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Abstract

We prove that any local irreducible automaton is contained in a com-

plete one. The proof uses Nasu’s masking lemma. We use the same

technique to give a new proof that any weakly deterministic irreducible

automaton is contained in a complete one.
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1 Introduction

The problem of embedding a finite automaton into one having specified prop-
erties is an old one in automata theory (see [11] for example). We will consider
here the problem of embedding an automaton into a complete one for several
families of automata including local and weakly deterministic automata.

In symbolic dynamics, the problem of embedding a shift into another shift
has been studied extensively. A necessary and sufficient condition for the strict
embedding of shifts of finite type has been given by Krieger (Krieger’s Embed-
ding Theorem [7]).

The problem of embedding an unambiguous irreducible automaton into a
complete one has been solved in [1] using a construction due to Ehrenfeucht
and Rozenberg [5]. This result has a formulation in terms of codes. Indeed, the
stabilizer of a state in an unambiguous automaton is a free submonoid. Thus
the above embedding implies that any rational code is contained in a maximal
one (the Ehrenfeucht-Rozenberg Theorem).

A local automaton is by definition such that a bounded information about
the past and the future is enough to determine the present state. Formally there
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are integers λ, ρ such that for any pair of paths p
u
→ q

v
→ r and p′

u
→ q′

v
→ r′

having the same label with |u| = λ and |v| = ρ one has q = q′. A subautomaton
of a local automaton is obviously still local but conversely it is not clear how
one can add transitions or states to a local automaton until it is complete, in
the sense that any word on the underlying alphabet is the label of a path.

The problem of completing local automata has already been considered in
[8], where a method is given which allows one to complete a local deterministic
automaton when it is possible. We prove here that any local automaton is always
contained in a complete one. The stabilizer of a state in a local automaton is
the star of a locally parsable code (also called codes with finite synchronization
delay). The previous result gives an alternative proof of a result of Bruyère
according to which any locally parsable rational code is included in a maximal
one [4], see also [3].

Our proof relies on a result known as Nasu’s Masking Lemma [10]. This
result deals with the embedding of a shift of finite type into another one and
gives a complement to Krieger’s Embedding Theorem. Given a graph G, the
edge shift on G is the set XG of biinfinite paths in G. The result states that if
XG can be embedded in XH , then there is a graph K such that XK is isomorphic
to XH and G is contained in K. We use this result in the particular case where
XH is the full shift but the same proof can be used to obtain a more general
result with an arbitrary subshift instead of the full shift.

We also use Nasu’s masking lemma to give a new proof of a result of [1]
concerning weakly deterministic automata, which are such that the knowledge
of the starting state and of a prefix of length d of the label of a path determines
its first edge. These automata are also called right-closing in symbolic dynam-
ics. We give a new proof using Nasu’s lemma that any d-weakly deterministic
automaton is contained in a complete one. This result can be reformulated in
terms of codes. The basis of the stabilizer of a state in a weakly deterministic
automaton is, by definition, a weakly prefix code (also called codes with finite
deciphering delay).

We have written this paper in a self-contained form and in particular we
adapt the proof of Nasu’s lemma to our notation.

A first version of this paper was presented at the IEEE International Sym-
posium on Information Theory [2].

2 Equivalences of automata

We denote by A = (Q,E) a finite automaton on the alphabet A with Q as set
of states and E ⊂ Q × A × Q as set of edges. We consider all states as both
initial and terminal. The automaton is said to be complete (with respect to the
alphabet A) if for any word w ∈ A∗ there exists a path labelled w. It is said to
be unambiguous if for any p, q ∈ Q and w in A∗ there is at most one path from
p to q labelled w. It is said to be irreducible if for any p, q ∈ Q there is at least
one word w such that there is a path from p to q labelled w.

An automaton is said to be essential if any state has at least one incom-
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ing edge and at least one outgoing edge. Clearly an irreducible automaton is
essential.

An automaton A = (P,E) on the alphabet A is a subautomaton of an
automaton B = (Q,F ) on the alphabet A, if P ⊂ Q and E ⊆ F ∩ (P ×A× P ).

An automaton is deterministic if for each state p and each letter a there is
at most one edge labelled a going out of p. We use the notation p · a = q to
express the fact that there is an edge p

a
→ q in a deterministic automaton. It

can be shown that an irreducible deterministic automaton is complete if and
only if for each state p and letter a there is exactly one edge labelled a going
out of p.

The transition matrix of an automaton A = (Q,E) is the Q×Q matrix with
elements in the set P(A) of subsets of A defined for p, q ∈ Q by

Mp,q = {a ∈ A | there is an edge (p, a, q) in E}.

The elements of M can be considered as elements of the semiring P(A∗) of
subsets of A∗, where 0 is the empty set and 1 is the set containing the empty
word. Such matrices can therefore be multiplied.

Let A = (P,E) and B = (Q,F ) be two automata on the alphabet A. Let M

be the transition matrix of A and let N be the transition matrix of B. We say
that A and B are elementary equivalent if there exist a (P ×Q)-matrix R and
a (Q × P )-matrix S both with elements in P(A) ∪ {1}, where 1 is the empty
word, such that M = RS and N = SR. We also say that A is (R,S)-elementary
equivalent to B.

