
TRANSACTIONS of the
AMERICAN MATHEMATICAL SOCIETY
Volume 150, July 1970

EMBEDDINGS IN DIVISION RINGS
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JOHN DAUNS

Abstract. A method for embedding a certain class of integral domains in division
rings is devised. Integral domains A are constructed with a generalized valuation into
a (noncommutative) totally ordered semigroup that need not be discrete. Then the
multiplicative semigroup A\{0} is expressed as an inverse limit of semigroups each of
which is embeddable in a group. Thus A\{0} can be embedded in a group G. The
main problem is to introduce addition on G in order that G becomes a division ring
by the use of eventually commuting maps of inverse limits.

Introduction. Suppose that the multiplicative semigroup A* of a noncommuta-
tive integral domain A can be embedded in a group G. Some recent surprising
discoveries show that there exist rings A for which an embedding A*<=G is
possible, but such that for any embedding of A* into any group G whatever,
addition cannot be extended to all of Cu {0} in order to obtain an embedding
of A into a division ring ([1] and [6]). Under certain appropriate additional
hypotheses on an integral domain with a valuation into the integers, P. M. Cohn
embeds A<=G \J {0}, introduces a group topology on G, then defines addition on
the subset A*A*'1 which happens to be dense in G, and then finally extends
addition to all of G [2]. Recent interest in the subject ([1], [6], and [3]), as well as
the fact that treatises on ring theory find it necessary to quote this result [5, p. 257]
but do not prove it because existing proofs are too complicated, are two reasons
why a purely algebraic proof which avoids topology altogether is needed.

The first objective of this note is to introduce a much wider class of rings than
simply integral domains with an integer valued valuation. The second aim is to
prove that any ring in this wider class can be embedded in a division ring. One
of the main factors contributing to the length and complexity of the present proof
is that in place of the integers, the range of the valuation is in a not necessarily
commutative semigroup Y. One of the appealing features of the present develop-
ment is that if T is specialized to be commutative, our proof simplifies consider-
ably. Furthermore, it involves no topological considerations of any kind whatsoever.

1. Rings with a noncommutative valuation.    In an ordered ring, the valuation

Received by the editors February 24, 1969 and, in revised form, November 25, 1969.
AMS Subject Classifications. Primary 1646, 1615; Secondary 2092.
Key Words and Phrases. Integral domain, division ring, generalized valuation into a semi-

group, Ore condition, eventually commuting maps of inverse limits, P. M. Cohn's embedding
theorem, totally ordered cancellative semigroup, semigroup congruence.

Copyright © 1970, American Mathematical Society

287

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



288 JOHN DAUNS [July

should be an order preserving map. For this reason unfortunately, the order
relation in the subsequent definition is just the reverse of that commonly accepted
by most of the previous authors.

1.1 Definition. Consider a totally ordered semigroup F, i.e. F is a totally ordered
set, where if aá/3, ä^ß, then aä-ißß. Suppose F is cancellative iay = ßy or ya=yß
implies a = ß). Let .F u {0} be the ordered semigroup where 0y = y0<T for all
y e T. Here, a ring with a valuation is a triple A, v, F where v : A -> F u {0} is a
function such that for all a, A e A, the following are satisfied

(i) via) = 0 if and only if a = 0,
(ii) via — A) g max [via), vib)] = via) V vib),
(iii) viab) = via)vib).
For any semigroup F, as usual r1 = T if F has an identity, or r1 = T u {1} is F

with an identity adjoined otherwise. Let Lç F be the strict two-sided increasers,
i.e. P = {y e F \ y < yy, y < yy for all y e F}. IfLisnonvoid, then it is a subsemigroup.

1.2. The following identities valid for all a, beA*=A\{0} are proved just the
same as in the case when F are the integers under addition,

(i) vi-a) = via),
(ii) vib) < via) => via — A) = via),

(iii) via) # vib) => via - A) = via) V v(b),
(iv) via) > v(a — A) => v(a) = v(b),
(v) A is an integral domain.
1.3 Definition. For yeP, let qiy) denote all ia,b)eA*xA* such that for

any s e F1, the following two equations hold
(i) ysvia — b)^sv(a),

(ii) via — b)sy ^ via)s.
To recapitulate, a product of y, s, and via — b) is less than svia) or via)s, where s
precedes via) if and only if it also precedes via — A). In subsequent proofs it will
automatically be assumed that s e F1 is an arbitrary element without quantifying
s each time.

