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Although more and more language pairs are covered by machine translation (MT) services, there
are still many pairs that lack translation resources. Cross-language information retrieval (CLIR)
is an application that needs translation functionality of a relatively low level of sophistication,
since current models for information retrieval (IR) are still based on a bag of words. The Web
providesa vast resource for the automatic construction of parallel corpora that can be used to train
statistical translation models automatically. The resulting translation models can be embedded in
several ways in a retrieval model. In this article, we will investigate the problem of automatically
mining parallel texts from the Web and different ways of integrating the translation models
within the retrieval process. Our experiments on standard test collections for CLIR show that the
Web-based translation models can surpass commercial MT systems in CLIR tasks. These results
open the perspective of constructing a fully automatic query translation device for CLIR at a very
low cost.

1. Introduction

Finding relevant information in any language on the increasingly multilingual World
Wide Web poses a real challenge for current information retrieval (IR) systems. We
will argue that the Web itself can be used as a translation resource in order to build
effective cross-language IR systems.

1.1 Information Retrieval and Cross-Language Information Retrieval
The goal of IR is to �nd relevant documents from a large collection of documents or
from the World Wide Web. To do this, the user typically formulates a query, often in
free text, to describe the information need. The IR system then compares the query
with each document in order to evaluate its similarity (or probability of relevance)
to the query. The retrieval result is a list of documents presented in decreasing order
of similarity. The key problem in IR is that of effectiveness, that is, how good an IR
system is at retrieving relevant documents and discarding irrelevant ones.

Because of the information explosion that has occurred on the Web, people are
more in need of effective IR systems than ever before. The search engines currently
available on the Web are IR systems that have been created to answer this need. By
querying these search engines, users are able to identify quickly documents contain-
ing the same keywords as the query they enter. However, the existing search engines
provide only monolingual IR; that is, they retrieve documents only in the same lan-
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guage as the query. To be more precise: Search engines usually do not consider the
language of the keywords when the keywords of a query are matched against those
of the documents. Identical keywords are matched, whatever their languages are. For
example, the English word son can match the French word son (‘his’ or ‘her’). Current
search engines do not provide the functionality for cross-language IR (CLIR), that is,
the ability to retrieve relevant documents written in languages different from that of
the query (without the query’s being translated manually into the other language(s)
of interest).

As the Web has grown, more and more documents on the Web have been written in
languages other than English, and many Internet users are non-native English speak-
ers. For many users, the barrier between tbe language of the searcher and the langage
in which documents are written represents a serious problem. Although many users
can read and understand rudimentary English, they feel uncomfortable formulating
queries in English, either because of their limited vocabulary in English, or because
of the possible misusage of English words. For example, a Chinese user may use eco-
nomic instead of cheap or economical or inexpensive in a query because these words have
a similar translation in Chinese. An automatic query translation tool would be very
helpful to such a user. On the other hand, even if a user masters several languages, it
is still a burden for him or her to formulate several queries in different languages. A
query translation tool would also allow such a user to retrieve relevant documents in
all the languages of interest with only one query. Even for users with no understand-
ing of a foreign language, a CLIR system might still be useful. For example, someone
monitoring a competitor’s developments with regard to products similar to those he
himself produces might be interested in retrieving documents describing the possible
products, even if he does not understand them. Such a user might use machine trans-
lation systems to get the gist of the contents of the documents he retrieves through
his query. For all these types of users, CLIR would represent a useful tool.

1.2 Possible Approaches to CLIR
From an implementation point of view, the only difference between CLIR and the
classical IR task is that the query language differs from the document language. It is
obvious that to perform in an effective way the task of retrieving documents that are
relevant to a query when the documents are written in a different language than the
query, some form of translation is required. One might conjecture that a combination
of two existing �elds, IR and machine translation (MT), would be satisfactory for
accomplishing the combined translation and retrieval task. One could simply translate
the query by means of an MT system, then use existing IR tools, obviating the need
for a special CLIR system.

This approach, although feasible, is not the only possible approach, nor is it neces-
sarily the best one. MT systems try to translate text into a well-readable form governed
by morphological, syntactic, and semantic constraints. However, current IR models are
based on bag-of-words models. They are insensitive to word order and to the syntac-
tic structure of queries. For example, with current IR models, the query “computer
science” will usually produce the same retrieval results as “science computer.” The
complex process used in MT for producing a grammatical translation is not fully ex-
ploited by current IR models. This means that a simpler translation approach may
suf�ce to implement the translation step.

On the other hand, MT systems are far from perfect. They often produce incorrect
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translations. For example, Systran1 translates the word drug as drogue (illegal substance)
in French for both drug traf�c and drug administration of�ce. Such a translation error
will have a substantial negative impact on the effectiveness of any CLIR system that
incorporates it. So even if MT systems are used as translation devices, they may need to
be complemented by other, more robust translation tools to improve their effectiveness.
In the current study, we will use statistical translation models as such a complementary
tool.

Queries submitted to IR systems or search engines are often very short. In par-
ticular, the average length of queries submitted to the search engines on the Web is
about two words (Jansen et al. 2001). Such short queries are generally insuf�cient to
describe the user’s information need in a precise and unambiguous way. Many im-
portant words are missing from them. For example, a user might formulate the query
“Internet connection” in order to retrieve documents about computer networks, Inter-
net service providers, or proxies. However, under the current bag-of-words approach,
the relevant documents containing these terms are unlikely to be retrieved. To solve
this problem, a common approach used in IR is query expansion, which tries to add
synonyms or related words to the original query, making the expanded query a more
exhaustive description of the information need. The words added to the query dur-
ing query expansion do not need to be strict synonyms to improve the query results.
However, they do have to be related, to some degree, to the user’s information need.
Ideally, the degree of the relatedness should be weighted, with a strongly related word
weighted more heavily in the expanded query than a less related one.

MT systems act in a way opposite to the query expansion process: Only one trans-
lation is generally selected to express a particular meaning. 2 In doing so, MT systems
employed in IR systems in fact restrict the possible query expansion effect during
the translation process. We believe that CLIR can bene�t from query translation that
provides multiple translations for the same meaning. In this regard, the tests carried
out by Kwok (1999) with a commercial MT system for Chinese-English CLIR are quite
interesting. His experiments show that it is much better to use the intermediate transla-
tion data produced by the MT system than the �nal translation itself. The intermediate
data contain, among other things, all the possible translation words for query terms.
Kwok’s work clearly demonstrates that using an MT system as a black box is not the
most effective choice for query translation in CLIR. However, few MT systems allow
one to access the intermediate stages of the translations they produce.

Apart from the MT approach, queries can also be translated by using a machine-
readable bilingual dictionary or by exploiting a set of parallel texts (texts with their
translations). High-quality bilingual dictionaries are expensive, but there are many free
on-line translation dictionaries available on the Web that can be used for query trans-
lation. This approach has been applied in several studies (e.g., Hull and Grefenstette
1996; Hiemstra and Kraaij 1999). However, free bilingual dictionaries often suffer from
a poor coverage of the vocabulary in the two languages with which they deal, and from
the problem of translation ambiguity, because usually no information is provided to
allow for disambiguation. Several previous studies (e.g., Nie et al. 1999), have shown
that using a translation dictionary alone would produce much lower effectiveness than
an MT system. However, a dictionary complemented by a statistical language model
(Gao et al. 2001; Xu, Weischedel, and Nguyen 2001) has produced much better results
than when the dictionary is used alone.

1 We used the free translation service provided at hhttp://babel�sh.altavista.com/i in October 2002.
2 Although there is no inherent obstacle preventing MT systems from generating multiple translations, in

practice, only one translation is produced.
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In this article, the use of a bilingual dictionary is not our focus. We will concentrate
on a third alternative for query translation: an approach based on parallel texts. Paral-
lel texts are texts accompanied by their translation in one or several other languages (Véronis
2000). They contain valuable translation examples for both human and machine trans-
lation. A number of studies in recent years (e.g., Nie et al. 1999; Franz et al. 2001;
Sheridan, Ballerini, and Schäuble 1998; Yang et al. 1998) have explored the possibil-
ity of using parallel texts for query translation in CLIR. One potential advantage of
such an approach is that it provides multiple translations for the same meaning. The
translation of a query would then contain not only words that are true translations
of the query, but also related words. This is the query expansion effect that we want
to produce in IR. Our experimental results have con�rmed that this approach can be
very competitive with the MT approach and yield much better results than a simple
dictionary-based approach, while keeping the development cost low.

However, one major obstacle to the use of parallel texts for CLIR is the unavail-
ability of large parallel corpora for many language pairs. Hence, our �rst goal in the
research presented here was to develop an automatic mining system that collects par-
allel pages on the Web. The collected parallel Web pages are used to train statistical
translation models (TMs) that are then applied to query translation. Such an approach
offers the advantage of enabling us to build a CLIR system for a new language pair
without waiting for the release of an MT system for that language pair. The number
of potential language pairs supported by Web-based translation models is large if one
includes transitive translation using English as a pivot language. English is often one
of the languages of those Web pages for which parallel translations are available.

The main objectives of this article are twofold: (1) We will show that it is possible
to obtain large parallel corpora from the Web automatically that can form the basis for
an effective CLIR system, and (2) we will compare several ways to embed translation
models in an IR system to exploit these corpora for cross-language query expansion.

Our experiments will show that these translation tools can result in CLIR of com-
parable effectiveness to MT systems. This in turn will demonstrate the feasibility of
exploiting the Web as a large parallel corpus for the purpose of CLIR.

1.3 Problems in Query Translation
Now let us turn to query translation problems. Previous studies on CLIR have iden-
ti�ed three problems for query translation (Grefenstette 1998): identifying possible
translations, pruning unlikely translations, and weighting the translation words.

Finding translations. First of all, whatever translation tool is employed in trans-
lating queries has to provide a good coverage of the source and target vocabularies.
In a dictionary-based approach to CLIR, we will encounter the same problems that
have been faced in MT research: phrases, collocations, idioms, and domain-speci�c
terminology are often translated incorrectly. These classes of expressions require a so-
phisticated morphological analysis, and furthermore, domain-speci�c terms challenge
the lexical coverage of the transfer dictionaries. A second important class of words
that can pose problems for CLIR, particularly that involving news article retrieval,
is proper names. The names of entities such as persons or locations are frequently
used in queries for news articles, and their translation is not always trivial. Often, the
more commonly used geographical names of countries or their capitals have a dif-
ferent spelling in different languages (e.g., Milan/Milano/Milaan) or translations that
are not related to the same morphological root (e.g., Germany/Allemagne/Duitsland).
The names of organizations and their abbreviations are also a notorious problem; for
example, the United Nations can be referred to as UN, ONU, VN, etc. (disregarding
the problem of morphological normalization of abbreviations). When proper names
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have to be translated from one language to another with a different script, like Cyril-
lic, Arabic, or Chinese, this problem is even more acute. The process of de�ning the
spelling of a named entity in a language with a different script from the originating
language is called transliteration and is based on a phonemic representation of the
named entity. Unfortunately different national “standards” are used for transliteration
in different languages that use the same alphabet (e.g., the former Russian president’s
name in Latin script has been transliterated as Jeltsin, Eltsine, Yeltsin, and Jelzin.

Pruning translation alternatives. A word or a term often has multiple transla-
tions. Some of them are appropriate for a particular query and the others are not. An
important question is how to keep the appropriate translations while eliminating the
inappropriate ones. Because of the particularities of IR, it might improve the results
to retain multiple translations that display small differences in sense, as in query ex-
pansion. So it could be bene�cial to keep all related senses for the matching process,
together with their probabilities.

Weighting translation alternatives. Closely related to the previous point is the
question of how to deal with translation alternatives. The weighting of words in doc-
uments and in the query is of crucial importance in IR. A word with a heavy weight
will in�uence the results of retrieval more than a low-weight word. In CLIR it is also
important to assign appropriate weights to translation words. Pruning translations can
be viewed as an extreme Boolean way of weighting translations. The intuition is that,
just as in query expansion, it may well be bene�cial to assign a heavier weight to the
“main” translation and a lighter weight to related translations.

1.4 Integration of Query Translation with Retrieval
The problem of “weighting of translation alternatives,” identi�ed by Grefenstette,
refers to the more general problem of designing an architecture for a CLIR system
in which translation and document ranking are integrated in a way that maximizes
retrieval effectiveness.

The MT approach clearly separates translation from retrieval: A query is �rst
translated, and the result of the translation is subsequently submitted to an IR system
as a new query. At the retrieval phase, one no longer knows how certain a translated
word is with respect to the other translated words in the translated query. All the
translation words are treated as though they are totally certain. Indeed, an MT system
is used as a black box. In this article, we consider translation to be an integral part of
the IR process that has to be considered together with the retrieval step.