This notion is classical in symbolic dynamics. It is usually formulated for
subshifts of finite type (see [7] p. 225). Our definition is a particular case of the
notion of symbolic elementary equivalence for sofic shifts introduced in [9].

For a P × Q-matrix R with elements in P(A) ∪ {1}, we say that a triple
(p, a, q) ∈ P × (A∪{1})×Q is an R-edge (resp. an S-edge) when a ∈ Rp,q (resp.
a ∈ Sp,q). Thus when A is (R,S)-equivalent to B, each edge of A is the sequence
of an R-edge and a consecutive S-edge, and each edge of B is a sequence of an
S-edge and a consecutive R-edge. The R-edges and S-edges can be considered
as edges of a bipartite graph called the auxiliary graph of the equivalence (it is
called a bipartite code in [9] and [7, p. 355]).

Example 1 Let A and B be the automata represented on Figure 1.

1
a b

1 2
a bb

a

Figure 1: Two elementary equivalent automata A (on the left) and B (on the
right).

The transition matrices M and N of A and B are

M = [a + b] , N =

[
a b

a b

]
.
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Let

R =
[
a b

]
, S =

[
1
1

]
.

Then M = RS and N = SR. Thus A and B are elementary equivalent. The
auxiliary graph is shown in Figure 2 (with continuous lines).

1

2 3

a b

a bb

a

a
1 b

1

Figure 2: The auxiliary graph (with continuous edges).

Let A = (Q,E) be an automaton. The input of a state q ∈ Q is the set of pairs

(p, a) such that one has p
a
→ q. Its output is the set of pairs (a, r) such that one

has q
a
→ r.

An input merge equivalence is an equivalence on the set Q of states of A
such that for any pair p, p′ of equivalent states, any letter a and any state q,
one has

(i) p
a
→ q if and only if p′

a
→ q,

(ii) q
a
→ p, q

a
→ p′ implies p = p′.

Thus, in such an equivalence, two equivalent and distinct states have the same
output and disjoint inputs.

The quotient of A = (Q,E) by such an equivalence is the automaton A =
(Q,E) with states the set Q of equivalence classes, and edges the induced edges
on the classes, i.e. (p, a, q) ∈ E for some p, q ∈ Q implies that (p, a, q) is in E.

Thus, in the quotient the output of a class of states is the common output
of its elements and its input is the union, or merge, of the inputs of its elements
(whence the name of an input merge equivalence). We say that A is obtained
from A by an input merge. We also say that A is obtained from A by an input
split .

Note that if A is an unambiguous essential automaton, there is a largest
input merge equivalence. It is defined by q ≡ q′ if q and q′ have the same
output. Indeed, since A is essential, if q ≡ q′, they have the same non-empty
output. Since it is unambiguous, they have disjoint inputs.

Example 2 Let A, B be the automata of Example 1. The automaton A is
obtained from B by an input merge.

4



An output merge equivalence on the set of states of an automaton A is defined
symmetrically. It is an equivalence on the set Q of states such that equivalent
and distinct states have the same input and disjoint outputs. The quotient A
is defined in the same way by merging the outputs of the elements of a class.
We say that A is obtained from A by an output merge. We also say that A is
obtained from A by an output split .

Observe that the quotient of an automaton A by an input or an output
merge equivalence is unambiguous if and only if A is unambiguous.

The notions of input and output merge equivalence are classical in symbolic
dynamics. They are usually formulated for subshifts of finite type (see [7, p.
225]). The extension of the definitions to sofic shifts is due to Nasu [9]; see also
[6].

The following result is an element of William’s Classification Theorem (see
[7]).

Proposition 1 If the automaton A is obtained from the automaton B by an
input (or output) merge, then A and B are elementary equivalent.

Proof We treat the case of an input merge. Let B = (Q,E) and A = (Q,E).
Let M and N be the transition matrices of A and B. Let R be the Q×Q-matrix
defined for p, q ∈ Q by

Rp̄,q = {a ∈ A | there is an edge (p, a, q) in E}

(note that R is well-defined because of the definition of an input merge). Let S

be the Q × Q-matrix defined by

Sp,q̄ =

{
1 if p̄ = q̄

0 otherwise

Then M = RS and N = SR. Thus A and B are elementary equivalent. ¤

Proposition 2 Let A and B be two irreducible (R,S)-elementary equivalent
automata. Then, either R has elements in P(A) and S in {0, 1} or conversely.

Proof Set A = (P,E) and B = (Q,F ). Suppose that there are p ∈ P , a ∈ A,
and q ∈ Q such that a ∈ Rpq. Let p′ ∈ P and q′ ∈ Q. We denote s = Sq′p′ . Let

us show that, if s 6= 0 then s = 1. Since B is irreducible, there is path q
u
→ q′

labelled by u = a1 . . . an. We have ai = siri, for 1 ≤ i ≤ n, with ri ∈ Rpiqi
, and

si ∈ Sqi−1pi
, and thus the path

p
a
→ q0

s1→ p1
r1→ q1

s2→ · · ·
sn→ pn

rn→ qn
s
→ p′,

with q0 = q and qn = q′. Since as1 is the label of an edge in E, s1 = 1. Since
s1r1 is the label of an edge in F , r1 ∈ A and so on. Finally rn ∈ A and thus
s = 1.