1.4 Remark. The following observations will not be used in subsequent proofs.
If L = {y e F \ y < yy, all y e F} and R are the subsemigroups of strict left and right
increasers of F, then define

for y e L, qiy, L) = {(a, A) £ A* x A* \ yvia-b) á via)};
for y e R, qiy, R) = {(a, b) e A* x A* \ via-b)y ^ via)};
for y e P = L n R,       qiy, P) = qiy, L) n qiy, R).

All three are equivalence relations. For an arbitrary c e A*, the following implica-
tions hold

(a, A) e qiy, L) => (ac, be) e qiy, L),
ia, b) e qiy, R) => ica, cb) e qiy, R).

Unfortunately, there is no reason why (a, A), (c, d) e qiy, P) should imply that
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1970] EMBEDDINGS IN DIVISION RINGS 289

also (ac, bd) e q(y, P). Nevertheless, the latter does hold if Y is commutative. In
that case we may take q(y, P)=q(y, L)=q(y, R) in place of q(y) in Definition 1.3
and all the subsequent proofs become much simpler. However, one of our main
objectives is to embed A in a division ring when Y is not commutative.

1.5 Lemma. If A,v,Y is a valuated ring, then q(y) is an equivalence relation for
each y e P.

Proof. Symmetric. If a = b, then the left side of 1.3 (i) and (ii) contains 0 = v(a — a),
hence equals 0, and thus is (strictly) less than the right side.

Reflexive. If (a, b) e q(y), then v(a — b) < yv(a - b) á v(a). By 1.2 (iv), v(a) = v(b).
Replacement of v(a) by v(b) in 1.3 (i), (ii) shows that also (b, a) eq(y).

Transitive. Given (a, b) and (b, c)eq(y), then as above v(a) = v(b) = v(c). Thus
1.3 (i) and (ii) become

(i) ysv(a — c) ¿ ysv(a — b)w ysv(c — b)t¿ sv(a),
(ii) v(a — c)sy á v(a — b)sy V v(c — b)sy ^ v(d)s.

Hence also (a, c) e q(y).
1.6. For each y e P, q(y) is a semigroup congruence.
Proof. For (a, b), (c, d) e q(y), perform the indicated operations, where s, s eY1

are arbitrary:
(i) ysv(a — b)?¿ sv(a), s = sv(c) => ysv(ca — cb) ^ sv(ca) ;

(ii) v(a — b)sy ^ v(a)s => v(ca — cb)sy á v(ca)s.
Thus (ca, cb) e q(y), and similarly

(i) ysv(c — d)^sv(c) => ysv(cb — db)^sv(cb);
(ii) v(c — d)sy¿v(c)s, s = v(b)s => v(cb — db)sy^v(cb)s.

Hence (cb, db) e q(y). Finally, by transitivity, also (ca, db) e q(y).
1.7. For y e P, let SY = A*/g(y). Let q(y) : A* —> Sy be the projection given by

the equivalence relation q(y), where aq(y) = {b e A* | (a, b) e q(y)}. For (a, b) e q(y),
aq(y) = bq(y)e Sy and abbreviate this by a~b mod (y). If a<ß with aeF, then
q(ß)^q(a) and thus there is an induced map <p£: Sg^-Sa, where aq(ß)<pßa = aq(a).
Thus {<pßa: SB -> Sa; a <ß; a, ß e P} is an inverse system of semigroups with inverse
limit S and maps S -> Sa for each aeP (for definition of S and S —> Sa, see §2).

1.8. At this point an additional hypothesis on Y and one on A have to be
invoked.

(i) In addition to Y being totally ordered and cancellative, assume that for
any Xx, X2 e Y with Xx á A2, there is a y e P such that A2 < yXx.

(ii) In addition to A being a valuated integral domain, assume that for any
y e P and any a, be A*, there exist r, r e A* such that (ar, br) e q(y). Furthermore,
assume that the cancellativity condition that for ce A*, if either (ac, bc)eq(y)
or (ca, cb) e q(y), that then also (a, b) e q(y).

1.9 Remarks (1) Note that condition 1.8 (ii) implies that Sy may be embedded
in a group, i.e. that Sy is cancellative on both sides and it satisfies the so-called
right Ore condition that for any y e P and any x, y e Sy, xSy n v5y# 0.
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(2) If T is commutative, then the cancellativity requirement in 1.8 (ii) is super-
fluous, since then it follows immediately from 1.3 and the fact that F is cancellative.

(3) The whole theory could equally well be developed by imposing analogous
conditions in both (i) and (ii) on the other (right) side.