From a more theoretical point of view, CLIR is a process that, taken as a whole, is
composed of query translation, document indexing, and document matching. The two
�rst subprocesses try to transform the query and the documents into a comparable
internal representation form. The third subprocess tries to compare the representa-
tions to evaluate the similarity. In previous studies on CLIR, the �rst subprocess is
clearly separated from the latter two, which are integrated in classical IR systems. An
approach that considers all three subprocesses together will have the advantage of
accounting better for the uncertainty of translation during retrieval. More analysis on
this point is provided in Nie (2002). This article follows the same direction as Nie’s.
We will show in our experiments that an integrated approach can produce very high
CLIR effectiveness.

An attractive framework for integrating translation and retrieval is the probabilistic
framework, although estimating translation probabilities is not always straightforward
using this framework.

In summary, because CLIR does not necessarily require a unique translation of a
text (as MT does), approaches other than fully automatic MT might provide interesting
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characteristics for CLIR that are complementary to those of MT approaches. This could
result in greater precision,3 since an MT system might choose the wrong translation
for the query term(s), and/or a higher rate of recall,4 since multiple translations are
accommodated, which could retrieve documents via related terminology.

In this article we will investigate the effectiveness of CLIR systems based on
probabilistic translation models trained on parallel texts mined from the Web. Glob-
ally, our approach to the CLIR problem can be viewed informally as “cross-lingual
sense matching.” Both query and documents are modeled as a distribution over se-
mantic concepts, which in reality is approximated by a distribution over words. The
challenge for CLIR is to measure to what extent these concepts (or word senses) are
related. From this point of view, our approach is similar in principle to that using
latent semantic analysis (LSI) (Dumais et al. 1997), which also tries to create semantic
similarity between documents, queries, and terms by transposing them into a new
vector space. An alternative way of integrating translation and IR is to create “struc-
tured queries,” in which translations are modeled as synonyms (Pirkola 1998). Since
this approach is simple and effective, we will use it as one of the reference systems in
our experiments.

The general approach of this article will be implemented in several different ways,
each fully embedded in the retrieval models tested. A series of experiments on CLIR
will be conducted in order to evaluate these models. The results will clearly show that
Web-based translation models are as effective as (and sometimes more effective than)
off-the-shelf commercial MT systems.

The remainder of the article is organized as follows: Section 2 discusses the pro-
cedure we used to construct parallel corpora from the Web, and Section 3 describes
the procedure we used to train the translation models. Section 4 describes the proba-
bilistic IR model that we employed and various ways of embedding translation into
a retrieval model. Section 5 presents our experimental results. The article ends with a
discussion and conclusion section.

2. PTMiner

It has been shown that by using a large parallel corpus, one can produce CLIR ef-
fectiveness close to that obtained with an MT system (Nie et al. 1999). In previous
studies, parallel texts have been exploited in several ways: using a pseudofeedback ap-
proach, capturing global cross-language term associations, transposing to a language-
independent semantic space, and training a statistical translation model.

Using a pseudofeedback approach. In Yang et al. (1998) parallel texts are used
as follows. A given query in the source language is �rst used to retrieve a subset
of texts from the parallel corpus. The corresponding subset in the target language is
considered to provide a description of the query in the target language. From this
subset of documents, a set of weighted words is extracted, and this set of words is
used as the query “translation.”

Capturing global cross-language term associations. A more advanced and theo-
retically better-motivated approach is to index concatenated parallel documents in the
dual space of the generalized vector space model (GVSM), where terms are indexed
by documents (Yang et al. 1998). An approach related to GVSM is to build a so-called
similarity thesaurus on the parallel or comparable corpus. A similarity thesaurus is an

3 Precision is de�ned as the proportion of relevant documents among all the retrieved documents.
4 Recall is the proportion of relevant documents retrieved among all the relevant documents in a

collection.
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information structure (also based on the dual space of indexing terms by documents)
in which associated terms are computed on the basis of global associations between
terms as measured by term co-occurrence on the document level (Sheridan, Ballerini,
and Schäuble 1998). Recently, the idea of using the dual space of parallel documents
for cross-lingual query expansion has been recast in a language-modeling framework
(Lavrenko, Choquette, and Croft 2002).

Transposing to a language-independent semantic space. The concatenated doc-
uments can also be transposed in a language-independent space by applying latent
semantic indexing (Dumais et al. 1997; Yang et al. 1998). The disadvantage of this
approach is that the concepts in this space are hard to interpret and that LSI is com-
putationally demanding. It is currently not feasible to perform such a transposition on
a Web scale.

Training a statistical translation model. Approaches that involve training a statis-
tical translation model have been explored in, for example, Nie et al. (1999) and Franz
et al. (2001). In Nie et al.’s approach, statistical translation models (usually IBM model
1) are trained on a parallel corpus. The models are used in a straightforward way: The
source query is submitted to the translation model, which proposes a set of translation
equivalents, together with their probability. The latter are then used as a query for the
retrieval process, which is based on a vector space model. Franz et al.’s approach uses
a better founded theoretical framework: the OKAPI probabilistic IR model (Robert-
son and Walker 1994). The present study uses a different probabilistic IR model, one
based on statistical language models (Hiemstra 2001; Xu, Weischedel, and Nguyen
2001). This IR model facilitates a tighter integration of translation and retrieval. An
important difference between statistical translation approaches and approaches based
on document alignment discussed in the previous paragraph is that translation models
perform alignment at a much more re�ned level. Consequently, the alignments can
be used to estimate translation relations in a reliable way. On the other hand, the ad-
vantage of the CLIR approaches that rely simply on alignment at the document level
is that they can also handle comparable corpora, that is, documents that discuss the
same topic but are not necessarily translations of each other (Laf�ing 1992).

Most previous work on parallel texts has been conducted on a few manually
constructed parallel corpora, notably the Canadian Hansard corpus. This corpus5 con-
tains many years’ debates in the Canadian parliament in both English and French,
amounting to several dozens of millions of words in each language. The European
parliament documents represent another large parallel corpus in several European
languages. However, the availability of this corpus is much more restricted than the
Canadian Hansard. The Hong Kong government publishes of�cial documents in both
Chinese and English. They form a Chinese-English parallel corpus, but again, its size
is much smaller than that of the Canadian Hansard. For many other languages, no
large parallel corpora are available for the training of statistical models.

LDC has tried to collect additional parallel corpora, resorting at times to man-
ual collection (Ma 1999). Several other research groups (for example, the RALI lab
at Université de Montréal) have also tried to acquire manually constructed parallel
corpora. However, manual collection of large corpora is a tedious task that is time-
and resource-consuming. On the other hand, we observe that the increasing usage of
different languages on the Web results in more and more bilingual and multilingual
sites. Many Web pages are now translated into different languages. The Web contains

5 LDC provides a version containing texts from the mid-1970s through 1988; see
hhttp://www.ldc.upenn.edu/i.
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a large number of parallel Web pages in many languages (usually with English). If
these can be extracted automatically, then this would help solve, to some extent, the
problem of parallel corpora. PTMiner (for Parallel Text Miner) was built precisely for
this purpose.

Of course, an automatic mining program is unable to understand the texts it ex-
tracts and hence to judge in a totally reliable way whether they are parallel. However,
CLIR is quite error-tolerant. As we will show, a noisy parallel corpus can still be very
useful for CLIR.

2.1 General Principles of Automatic Mining
Parallel Web pages usually are not published in isolation; they are often linked to
one another in some way. For example, Resnik (1998) observed that some parallel
Web pages are often referenced in the same parent index Web page. In addition,
the anchor text of such links usually identi�es the language. For example, if a Web
page hindex.htmli provides links to both English and French versions of a page it
references, and the anchor texts of the links are respectively “English version” and
“French version,” then the referenced versions are probably parallel pages in English
and French. To locate such pages, Resnik �rst sends a query of the following form to
the Web search engine AltaVista, which returns the parent indexing pages:

anchor: English AND anchor: French

Then the referenced pages in both languages are retrieved and considered to be par-
allel. Applying this method, Resnik was able to mine 2,491 pairs of English-French
Web pages. Other researchers have adapted his system to mine 3,376 pairs of English-
Chinese pages and 59 pairs of English-Basque pages.

We observe, however, that only a small portion of parallel Web sites are organized
in this way. Many other parallel pages cannot be found with Resnik’s method. The
mining system we employ in the research presented here uses different criteria from
Resnik’s; and we also incorporate an exploration process (i.e., a host crawler) in order
to discover Web pages that have not been indexed by the existing search engines.

The mining process in PTMiner is divided into two main steps: identi�cation of
candidate parallel pages, and veri�cation of their parallelism. The overall process is
organized into the following steps:

1. Determining candidate sites. Identify Web sites that may contain
parallel pages. In our approach, we adopt a simple de�nition of Web
site: a host corresponding to a distinct DNS (domain name system)
address (e.g., hwww.altavista.comi and hgeocities.yahoo.comi).

2. File name fetching. Identify a set of Web pages on each Web site that are
indexed by search engines.

3. Host crawling. Use the URLs collected in the previous step as seeds to
further crawl each candidate site for more URLs.

4. Pair scanning by names. Construct pairs of Web pages on the basis of
pattern matching between URLs (e.g., hindex.htmli vs. hindex f.htmli).

5. Text �ltering. Filter the candidate parallel pages further according to
several criteria that operate on their contents.

In the following subsections, we describe each of these steps in more detail.
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2.2 Identi�cation of Candidate Web Sites
In addition to the organization of parallel Web pages exploited by Resnik’s method,
another common characteristic of parallel Web pages is that they cross-reference one
another. For example, an English Web page may contain a pointer to the French ver-
sion, and vice versa, and the anchor text of these pointers usually indicates the lan-
guage of the other page. This phenomenon is common because such an anchor text
shows the reader that a version in another language is available.

In considering both ways of organizing parallel Web pages, we see that a common
feature is the existence of a link with an anchor text identifying a language. This is
the criterion we use in PTMiner to detect candidate Web sites: the existence of at least
one Web page containing such a link. Candidate Web sites are identi�ed via requests
sent to a search engine (e.g., AltaVista or Google). For example, the following request
asks for pages in English that contain a link with one of the required anchor texts.

anchor: French version, in French, en Français, : : :

language: English

The hosts extracted from the responses are considered to be candidate sites.

2.3 File Name Fetching
It is assumed that parallel pages are stored on the same Web site. This is not always
true, but this assumption allows us to minimize the exploration of the Web and to
avoid considering many unlikely candidates.

To search for parallel pairs of pages from each candidate site, PTMiner �rst asks
the search engine for all the Web pages from a particular site that it has indexed, via
a request of the following form:

host: <hostname>

However, the results of this step may not be exhaustive, because

° search engines typically do not index all the Web pages of a site.

° most search engines allow users to retrieve a limited number of
documents (e.g., 1,000 in AltaVista).

Therefore, we continue our search with a host crawler, which uses the Web pages
found by the search engines as seeds.

2.4 Host Crawling
A host crawler is slightly different from a Web crawler or a robot in that a host crawler
can only exploit one Web site at a time. A breadth-�rst crawling algorithm is used in
the host-crawling step of PTMiner ’s mining process. The principle is that if a retrieved
Web page contains a link to an unexplored document on the same site, this document
is added to the list of pages to be explored later. This crawling step allows us to obtain
more Web pages from the candidate sites.

2.5 Pair Scanning by Names
Once a large set of URLs has been identi�ed, the next task is to �nd parallel pairs
among them. In our experience, many parallel Web pages have very similar �le names.
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For example, an English Web page with the �le name hindex.htmli often corresponds
to a French translation with a �le name such as hindex f.htmli. The only difference
between the two �le names is a segment that identi�es the language of the �le. This
similarity in �le names is by no means an accident. In fact, this is a common way for
Webmasters to keep track of a large number of documents in different versions.

This same observation also applies to URL paths. For example, the following two
URLs are also similar in name:

hhttp :==www:asite:ca=en=a�le:htmli and hhttp:==www:asite:ca=fr=a�le:htmli:

To �nd similarly named URLs, we de�ne lists of pre�xes and suf�xes for both the
source and the target languages. For example:

EnglishPrefix = f(emptychar), e, en, english , e , en , english , : : :g

Once a possible source language pre�x is identi�ed in an URL, it is replaced with a
pre�x in the target language, and we then test if this URL is found on the Web site.

2.6 Filtering by Contents
The �le pairs identi�ed in previous steps are further veri�ed in regard to their contents.
In PTMiner, the following criteria are used for veri�cation: �le length, HTML structure,
and language and character set.

2.6.1 File Length. The ratio of the lengths of a pair of parallel pages is usually com-
parable to the typical length ratio of the two languages (especially when the text is
long enough). Hence, a simple veri�cation is to compare the lengths of the two �les.
As many Web documents are quite short, we tolerate some difference (up to 40% from
the typical ratio).