This shows that if one entry of R contains an element of A then all the
entries of S are 0 or 1. Furthermore, if all the entries of S are 0 or 1, then all
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non-null entries of R are in P(A). The proof of the symmetrical case is similar.
¤

We denote by L(A) the set of words labelling a finite path in A. Two
automata A and B are said to be equivalent if L(A) = L(B).

We say that two automata A and B are strongly equivalent if there is a
sequence A0,A1, . . . ,An of automata such that A0 = A, An = B and Ai is
elementary equivalent to Ai+1 for 0 ≤ i ≤ n − 1.

Proposition 3 Two strongly equivalent essential automata are equivalent.

Proof Let A = (P,E) and B = (Q,F ) be (R,S)-elementary equivalent automata
on the alphabet A. Let w = a1 . . . an ∈ L(A). Since A is essential, there is a
path

p−1
a0→ p0

a1→ p1
a2→ · · · pn−1

an→ pn

an+1

→ pn+1,

with a0, an+1 ∈ A. For each i = 0, . . . , n+1, we have ai = risi with ri ∈ Rpi−1qi

and si ∈ Sqipi
, and thus a path

p−1
r0→ q0

s0→ p0
r1→ q1

s1→ p1 · · · pn−1
rn→ qn

sn→ pn

rn+1

→ qn+1
sn+1

→ pn+1

using alternately entries of R and S. Then either r0 = a0, . . . , rn+1 = an+1 and
s0 = · · · = sn+1 = 1 or r0 = · · · = rn+1 = 1 and s0 = a0, . . . , sn+1 = an+1.
We consider the first case, the other one being symmetrical. Since SR is the
transition matrix of B, we have in B a path

q0
a1→ q1

a2→ · · ·
an→ qn

an+1

→ qn+1.

This shows that wan+1 ∈ L(B) and thus w ∈ L(B). ¤

We will now describe a construction due to Nasu (see [7, p. 354], Lemma 10.2.3).
It associates to automata A1,A2,B1 such that A1 is elementary equivalent to
A2 and A1 is a subautomaton of B1, an automaton B2 elementary equivalent to
B1 and such that A2 is a subautomaton of B2. The automaton B2 is called the
Nasu embedding of A2 with respect to A1,B1.

Set A1 = (P1, E1), A2 = (P2, E2) and B1 = (Q1, F1). Let R,S be matrices
such that RS and SR are respectively the transition matrices of A1 and A2.
Let Q2 = P2 ∪ (F1 \E1). We define a Q1 ×Q2-matrix R̂ and a Q2 ×Q1-matrix

Ŝ as follows.
Suppose first that R has 0, 1 entries and S entries in P(A). Then, for q1 ∈ Q1

and q2 ∈ Q2, we define

R̂q1,q2
=






Rq1,q2
if q1 ∈ P1, q2 ∈ P2

1 if q2 ∈ F1 \ E1 and o(q2) = q1

0 otherwise

and
Ŝq2,q1

= Sq2,q1
∪ {l(q2) | q2 ∈ F1 \ E1, e(q2) = q1},
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where o(q2) denotes the origin of q2, l(q2) its label, and e(q2) its end.
An illustration of this construction is given in Example 3.
In the case where R has entries in P(A) and S has 0, 1 entries, we define

R̂q1,q2
= Rq1,q2

∪ {a ∈ A | q2 ∈ F1 \ E1, o(q2) = q1, l(q2) = a}

and

Ŝq2,q1
=






Sq2,q1
if q1 ∈ P1, q2 ∈ P2

1 if q2 ∈ F1 \ E1 and e(q2) = q1

0 otherwise .

It is clear that in both cases, R̂Ŝ is the transition matrix of B1. The au-
tomaton B2 = (Q2, F2) is defined by its transition matrix which is ŜR̂. To sum
up, we have the following statement.

Proposition 4 Let A1,A2,B1 be automata such that A1 is a subautomaton of
B1 and A1 is elementary equivalent to A2. Let B2 be the Nasu embedding of A2

with respect to A1,B1. Then A2 is a subautomaton of B2 and B1 is elementary
equivalent to B2. Moreover, if A2 and B1 are irreducible (resp. essential), then
B2 is irreducible (resp. essential).

Example 3 Figure 3 represents the Nasu embedding B2 of A2 with respect to
A1,B1. The automata A1 and A2 are the elementary equivalent automata of
Example 1. If Mi (resp. Ni) denotes the transition matrix of the automaton Ai

2 3

1 c d

4

a b

a b

b

a

a

1 b

1 1 1
c

d

b

c

d

c

d

d

Figure 3: The Nasu embedding B2 of A2 with respect to A1,B1. The automata
A1 = (P1, E1) with P1 = {2, 3} and A2 = (P2, E2) with P2 = {1} are rep-
resented with continuous edges. We have B1 = (Q1, F1) with Q1 = {2, 3, 4}
and B2 = (Q2, F2) with Q1 = {1, c, d}. The automaton B2 has two additional
states c, d corresponding to the additional edges (3, c, 4) and (4, d, 3) of B1. The
transitions defined by R and S are represented with dashed edges. Additional
states and edges are represented with dots.