1.10. If (a, b) e 0 {q(y) | yeP} then in particular yv(a-b)-¿v(a) holds for all
yeP. But for aj^b, if Ax = v(a — A) == 0, X2 = v(a) and y is as in 1.8 (i), then v(a)
<yv(a — b). Thus C\{q(y)\y e P} = {(a,a)\ae A*}, and the semigroup homo-
morphisms q(ß): A* ->■ SB which commute with the <pBa induce an isomorphism
q: A* -*■ S. By cancellativity and the right Ore condition 1.8 (ii), each SB may be
embedded in its group of quotients GB. That is, for x, ye Sß, let

x/y = {(s, t)e SexSß\ xr = sr, yr = tr for some r, re SB}

and define a group operation on the set GB = {x/y \x,ye SB} by (x/y)(u/w) = xp/wp,
where yp = ußeySß n uSe. If e e SB is arbitrary, then the embedding SB^
{se/e | s e Sß}<=Ge is independent of e. Any homomorphism tp%: SB —> Sa into any
other cancellative semigroup Sa also with a right Ore condition, extends uniquely
to a homomorphism irBa: GB -*■ Ga of their respective groups of quotients, where
ix/y}ni = x<pi/y<pi. Then {tt*: Gb -> Ga; a<ß; a, ßeP} is an inverse system of
groups with an inverse limit G and the usual maps G -> Ga for a e P. Furthermore,
a monomorphism SB -^ GB, ße P, of inverse systems always induces also a semi-
group monomorphism S -*■ G. Abbreviate the element aq(ß)/bq(ß) of GB simply as
a/bq(ß), and the equality a/bq(ß) = c/dq(ß) by a/b = c/d mod (j8). Thus equality in
GB will be denoted by " = " and in SB by "~". There are the usual commutative
diagrams for a<ß e F.

q(ß)

A*

Note that in the next definition if F is commutative, 8 <3 a means simply that
S<a.

1.11 Definition. For 8, a e P call 8 much less than a and write 8 < a provided
the following two conditions hold for any Xu X2, p.eF. Any one of the three in-
equalities on the left imply that all three on the right hold both in (i) and (ii).

(i) oíA1A2á/i, or A1aA2á/x, or AjA2a^/i => SA1A2</i, A18A2</n, A1A28<^;
(ii) /m^ SAjA^ or p.^ XxO~X2, or p.^ XxX28 => /^<aA1A2, p,< XxccX2, p.< A1A2a.
The main objective now is to introduce subtraction in G compatible with the

embedding A<^G u {0}.
1.12. Suppose 8, a, ß are any three elements of P satisfying 8<lce<a2^/3.
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Define Fc Ge as the set of all xeGß such that no matter which representatives
a, be A* are chosen which give x = ajbq(ß), they satisfy v(a) V v(b)^8v(a-b).
Define ijißa: y-> Ga by x<jie. = (b — a)jbq(a). It has to be shown that </>£ is well defined.
Suppose that x is also represented as x = axlb1q(ß). This implies that ar~axf and
br~bxr mod (ß) for r, re A*. It suffices to show that (b — a)r~(bx — ax)r mod (a).
But this is a consequence of the next lemma (with k = br, m = ar, kx = bxr, and
mx=axr).

1.13 Lemma. Consider 8 <¡ a<a2áj8, w«ere SeF a«tf" A:, fc1( «z, «ii e A* with
k~kx and m~mx mod (ß), and v(k)v v(m)-¿8v(k — m). Then k — m~kx—mx
mod (a)

Proof. For any s e Y1, straightforward estimates show that

ßsv(k — m — kx + mx) ^ ßsv(k — kx) V ßsv(m — mx)

(i) ^ sv(k) v m(«z) = s[v(k) v t>(«i)]

^ s8v(k — m) < asv(k — m).

Use of a2 ̂ ß and cancellation of a gives 1.3 (i) while an entirely parallel argument
establishes 1.3 (ii). Thus k — m~kx — mx mod (<x).

1.14 Remark. In the context of 1.12, define Z as the set /"çZcCj consisting
of all x e Ge such that there exist some representatives a, be A* with x = a/bq(ß)
such that v(a) V v(b) á 8v(a — b). Suppose also x = ajb1q(ß), where it is not assumed
that ax, bx satisfy the last inequality. As before let ar~axr and br~bxf mod (ß)
for r, re A*. Then the above arguments actually show that (b — d)r~(bx — ax)r
mod (a); hence (b — a)jb = (b1—a1)/bx mod (a). Thus the domain of the map </>„
could be enlarged to Z.