2.6.2 HTML Structure. Parallel Web pages are usually designed to have similar lay-
outs. This often means that the two parallel pages have similar HTML structures.
However, the HTML structures of parallel pages may also be quite different from one
another. Pages may look similar and still have different HTML markups. Therefore, a
certain amount of �exibility is also employed in this step.

In our approach, we �rst determine a set of meaningful HTML tags that affect
the appearance of the page and extract them from both �les (e.g., <p> and <H1>, but
not <meta> and <font>). A “diff”-style comparison will reveal how different the two
extracted sequences of tags are. A threshold is set to �lter out the pairs of pages that
are not similar enough in HTML structure.

At this stage, nontextual parts of the pages are also removed. If a page does not
contain enough text, it is also discarded.

2.6.3 Language and Character Set. When we query search engines for documents in
one speci�c language, the returned documents may actually be in a different language
from the one we speci�ed. This problem is particularly serious for Asian languages.
When we ask for Chinese Web pages, we often obtain Korean Web pages, because the
language of the documents has not been identi�ed accurately by the search engines.
Another, more important factor that makes it necessary to use a language detector is
that during host crawling and pair scanning, no veri�cation is done with regard to
languages. All �les with an en suf�x in their names, for example, are assumed to be
English pages, which may be an erroneous assumption.
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To �lter out the �les not in the required languages, the SILC system (Isabelle,
Simard, and Plamondon 1998) is used. SILC employs n-gram statistical language mod-
els to determine the most probable language and encoding schema for a text. It has
been trained on a number of large corpora for several languages. The accuracy of the
system is very high. When a text contains at least 50 characters, its accuracy is almost
perfect. SILC can �lter out a set of �le pairs that are not in the required languages.

Our utilization of HTML structure to determine whether two pages are parallel
is similar to that of Resnik (1998), who also exploits an additional criterion similar to
length-based sentence alignment in order to determine whether the segments in corre-
sponding HTML structures have similar lengths. In the current PTMiner, this criterion
is not incorporated. However, we have included the sentence-alignment criterion as a
later �ltering step in Nie and Cai (2001): If a pair of texts cannot be aligned reasonably
well, then that pair is removed. This technique is shown to bring a large improvement
for the English-Chinese corpus. A similar approach could also be envisioned for the
corpora of European languages, but in the present study, such an approach is not used.

2.7 Mining Results
PTMiner uses heuristics that are mostly language-independent. This allows us to adapt
it easily for different language pairs by changing a few parameters (e.g., pre�x and
suf�x lists of �le name). It is surprising that so simple an approach is nevertheless very
effective. We have been able, using PTMiner, to construct large parallel corpora from
the Web for the following language pairs: English-French, English-Italian, English-
German, English-Dutch, and English-Chinese. The sizes of these corpora are shown in
Table 1.

One question that may be raised is how accurate the mining results are, or how
parallel the pages identi�ed are. Actually, it is very dif�cult to answer this question. We
have not undertaken an extensive evaluation but have only performed a simple evalu-
ation with a set of samples. For English-French, from 60 randomly selected candidate
sites, AltaVista indexed about 8,000 pages in French. From these, the pair-scanning
step identi�ed 4,000 pages with equivalents in English. This showed that the lower
bound of recall of pairscanning is 50%. The equivalence of the pair pages identi�ed
was judged by an undergraduate student who participated in developing the prelim-
inary version of PTMiner. The criterion used to judge the equivalence of two pages
was subjective, with the general guideline being whether two pages describe the same
contents and whether they have similar structures. To evaluate precision, 164 pairs
of pages from the 4,000 identi�ed were randomly selected and manually checked. It

Table 1
Automatically mined corpora. n.a. = not available.

English-French English-German English-Italian

Number of pairs 18,807 10,200 8,504
Size (MB) 174/198 77/100 50/68
Number of words (M) 6.7/7.1 1.8/1.8 1.2/1.3

English-Dutch English-Chinese

24,738 14,820
n.a. 74/51
n.a. 9.2/9.9
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turned out that 162 of them were truly parallel. This shows that the precision is close
to 99%.

For an English-Chinese corpus, a similar evaluation has been reported in Chen
and Nie (2000). This evaluation was done by a graduate student working on PTMiner.
Among 383 pairs randomly selected at the pair-scanning step, 302 pairs were found
to be really parallel. The precision ratio is 79%, which is not as good as that of the
English-French case. There are several reasons for this:

° Incorrect links. It may be that a page is outdated but still indexed by the
search engines. A pair including that page will be eliminated in the
content-�ltering step.

° Pages that are designed to be parallel, although the contents are not all translated
yet. One version of a page may be a simpli�ed version of the other. Some
cases of this type can also be �ltered out in the content-�ltering step, but
some will still remain.

° Pages that are valid parallel pairs yet consist mostly of graphics rather than text.
These pages cannot be used for the training of translation models.

° Pairs that are not parallel at all. Filenames of some nonparallel pages may
accidentally match the naming rules. For example, h : : : /et.htmli versus
h : : : /etc.htmli.

Related to the last reason, we also observed that the names of parallel Chinese
and English pages may be very different from one another. For example, it is frequent
practice to use the Pinyin translation as the name of a Chinese page of the correspond-
ing English �le name (e.g., hfangwen.htmli vs. hvisit.htmli). Another convention is to
use numbers as the �lenames. For example h1.htmli would correspond to h2.htmli.
In either of these cases, our pair-scanning approach based on name similarity will
fail to recognize the pair. Overall, the naming of Chinese �les is much more variable
and �exible than the naming of �les for European languages. Hence, there exist fewer
evident heuristics for Chinese than for the European languages that would allow us
to enlarge the coverage and improve the precision of pair scanning.

Given the potentially large number of erroneously identi�ed parallel pairs, a ques-
tion naturally arises: Can such a noisy corpus actually help CLIR? We will examine
this question in Section 4. In the next section we will brie�y describe how statistical
translation models are trained on parallel corpora. We will focus in our discussion on
the following languages: English, French, and Italian. The resulting translation models
will be evaluated in a CLIR task.

3. Building the Translation Models

Bilingual pairs of documents collected from the Web are used as training material
for the statistical translation models that we exploit for CLIR. In practice, this mate-
rial must be organized into a set of small pairs of corresponding segments (typically,
sentences), each consisting of a sequence of word tokens. We start by presenting the
details of this preparatory step and then discuss the actual construction of the trans-
lation models.

3.1 Preparing the Corpus
3.1.1 Format Conversion, Text Segmentation, and Sentence Alignment. The collec-
tion process described in the previous section provides us with a set of pairs of HTML
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�les. The �rst step in preparing this material is to extract the textual data from the
�les and organize them into small, manageable chunks (sentences).

In doing so, we try to take advantage of the HTML markup. For instance, we
know that <P> tags normally identify paragraphs, <LI> tags mark list items that can
also often be interpreted as paragraphs, <Hn> tags are normally used to mark section
headers and may therefore be taken as sentences, and so on.

Unfortunately, a surprisingly large number of HTML �les on the Web are badly
formatted, which calls for much �exibility on the part of Web browsers. To help cope
with this situation, we employ a freely distributed tool called tidy (Ragget 1998), which
attempts to clean up HTML �les, so as to make them XML-compliant. This cleanup
process mostly consists in normalizing tag names to the standard XHTML lower-
case convention, wrapping tag attributes within double quotes and, most importantly,
adding missing tags so as to end up with documents with balancing opening and
closing tags.

Once this cleanup is done, we can parse the �les with a standard SGML parser
(we use nsgmls [Clark 2001]) and use the output to produce documents in the standard
cesAna format. This SGML format, proposed as part of the Corpus Encoding Standard
(CES) (Ide, Priest-Dorman, and Véronis 1995) has provisions for annotating simple
textual structures such as sections, paragraphs, and sentences. In addition to the cues
provided by the HTML tags, we employ a number of heuristics, as well as language-
speci�c lists of common abbreviations and acronyms, to locate sentence boundaries
within paragraphs. When, as sometimes happens, the tidy program fails to make sense
of its input on a particular �le, we simply remove all SGML markup from the �le
and treat the document as plain text, which means that we must rely solely on our
heuristics to locate paragraph and sentence boundaries.

Once the textual data have been extracted from pairs of documents and are neatly
segmented into paragraphs and sentences, we can proceed with sentence alignment.
This operation produces what we call couples, that is, minimal-size pairs of corre-
sponding segments between two documents. In the vast majority of cases, couples
consist of a single pair of sentences that are translations of one another (what we
call 1-to-1 couples). However, there are sometimes “larger” couples, as when a single
sentence in one language translates into two or more sentences in the other language
(1-to-N or N-to-1), or when sentences translate many to many (N-to-M). Conversely,
there are also “smaller” couples, such as when a sentence from either one of the two
texts does not appear in the other (0-to-1 or 1-to-0).

Our sentence alignments are carried out by a program called s�al, an improved
implementation of the method described in Simard, Foster, and Isabelle (1992). For a
given pair of documents, this program uses dynamic programming to compute the
alignment that globally maximizes a statistical-based scoring function. This function
takes into account the statistical distribution of translation patterns (1-to-1, 1-to-N, etc.)
and the relative sizes of the aligned text segments, as well as the number of “cognate”
words within couples, that is, pairs of words with similar orthographies in the two
languages (e.g. statistical in English vs. statistique in French).

The data produced up to this point in the preparation process constitutes what
we call a Web-aligned corpus (WAC).

3.1.2 Tokenization, Lemmatization, and Stopwords. Since our goal is to use trans-
lation models in an IR context, it seems natural to have both the translation models
and the IR system operate on the same type of data. The basic indexing units of our
IR systems are word stems. Stemming is an IR technique whereby morphologically
related word forms are reduced to a common form: a stem. Such a stem does not
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necessarily have to be a linguistic root form. The principal function of the stem is
to serve as an index term in the vocabulary of index terms. Stemming is a form of
con�ation: Equivalence classes of tokens help to reduce the variance in index terms.
Most stemming algorithms fall into two categories: (1) suf�x strippers, and (2) full
morphological normalization (sometimes referred to as “linguistic stemming” in the
IR literature). Suf�x strippers remove suf�xes in an iterative fashion using rudimental
morphological knowledge encoded in context-sensitive patterns. The advantage of al-
gorithms of this type (e.g., Porter 1980) is their simplicity and ef�ciency, although this
advantage applies principally to languages with a relatively simple morphology, like
English. A different way of generating con�ation classes is to employ full morpholog-
ical analysis. This process usually consists of two steps: First the texts are POS-tagged
in order to eliminate each token’s part-of-speech ambiguity, and then word forms are
reduced to their root form, a process that we refer to as lemmatization. More informa-
tion about the relative utility of morphological normalization techniques in IR systems
can be found in, for example, Hull (1996), Kraaij and Pohlmann (1996), and Braschler
and Ripplinger (2003).

Lemmatizing and removing stopwords from the training material is also bene�cial
for statistical translation modeling, helping to reduce the problem of data sparseness
in the training set. Furthermore, function words and morpho-syntactic features typi-
cally arise from grammatical constraints intrinsic to a language, rather than as direct
realizations of translated concepts. Therefore, we expect that removing them helps
the translation model focus on meaning rather than form. In fact, it has been shown
in Chen and Nie (2000) that the removal of stopwords from English-Chinese train-
ing material improves both the translation accuracy of the translation models and the
effectiveness of CLIR. We expect a similar effect for European languages.

We also have to tokenize the texts, that is, to identify individual word forms.
Because we are dealing with Romance languages, this step is fairly straightforward:6

We essentially segment the text using blank spaces and punctuation. In addition, we
rely on a small number of language-speci�c rules to deal, for example, with elisions
in French (l’amour ! l’ + amour) and Italian (dell’arte ! dell’ + arte), contractions in
French (au ! à + le), possessives in English (Bob’s ! Bob + ’s), etc.

Once we have identi�ed word tokens, we can lemmatize or stem them. For Italian,
we relied on a simple, freely distributed stemmer from the Open Muscat project.7

For French and English, we have access to more sophisticated tools that compute
each token’s lemma based on its part of speech (we use the HMM-based POS tagger
proposed in Foster (1991) and extensive dictionaries with morphological information.
As a �nal step, we remove stopwords.

Usually, 1-1 alignments are more reliable than other types of alignment. It is a
common practice to use only these alignments for model training, and this is what we
do.

Table 2 provides some statistics on the processed corpora.

3.2 Translation Models
In statistical translation modeling, we take the view that each possible target language
text is a potential translation for any given source language text, but that some trans-
lations are more likely than others. In the terms of Brown et al. (1990), a noisy-channel
translation model is one that captures this state of affairs in a statistical distribution

6 The processing on Chinese is described in Chen and Nie (2000).
7 Currently distributed by OMSEEK:

hhttp://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/omseek/om/languages/i.
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Table 2
Sentence-aligned corpora.