(resp. Bi) of Figure 3, we have

M1 =

[
a b

a b

]
= RS =

[
1
1

] [
a b

]
, M2 =

[
a + b

]
= SR.
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N1 =




a b 0
a b c

0 d 0



 = R̂Ŝ =




1 0 0
1 1 0
0 0 1








a b 0
0 0 c

0 d 0



 ,

N2 =




a + b b 0

0 0 c

d d 0



 = ŜR̂ =




a b 0
0 0 c

0 d 0








1 0 0
1 1 0
0 0 1



 .

The following result will be used in Section 4.

Proposition 5 Let A1,A2,A3,B3 be essential automata such that A1 is an
input merge of A2, A3 is an output merge of A2 and A3 is a subautomaton of
B3.

B1

∩
A1 B2

∩
A2

B3

∩
A3

Let B2 be the Nasu extension of A2 with respect to A3,B3. Then A1 is a
subautomaton of the maximal input merge B1 of B2.

Proof Set Ai = (Pi, Ei) for i = 1, 2, 3 and let Bi = (Qi, Fi) for i = 2, 3. Let
Mi be the transition matrix of Ai for i = 1, 2, 3. Set M2 = SR, M3 = RS and
let R̂, Ŝ be the matrices corresponding to the Nasu extension of A2. We have
Q2 = P2 ∪ (F3 \ E3) and for q2 ∈ Q2, q3 ∈ Q3,

Ŝq2,q3
= Sq2,q3

∪ {l(q2) | q2 ∈ F3 \ E3, e(q2) = q3}

and

R̂q3,q2
=






Rq2,q3
if q2 ∈ P2, q3 ∈ P3

1 if q2 ∈ F3 \ E3 and o(q2) = q3

0 otherwise

Let p2, p
′

2 ∈ P2 be two states of A2 that have the same output. Let us show
that they also have the same output in B2. For this, suppose that (p2, a, r) is

an edge of B2 with r ∈ F3 \ E3. Since the transition matrix of B2 is ŜR̂, there

is a state q ∈ Q3 such that a ∈ Ŝp2q and R̂qr = 1. It follows from the definition

of Ŝ that q is in P3 (indeed if q ∈ Q3 \ P3, then p2 ∈ F3 \ E3, a contradiction).
Since A3 is obtained from A2 by an output merge, there is a p ∈ P2 such that
Rq,p = 1 and thus an edge (p2, a, q) in E2. Since p2, p

′

2 have the same input in
A2, we have also an edge (p′2, a, q) in E2. Thus there is an edge (p′2, a, r) in F2,
which proves the assertion.

This shows that the automaton B1 obtained from B2 by merging the states
with the same output, has A1 as a subautomaton. ¤
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3 Local automata

An automaton is said to be (λ, ρ)-local if for all pairs of paths p
u
→ q

v
→ r and

p′
u
→ q′

v
→ r′ with |u| = λ and |v| = ρ, one has q = q′. The automaton is said to

be local if it is (λ, ρ)-local for some λ, ρ ≥ 0. An automaton which has a single
state is (0, 0)-local.

Thus in a local automaton, one can recover a biinfinite path from its label
using a sliding window of fixed size.

As a particular case of a local automaton, an edge automaton is such that
all edges have distinct labels. An edge automaton is both (0, 1) and (1, 0)-local.

A word w is said to be a constant for an automaton A if for p, p′, q, q′ ∈ P

such that p
w
→ q and p′

w
→ q′ one has also p

w
→ q′ and p′

w
→ q. The empty word

is a constant only when the automaton has a single state.
Observe that when the automaton is deterministic, a constant is a word w

such that the set Im(w) = {q ∈ P | p
w
→ q for some p ∈ P} has at most one

element.
The following result from [8] gives a necessary a property of irreducible

complete deterministic local automata. This property can be used to show that
some local deterministic automata are not contained in a complete irreducible
one (see Example 6).

Proposition 6 Let A be is an irreducible complete deterministic local automa-
ton on the alphabet A with more than one state. Then

⋂

a∈A

Im(a) = ∅,

Proof Suppose that q ∈
⋂

a∈A Im(a). Let w be a word of maximal length which
is not a constant. Then for each letter a ∈ A, the word aw is a constant and thus
Im(aw) has only one element. Thus for any state p we have p ·w = q ·w. Indeed,
since A is essential, there is a letter a such that p ∈ Im(a). Then p, q ∈ Im(a),
which implies p · w = q · w. This contradicts the fact that w is not a constant.
¤

Example 4 The automaton of Figure 4 is (1, 1)-local. All nonempty words but
a are constants.

1

2

3

a
a

b

a

Figure 4: A (1, 1)-local automaton.
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Note that if A is a (λ, ρ)-local automaton, then an input split of A is a (λ +
1, ρ)-local automaton, and an output split of A is a (λ, ρ + 1)-local automaton.

Proposition 7 An irreducible automaton is local if and only if it is unambigu-
ous and there exists an integer n such that any word of length n is a constant.