Some final restrictions in addition to 1.8 (i) and (ii) have to be imposed on Y.
1.15. Assume that there is a cofinal subset Px in PX^P and two order preserving

maps 6: Fx -s- P, and o: Fx -> F satisfying :
(i) a(ß) <¡ 0(ß) < 6(ß)2 ̂  ß for all ßePx.

(ii) For any ijef,  there exist ax, a2 ePx  with  t¡ <o(ax) <¡6(ax)^ax<o(a2)
< 6(a2)^a2.

1.16 Remarks. 1. Note that 1.15 (ii) implies that both 6(PX) and o(Px) are
cofinal in F, that F is cofinal in Y, and that o and 8 are order decreasing maps.

2. Actually 1.15 (ii) is equivalent to (ii') below, which at first glance appears
to be a weaker assumption.

(ii') For any r¡ e Y, there exists a e Px with t¡ < o(a).
3. In the examples of totally ordered semigroups Y given at the end, F# 0

and each a e P satisfies a <1 a2. In this case there is a natural choice ofPx, 6, and o
satisfying the conditions in 1.15. Set Px = {a* | a e P}, 9(a*) = a2, and o(a*) = 0(0(cc4))
= a. Then 1.15 (i) and (ii) clearly hold.

The next definition combines 1.12 with 1.15. If r¡>8eP, then r¡eP. Thus if
P± s¡, Pis cofinal.
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1.17 Definition. For F as in 1.8 and 1.15 and for any ßePx, define Yß^Gß
as all xeGB such that no matter which representatives a, be A* of x = a/bq~iß)
are chosen, they satisfy the inequality v (a) v vib) â aiß)via — b). Let >p": Ye—> Ge(B)
be the map #| of 1.12 with 8 = oiß) < «= 6(ß) < 6(ß)2 á ß.

1.18 Lemma. For any 1 #x = {xa} £ G, there is an -q = r¡(x) e P such that xß e YB
for all ß>rj.

Proof. Let 1 #xK e Gu. By 1.15 (ii), choose an element tj such that 8 = o(r¡) e P
with p. <¡ 8. Suppose an arbitrary ß > rj is given. Then o(ß) > o(rj). Take any a, be A*
with a/bqiß) = xB. Then a/bqip.) # 1 implies a^Ox) # A<7(¿¿), and thus at least one of the
two equations for the equality of a and A modulo qip) in Su is violated, i.e. for
some j £ T1 (i depending on a and A) either

(i) svia)<p.svia—b)<sovia — b), or
(ii) via)s < via — b)sp. < 8via — b)s.

Thus in either case (i) or (ii), it follows that y(a)<8t;(a —A). Suppose St>(a — A)
<f(A) so that via — b)<vib). Then via) = vib) by 1.2 (iv), which contradicts via)
< 8via - A) < vib). Thus via) v f(A) ̂  8t>(a - A) and xfl e i¿ for all /3 > rj.

2. Inverse limits and eventually commuting maps. The maps </>" for ßePxOf the
previous section will induce a function </r. G\{1} —> G\{1} satisfying the four re-
quirements (see 3.1) for defining subtraction on G u {0}. In order not to obscure
the fact that the method for constructing <¡> is very generally applicable, and not at
all dependent on the various specialized properties of F, A and the Ga, this section
is developed for an inverse limit of arbitrary sets Xa in place of the Ga and any
arbitrary partially ordered upper directed set P.

2.1 Notation. Consider any inverse system of sets {ni: XB -*■ Xa; a<ß;
a, ß e P}, where P is any upper directed partially ordered set, and where for
a<ß<y, the usual identities 77-^ = 77^ and ir%=l are satisfied. Form the inverse
limit

X = lim Xa <= Yl {Xa \aeP},       x = {xa} e X

if and only if for any a, ß e P with a < ß, xa = xBtri.
2.2 Definition. Suppose Px^P is a subset, and 9:Px-+P a given function.

Also suppose that for each ßePlt there is a subset YeZXt and a function
4>e'.' YB -*■ XBiB). These {ij>ß \ ßePx} are said to commute eventually provided the
next three conditions are satisfied.

(i) For any x = {xa\ aeP}e X, there is an ij(x) eL such that for any yeP
with y > t/(x), xY e Yy.

(ii) 6 : Px -*■ P is an order preserving and order decreasing map (i.e. a < ß => 0(a)
á 0(jS), and 0(a) ^ a). For any r¡ e F, there exist al5 a2 e P1 with r¡ < 0^) ^ ax
<0(a2)^a2.