English-French English-Italian

Number of 1-1 alignments 1018K 196K
Number of tokens 6.7M/7.1M 1.2M/1.3M
Number of unique stems 200K/173K 102K/87K

P(T j S), where S is a source language text and T is a target language text.8 With such
a model, translating S amounts to �nding the target language text T̂ that maximizes
P(T j S).

Modeling P(T j S) is, of course, complicated by the fact that there is an in�nite
number of possible source and target language texts, and so much of the work of the
last 15 years or so in statistical machine translation has been aimed at �nding ways
to overcome this complexity by making various simplifying assumptions. Typically,
P(T j S) is rewritten as

P(T j S) =
P(T)P(S j T)

P(S)

following Bayes’ law. This decomposition of P(T j S) is useful in two ways: �rst,
it makes it possible to ignore P(S) when searching for T̂; second, it allows us to
concentrate our efforts on the lexical aspects of P(S j T), leaving it to P(T) (the “target
language model”) to take care of syntactic and other language-speci�c aspects.

In one of the simplest and earliest statistical translation models, IBM’s Model 1,
it is assumed that P(S j T) can be approximated by a computation that uses only
“lexical” probabilities P(s j t) over source and target language words s and t. In other
words, this model completely disregards the order in which the individual words of
S and T appear. Although this model is known to be too weak for general translation,
it appears that it can be quite useful for an application such as CLIR, because many
IR systems also disregard word order, viewing documents and queries as unordered
bags of words.

The P(s j t) distribution is estimated from a corpus of aligned sentences like the
one we have produced from our Web-mined collection of bilingual documents, using
the expectation maximization (EM) algorithm (Baum 1972) to �nd the parameters
that maximize the likelihood of the training set. As in all machine-learning problems,
especially those related to natural language, data sparseness is a critical issue in this
process. Even with a large training corpus, many pairs of words (s, t) occur at very
low frequencies, and most never occur at all, making it impossible to obtain reliable
estimates for the corresponding P(s j t). Without adequate smoothing techniques, low-
frequency events can have disastrous effects on the global behavior of the model, and
unfortunately, in natural languages, low-frequency events are the norm rather than
the exception.

The goal of translation in CLIR is different from that in general language process-
ing. In the latter case it is important to enable a model to handle low-frequency words
and unknown words. For CLIR the coverage of low-frequency words or unknown
words by the model is less problematic. Even if a low-frequency word is translated

8 The model is referred to as noisy-channel because it takes the view that S is the result of some input
signal T’s being corrupted while passing through a noisy channel. In this context, the goal is to recover
the initial input, given the corrupted output.
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incorrectly, the global IR effectiveness will often not be signi�cantly affected, because
low-frequency words likely do not appear often in the document collection to be
searched or other terms in the query could compensate for this gap. Most IR algo-
rithms are based on a term-weighting function that favors terms that occur frequently
in a document but occur infrequently in the document collection. This means that the
best index terms have a medium frequency (Salton and McGill 1983). Stopwords and
(near) hapaxes are less important for IR; limited coverage of very infrequent words in
a translation model is therefore not critical for the performance of a CLIR system.

Proper nouns are special cases of unknown words. When they appear in a query,
they usually denote an important part of the user’s intention. However, we can adopt
a special approach to cope with these unknown words in CLIR without integrating
them as the generalized case in the model. For example, one can simply retain all the
unknown words in the query translation. This approach works well for most cases
in European languages. We have previously shown that a fuzzy-matching approach
based on n-grams offers an effective means of overcoming small spelling variations in
proper noun spelling (Kraaij, Pohlmann, and Hiemstra 2000).

The model pruning techniques developed in computational linguistics are also
useful for the models used in CLIR. The bene�cial effect is that unreliable (or low-
probability) translations can be removed. In Section 4, model smoothing will be moti-
vated from a more theoretical point of view. Here, let us �rst outline the two variations
we used to prune the models.

The �rst one is simple, yet effective in our application: We consider unreliable all
parameters (translation probabilities) whose value falls below some preset threshold
(in practice, 0:1 works well). These parameters are simply discarded from the model.
The remaining parameters are then renormalized so that all marginal distributions
sum to one.

Another pruning technique is based on the relative contribution to the entropy
of the model. We retain the N most reliable parameters (in practice, N = 100K works
well). The reliability of a parameter is measured with regard to its contribution to the
model’s entropy (Foster 2000). In other words, we discard the parameters that least
affect the overall probability of the training set. The remaining parameters are then
renormalized so that all marginal distributions sum to one.

Of course, as a result of this, most pairs of words (s, t) are unknown to the trans-
lation model (translation probability equals zero). As previously discussed, however,
this will not have a disastrous effect on CLIR; on the contrary, some positive effect can
be expected as long as there is at least one translation for each source term.

One important characteristic of these noisy-channel models is that they are “di-
rectional.” Depending on the intended use, it must be determined beforehand which
language is the source and which the target for each pair of languages. Although “re-
verse” parameters can theoretically be obtained from the model through Bayes’ rule,
it is often more practical to train two separate models if both directions are needed.
This topic is also discussed in the next section.

4. Embedding Translation into the IR Model

When CLIR is considered simply as a combination of separate MT and IR components,
the embedding of the two functions is not a problem. However, as we explained in
Section 1, there are theoretical motivations for embedding translation into the retrieval
model. Since translation models provide more than one translation, we will try to
exploit this extra information, in order to enhance retrieval effectiveness. In Section 4.1
we will �rst introduce a monolingual probabilistic IR model based on cross entropy
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between a unigram language model for the query and one for the document. We
discuss the relationship of this model to IR models based on generative language
models. Subsequently, we show several ways to add translation to the model: One
can either translate the query language model from the source language into the target
language (i.e., the document language) before measuring the cross entropy, or translate
the document model from the target language into the source language and then
measure the cross entropy.

4.1 Monolingual IR Based on Unigram Language Models
Recently, a new approach to IR based on statistical language models has gained wide
acceptance. The approach was developed independently by several groups (Ponte
and Croft 1998; Miller, Leek, and Schwartz 1999; Hiemstra 1998) and has yielded
results on several IR standardized evaluation tasks that are comparable to or better
than those obtained using the existing OKAPI probabilistic model. In comparison
with the OKAPI model, the IR model based on generative language models has some
important advantages: It contains fewer collection-dependent tuning parameters and
is easy to extend. For a more detailed discussion of the relationships between the
classical (discriminative) probabilistic IR models and recent generative probabilistic IR
models, we refer the reader to Kraaij and Spitters (2003). Probably the most important
idea in the language-modeling approach to IR is that documents are scored on the
probability that they generate the query; that is, the problem is reversed, an idea that
has successfully been applied in speech recognition. There are various reasons that
this approach has proven fruitful, probably the most important being that documents
contain much more data for estimating the parameters of a probabilistic model than do
ad hoc queries (Lafferty and Zhai 2001b). For ad hoc retrieval, one could describe the
query formulation process as follows: A user has an ideal relevant document in mind
and tries to describe it by mentioning some of the salient terms that he thinks occur in
the document, interspersed with some query stop phrasing like “Relevant documents
mention: : : .” For each document in the collection, we can compute the probability
that the query is generated from a model representing that document. This generation
process can serve as a coarse way of modeling the user’s query formulation process.
The query likelihood given each document can directly be used as a document-ranking
function. Formula (1) shows the basic language model, in which a query Q consists of
a sequence of terms T1, T2, : : : , Tm that are sampled independently from a document
unigram model for document dk (Table 3 presents an explanation of the most important
symbols used in equations (1)–(12)):

P(Q j Dk) = P(T1, T2, : : : , Tm j Dk) º
mY

j= 1

P(Tm j MDk) (1)

In this formula MDk denotes a language model of Dk. It is indeed an approximation of
Dk. Now, if a query is more probable given a language model based on document D1
than given a language model based on document D2, we can then hypothesize that
document D1 is more likely to be relevant to the query than document D2. Thus the
probability of generating a certain query given a document-based language model can
serve as a score for ranking documents with respect to topical relevance. It is common
practice to work with log probabilities, which has the advantage of reducing products
to summations. We will therefore rewrite (1) in logarithmic form. Since terms might
occur more than once in a query, we prefer to work with types ½ i instead of tokens
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Ti. So c(Q, ½ i) is the number of occurrences of ½ i in Q (query term frequency); we will
also omit the document subscript k in the following presentation:

log P(Q j D) =

nX

i= 1

c(Q, ½ i) log P( ½ i j MD) (2)

A second core technique from speech recognition that plays a vital role in language
models for IR is smoothing. One obvious reason for smoothing is to avoid assigning
zero probabilities for terms that do not occur in a document because the term prob-
abilities are estimated using maximum-likelihood estimation.9 If a single query term
does not occur in a document, this would result in a zero probability of generating
that query, which might not be desirable in many cases, since documents discuss a
certain topic using only a �nite set of words. It is very well possible that a term that
is highly relevant for a particular topic may not appear in a given document, since
it is a synonym for other terms that are also highly relevant. Longer documents will
in most cases have a better coverage of relevant index terms (and consequently better
probability estimates) than short documents, so one could let the level of smoothing
depend on the length of the document (e.g., Dirichlet priors). A second reason for
smoothing probability estimates of a generative model for queries is that queries con-
sist of (1) terms that have a high probability of occurrence in relevant documents and
(2) terms that are merely used to formulate a proper query statement (e.g., “Docu-
ments discussing only X are not relevant”). A mixture of a document language model
and a language model of typical query terminology (estimated on millions of queries)
would probably give good results (in terms of a low perplexity).

We have opted for a simple approach that addresses both issues, namely, applying
a smoothing step based on linear interpolation with a background model estimated on
a large document collection, since we do not have a collection of millions of queries:

log P(Q j D) =

nX

i= 1

c(Q, ½ i) log((1 ¡ ¶ )P( ½ i j MD) + ¶ P( ½ i j MC)) (3)

Here, P( ½ i j MC) denotes the marginal probability of observing the term ½ i, which can be
estimated on a large background corpus, and ¶ is the smoothing parameter. A common
range for ¶ is 0.5–0.7, which means that document models have to be smoothed quite
heavily for optimal performance. We hypothesize that this is mainly due to the query-
modeling role of smoothing. Linear interpolation with a background model has been
frequently used to smooth document models (e.g., Miller, Leek, and Schwartz 1999;
Hiemstra 1998). Recently other smoothing techniques (Dirichlet, absolute discounting)
have also been evaluated. An initial attempt to account for the two needs for smoothing
(sparse data problem, query modeling) with separate specialized smoothing functions
yielded positive results (Zhai and Lafferty 2002).

We have tested the model corresponding to formula (3) in several different IR
applications: monolingual information retrieval, �ltering, topic detection, and topic
tracking (cf. Allen [2002] for a task description of the latter two tasks). For several
of these applications (topic tracking, topic detection, collection fusion), it is important

9 The fact that language models have to be smoothed seems to contradict the discussion in Section 3, in
which we stated that rare terms are not critical for IR effectiveness, but it actually does not. Smoothing
helps to make the distinction between absent important terms (middle-frequency terms) and absent
nonimportant terms (high-frequency terms). The score of a document that misses important terms
should be lowered more than that of a document that misses an unimportant term.
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Table 3
Common symbols used in equations (1)–(12) and their
explanations.

Symbol Explanation

Q Query has representation Q = fT1 , T2 , : : : , Tng
D Query has representation D = fT1 , T2 , : : : , Tng
MQ Query language model
MD Document language model
MC Background language model
½ i index term
si term in the source language
ti term in the target language
¶ smoothing parameter
c(x) counts of x

that scores be comparable across different queries (Spitters and Kraaij 2001). The basic
model does not provide such comparability of scores, so it has to be extended with
score normalization. There are two important steps in doing this. First of all, we would
like to normalize across query speci�city. The generative model will produce low scores
for speci�c queries (since the average probability of occurrence is low) and higher
scores for more general queries. Normalization can be accomplished by modeling the
IR task as a likelihood ratio (Ng 2000). For each term in the query, the log-likelihood
ratio (LLR) model judges how surprising it is to see the term, given the document
model in comparison with the background model:

LLR(Q j D) = log
P(Q j MD)

P(Q j MC)
=

nX

i= 1

c(Q, ½ i) log
((1 ¡ ¶ )P( ½ i j MD) + ¶ P( ½ i j MC))

P( ½ i j MC)
(4)

In (4), P(Q j MC) denotes the generative probability of the query given a language
model estimated on a large background corpus C. Note that P(Q j MC) is a query-
dependent constant and does not affect document ranking. Actually, model (4) has a
better justi�cation than model (3), since it can be seen as a direct derivative of the
log-odds of relevance if we assume uniform priors for document relevance:

log
P(R j D, Q)

P(·R j D, Q)
= log

P(Q j R, D)

P(Q j ·R, D)
+ log

P(R j D)

P(·R j D)
º log

P(Q j MD)

P(Q j MC)
+ K (5)

In (5), R refers to the event that a user likes a particular document (i.e., the document
is relevant).