Proof Suppose first that A is (λ, ρ)-local. Let c, c′ be two paths from p to q

labelled w. Since A is irreducible, there exist states r, s and paths r
u
→ p, q

v
→ s

with |u| = λ and |v| = ρ. Since A is (λ, ρ)-local, the paths c, c′ coincide. Thus

A is unambiguous. Suppose next that p
w
→ q and p′

w
→ q′ with |w| = λ + ρ.

Let w = uv with |u| = λ and |v| = ρ. Let r, r′ be such that p
u
→ r

v
→ q and

p′
u
→ r′

v
→ q′. Since A is (λ, ρ)-local, we have r = r′. This implies that we also

have paths p
w
→ q′ and p′

w
→ q. Thus the condition of the statement is true with

n = λ + ρ.
Conversely, let us assume that any word of length n is a constant and that

A is unambiguous. Let us show that A is (n, n)-local. Suppose that p
u
→ q

v
→ r

and p′
u
→ q′

v
→ r′ with |u| = |v| = n. Then, since u and v are constants, we

also have p
u
→ q′

v
→ r. Since A is unambiguous, this forces q = q′, whence the

conclusion. ¤

The least integer n such that any word of length n is a constant is called the
order of the automaton. Note that a (λ, ρ)-local automaton has order at most
λ + ρ. It can however be strictly less than λ + ρ. An unambiguous automaton
with order n is (n, n)-local.

Let λ, ρ ≥ 0. The free (λ, ρ)-local automaton is the automaton with set of
states consisting of pairs (u, v) of words, with u of length λ and v of length
ρ, and edges the triples ((u, v), a, (u′, v′)) such that there are letters b, c with
uvc = bu′v′ and a is the first letter of vc (and also the last letter of bu′). It is
clear that this automaton is (λ, ρ)-local.

The free (n, 0)-local automaton is usually known as the de Bruijn automaton
of order n.

Lemma 1 Let n be a nonnegative integer such that λ, ρ ≤ n, the free (λ, ρ)-local
automaton has order n.

Proof Let F(λ,ρ) be the free (λ, ρ)-local automaton. Let (u, v)
w
→ (x, y) and

(u′, v′)
w
→ (x′, y′) be two paths labelled w of length n in F(λ,ρ), with u, u′, x, x′

of length λ and v, v′, y, y′ of length ρ. Since λ, ρ ≤ n, v, v′ are prefixes of w

and x, x′ are suffixes of w. Hence v = v′ and x = x′ and there are paths
(u, v)

w
→ (x, y′) and (u′, v)

w
→ (x, y) in F(λ,ρ). ¤

Example 5 The free (1, 1)-local automaton on the alphabet {a, b} is repre-
sented on Figure 5. The label of an edge going out of a state is its second letter.

The following result shows that any (λ, ρ)-local automaton is strongly equiv-
alent to a subautomaton of the free (λ, ρ)-local automaton.
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a, a

a, b

b, b

b, a

a b

a b

ba

a b

Figure 5: The free (1, 1)-local automaton. It has order 1.

Proposition 8 If A is (λ, ρ)-local automaton, there is a sequence A0,A1, . . . ,Aλ+ρ

of (λ, ρ)-local automata such that

(i) A0 = A.

(ii) For i = 0, . . . , λ − 1, Ai is obtained from Ai+1 by an input merge.

(iii) For i = λ, . . . , λ + ρ − 1, Ai is obtained from Ai+1 by an output merge.

(iv) Aλ+ρ is a subautomaton of the free (λ, ρ)-local automaton.

Proof Let A = (P,E). We define for 1 ≤ i ≤ λ, Ai = (Pi, Ei) where Pi is the set
of pairs (u, q) with u ∈ Ai and q ∈ Q such that there is a path labelled u leading
to q in A. There is an edge labelled a from (u, p) to (v, q) in Ai if u = bu′,
v = u′a for b ∈ A and (p, a, q) ∈ E. For j = 1, . . . , ρ, let Aλ+j = (Pλ+j , Eλ+j)
where Pλ+j is the set of triples (u, p, v) ∈ Aλ ×P ×Aj such that there is a path
labelled u leading to p and a path labelled v leaving p in A. There is an edge
labelled a from (u, p, v) to (w, q, t) if and only if u = bu′, w = u′a, v = av′,
t = v′c and (p, a, q) ∈ E.

For 0 ≤ i ≤ λ− 1, the equivalence θi+1 on Pi+1 defined by (u, p) ≡ (u′, p′) if
p = p′ and u, u′ differ at most by the first letter is an input merge. Similarly, for
λ ≤ i ≤ λ + ρ− 1, the equivalence θi+1 on Pi+1 defined by (u, p, v) ≡ (u′, p′, v′)
if u = u′, p = p′ and v, v′ differ at most by their last letter, is an output merge.
This shows that conditions (ii) and (iii) are satisfied.

Finally, since A is (λ, ρ)-local, in a state (u, p, v) of Aλ+ρ, the state p is
determined by (u, v). Thus condition (iv) is also satisfied.

¤

Observe that if A is moreover supposed to be irreducible, then all the automata
Ai constructed as above are also irreducible.

We will prove the following result.

Theorem 2 Any local local irreducible automaton is a subautomaton of a com-
plete one with the same order.

The proof uses Nasu embeddings. We will deduce Theorem 2 from the following
more precise statement.