(Thus both Px and 0(LO are cofinal in P.)
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(iii) For any x e X and any S, XePx with r¡(x) < 8 < X (and hence also 8(8)
á 0(A)), the identity holds

XK*W = x^irfti.

2.3 Remark. The conditions in 2.2 say that the diagram

■■** *■ -*8(A)

*

X6 -;-> -Afl<4)
f

eventually commutes in the sense that for a fixed x = {xa} e Xand for all sufficiently
large A with S < A, the above maps commute pointwise at xh.

2.4. Let aeP and x = {xa} e X be arbitrary. Define <f>: X —> X by xi/< = {xa}>p
= {x'a}, where xá is defined by selecting any ß with ß>r)(x) such that 8(ß)>a, and
then setting x'a = xB<peTrea(t,). Suppose another element y also satisfying y>-q(x)
with 0(y) > a had been chosen in place of ß. Set x0. = xyi¡iyTTeaM. In order to show that
x'a = xa, pick any A with X>ß, y, use 2.2(iii) with 8 = ß, y, and then multiply the
equation 2.2 (iii) respectively by 7r*w, 7r*(v) to get

8 = ß: x'a = ix*W)rt» = (xilWSJW»,
s = y:xa = (*X<AyK(7) = (*A^O*2<r).

Thus x«=Jca and >/( is well defined. For later purposes it will be useful to observe
that for any ß > r¡(x), (x>j>)gm = x'e(e) = xe>liß.

Algebraic properties of eventually commuting maps, such as the idempotence
of the map ajb^-(b — a)jb encountered in the last section, carries over to their
inverse limit.

2.5. Assume that the maps ifi" are idempotent in the sense that

X^wW = xeiy)

holds for any y, fi with t¡(x)<y< 8(ß)gß (and ß, y ePx). Then t/>2 = «/..
Proof. Define x' = x>ji, x" = x'ij>. Now for any a eP and any y, ßePx sufficiently

large, i.e. ij(x) V r¡(x') V a < 8(y) á y < 8(ß) á ß, we have

x'a = x'y<l>rTreaM   and   x'y = x^o-n*™.

Thus use of the hypothesis shows that x"a = xe{y)TreaM = xa. Thus (x<jj)4> = x.
2.6 Remark. Since Px is cofinal in F, the reader may wish to take the direct

limit with respect to Px in place of F in the above considerations.

3. Additive structure on G u {0}.   The hypotheses and notation of §1 are re-
sumed and these are now combined with the results of §2. That is, A is an integral
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domain with a valuation v: A\{0} —> F into a totally ordered cancellative semi-
group T such that 1.8 (i), (ii) and 1.15 (i), (ii) hold.

The following well-known lemma ([2, p. 514] or [5, p. 258]) will be used to
introduce subtraction on G u {0}.

3.1 Lemma. Let G be a group and Gx the subset C7x = {x e G | x# 1}. A necessary
and sufficient condition for addition to be definable on G u {0} so that G u {0}
becomes a division ring with the original group operation of G as multiplication is
that there exists an element e e G and a function ift: Gx^ G which for any x, y e G±
satisfy the following:

I.   Xi/m/t = X,
II. x~1<J> = e(x<p)x~1,

III. iyxy-^=yix$)y-\
IV. (xr^O'-^r^Kx.AX^)-1^ for x*y.

If there do exist such an e and >p, then e=—l,  — x = ex, xi/ß= 1 — x, and x—y
= [ix<l>)iy>J')-1]>Ky4>)=ixy-1)>l>ey.

3.2. By 2.5, the condition I in 3.1 holds. In II, even if 1 $ A, take any O^c e A,
and then define e — {( - c)/cq~ia) \ a e P}e G. The proof of II is omitted. Verification
of any identity, such as II, is usually a routine computation with direct limits,
provided the right Ore condition need not be used. However, III and IV do
require the Ore condition. In subsequent computations, it will be sometimes
convenient to write simply a/A e GB for a, be A* in place of the longer expression
ajbqiß).