The scores of model (4) still depend on the query length, which can be easily
normalized by dividing the scores by the query length (

P
i c(Q, ½ i)). This results in

formula (6) for the normalized log-likelihood ratio (NLLR) of the query:

NLLR(Q j D) =

nX

i= 1

c(Q, ½ i)P
i c(Q, ½ i)

log
((1 ¡ ¶ )P( ½ i j MD) + ¶ P( ½ i j MC))

P( ½ i j MC)
(6)

A next step is to view the normalized query term counts c(Q, ½ i)=
P

i c(Q, ½ i) as
maximum-likelihood estimates of a probability distribution representing the query
P( ½ i j MQ). The NLLR formula can now be reinterpreted as a relationship between the



400

Computational Linguistics Volume 29, Number 3

two probability distributions P( ½ j MQ), P( ½ j MD) normalized by the the third distribu-
tion P( ½ j MC). The model measures how much better than the background model the
document model can encode events from the query model; or in information-theoretic
terms, it can be interpreted as the difference between two cross entropies:

NLLR(Q j D) =

nX

i = 1

P( ½ i j Q) log
P( ½ i j Dk)

P( ½ i j C)
= H(X j c) ¡ H(X j d) (7)

In (7), X is a random variable with the probability distribution p( ½ i) = p( ½ i j MQ), and
c and d are probability mass functions representing the marginal distribution and the
document model. Cross entropy is a measure of our average surprise, so the better a
document model “�ts” a particular query distribution, the higher its score will be.10

The representation of both the query and a document as samples from a dis-
tribution representing, respectively, the user’s request and the document author’s
“mindset” has several advantages. Traditional IR techniques like query expansion
and relevance feedback can be reinterpreted in an intuitive framework of probabil-
ity distributions (Lafferty and Zhai 2001a; Lavrenko and Croft 2001). The framework
also seems suitable for cross-language retrieval. We need only to extend the model
with a translation function, which relates the probability distribution in one language
to the probability distribution function in another language. We will present several
solutions for this extension in the next section.

The NLLR also has a disadvantage: It is less easy in the NLLR to integrate prior
information about relevance into the model (Kraaij, Westerveld, and Hiemstra 2002),
which can be done in a straightforward way in formula (1), by simple multiplication.
CLIR is a special case of ad hoc retrieval, and usually a document length–based prior
can enhance results signi�cantly. A remedy that has proven to be effective is linear
interpolation of the NLLR score with a prior log-odds ratio log (P(R j D)=P(:R j D)
(Kraaij 2002). For reasons of clarity, we have chosen not to include this technique in
the experiments presented here.

In the following sections, we will describe several ways to extend the monolingual
IR model with translation. The section headings include the run tags that will be used
in Section 5 to describe the experimental results.

4.2 Estimating the Query Model in the Target Language (QT)
In Section 4.1, we have seen that the basic retrieval model measures the cross entropy
between two language models: a language model of the query and a language model
of the document.11 Instead of translating a query before estimating a query model
(the external approach), we propose to estimate the query model directly in the target
language. We will do this by decomposing the problem into two components that are
easier to estimate:

P(ti j MQs ) =

LX

j

P(sj, ti j MQs) =

LX

j

P(ti j sj, MQs)P(sj j MQs) º
LX

j

P(ti j sj)P(sj j MQs )

(8)
where L is the size of the source vocabulary. Thus, P(ti j MQs) can be approximated by
combining the translation model P(ti j sj), which we can estimate on the parallel Web
corpus, and the familiar P(sj j MQs), which can be estimated using relative frequencies.

10 The NLLR can also be reformulated as a difference of two Kullback-Leibler divergences (Ng 2000).
11 We omit the normalization with the background model in the formula for presentation reasons.
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This simpli�ed model, from which we have dropped the dependency of P(ti j sj)
on Q, can be interpreted as a way of mapping the probability distribution function
in the source language event space P(sj j MQs) onto the event space of the target
language vocabulary. Since this probabilistic mapping function involves a summation
over all possible translations, mapping the query model from the source language can
be implemented as the matrix product of a vector representing the query probability
distribution over source language terms with the translation matrix P(ti j sj).12 The
result is a probability distribution function over the target language vocabulary.

Now we can substitute the query model P( ½ i j MQ) in formula (7) with the target
language query model in (8) and, after a similar substitution operation for P( ½ i j MC),
we arrive at CLIR model QT:

NLLR-QT(Qs j Dt) =

nX

i= 1

LX

j= 1

P(ti j sj)P(sj j MQs ) log
(1 ¡ ¶ )P(ti j MDt ) + ¶ P(ti j MCt )

P(ti j MCt )

(9)

4.3 Estimating the Document Model in the Source Language (DT)
Another way to embed translation into the IR model is to estimate the document
model in the source language:

P(si j MDt ) =

NX

j

P(si, tj j MDt ) =

NX

j

P(si j tj, MDt )P(tj j MDt ) º
NX

j

P(si j tj)P(tj j MDt )

(10)
where N is the size of the target vocabulary. Obviously, we need a translation model
in the reverse direction for this approach. Now we can substitute (10) for P( ½ i j MD)
in formula (6), yielding CLIR model DT:

NLLR-DT(Qs j Dt) =

nX

i = 1

P(si j MQs) log

PN
j = 1 P(si j tj)((1 ¡ ¶ )P(tj j MDt ) + ¶ P(tj j MCt ))

PN
j= 1 P(si j tj)P(tj j MCt )

(11)
It is important to realize that both the QT and DT models are based on context-

insensitive translation, since translation is added to the IR model after the indepen-
dence assumption (1) has been made. Recently, a more complex CLIR model based on
relaxed assumptions—context-sensitive translation but term independence–based IR—
has been proposed in Federico and Bertoldi (2002). In experiments on the CLEF test
collections, the aforementioned model also proved to be more effective; however, it has
the disadvantage of reducing ef�ciency through its use of a Viterbi search procedure.

4.4 Variant Models and Baselines
In this section we will discuss several variant instantiations of the QT and DT models
that help us measure the importance of the number of translations (pruning) and the
weighting of translation alternatives. We also present several baseline CLIR algorithms
taken from the literature and discuss their relationship to the QT and DT models.

12 For presentation reasons, we have replaced the variable ¿ used in Section 4.1 with s and t for a term in
the source and target language, respectively.



402

Computational Linguistics Volume 29, Number 3

4.4.1 External Translation (MT, NAIVE). As we argued in Section 1, the most simple
solution to CLIR is to use an MT system to translate the query and use the translation
as the basis for a monolingual search operation in the target language. This solution
does not require any modi�cation to the standard IR model as presented in Section 4.1.
We will refer to this model as the external-translation approach. The translated query
is used to estimate a probability distribution for the query in the target language. Thus,
the order of operations is: (1) translate the query using an external tool; (2) estimate
the parameters P(ti j MQt ) of a language model based on this translated query.

In our experimental section below, we will list results with two different instantia-
tions of the external-translation approach: (1) MT: query translation by Systran, which
attempts to use high-level linguistic analysis, context-sensitive translation, extensive
dictionaries, etc., and (2) NAIVE: naive replacement of each query term with its trans-
lations (not weighted). The latter approach is often implemented using bilingual word
lists for CLIR. It is clear that this approach can be problematic for terms with many
translations, since they would then be assigned a higher relative importance. The
NAIVE method is included here only to study the effect of the number of translations
on the effectiveness of various models.

4.4.2 Best-Match Translation (QT-BM). In Section 3.2 we explained that there are
different possible strategies for pruning the translation model. An extreme pruning
method is best match, in which only the best translation is kept. A best-match transla-
tion model for query model translation (QT-BM) could also be viewed as an instance
of the external translation model, but one that uses a corpus-based disambiguation
method. Each query term is translated by the most frequent translation in the Web
corpus, disregarding the query context.

4.4.3 Equal Probabilities (QT-EQ). If we don’t know the precise probability of each
translation alternative for a given term, the best thing to do is to fall back on uniform
translation probabilities. This situation arises, for example, if we have only standard
bilingual dictionaries. We hypothesize that this approach will be more effective than
NAIVE but less effective than QT.

4.4.4 Synonym-Based Translation (SYN). An alternative way to embed translation
into the retrieval model is to view translation alternatives as synonyms. This is, of
course, something of an idealization, yet there is certainly some truth to the approach
when translations are looked up in a standard bilingual dictionary. Strictly speaking,
when terms are pure synonyms, they can be substituted for one another. Combining
translation alternatives with the synonym operator of the INQUERY IR system (Broglio
et al. 1995), which con�ates terms on the �y, has been shown to be an effective way
of improving the performance of dictionary-based CLIR systems (Pirkola 1998). In
our study of stemming algorithms (Kraaij and Pohlmann 1996), we independently
implemented the synonym operator in our system. This on-line con�ation function
replaces the members of the equivalence class with a class ID, usually a morphological
root form. We have used this function to test the effectiveness of a synonymy-based
CLIR model in a language model IR setting.

The synonym operator for CLIR can be formalized as the following class equiva-
lence model (assuming n translations tj for term si and N unique terms in the target
language):

P(class(si) j MDt ) =

Pn
j c(tj, Dt)

PN
j c(tj, Dt)

=

NX

j

¯ (si, tj)P(tj j MDt ) (12)
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where P(class(si) j MDt ) is the probability that a member of the equivalence class of si
is generated by the language model MDt and

¯ (si, tj) =

(
1 if tj 2 class(si)

0 if tj =2 class(si)
(13)

Here c(tj, Dt) is the term frequency (counts) of term tj in document Dt.
The synonym class function ¯ (si, tj) can be interpreted as a special instantiation

of the translation model P(si j tj) in (10), namely, P(si j tj) = 1 for all translations tj
of si. Of course, this does not yield a valid probability function, since the translation
probabilities for all translations si of a certain tj do not sum to one, because the pseudo–
synonym classes are not disjunct because of sense ambiguity. But the point is that the
structure of a probabilistic version of the SYN model is similar to that of the DT model,
namely, one in which all translations have a reverse translation probability P(si j tj)
equal to one. This is obviously just an approximation of reality. We therefore expect that
this model will be less effective than the QT and DT models. In our implementation
of the SYN model, we formed equivalence classes by looking up all translations of a
source term si in the translation model P(tj j si). The translations receive a weight of
one and are used as pseudo translation–probabilities13 in the model corresponding to
formula (11).

4.5 Related Work
In dictionary-based approaches, the number of translation alternatives is usually not
as high as in (unpruned) translation models, so these alternatives can be used in
some form of query expansion (Hull and Grefenstette 1996; Savoy 2002). However, it
is well known that most IR models break down when the number of translations is
high. To remedy this, researchers have tried to impose query structure, for example,
by collecting translation alternatives in an equivalence class (Pirkola 1998), or via a
quasi-Boolean structure (Hull 1997).

The idea of embedding a translation step into an IR model based on query like-
lihood was developed independently by several researchers (Hiemstra and de Jong
1999; Kraaij, Pohlmann, and Hiemstra 2000; Berger and Lafferty 2000). Initially trans-
lation probabilities were estimated from machine-readable dictionaries, using simple
heuristics (Hiemstra et al. 2001). Other researchers have successfully used models sim-
ilar to DT, in combination with translation models trained on parallel corpora, though
not from the Web (McNamee and May�eld 2001; Xu, Weischedel, and Nguyen 2001).

5. Experiments

We carried out several contrastive experiments to gain more insight into the relative
effectiveness of the various CLIR models presented in Sections 4.2–4.4. We will �rst
outline our research questions, before describing the experiments in more detail.

5.1 Research Questions
The research questions we are hoping to answer are the following:

1. How do CLIR systems based on translation models perform with respect
to reference systems (e.g., monolingual, MT )?

13 It may be better to view them as mixing weights in this case.
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2. Which manner of embedding a translation model is most effective for
CLIR? How does a probabilistically motivated embedding compare with
a synonym-based embedding?

3. Is there a query expansion effect, and if so, how can we exploit it?

4. What is the relative importance of pruning versus weighting?

5. Which models are robust against noisy translations?

The �rst two questions concern the main goal of our experiments: What is the effec-
tiveness of a probabilistic CLIR system in which translation models mined from the
Web are an integral part of the model, compared to that of CLIR models in which
translation is merely an external component? The remaining questions help us to un-
derstand the relative importance of various design choices in our approach, such as
pruning and translation model orientation.

5.2 Experimental Conditions
We have de�ned a set of contrastive experiments in order to help us answer the
research questions presented above. These experiments seek to compare:

1. The effectiveness of approaches incorporating a translation model
produced from the Web to that of a monolingual baseline and an
off-the-shelf external query translation approach based on Systran (MT).