11



Proposition 9 Any irreducible (λ, ρ)-local automaton is a subautomaton of a
complete irreducible local automaton of order max(λ, ρ).

Note that it is not true that any irreducible (λ, ρ)-local automaton is a subau-
tomaton of a complete irreducible (λ, ρ)-local automaton (see Example 6).

The proof of Proposition 9 uses the following statement.

Proposition 10 Let A1 and A2 be automata such that A2 is obtained from A1

by input (or output) merge. If A1 is a subautomaton of a local automaton B1,
then the Nasu embedding of A2 with respect to A1 and B1, is a local automaton
with the same order as B1.

Proof We treat the case of an input merge. The case of an output merge is
symmetrical. Let B1 = (Q1, F1) be a local automaton containing A1 = (P1, E1)
as a subautomaton. Assume that A2 = (P2, E2) is obtained from A1 by input
merge. Let F = F1 \ E1, Q2 = P2 ∪ F and let B2 = (Q2, F2) be the Nasu
embedding of A2 with respect to A1,B1.

Let R,S be the matrices defined as in the proof of Proposition 1. The
transition matrix of A1 is equal to RS while the transition matrix of A2 is
equal to SR. We have a ∈ Sp̄,q if (p, a, q) ∈ E1 and Rp,p̄ = 1. The additional

Ŝ-edges are the triples (f, a, q) such that f = (p, a, q) is in F . The additional

R̂-edges are the triples (p, 1, f) such that f begins with p. An example of this
construction is described in Figure 3.

Let π be the map defined on the set P of paths of B1 of length at least
2 onto the set of nonempty paths of B2 as follows. If (e0, e1, . . . , en) ∈ P
with ei = (qi, ai, qi+1), we define π(e0, e1, . . . , en) = (g0, g1, . . . , gn−1) with gi =
(pi, ai, pi+1) defined by pi = q̄i if ei ∈ E1 and pi = ei if ei ∈ F .

We claim that π is a surjective map from the set P onto the set of nonempty
paths of B2. We have to verify that each gi is an edge of B2. We distinguish
four cases.

(i) If pi, pi+1 ∈ P2. Then gi is an edge of A2 and thus of B2. It is the
concatenation of an S-edge and an R-edge.

(ii) If pi ∈ P2 and pi+1 ∈ F . Then pi = q̄i and pi+1 = ei+1 . Thus gi is the

concatenation of an S-edge and an (R̂ − R)-edge.

(iii) If pi, pi+1 are in F , then pi = ei and pi+1 = ei+1. Thus gi = (pi, ai, pi+1)

is the concatenation of an (Ŝ − S)-edge and an (R̂ − R)-edge.

(iv) If pi ∈ F and pi+1 ∈ P2 then pi = ei. Thus gi is the concatenation of an

(Ŝ − S)-edge and an R-edge.

Thus π is well defined. Moreover, one can verify that for any nonempty path c

in B2 there exists c′ ∈ P such that π(c′) = c. Thus π is surjective.

Let n be the order of B1. Let c = p
w
→ q and c′ = p′

w
→ q′ be two paths in B2

with |w| = n. Then there exist paths d = r
w
→ s

a
→ t and d′ = r′

w
→ s′

a′

→ t′ in

12



B1, with a, a′ ∈ A, such that π(d) = c and π(d′) = c′. Since B1 has order n, w is

a constant for B1. Thus we have also paths e = r
w
→ s′

a′

→ t′ and e′ = r′
w
→ s

a
→ t

in B1. It is easy to verify that π(e) is a path from p to q′ and π(e′) a path from
p′ to q. Thus w is a constant for B2. ¤

Proof of Proposition 9. Let A be an irreducible (λ, ρ)-local automaton. By
Proposition 8 there is a sequence A0,A1, . . . ,Aλ+ρ of automata such that A =
A0, Aλ+ρ is a subautomaton of the free (λ, ρ)-local automaton and each Ai

is a merge of Ai+1. By Lemma 1, the free (λ, ρ)-local automaton has order
n = max(λ, ρ). Since Aλ+ρ is included in the free (λ, ρ)-local automaton, we may
build using repeatedly Proposition 10 a sequence Bλ+ρ, . . . ,B1,B0 of complete
local irreducible automata with order n such that Ai is contained in Bi for
i = λ + ρ, . . . , 0. Thus B = B0 is a complete local automaton with order n

containing A. Since A is irreducible, all Ai and Bi are irreducible. ¤

Example 6 Let A = A0 be the deterministic automaton represented on the
left of Figure 6. It is (3, 0)-local and has order 3. Indeed, the action of a, b on
the set of states represented on the right of Figure 6 shows that any word of
length 3 has an image of cardinality at most 1.

1

23

a, b

b

a
1, 2, 3

1, 2

2, 3

a

b

2

4, 3

a

b

1

3

a

b

1

3

a

b

Figure 6: A local automaton A and the action on subsets.

Note that A cannot be completed in a local deterministic automaton by
Proposition 6. Indeed, we have 2 ∈ Im(a) ∩ Im(b).

We have represented on Figure 7 a split A1 of A, obtained by an input split
of state 2 in two states 5 and 7. This automaton can easily be completed as
indicated on Figure 7.