3.3. In order to prove 3.1 III that iyxy~1)i/j=yix^)y~1, first, it is readily seen
that it suffices to show that for x, y e G\{1} and for all sufficiently large ß in Px
(for -qiy), r)iy~1)<ß) with xB = a/b, yB = c/de GB, the following holds
(1) cd-^ab-'^dc-1 = icd^ab-^c'1)^ mod (0(,8)).
For any c, k, ne A*,

cikn-^y1 = c'^c'1 = cn~ck = —J,e = ickn-'c-1)^ mod (0(/3)).
n en en

That is, (1) holds rather trivially if d= 1 while (1) with c= 1 is not so immediate on
account of the nonsymmetry in the Ore condition, i.e. d'1ik/n)d^ikd)/ind). It
suffices to prove equation (1) with c= 1, i.e. that

(2) d - \ab - W = id ~ 'ab - ldW mod (9(8)).
Assuming (2), we complete the proof by showing (1), and then at the end prove
(2). First, since d~~1ab~1dq(ß) e Gß, there are k and ne A* such that d~1ab~1d
= kn~x mod (j8). It now follows from, first, (2) and then (1) that

cid-^ab-^d]^1 m c^d^ab'^^c-1

m cMn-Wk-1 = (ckn-'c-1)^
= (cd-'ab-'dc-'W mod (0(j8)).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1970] EMBEDDINGS IN DIVISION RINGS 295

3.4. To prove (2) above it will be more convenient to show that

(3) d[(d - 'ab' 1dype]d ~l = (ab~XW mod (8(ß)).

Write br~dr, dp~arp mod (jS) for r, r, p, pe A*. Then

d-iat-ij s IU s Igf s P "1 s L mod m)ydb        dbr r       dp rp      rp

Use of the latter shows that

dlXd-^ab-^dWW-1 - d?îy^\= d^=^mod(8(ß)).

Set k = brp~kx = dfp, and m = arp~mx=dp mod (j3). From the definition of
equality in Gs, it follows that xs = a/bq(ß) = mjkq(ß). The assumption that ß>rj(x)
and hence that x¿ e YB means that for any representatives of xe, and hence in
particular for m and k, the inequality v(k) v v(m) £ o(ß)v(k - m) holds. Lemma 1.13
with a=8(ß) shows that k — m~kx — mx mod(6(ß)). Since also A:~A:1 mod (jS), it
follows that (k — m)/k = (kx—mx)/kx mod (0(j8)), or equivalently that the following
substitutions are legal in

d_rf^dp s brp-arp ^ b-a ^
rfrp ¿>r/5 o

Thus equation (3) above or equivalently conclusion 3.1 III that (xyx~1)t/j =
x(y>p)x~1 now follows.

3.5. It only now remains to show that for any x# v e G and any a e Y, the ath
components of both sides of IV. [(x<j>)(y^)~'í\ji = (xy~1)tji(y'í<jj)~1 are equal. Set
z = (xifi)(y<¡i)~1. Then z^l, for if x</j=yiji, then it follows from 2.5 that x = x>/i2 =
yifi2=y. In order to guarantee that various maps </>", <¡>y can be applied, pick any
y, ß sufficiently large, that is to be precise

v(x),v(y),v(xy-1),v(y-1),v((x>/>)(yl')-1) < « < m í ß < 8(y) á y.

In order to show the equality of the ath component, it merely suffices to show that
any higher components, such as 8(ß), are equal. Then (zip)m) = zet/>e, where zß
= (xy<l>r)(yy<l>r)-1-rr$w. Thus it suffices to show that

[(xy-i)<i>(y-v)-i]ew) = (^v-^u-vr1^?) = zer
= (xy^)(yrr)-WyV-

Let x=xjx2, y=yijy2 e Yy with xx, x2, yx, y2 e A*. For any Ç^y, elements r,
f e A* such that x2r~y2f mod (£) may be chosen and later a judicious choice of £
will have to be made. Thus (xy'^^x-jjyxf e Yy also. A straightforward computa-
tion shows that the left side of the above equation is

((xy^WXr1**)-1 - ^vr~yv%mod(0(ß)),
(y2—yvr
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while the right side becomes

(xyy)(yyyy^Y = ̂ LzMz^fzM mod(W).

Since x2r~y2f mod iy), on first glance the reader might simply cancel x2r—y2r.
However, a moments reflection will show that even v(x2r—y2r) might very well
dominate the value of any other term in the expression.

3.6. It has now to be shown that for any s e F1, the usual two inequalities 1.3 (i)
and (ii) with a = Xxr — yxf and b = a — (x2r— y2r) hold:

(i) 0(ß)sv(x2r -y2f)u sv(xxr-yxF),
(ii) vix2r-y2r)sd(ß) g t<x1r-.y1r>.