2. The effectiveness of embedding query model translation (QT) and that of
document model translation (DT).

3. The effectiveness of using the entire set of translations, each of which is
weighted, (QT) to that of using just the most probable translation
(QT-BM).

4. The effectiveness of weighted query model translation (QT) to that of
equally weighted translations (QT-EQ) and nonweighted translations
(NAIVE).

5. The effectiveness of treating translations as synonyms (SYN) with that of
weighted translations (QT) and equally weighted translations (QT-EQ).

6. Different translation model pruning strategies: best N parameters or
thresholding probabilities.

Each strategy is represented by a run tag, as shown in Table 4.
Table 5 illustrates the differences among the different translation methods. It lists,

for several CLIR models, the French translations of the word drug taken from one of
the test queries that talks about drug policy.

The translations in Table 5 are provided by the translation models P(e j f ) and
P(f j e). The translation models have been pruned by discarding the translations with
P < 0:1 and renormalizing the model (except for SYN), or by retaining the 100K best
parameters of the translation model. The �rst pruning method (probability threshold)
has a very different effect on the DT method than on the QT method: The number of
terms that translate into drug, according to P(e j f ), is much larger than the number
of translations of drug found in P(f j e). There are several possible explanations for
this: Quite a few French terms, including the verb droguer and the compounds pharma-
corésistance and pharmacothérapie, all translate into an English expression or compound
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Table 4
Explanation of run tags.

Matching
Run Tag Short Description Language Section

MONO monolingual run 4.1, 5.5
MT Systran external query translation target 4.4.1, 5.5
NAIVE equal probabilities target 4.4.1
QT translation of the query language model target 4.2
DT translation of the document language model source 4.3
QT-BM best match, one translation per word target 4.4.2
QT-EQ equal probabilities target 4.4.3
SYN synonym run based on forward equal probabilities source 4.4.4

Table 5
Example translations: Stems and probabilities with different CLIR methods.

Run ID Translation Translation
Model

MT drogues

QT <drogue, 0.55; medicament, 0.45> P(f j e) µ 0:1

QT-EQ <drogue, 0.5; medicament, 0.5>
QT-BM <drogue, 1.0>
SYN <drogue, 1.0; medicament, 1.0>
NAIVE <drogue, 1.0; medicament, 1.0>

DT <antidrogue, 1.0; drogue, 1.0; droguer, 1.0; drug,
1.0; médicament, 0.79; drugs, 0.70; drogué, 0.61;
narcotra�quants, 0.57; relargage, 0.53; pharmacovigi-
lance, 0.49; pharmacorésistance, 0.47; médicamenteux,
0.36; stéro ṏ diens, 0.35, stupé�ant, 0.34; assurance-
médicaments, 0.33; surdose, 0.28; pharmacorésistants,
0.28; pharmacodépendance, 0.27; pharmacothérapie,
0.25; alcoolisme, 0.24; toxicomane, 0.23; bounce, 0.23; an-
ticancéreux, 0.22; anti-in�ammatoire, 0.17; selby, 0.16; es-
cherichia, 0.14; homelessness, 0.14; anti-drogues, 0.14; an-
tidiarrhéique, 0.12; imodium, 0.12; surprescription, 0.10>

P(e j f ) µ 0:1

QT <drogue, 0.45; medicament, 0.35; consommation, 0.06; re-
lier, 0.03; consommer, 0.02; drug, 0.02; usage, 0.02; toxico-
manie, 0.01; substance, 0.01; antidrogue, 0.01; utilisation,
0.01; lier, 0.01; thérapeutique, 0.01; actif, 0.01; pharmaceu-
tique, 0.01>

P(e j f ), 100K

DT <re�exions, 1; antidrogue, 1; narcotra�quants, 1;
drug, 1; droguer, 0.87; drogue, 0.83; drugs, 0.81;
médicament, 0.67; pharmacorésistance, 0.47; pharma-
corésistants, 0.44; médicamenteux, 0.36; stupé�ant, 0.34;
assurance-médicaments, 0.33; pharmacothérapie, 0.33;
amphétamine, 0.18; toxicomane, 0.17; mémorandum,
0.10; toxicomanie, 0.08; architectural, 0.08; pharmacie,
0.07; pharmaceutique, 0.06; thérapeutique, 0.04; sub-
stance, 0.01>

P(f j e), 100K
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involving the word drug. Since our translation model is quite simple, these compound-
compound translations are not learned.14 A second factor that might play a role is the
greater verbosity of French texts compared to their English equivalents (cf. Table 2).
For the models that have been pruned using the 100K-best-parameters criterion, the
differences between QT and DT are smaller. Both methods yield multiple translations,
most of which seem related to drug, so there is a clear potential for improved recall as
a result of the query expansion effect. Notice, however, that the expansion concerns
both the medical and the narcotic senses of the word drug. We will see in the following
section that the CLIR model is able to take advantage of this query expansion effect,
even if the expansion set is noisy and not disambiguated.

5.3 The CLEF Test Collection
To answer the research questions stated in section 5.1, we carried out a series of ex-
periments on a combination of the CLEF-2000, -2001 and -2002 test collections.15 This
joint test collection consists of documents in several languages (articles from major
European newspapers from the year 1994), 140 topics describing different informa-
tion needs (also in several languages) and their corresponding relevance judgments.
(Relevance judgments are a human-produced resource that states, for a subset of a
document collection, whether a document is relevant for a particular query.) We used
only the English, Italian, and French data for the CLIR experiments reported here. The
main reason for this limitation was that the IR experiments and translation models
were developed at two different sites equipped with different proprietary tools. We
chose language pairs for which the lemmatization/stemming step for both the trans-
lation model training and indexing system were equivalent. A single test collection
was created by merging the three topic sets in order to increase the reliability of our
results and sensitivity of signi�cance tests. Each CLEF topic consists of three parts:
title, description , and narrative . An example is given below:

<num> C001

<title> Architecture in Berlin

<description> Find documents on architecture in Berlin.

<narrative> Relevant documents report, in general, on the
architectural features of Berlin or, in particular, on the
reconstruction of some parts of the city after the fall of the
Wall.

We used only the title and description parts of the topics and concatenated
these simply to form the queries. Table 6 lists some statistics on the test collection.16

The documents were submitted to the preprocessing (stemming/lemmatization)
procedure we described in Section 3.1.2. However, for English and French lemmatiza-
tion, we used the Xelda tools from XRCE,17 which perform morphological normaliza-
tion slightly differently from the one described in Section 3.1.2. However, since the two

14 A more extreme case is query C044 about the “tour de france.” According to the P(e j f) > 0:1
translation model, there are 902 French words that translate into the “English” word de. This is mostly
due to French proper names, which are left untranslated in the English parallel text.

15 CLEF = Cross Language Evaluation Forum, hwww.clef-campaign.orgi.
16 Topics without relevant documents in a subcollection were discarded.
17 Available at hhttp://www.xrce.xerox.com/competencies/ats/xelda/summary.htmli.



407

Kraaij, Nie, and Simard Embedding Web-Based Statistical Models in CLIR

Table 6
Statistics on the test collection.

French English Italian

Document Source Le Monde Los Angeles Times La Stampa
Number of documents 44,013 110,250 58,051
Number of topics 124 122 125
Number of relevant documents 1,189 2,256 1,878

lemmatization strategies are based on the same principle (POS tagging plus in�ection
removal), the small differences in morphological dictionaries and POS tagging had no
signi�cant in�uence on retrieval effectiveness.18

All runs use a smoothing parameter ¶ = 0:3. This value had been shown to work
well for CLIR experiments with several other collections.

5.4 Measuring Retrieval Effectiveness
The effectiveness of retrieval systems can be evaluated using several measures. The
basic measures are precision and recall, which cannot be applied directly, since they
assume clearly separated classes of relevant and nonrelevant documents. The most
widely accepted measure for evaluating effectiveness of ranked retrieval systems is
the average uninterpolated precision, most often referred to as mean average precision
(MAP), since the measure is averaged �rst over relevant documents and then across
topics. Other measures, such as precision at a �xed rank, interpolated precision, or
R-precision, are strongly correlated to the mean average precision, so they do not really
provide additional information (Tague-Sutcliffe and Blustein 1995; Voorhees 1998).

The average uninterpolated precision for a given query and a given system version
can be computed as follows: First identify the rank number n of each relevant docu-
ment in a retrieval run. The corresponding precision at this rank number is de�ned
as the number of relevant documents found in the ranks equal to or higher than the
respective rank r divided by n. Relevant documents that are not retrieved are assigned
a precision of zero. The average precision for a given query is de�ned as the average
value of the precision pr over all known relevant documents dij for that query. Finally,
the mean average precision can be calculated by averaging the average precision over
all M queries:

MAP =
1
M

MX

j= 1

1
Nj

NjX

i= 1

pr(dij), where pr(dij) =
rni
ni

, if dij retrieved and ni µ C
0, in other cases

(14)
Here, ni denotes the rank of the document dij, which has been retrieved and is relevant
for query j, rni is the number of relevant documents found up to and including rank
ni, Nj is the total number of relevant documents of query j, M is the total number of
queries, and C is the cutoff rank (C is 1,000 for TREC experiments).

18 We have not been able to substantiate this claim with quantitative �gures but did analyze the lemmas
that were not found in the translation dictionaries during query translation. We did not �nd any
structural mismatches.
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Since we compared many different system versions, which do not always dis-
play a large difference in effectiveness, it is desirable to perform signi�cance tests on
the results. However, it is well known that parametric tests for data resulting from
IR experiments are not very reliable, since the assumptions of these tests (normal or
symmetric distribution, homogeneity of variances) are usually not met. We checked
the assumptions for an analysis of variance (by �tting a linear model for a within-
subjects design) and found that indeed the distribution of the residual error was quite
skewed, even after transformation of the data. Therefore, we resorted to a nonpara-
metric alternative for the analysis of variance, the Friedman test (Conover 1980). This
test is preferable, for the analysis of groups of runs instead, to multiple sign-tests or
Wilcoxon signed-rank tests, since it provides overall alpha protection. This means that
we �rst test whether there is any signi�cant difference at all between the runs, before
applying multiple-comparison tests. Applying just a large number of paired signi�-
cance tests at the 0.05 signi�cance level without a global test leads very quickly to a
high overall alpha. After applying the Friedman test, we ran Fisher’s LSD multiple-
comparison tests (recommended by Hull) to identify equivalence classes of runs (Hull
1993; Hull, Kantor, and Ng 1999). An equivalence class is a group of runs that do
not differ signi�cantly (e.g., in terms of mean average precision) from one another in
terms of performance.

5.5 Baseline Systems
We decided to have two types of baseline runs. It is standard practice to take a mono-
lingual run as a baseline. This run is based on an IR system using document ranking
formula (6). Contrary to runs described in Kraaij (2002), we did not use any additional
performance-enhancing devices, like document length–based priors or fuzzy match-
ing, in order to focus on the basic retrieval model extensions, avoiding interactions.

Systran was used as an additional cross-language baseline, to serve as a reference
point for cross-language runs. Notice that the lexical coverage of MT systems varies
considerably across language pairs; in particular, the French-English version of Systran
is quite good in comparison with those available for other language pairs. We accessed
the Web-based version of Systran (December 2002), marketed as Babel�sh, using the
Perl utility babel�sh.pm and converted the Unicode output to the ISO-Latin1 character
set to make it compatible with the Xelda-based morphology.

5.6 Results
Table 7 shows the results for the different experimental conditions in combination
with a translation model pruned with the probability threshold criterion P > 0:1 (cf.
Section 3.2). For each run, we computed the mean average precision using the standard
evaluation tool trec eval. We performed Friedman tests on all the runs based on the
Web translation models, because these are the runs in which we are most interested;
furthermore, one should avoid adding runs that are quite different to a group that is
relatively homogeneous, since this can easily lead to a false global-signi�cance test.
The Friedman test (as measured on the F distribution) proved signi�cant at the p <
0:05 level in all cases, so we created equivalence classes using Fisher’s LSD method,
which are denoted by letters. Letters are assigned to classes in decreasing order of
performance; so if a run is a member of equivalence class a, it is one of the best runs
for that particular experimental condition.

The last four rows of the table provide some additional statistics on the query
translation process. For both the forward (P(t j s),fw) and the reverse (P(s j t),rev)
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Table 7
Mean average precision and translation statistics (p > 0:1).