The matrices R,S such that the transition matrix of A1 is RS and the
transition matrix of A is SR are

R =





1 0 0
0 1 0
0 0 1
0 1 0



 , S =




0 a 0 b

0 0 b 0
a 0 0 0



 .

The auxiliary graph is shown on Figure 8. The final result is shown on Figure 9.
It is a complete local automaton containing A.
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4

5

6

7

a b

bb

a

a

b

a

Figure 7: A split A1 of A and its completion B1 with the dotted edges.

4

5

6

7

1

3 2

a b

bb

a

a

b

a

a, b

b

a

a

b

a b

1

1

1
1

Figure 8: The auxiliary graph (with continuous edges). The automata A and A1

are represented with dashed edges and the additional edges with dotted lines.
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To check that it is complete, one can apply the subset construction to build
an equivalent deterministic automaton. Since A is irreducible and local, this
construction may be started from any state. Then we can check that each state
has outgoing edges carrying each letter.

1

3 2

f

eg

a, b

b

a

bb

b

a a

a

b

a

Figure 9: The result is the embedding of A with respect to A1 and B1. This
automaton has order 3 although it is (3, 1)-local.

Theorem 2 can be generalized as follows. Let A be a local automaton.
Any local automaton B such that L(B) ⊆ L(A) is a subautomaton of a local
automaton C strongly equivalent to A. Moreover, if A is an automaton of order
at most one, then the order of C can be chosen equal to the order of B. Theorem
2 corresponds to the case where the automaton A has just one state.

Example 7 Let A be the (1, 0)-local automaton represented on the right of
Figure 10. The automaton B represented on the left with continuous lines is
(1, 1)-local. One has L(B) ⊂ L(A). Adding the dotted edge labelled a to B
gives a (1, 1)-local automaton C which is equivalent to the automaton A.

1

2

3

a
a

b

a

a 1 2
a b

a

Figure 10: The local automata B, C on the left (with the additional dotted edge
for C), and A on the right.
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4 Weakly deterministic automata

An automaton A is said to have delay d if for any pair of paths

p
a
→ q

z
→ r, p

a
→ q′

z
→ r′,

with a ∈ A, z ∈ A∗ and |z| = d then q = q′. We say that the automaton is
weakly deterministic if it has delay d for some integer d ≥ 0. The minimal
delay of an automaton A is the least integer d such that A has delay d.

Weakly deterministic automata are also known in symbolic dynamics as
right-closing labeled graph.

Thus a deterministic automaton has delay 0. Observe that if A has delay d,
then for any word w, and for any pair of paths

p
w
→ q

z
→ r, p

w
→ q′

z
→ r′,

with w, z ∈ A∗ and |z| = d, the paths p
w
→ q and p

w
→ q′ are equal.

Proposition 11 Let A be an essential automaton. If A is local, it is weakly
deterministic. If it is weakly deterministic, it is unambiguous.

Proof Suppose first that A is (λ, ρ)-local. Let p
a
→ q

z
→ r and p

a
→ q′

z
→ r′ be

paths with |z| = ρ. Since A is essential, there exists a path s
y
→ p with |ya| ≥ λ.

Since we have paths s
ya
→ q

z
→ r and s

ya
→ q′

z
→ r′, we have q = q′. Thus A has

delay ρ.
Suppose next that A is has delay d. Two paths from p to q with the same

label may be extended to the right arbitrarily. This forces them to coincide.
Thus A is unambiguous. ¤

We will use the following result.

Proposition 12 Let A1 and A2 be (R,S)-strongly equivalent irreducible au-
tomata. If the automata A1 is weakly deterministic, then A2 also, and their
minimal delays differ at most by one.

Proof Let us suppose that A2 has delay d − 1 and show that A1 has delay d.
We treat the case where the entries of R are in P(A) and the entries of S are
in {0, 1}. The other case is similar.

Let p0
a0→ p1

a1→ · · ·
pd→ pd+1 and p0

a0→ p′1
a1→ · · ·

ad→ p′d+1 be two paths in
A1 of length d + 1 with the same origin and the same label a0a1 · · · ad, with
ai ∈ A. Since A1 is irreducible, there exists an S-edge q0 → p0. Thus we
have, in the auxiliary graph, paths q0 → p0

a0→ q1 → p1
a1→ q2 · · ·

ad→ pd+1 and

q0 → p0
a0→ q′1 → p′1

a1→ q′2 · · ·
ad→ p′d+1. Since A2 has delay (d − 1), we have

q1 = q′1 and q2 = q′2. This implies p1 = p′1. Thus A1 has delay d. ¤

The following statement shows that an input merge cannot increase the delay.

Proposition 13 Let A1 be an input merge of A2. Then A1 and A2 have the
same minimal delay.
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Proof The delay of a (input or output) merge cannot be larger than the original
one. Hence if A2 has delay d, then A1 has delay d. Conversely, suppose that A1

has delay d. Let p
a
→ q

u
→ r and p

a
→ q′

u
→ r′ be two paths in A2 where a ∈ A

and u ∈ Ad. We then have paths p
a
→ q

u
→ r and p

a
→ q̄′

u
→ r′ in A1. Since A1

has delay d, we have q = q̄′. Since the inputs of q and q′ are not disjoint, we
have q = q′. Thus A2 has delay d. ¤

The following result, which already appears in [1], is the analogue of Theorem 2
for weakly deterministic automata. The proof uses again Nasu embeddings.