By  1.8 (i) choose XeP such that i'(x2)< Xv(xx). Secondly, by  1.15 (ii) choose
AeL such that Xo(y) < A; and, thirdly, choose any £ satisfying 0(0) A v X9(ß) á £.
Then x2r~y2r mod (£) means that

(1) v(x2r -y2r)s0(ß)X < v(x2r)s < Xv(xxr)s,
(2) Xe(ß)sv(x2r -y2r) < svix2r) < iAr(xtr).

Since .vy"1 e Ky and xy~1=x1r/yxr mod (y), we have

/'(av) V Kjv) á ^('(.Vir-jir).

Use of the latter in (1) and (2) gives us that
(3) Xiix^s ^[Xo(y)]v(Xxr - yxF)s < v(xxr - yxF)sX,
(4) sXiixx^^siXaiy^iixxr-yxf) < Xsv(Xxr-yxF).

Substitution of (3) and (4) in (1) and (2) and cancellation of A gives (i) and (ii)
above. Thus 3.1, I  IV hold.

The results of the previous sections are collected and summarized in the next
theorem and the first corollary which simplifies condition (c).

3.7 Theorem. Consider an integral domain A with a valuation v: A\{0} = A* -»■ F
isee 1.1) into a cancellative totally ordered semigroup F. (// is not assumed that either
A or F is commutative or that 1 e A.) Let P^F be the subsemigroup of strict two-
sided increasers. Suppose the following hold.

(a) For any Ax, X2e F there is a y e P such that X2 < yA1#
(b) For y £ L, the semigroups Sy = A*/q(y) (see 1.7) satisfies the right Ore condition

that xSy r\ ySy ̂  0 for each x, y e Sy and also that Sr is cancellative on both sides.
If (a) and (b) hold then A* can be embedded in a group G. Now in addition to

(a) and (b) assume that
(c) (i) there is a subset Px^P and functions 0: F^ —»■ L, a: Px->P such that

*(ß) < e(ß) < e(ß)2 ̂  ß

for all ßePx (for the definition of "<1 " see 1.11 ).
(ii) For any r¡ e F, there exists an a e P with -q < a(a).
Then A can be embedded in the division ring icCu {0}.
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3.8 Corollary I. Assume (a), (b), and (c'):
(c') P^0 and each aeP satisfies a <l a2 (see 1.11). Then Px = {ai \aeP},

0(a4) = a2, o(ai) = a satisfy (c). Consequently icGu{0} is an embedding of A in a
division ring.

3.9 Corollary II. Under the assumptions (a), (b), and(c) of the theorem, suppose
that Y also satisfies the right Ore condition that aY n ßY=£ 0 for any a, ßeY.
Then v has a unique, natural extension to a valuation v: G U {0} -* Y, where Y is the
group of quotients ofY.

Proof. If ajß, y/8 e Y with a, ß, y, and S e Y, then find p, ßeY with ßp=8p
e ßY n ST. Then the definition

a/ß < y/8 if and only if ap < yp in Y

makes Y into a totally ordered group. For x = {xa} e G, pick any ßeY, any xx,
x2 e A* with xß = x1/x2q(ß). Then the definition v(x) = v(xx)/v(x2) is independent
of both ß and xx, x2. In order to verify 1.1 (i)-(iii), take yx, y2e A* with yB =
yx/y2q(ß). If c, c e A* with x2c~yxc mod (ß), then

v(xy) = v(xxcjy2c) = v(x1)v(c)jv(y2)v(c)
(in)

= [v(x1)/v(x2)][v(yx)lv(y2)] = v(x)v(y).

By 3.1, v(x—y) = v[(xy~1)4i(—y)]. Take ß>-q(xy~1). There exist r, F e A* with
x2r~y2r mod (ß) so that (xy'y)ß = xxrlyxf mod (ß) and

»[(xy-^K-y)] = vKxy-^My) = v(yxr-xxr)lv(y2r).

If v(y1r — x1r)^v(y1r), then v(x— y)úv(y). If v(yxr-xxr)^v(xxr), then since
v(y2r) = v(x2r), it follows that v(x—y)^v(x). Thus v satisfies 1.1 (i)-(iii).

The next definition and corollary give the main source of examples of rings A
which can be embedded in division rings.

3.10 Definition. Consider a totally ordered cancellative semigroup Y and any
commutative field R (not necessarily of characteristic zero). If b: Y —> R is any
function, then the support of b is the set supp (b) = {s e Y \ b(s)^0}. The additive
group of all functions b such that supp (b) satisfies the ascending chain condition
will be denoted by V= V(Y, R). In particular, let v(b) denote the maximal element
of supp (b). If a, b e V then abe F is defined at ä e Y by

(ab)(s) = 2 a(t)b(u)
(t, u), s = tu.