English- French- English- Italian-
Run ID French English Italian English

MONO 0.4233 0.4705 0.4542 0.4705
MT 0.3478 0.4043 0.3060 0.3249

QT a:0.3760 a:0.4126 a,b:0.3298 a:0.3526
DT a:0.3677 a,b:0.4090 a:0.3386 a,b:0.3328
SYN a:0.3730 b,c:0.3987 a,b:0.3114 b:0.3498
QT-EQ a:0.3554 a,b:0.3987 c,d:0.3035 b,c:0.3299
QT-BM a:0.3463 c,d:0.3769 b,c:0.3213 b:0.3221
NAIVE b:0.3303 d:0.3596 d:0.2881 c:0.3183

Percentage of missed forward 9.6 13.54 16.79 9.17
Percentage of missed reverse 9.08 14.04 15.48 11.31
Number of translations forward 1.65 1.66 1.86 2.13
Number of translations reverse 22.72 29.6 12.00 22.95

Table 8
Mean average precision and translation statistics (best 100K parameters).

English- French- English- Italian-
Run ID French English Italian English

MONO 0.4233 0.4705 0.4542 0.4705
MT 0.3478 0.4043 0.3060 0.3249

DT a:0.3909 a:0.4073 a:0.3728 a:0.3547
QT a,b:0.3878 a:0.4194 a:0.3519 a:0.3678
QT-BM b:0.3436 b:0.3702 b:0.3236 b:0.3124
SYN c:0.3270 b:0.3643 b:0.2958 c:0.2808
QT-EQ c:0.3102 b:0.3725 c:0.2602 c:0.2595
NAIVE d:0.2257 c:0.2329 d:0.2281 d:0.2021

Percentage of missed forward 11.04 14.65 16.06 9.36
Percentage of missed reverse 10.39 16.81 15.76 10.53
Number of translations forward 7.04 7.00 6.36 7.23
Number of translations reverse 10.51 12.34 13.32 17.20

translation model, we list the percentage of missed translations19 of unique query
terms and the average number of translations per unique query term. Table 8 shows
the results for the same experimental conditions, but this time the translation models
were pruned by taking the n best translation relations according to an entropy criterion,
where n = 100, 000.

Several other similar pruning methods have also been tested on the CLEF-2000
subset of the data (e.g. P > 0:01, P > 0:05, 1M parameters, 10K parameters). How-
ever, the two cases shown in Tables 7 and 8 represent the best of the two families
of pruning techniques. Our goal was not to do extensive parameter tuning in or-
der to �nd the best-performing combination of models, but rather to detect some
broad characteristics of the pruning methods and their interactions with the retrieval
model.

19 This �gure includes proper nouns.
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Table 9
Mean average precision of combination run, compared to baselines.

Run ID English-French French-English English-Italian Italian-English

MONO 0.4233 0.4705 0.4542 0.4705
MT 0.3478 (82%) 0.4043 (86%) 0.3060 (67%) 0.3249 (69%)
DT+QT 0.4042 (96%) 0.4273 (87%) 0.3837 (84%) 0.3785 (80%)

Since the pruned forward and reverse translation models yield different translation
relations (cf. Table 5), we hypothesized that it might be effective to combine them.
Instead of combining the translation probabilities directly, we chose to combine the
results of the QT and DT models by interpolation of the document scores. Results
for combinations based on the 100K models are shown in Table 9. Indeed, for all
the language pairs, the combination run improves upon each of its component runs.
This means that each component run can compensate for missing translations in the
companion translation model.

5.7 Discussion
5.7.1 Web-Based CLIR versus MT-Based CLIR. Our �rst observation when examining
the data is that the runs based on translation models are comparable to or better than
the Systran run. Sign tests showed that there was no signi�cant difference between the
MT and QT runs for English-French and French-English language pairs. The QT runs
were signi�cantly better at the p = 0:01 level for the Italian-English and English-Italian
language pairs.

This is a very signi�cant result, particularly since the performance of CLIR with
Systran has often been among the best in the previous CLIR experiments in TREC and
CLEF. These results show that the Web-based translation models are effective means for
CLIR tasks. The better results obtained with the Web-based translation models con�rm
our intuition, stated in Section 1, that there are better tools for query translation in
CLIR than off-the-shelf commercial MT systems.

Compared to the monolingual runs, the best CLIR performance with Web-based
translation models varies from 74.1% to 93.7% (80% to 96% for the combined QT+DT
models) of the monolingual run. This is within the typical range of CLIR performance.
More generally, this research successfully demonstrates the enormous potential of par-
allel Web pages and Web-based MT.

We cannot really compare performance across target languages, since the relevant
documents are not distributed in a balanced way: Some queries do not yield any rele-
vant document in some languages. This partly explains why the retrieval effectiveness
of the monolingual Italian-Italian run is much higher than the monolingual French
and English runs. We can, however, compare methods within a given language pair.

5.7.2 Comparison of Query Model Translation (QT), Document Model Translation
(DT), and Translations Modeled as Synonyms (SYN). Our second question in Section
5.1 concerned the relative effectiveness of the QT and DT models. The experimental
results show that there is no clear winner; differences are small and not signi�cant.
There seems to be some correlation with translation direction, however: The QT models
perform better than DT on the X-English pairs, and the DT models perform better
on the English-X pairs. This might indicate that the P(e j f ) and P(e j i) translation
models are more reliable than their reverse counterparts. A possible explanation for



411

Kraaij, Nie, and Simard Embedding Web-Based Statistical Models in CLIR

this could be that the average English sentence is shorter than the corresponding
French and Italian sentence. The average number of tokens per sentence is, respectively,
6.6/6.9 and 5.9/6.9 for English/French and English/Italian corpora. This may lead to
more reliable estimates for P(e j f ) and P(e j i) than the reverse. However, further
investigation is needed to con�rm this, since differences in morphology could also
contribute to the observed effect. Still, the fact that QT models perform just as well as
DT models in combination with translation models is a new result.

We also compared our QT and DT models to the synonym-based approach (SYN)
(Pirkola 1998). Both the QT and DT models were signi�cantly more effective than the
synonym-based model. The latter seems to work well when the number of translations
is relatively small but cannot effectively handle the large number of (pseudo)translations
produced by our 100K translation models. The synonym-based model usually per-
forms better than the models based on query translation with uniform probabilities,
but the differences are not signi�cant in most cases.

5.7.3 Query Expansion Effect. In Section 1 we argued that using just one translation
(as MT does) is probably a suboptimal strategy for CLIR, since there is usually more
than one good translation for a particular term. Looking at probabilistic dictionaries,
we have also seen that the distinction between a translation and a closely related term
cannot really be made on the basis of some thresholding criterion. Since it is well
known in IR that adding closely related terms can improve retrieval effectiveness, we
hypothesized that adding more than one translation would also help. The experimen-
tal results con�rm this effect. In all but one case (English-French, P > 0:1), using all
translations (QT) yielded signi�cantly better performance than choosing just the most
probable translation (QT-BM). For the P > 0:1 models, the average number of transla-
tions in the forward direction is only 1.65, so the potential for a query expansion effect
is limited, which could explain the nonsigni�cant difference for the English-French
case.

Unfortunately, we cannot say whether the signi�cant improvement in effectiveness
occurs mainly because the probability of giving at least one good translation (which is
probably the most important factor for retrieval effectiveness [Kraaij 2002; McNamee
and May�eld 2002]) is higher for QT or indeed because of the query expansion effect.
A simulation experiment is needed to quantify the relative contributions. Still, it is
of great practical importance that more (weighted) translations can enhance retrieval
effectiveness signi�cantly.

5.7.4 Pruning and Weighting. A related issue is the question of whether it is more
important to prune translations or to weight them. Grefenstette (cf. Section 1) originally
pointed out the importance of pruning and weighting translations for dictionary-based
CLIR. Pruning was seen as a means of removing unwanted senses in a dictionary-
based CLIR application. Our experiments con�rm the importance of pruning and
weighting, but in a slightly different manner. In a CLIR approach based on a Web
translation model, the essential function of pruning is to remove spurious translations.
Polluted translation models will result in a very poor retrieval effectiveness. As far
as sense disambiguation is concerned, we believe that our CLIR models can handle
sense ambiguity quite well. Our best-performing runs, based on the 100K models,
have on average seven translations per term! Too much pruning (e.g., best match) is
suboptimal. However, the more translation alternatives we add, the more important
their relative weighting becomes.

We have compared weighted translations (QT) with uniform translation proba-
bilities (QT-EQ). In each of the eight comparisons (four language pairs, two pruning
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techniques), weighting results in an improved retrieval effectiveness. The difference
is signi�cant in six of the eight cases. Differences are not signi�cant for the P < 0:1
English-French and French-English translation models. We think this is due to the
small number of translations; a uniform translation probability will not differ radi-
cally from the estimated translation probabilities.

The importance of weighting is most evident when the 100K translation models
are used. These models yield seven translations on average for each term. The CLIR
models based on weighted translations are able to exploit the additional information
and show improved effectiveness with respect to the P < 0:1 models. The performance
of unweighted CLIR models (QT-EQ and SYN) is seriously impaired by the higher
number of translations.

The comparison of the naive dictionary-like replacement method, which does not
involve any normalization for the number of translations per term (NAIVE), with QT-
EQ shows that normalization (i.e. a minimal probabilistic embedding) is essential. The
NAIVE runs have the lowest effectiveness of all variant systems (with signi�cant dif-
ferences). Interestingly, it seems better to select just the one most probable translation
than taking all translations unweighted.

5.7.5 Robustness. We pointed out in the previous section that the weighted models
are more robust, in the sense that they can handle a large number of translations.
We found, however, that the query model translation method (QT) and the docu-
ment model translation method (DT) display a considerable difference in robustness
to noisy translations. Initially we expected that the DT method (in which the match-
ing takes place in the source language) would yield the best results, since this model
has previously proven to be successful for several quite different language pairs (e.g.,
European languages, Chinese, and Arabic using parallel corpora or dictionaries as
translation devices [McNamee and May�eld 2001; Xu, Weischedel, and Nguyen 2001;
Hiemstra et al. 2001]).

However, our initial DT runs obtained extremely poor results. We discovered that
this was largely due to noisy translations from the translation model (pruned by the
P < 0:1 or 100K method), which is based on Web data. There are many terms in
the target language that occur very rarely in the parallel Web corpus. The translation
probabilities for these terms (based on the most probable alignments) are therefore
unreliable. Often these rare terms (and nonwords like xc64) are aligned with more
common terms in the other language and are not pruned by the default pruning criteria
(P > 0:1 or best 100K parameters), since they have high translation probabilities.
This especially poses a problem for the DT model, since it includes a summation
over all terms in the target language that occur in the document and have a nonzero
translation probability. We devised a supplementary pruning criterion to remove these
noisy translations, discarding all translations for which the source term has a marginal
probability in the translation model that is below a particular value (typically between
10¡6 and 10¡5). Later we discovered that a simple pruning method was even more
effective: discarding all translations for which either the source or target term contains
a digit. The results in Tables 7 and 8 are based on the latter additional pruning criterion.
The QT approach is less sensitive to noisy translations arising from rare terms in the
target language, because it is easy to remove these translations using a probability
threshold. We deduce that extra care therefore has to be taken to prune translation
models for the document model translation approach to CLIR.
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6. Conclusions

Statistical translation models require large parallel corpora, and unfortunately, only
a few manually constructed ones are available. In this article, we have explored the
possibility of automatically mining the Web for parallel texts in order to construct
such corpora. Translation models are then trained on these corpora. We subsequently
examined different ways to embed the resulting translation models in a cross-language
information retrieval system.

To mine parallel Web pages, we constructed a mining system called PTMiner. This
system employs a series of heuristics to locate candidate parallel pages and determine
whether they are indeed parallel. We have successfully used PTMiner to construct cor-
pora for a number of different language pairs: English-French, English-Italian, English-
German, English-Dutch, and English-Chinese. The language-independent characteris-
tics of PTMiner allowed us to adapt it quite easily to different language pairs.

The heuristics used in the mining process seem to be effective. Although the system
cannot collect all pairs of parallel pages, our preliminary evaluation shows that its
precision is quite high. (The recall ratio is less important in this context because of the
abundance of parallel pages on the Web.)

The mining results—parallel corpora—are subsequently used to train statistical
translation models, which are exploited in a CLIR system. The major advantage of
this approach is that it can be fully automated, avoiding the tedious work of man-
ual collection of parallel corpora. On the other hand, compared to manually prepared
parallel corpora, our mining results contain more noise (i.e., nonparallel pages). For
a general translation task this may be problematic; for CLIR, however, the noise con-
tained in the corpora is less dramatic. In fact, IR is strongly error tolerant. A small
proportion of incorrect translation words can be admitted without a major impact
on global effectiveness. Our experiments showed that a CLIR approach based on the
mined Web corpora can in fact outperform a good MT system (Systran). This con�rms
our initial hypothesis that noisy parallel corpora can be very useful for applications
such as CLIR. Our demonstration that the Web can indeed be used as a large parallel
corpus for tasks such as CLIR is the main contribution of this article.

