider the case TV = 2.   To this

end we employ the following

Lemma 3.7.   For X > 0, the operator w — (X — 1/Ar  )w has discrete spectrum

in  LAO, oo) where w(0) = 0.

(The proof of this lemma will be found in [14, pp. 127].)
In order to apply Theorem 3.4 to (3.14) in case TV = 2,  we need only show

that, for À > 0,  there is an absolute constant ß > 0 such that for w eW      (0, oo)
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The existence of the constant ß follows immediately from Lemma 3.7, standard

results of the spectral theory of compact selfadjoint operators, and inequality

J."h2+(x-¿)"2]¿'íA2/>2'"-
Here we have used the fact that for w £ W.  ,(0, oo)

2J°°    2 j ,1 r°° w
w    dr > - I      -dr.

0       r        - 4J 0    r2

4.    Proofs of the  embedding theorems.   In order to prove the theorems of §2,

we shall need the following lemmas.

Lemma 4.1.  If q >p > 1, s > 0 and  ï/q > l/p — s/n, then there is a constant

C depending only on  p, q, s  and n such that

(4.1) Mo.^cMU'       ueHs-p.

For a proof of this lemma see [15].

Lemma 4.2.  If q > l,  s > 0 and a < qs, then there is a constant  C depending

only on p, s, n and a  such that

(4.2) IMI0>3 < CMatq(v)l/q\\u\\Stq,       v e Ma<q, u e H*<q.

Moreover, if w e M        and satisfies (2.5),  then multiplication by  w  is a compact

operator from Hs'q  to  Lq.

This lemma is proved in [3].

Lemma 4.3.   For s  real,   p > I  and e > 0,  there is a constant C depending
only on s, p and e such that

(4.3) \\4Stp<C(u)s+etP,      ueC™.

For a proof see [17].   We can now give the

Proof of Theorem 2.1.  Since (2.3) holds, there is a number /  such that

(4.4) a/q < t < s - n/p + n/q.

In particular,  a < qt.   Thus by Lemma 4.2, there is a constant C  depending only

on q, t, a  and 72  such that

(4.5) Wwuh,q<CMaJ^1/q\\4t>g,       w£Ma¡q, u£Hl-q.

Consider the operator G u = F[(l + |cf| 2)~a/2Fu\.   By (2.1) for b teal and p > 1  we

have

By (4.4),  l/q > i/p — (s — r)/?2.   In view of Lemma 4.1, this implies

(4.7) Halt., = llG_t«ll0,, <C\\G-As-t,p = CH*Is,P
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Combining this with (4.2), we obtain (2.4).
Proof of Theorem 2.2.   Let t  satisfy (4.4).   By (4.7) the identity map is bounded

from Hs'p to Ht,q.   By Lemma 4.2, multiplication by w is a compact mapping from

77''* to Lq.   This gives the result.
Proof of Theorem 2.3. Let e > 0 and a £ Hs'p(Q,) he given. Then there is a

v £ Hs,p  such that v = a  on fi  and \\v\\s     < \\u\\s     + e.   By Theorem 2.1,

\K-h,q<^a,qK^/q\\v\\Stp.
.since w,y> £ Lq  and equals wv on fi,  this gives

\^4a0tq<cMaJw,a)^q(\\u\\s>p + i),

where  C does not depend on  e.   Letting e —> 0,  we get (2.6).

Proof of Theorem 2.4. Let ja, S be a sequence of functions in HS,P(Q) such

that ||". || fi < TV. Then there is a sequence jtz.i of functions in Hs,p such that

v, = a,   on fi  and  ||t7 J|s b < TV + 1.   Furthermore (2.7) is equivalent to

(4.8) /|x-yj<l KiW^y-0   as I*
Thus by Theorem 2.2, \wr,v,\ has a subsequence converging in  Lq.   This is the

same as saying that \wu,\ has a subsequence converging in  L9(fi).

Proof of Theorem 2.5.   Let  /3 be such that a < ß < q(s — n/p + n/q).   One

checks easily that w'x)= \x\~a^q  is in M a   .   Thus (2.8) follows from Theorem

2.3.   Since w'x) —>0 as  |x| —► oo,  the remainder of the theorem follows from Theo-

rem 2.4.
Proof of Theorem 2.6.   There exists a  t < s   such that a < q'tp — n)/p.    By

Lemma 4.3,  Mt,p < C'<u>s,p>  and by Theorem 2.1   \\wu\\^q<CMaJw)^q\\u\\t¡p.
This gives (2.9).   If w £ M        satisfies (2.5) as well, the second conclusion follows

from Theorem 2.2.
Proof of Theorem 2.7.  The discussion preceding Theorem 2.7 shows that

»'"'•''(fi)  can be continuously embedded in  Hm,p(Q) with equivalent norm.   Thus

Theorem 2.7 is an immediate consequence of Theorem 2.6.

Proof of Theorem 2.8.   The sufficiency of the condition is immediate from The-

orems 2.4 and 2.7.   In fact, we have w = 1   in this case, and (2.7) says

J|x-y|<l;yeo^=Vol(finS;c)^0    as   W-»«.

To prove the necessity, suppose there is a number a > 0 and a sequence  jx, ! of

vectors in  En   such that  |x. | —» oo  and

Vo'l (fi n Sx¡) > a,       ¿=1,2,---.

Let <f>(x) be a test function which is identically 1 on S   ,  and set <f>Ax) = (/>(x — x, ),

»1=1, 2, ... .   Then  <f>k  equals 1 on S^,   \\<pk\\n,p < HJs,p ' Ms.p'  and
<p, (x) —» 0 as k —► r»  for each x £ E".   But we have
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Wo,, = JW*>I* <**>*•       ¿ = 1,2,....
Thus the embedding of HS,P(SÏ) into  Lq(Sî) cannot be compact.   The statement

concerning M/S,i'(0) is an immediate consequence of the discussion preceding

Theorem 2.7.
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