Theorem 3 A weakly deterministic irreducible automaton is a subautomaton
of a complete one with the same delay.

Observe that, contrary to Theorem 2, the above statement is trivial if the result
is not required to be irreducible.

We first prove the following result which shows that a weakly determinis-
tic irreducible automaton is strongly equivalent to a deterministic irreducible
automaton.

Proposition 14 If A is a weakly deterministic irreducible automaton with de-
lay d ≥ 1, there exist automata A1 and A2 such that A is an input merge of
A1, A2 is an output merge of A1 and A2 has delay d − 1.

Proof Set A0 = A and Ai = (Pi, Ei) for i = 0, 1, 2. Let P1 = E0 and let
E1 be the set of triples (e, a, f) with e, f ∈ E0 and a ∈ A such that e, f are
consecutive edges of A and a is the label of f . In this way, there is an input merge
from A1 to A0 obtained by merging the states with the same third component.
Let A2 be the automaton obtained from A1 by merging the states having the
same input. By Proposition 13 and since A0 has delay d, A1 has delay d.
Let us verify that A2 has delay d − 1. Consider two paths α

a
→ β

u
→ γ and

α
a
→ β′ u

→ γ′ in A2 with a ∈ A and u ∈ Ad−1. These paths are the image under
the output merge of two paths in A1 of the form (i, b, p)

a
→ (p, a, q)

u
→ (r, c, s)

and (i′, b, p′)
a
→ (p′, a, q′)

u
→ (r′, c, s′). Since (i, b, p) and (i′, b, p′) have the same

input in A1, we have i = i′. Thus we obtain the two paths i
b
→ p

au
→ s and

i
b
→ p′

au
→ s in A. Since A has delay d, this forces p = p′. But since (p, a, q) and

(p, a, q′) have the same input in A1, they belong to the same class of the output
merge equivalence giving A2. This forces β = β′. ¤

Proof of Theorem 3. We use an induction on the minimal delay d of A. If d = 0,
then A is deterministic and the property is clearly true. Suppose d ≥ 1. Let
A0 = A and A1, A2 be the automata given by Proposition 14. The construction
is illustrated in Figure 11. By induction, A2 is a subautomaton of an irreducible
automaton B2 with delay d−1. Let B1 be the Nasu embedding of A1 with respect
to (A2,B2). By Proposition 12, A1 has delay d. By Proposition 5, there is an
input merge B0 of B1 such that A0 is a subautomaton of B0. By Proposition 13,
B0 has delay d, which concludes the proof. ¤
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B0 (d)
∩

A (d) B1 (d)
∩

A1 (d)

B2 (d − 1)
∩

A2 (d − 1)

Figure 11: The construction in the proof of Proposition 14. The delay of each
automaton is given inside the parenthesis.

Example 8 Figure 12 illustrates the construction of the completion of a weakly
deterministic automaton.

1 2

e

a a

b

b b

b

1a1

1a2

2b1

e

a
a

a

ba

b

b

b 1

2

a

bab

Figure 12: Let A = A0 be the automaton with delay 1 represented on the left
with continuous lines. The automaton A1 is represented at the center. The
automaton A2 obtained by merging states 1a1 and 1a2 is shown on the right.
It is deterministic and can be completed by adding an edge e labelled b from
state 2 to state 1 represented with dashes (another solution would be to add a
loop labelled b on 2). Working backwards, the Nasu embeddings of A1 and A0

appear with dashes. The result on the left is a complete automaton B0 with
delay 1 containing A0 as a subautomaton.

The particular solution given in [1] is not the same as the one described
above. Let us explain how it works on this example.

The embedding is based on the observation that an automaton with delay
d is complete if and only if for each state p the following condition is satisfied:
for each word u of length d such that there is a path labelled u starting at p,
there also a path labelled ua starting at p for each a ∈ A.

Since state 2 can be followed by ba but not by bb, we add an edge labelled
b from 2 to a new state called b and such that there is an edge labelled b going
to state 1. Further, since state b can be followed by ba but not by bb, we add
a loop labelled b on state b. The above condition is now satisfied for any state.
Let B0 be the complete automaton thus obtained.

This automaton is obtained by the previous construction starting with the

18



1 2

b

a a

b

b b

b

1a1

1a2

2b1

ea

a

a

ba
b

b

b
1

2

a

ba

b

Figure 13: Another embedding of the previous automaton.

completion of the deterministic automaton A2 shown on the right and working
backwards as before.

The full statement of the result of [1] is more general and Theorem 3 and
its proof can be extended as follows. Let A be an irreducible edge automaton.
Any weakly deterministic irreducible automaton B such that L(B) ⊆ L(A) is
a subautomaton of a weakly deterministic irreducible automaton C which is
equivalent to A and has the same delay.

We have not been able to found a way to prove by Nasu extensions the
analogous result of [1] concerning bi-closing automata, i.e. which have finite
delay in both directions.
Acknowledgements: We would like to thank Brian Marcus who pointed out to
us the possibility of using Nasu’s masking lemma in this problem.
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