It is known that the above sum for each s is finite and also that supp (ab) satisfies
the ascending chain condition. The subset F(r, R) consisting of all b e V with
supp (b) finite is just the ordinary semigroup ring over Y. Then y is a valuation
in the sense of 1.1 for both Fand F(r, R).
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Note that any commutative totally ordered group satisfies (i)-(iii) in the next
corollary.

3.11 Corollary III. With V= V(F, R) as above and for Lç F the subsemigroup
of strict increasers, assume the following.

(i) For any A1; A2 e F, there isayeP with A^yA^
(ii) For each yeP,y<\y2 isee 1.11).

(iii) For any y, X e F, there exists teF such that yst á sX and tsy á Ai holds for all
seF1.

(iv) Suppose A ̂  V(T, R) is a subring having the property that for arbitrary
a, be A* there exist ay, byeA* with viay), i,(A1)eL such that (aa^Xs) = (AA^j)
holds for all s ä tfor any given teF.

(v) If a, y, ß, á, ß e r1 satisfy ayß ^ äyß, then aß ^ äß.
Then A can be embedded in a division ring.

Proof. Given a, be A* and y e P, it has to be shown that in our previous nota-
tion (aux, bbx) e q(y) for some al7 Ax e A*. Take A = v(a) and let / be as given by (iii).
Then aa1~AA1 mod (y), since for any s e F1, it follows from (iv) that

(i) ysv(aax — bbx) = Yst = svia) < sv(aax),
(ii) v(aax — bbx)sy ¿ tsy ^ v(a)s < v(aax)s.

Thus 3.8(a), (b), (c') hold and A can be embedded in a division ring.
3.12. Suppose A is a ring with a valuation into the integers, i.e. v. A —*■ F=Z.

Define An = {a e A \ v(a) = n} and Bn as the additive quotient group Bn = An — An_x.
Form the associated graded algebra G(/4) = © {Bn | « = 0, ± 1,...} (see [5, p. 257]).
Then Cohn has shown [2, p. 523, Theorem 4.2] that in this particular case the
assumption 3.7(b), i.e. that for each a, be A*, the function fix, y) = viax —by)
— viax), with x, ye A*, is not bounded below is equivalent to requiring that the
ring GiA) satisfies the right Ore condition. If in the last corollary T = Z, then A
is a subring of the ordinary power series ring K(r, R), while G(^)=L(r, R), and
condition 3.11 (iv) specializes to requiring that L(r, R) satisfies the Ore condition.

In conclusion, some totally ordered semigroups are described which could be
used for a valuation and which are also useful in illustrating the relation "<"
(see 1.11). Various subsemigroups of wreath products of totally ordered groups
are too well known and will not be mentioned.

3.13 Example. Let ■ ■ ■ <x21<xf1<e= 1 <Xi<x2< • • • be any finite or in-
finite totally ordered set indexed by ordinals. Let F be the group generated by this
set, i.e. all expressions z = ZxZ2- ■ zm, where m is an integer and where each z¡ = Xj
or Xy_1 and xjxj1=xj1xj = e. If piz) denotes the total number of z¡ with positive
and «(z) the number with negative exponents, set 3(z)=/?(z) — n(z). Note that
0(e) =pie) = nie) = 0 and 3(xy) = fc for any positive or negative integer k. If u = uxu2
■ ■ ■ ur e T is another element (where r is an integer and w¡ = x¡ or xjx), define
z<u if 8z<8u; or 8z=8u, but zt<ut for the first / with zt^=ut. Then T is a totally
ordered group, P = {z e F | la dz}, and z < u if and only if 8z<8u.
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3.14 Example. Consider again a totally ordered set 1 =e<Xx <x2< ■ ■ ■ indexed
by ordinals. Let F consist of e and the set of all finite or infinite formal expressions
z of the form z = zxz2- ■ -za, where each z¡ equals some x¡, and where the zi are
indexed by ordinals in increasing order, and where a is the biggest index. Then F
is a semigroup with juxtaposition as multiplication. If u = UxU2- ■ -uB e F, where
u¡ equals some xjt then zu = ZxZ2- ■ ■zata + 1- • -ta + B where ta + 1 = Ux and ta + y = uy.
The degree 8z of z is 8z = a. Define z < u if either dz < du, or if 8z = 8u, but zt < ut for
the first ordinal / such that zt^ut. Then T is a totally ordered cancellative semi-
group where z <3 u if and only if 8z < 8u.
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