Most previous work on CLIR has separated the translation stage from the retrieval
stage (i.e., query translation is considered as a preprocessing step for monolingual IR).
In this article, we have integrated translation and retrieval within the same framework.
The advantage of this integration is that we do not need to obtain the optimal transla-
tion of a source query, and then an optimal retrieval result given a query translation,
but instead aim for the optimal global effect. The comparisons between our approach
and simulated external approaches clearly show that an integrated approach performs
better.

We also compared two ways of embedding translation models within a CLIR sys-
tem: (1) translating the source query model into the target (document) language, and
(2) translating the document model into the source language.20 Both embedding meth-
ods produced very good results compared to our reference run with Systran. However,
it is still too early to assert which embedding method is superior. We did observe a
signi�cant difference in robustness between the two methods: The document model
translation method is much more sensitive to spurious translations, since the model
incorporates into a query term all source terms that have a nonzero translation proba-
bility. We devised two supplementary pruning techniques that effectively removed the

20 Another method that interprets multiple translations as synonyms is a special case of the latter.
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noisy terms: removing terms containing digits, and removing translations based on
source terms with a low marginal probability. (This latter approach is perhaps more
principled.)

On the use of statistical translation models for CLIR, we have demonstrated that
this naturally produces a desired query expansion effect, resulting in more related
documents being found. In our experimental evaluation, we saw that it is usually
better to include more than one translation, and to weigh these translations according
to the translation probabilities, rather than using the resulting translation model as
a bilingual lexicon for external translation. This effect partly accounts for the success
of our approach in comparison with an MT-based approach, which retains only one
translation per sense. However, this technique should not be exaggerated; otherwise,
too much noise will be introduced. To avoid this, it is important to incorporate pruning.

We investigated several ways to prune translation models. The best results were
obtained with a pruning method based on the top 100K parameters of the transla-
tion model. The translation models pruned with the best 100K parameters method
produced more than seven translations per word on average, demonstrating the ca-
pability of the CLIR model to handle translation ambiguity and exploit co-occurrence
information from the parallel corpus for query expansion.

There are several ways in which our approach can be improved. First, regarding
PTMiner, more or better heuristics could be integrated into the mining algorithm. As
we mentioned, parallel Web sites are not always organized in the ways we would
expect. This is particularly the case for those in non-European languages such as Chi-
nese and Japanese. Hence, one of the questions we wish to investigate is how to
extend the coverage of PTMiner to more parallel Web pages. One possible improve-
ment would be to integrate a component that “learns” the organization patterns of
a particular Web site (assuming, of course, that the Web site is organized in a con-
sistent way). Preliminary tests have shown that this is possible to some extent: We
can recognize dynamically that the parallel pages on hwww.operationid.comi are at
hwww.operationcarte.comi or that the �le hindex1.htmli corresponds to hindex2.htmli.
Such criteria complement the ones currently employed in PTMiner.

In its current form, PTMiner scans candidates for parallel Web sites according to
similarities in their �le names. This step does not exploit the hyperlinks between the
pages, whereas we know that two pages that are referenced at comparable structural
positions in two parallel pages have a very high chance of themselves being parallel.
Exploiting hyperlink structure to (help) �nd parallel Web pages could well improve
the quality of PTMiner.

When the mining results are not fully parallel, it would be interesting to attempt
to clean them in order to obtain a higher-quality training material. One possible ap-
proach for doing this would be to use sentence alignment as an additional �lter, as
we mentioned earlier. This approach has been applied successfully to our English-
Chinese Web corpus. The cleaned corpus results in both higher translation accuracy
and higher CLIR effectiveness. However, this approach has still to be tested for the
European languages.

In this study, we hypothesized that IBM Model 1 is appropriate for CLIR, primarily
because word order is not important for IR. Although it is true that word order is not
important in current IR approaches, it is de�nitely important to consider context words
during the translation. For example, when deciding how to translate the French word
tableau (which may refer to a painting, a blackboard, a table [of data], etc.), if we
observe artistique (‘artistic’) next to it, then it is pretty certain that tableau refers to a
painting. A more sophisticated translation model than IBM Model 1 could produce a
better selection of translation words.
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We also rely solely on word translation in our approach, although it is well known
that this simplistic approach cannot correctly translate compound terms such as pomme
de terre (‘potato’) and cul de sac (‘no exit’). Incorporating the translation of compound
terms in a translation model should result in additional improvements for CLIR. Our
preliminary experiments (Nie and Dufort 2002) on integrating the translation of com-
pounds certainly showed this, with improvement of up to 70% over a word-based
approach. This direction warrants further investigation.

Finally, all our efforts thus far to mine parallel Web pages have involved English.
How can we deal with CLIR between, say, Chinese and German, for which there are
few parallel Web sites? One possible solution would be to use English as a pivot
language, even though the two-step translation involved would certainly reduce ac-
curacy and introduce more noise. Nevertheless, several authors have shown that a
pivot approach can still produce effective retrieval and can at least complement a
dictionary-based approach (Franz, McCarley, and Ward 2000; Gollins and Sanderson
2001; Lehtokangas and Airio 2002).
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Schäuble, and Ross Wilkinson, editors,
Proceedings of the 19th Annual
International ACM SIGIR Conference on
Research and Development in
Information Retrieval (SIGIR ’96). ACM
Press, New York, pages 40–48.

Kraaij, Wessel, Renée Pohlmann, and Djoerd
Hiemstra. 2000. Twenty-one at TREC-8:
Using language technology for
information retrieval. In Ellen M.
Voorhees and Donna K. Harman, editors,
The Eighth Text Retrieval Conference
(TREC-8), volume 8. National Institute of
Standards and Technology Special
Publication 500-246, Gaithersburg, MD.

Kraaij, Wessel and Martijn Spitters. 2003.
Language models for topic tracking. In
Bruce Croft and John Lafferty, editors,
Language Models for Information Retrieval.
Kluwer Academic, Boston.

Kraaij, Wessel, Thijs Westerveld, and Djoerd
Hiemstra. 2002. The importance of prior
probabilities for entry page search. In
Micheline Beaulieu, Ricardo Baeza-Yates,
Sung Hyon Myaeng, and Kalervo
Järvelin, editors, Proceedings of the 25th
Annual International ACM SIGIR Conference
on Research and Development in Information
Retrieval (SIGIR 2002). ACM Press, New
York.

Kwok, K. L. 1999. English-Chinese
cross-language retrieval based on a
translation package. In Workshop: Machine
Translation for Cross Language Information
Retrieval, Singapore, Machine Translation
Summit VII, pages 8–13.

Lafferty, John and Chengxiang Zhai. 2001a.
Document language models, query
models, and risk minimization for
information retrieval. In W. Bruce Croft,
David J. Harper, Donald H. Kraft, and
Justin Zobel, editors, Proceedings of the 24th
Annual International ACM SIGIR Conference
on Research and Development in Information
Retrieval (SIGIR 2001). ACM Press, New
York.

Lafferty, John and Chengxiang Zhai. 2001b.
Probabilistic IR models based on
document and query generation. In Jamie
Callan, Bruce Croft, and John Lafferty,
editors, Proceedings of the Workshop on
Language Modeling and Information
Retrieval, Pittsburgh.

Laf�ing, John. 1992. On constructing a
transfer dictionary for man and machine.
Target, 4(1):17–31.

Lavrenko, Victor, Martin Choquette, and W.
Bruce Croft. 2002. Cross-lingual relevance
models. In Micheline Beaulieu, Ricardo
Baeza-Yates, Sung Hyon Myaeng, and
Kalervo Järvelin, editors, Proceedings of the
25th Annual International ACM SIGIR
Conference on Research and Development in
Information Retrieval (SIGIR 2002). ACM
Press, New York.

Lavrenko, Victor and W. Bruce Croft. 2001.
Relevance-based language models. In W.
Bruce Croft, David J. Harper, Donald H.
Kraft, and Justin Zobel, editors,
Proceedings of the 24th Annual International
ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR
2001). ACM Press, New York.

Lehtokangas, Raija and Eija Airio. 2002.
Translation via a pivot language
challenges direct translation in CLIR. In



418

Computational Linguistics Volume 29, Number 3

Proceedings of the SIGIR 2002 Workshop:
Cross-Language Information Retrieval: A
Research Roadmap, Tampere, Finland.

Ma, Xiaoyi. 1999. Parallel text collections at
the Linguistic Data Consortium. In
Machine Translation Summit VII, Singapore.

McNamee, Paul and James May�eld. 2001.
A language-independent approach to
European text retrieval. In Carol Peters,
editor, Cross-Language Information Retrieval
and Evaluation. Lecture Notes in Computer
Science 2069. Springer Verlag, Berlin.

McNamee, Paul and James May�eld. 2002.
Comparing cross-language query
expansion techniques by degrading
translation reources. In Micheline
Beaulieu, Ricardo Baeza-Yates, Sung Hyon
Myaeng, and Kalervo Järvelin, editors,
Proceedings of the 25th Annual International
ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR
2002). ACM Press, New York.

Miller, David R. H., Tim Leek, and
Richard M. Schwartz. 1999. A hidden
Markov model information retrieval
system. In Marti Hearst, Fred Gey, and
Richard Tong, editors, Proceedings of the
22nd Annual International ACM SIGIR
Conference on Research and Development
in Information Retrieval (SIGIR ’99).
ACM Press, New York, pages 214–221.

Ng, Kenney. 2000. A maximum likelihood
ratio information retrieval model. In Ellen
M. Voorhees and Donna K. Harman,
editors, The Eighth Text Retrieval Conference
(TREC-8), volume 8. National Institute of
Standards and Technology Special
Publication 500-246, Gaithersburg, MD.

Nie, Jian-Yun. 2002. Query expansion and
query translation as logical inference.
Journal of the American Society for
Information Science and Technology, 54(4):
340–351.

Nie, Jian-Yun and Jian Cai. 2001. Filtering
noisy parallel corpora of Web pages. In
IEEE Symposium on NLP and Knowledge
Engineering, Tucson, AZ, pages 453–458.

Nie, Jian-Yun and Jean-François Dufort.
2002. Combining words and compound
terms for monolingual and cross-language
information retrieval. In Proceedings of
Information 2002, Beijing, pages 453–458.

Nie, Jian-Yun, Michel Simard, Pierre
Isabelle, and Richard Durand. 1999.
Cross-language information retrieval
based on parallel texts and automatic
mining of parallel texts from the Web. In
Marti Hearst, Fred Gey, and Richard
Tong, editors, Proceedings of the 22nd
Annual International ACM SIGIR
Conference on Research and Development

in Information Retrieval (SIGIR ’99).
ACM Press, New York, pages 74–81.

Pirkola, Ari. 1998. The effects of query
structure and dictionary setups in
dictionary-based cross-language
information retrieval. In W. Bruce Croft,
Alistair Moffat, C. J. “Keith” van
Rijsbergen, Ross Wilkinson, and Justin
Zobel, editors, Proceedings of the 21st
Annual International ACM SIGIR Conference
on Research and Development in Information
Retrieval (SIGIR ’98). ACM Press, New
York, pages 55–63.

Ponte, Jay M. and W. Bruce Croft. 1998. A
language modeling approach to
information retrieval. In W. Bruce Croft,
Alistair Moffat, C. J. “Keith” van
Rijsbergen, Ross Wilkinson, and Justin
Zobel, editors, Proceedings of the 21st
Annual International ACM SIGIR Conference
on Research and Development in Information
Retrieval (SIGIR ’98). ACM Press, New
York, pages 275–281.

Porter, Martin F. 1980. An algorithm for
suf�x stripping. Program, 14(3):130–137.

Ragget, Dave. 1998. Clean up your Web
pages with HTML TIDY. Available at
hhttp://www.w3.org/People/
Raggett/tidy/i.

Resnik, Philip. 1998. Parallel stands: A
preliminary investigation into mining the
Web for bilingual text. In Proceedings of
AMTA. Lecture Notes in Computer
Science 1529. Springer, Berlin.

Robertson, Stephen E. and Steve Walker.
1994. Some simple effective
approximations to the 2-Poisson model
for probabilistic weighted retrieval. In W.
Bruce Croft and C. J. “Keith” van
Rijsbergen, editors, Proceedings of the 17th
Annual International ACM SIGIR Conference
on Research and Development in Information
Retrieval (SIGIR ’94), pages 232–241. ACM
Press, New York.

Salton, G. and M. J. McGill. 1983.
Introduction to Modern Information Retrieval.
McGraw-Hill, New York.

Savoy, Jacques. 2002. Report on CLEF-2001
experiments. In Carol Peters, Martin
Braschler, Julio Gonzalo, and Michael
Kluck, editors, Evaluation of Cross-Language
Information Retrieval Systems: Second
Workshop of the Cross-Language Evaluation
Forum (CLEF 2001). Springer Verlag,
Berlin.

Sheridan, Paraic, Jean Paul Ballerini, and
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