
Embeddings of Simple Modular Extended RDF

Carlos Viegas Damásio1, Anastasia Analyti2, and Grigoris Antoniou3

1 CENTRIA, Departamento de Informática da Faculdade de Ciências e Tecnologia,
Universidade Nova de Lisboa, 2829-516 Caparica, Portugal. cd@di.fct.unl.pt

2 Institute of Computer Science, FORTH-ICS, Crete, Greece. analyti@ics.forth.gr
3 Institute of Computer Science, FORTH-ICS, and Department of Computer Science,

University of Crete, Crete, Greece. antoniou@ics.forth.gr

Abstract. The Extended Resource Description Framework has been proposed to
equip RDF graphs with weak and strong negation, as well as derivation rules, in-
creasing the expressiveness of ordinary RDF graphs. In parallel, the Modular Web
framework enables collaborative and controlled reasoning in the Semantic Web.
In this paper we exploit the use of the Modular Web framework to specify the
modular semantics for Extended Resource Description Framework ontologies.

1 Introduction

The Extended Resource Description Framework [5] (ERDF) provides a model theo-
retical semantics for RDF graphs allowing negative triples, and ontologies defined by
first-order rules including the two forms of negation, weak and strong. However, no
means of combining different ontologies is specified. The necessity of mechanisms to
encapsulate and organize knowledge in the Semantic Web is essential [13, 6, 8, 10], and
the ERDF framework has been extended to allow the specification of import and export
declarations of classes and properties, resulting in the Modular ERDF framework [3].
The semantics of the modular ERDF framework has also been defined model theoreti-
cally, but it was lacking a declarative rule-based semantics for implementing the system.

In parallel, the Modular Web Framework (MWeb) is a proposal to address the is-
sues of programming-in-the-wide faced by the new Semantic Web rule-engines [2, 4].
MWeb defines general constructs to allow sharing of knowledge in the Semantic Web
provided by logic based knowledge bases, including scoped open and closed world
assumptions with contextualized and global interpretation of predicates. The MWeb
framework is constructed, compatible and based on Rule Interchange Format (RIF)
guidelines fostering immediate integration with RDF [12]. MWeb provides two seman-
tics designated MWebWFS and MWebAS with a solid theory based on the two major
semantics of extended logic programming, respectively, Well-Founded Semantics with
Explicit Negation [1] and Answer Sets [9]. A compiler of MWeb into XSB Prolog is
available4 making use of the tabling features to guarantee termination of recursive rules
with negation. It provides separate interface and implementation of rulebases with mod-
ular and independent compilation.

The major contribution of the paper is the specification of the semantics of ERDF
reasoning entirely in the MWeb framework, including alignment with RIF, support of

4 The system can be downloaded at http://centria.di.fct.unl.pt/˜cd/mweb/

RDF and RDFS entailment, as well extensions to the original ERDF semantics for deal-
ing with closed classes and properties. These results complement the mapping of simple
modular ERDF ontologies into MWeb rulebases defined in [7]. Thus reasoning on sim-
ple modular ERDF ontologies can be achieved through our MWeb implementation5,
and in particular supporting modular reasoning over RDF(S) ontologies.

The paper is organized as follows. In Section 2 we illustrate how simple modular
ERDF ontologies are mapped into MWeb rulebases. Next Section 3, specifies the sup-
port of ERDF reasoning by MWeb logic rules instead of the formal model-theoretical
presentation of [3]. The paper finishes with some conclusions.

2 The MWeb Embedding of ERDF Ontologies

Simple modular ERDF ontologies [3] allow the combination of knowledge in different
ontologies. Specifically, a simple modular ERDF ontology (SMEO) is a set of sim-
ple r-ERDF ontologies. The language of simple r-ERDF ontologies allows the use of
ordinary triples s.[p ->> o] and negated triples neg s.[p ->> o] in the ERDF
graph, where s, p and o are respectively the subject, predicate and object of the state-
ment. Additionally, it allows to construct programs using deductive rules to derive new
(extended) triples by rules having bodies formed by combining the connectives naf
(weak negation), neg (strong negation), and conjunction. Moreover, provides mecha-
nisms to define modules of knowledge, which are described by an interface and formed
by an ERDF graph and a program. Finally, it provides a means to query other rulebases
via qualified literals of the form Lit@URI in rules. Details can be found in [3, 7].

The MWeb framework requires for each rulebase (module of knowledge) the def-
inition of an interface document and of the corresponding rulebase (logic) document.
The MWeb interface is formed by a sequence of declarations. First, the name of the
rulebase is stated via a rulebase declaration followed by an IRI. Optional base IRI
and prefixes can be declared for simplifying writing of classes and property names,
via a base and prefix declarations. Other interfaces may be recursively included via
a special import declaration. This mechanism will be used to import the interfaces
declaring the classes and properties defined by RIF, RDF, RDFS and ERDF. An op-
tional vocabulary declaration can be used to list the vocabulary of the rulebase. Next,
follow two blocks of declarations. The first block defines the predicates being defined
in the MWeb rulebase, and correspond to a generalization of export declarations found
in logic programming based languages. The second block correspond to generalization
of import declarations. The interesting feature of the MWeb framework is that besides
scope (i.e. internal, local, or global), different reasoning modes can be associated to
predicates (i.e. definite, open, closed, or normal). This allows control of monotonicity
of reasoning by the producer and consumer of the knowledge. In this work, all proper-
ties and classes are defined global (meaning that it can be defined in multiple rulebases)
and normal (meaning that weak negation can be used). The semantics of all MWeb
constructs can be found in [4] as well as additional motivation. In [7] it is defined the
translation of simple modular ERDF ontologies into the MWeb framework, whose gen-
eral interface document is illustrated in Figure 1.

5 The MWeb system is available at http://centria.di.fct.unl.pt/˜cd/mweb.

:- rulebase 'NamO'.
:- import('erdf.mw',interface).
:- vocabulary rdf:'_1',. . ., rdf:'_n'.
:- defines global normal class(mw:Vocabulary).
% For each class c exported to r1, . . . rn

:- defines global normal class(c) visible to 'r1',. . .,'rn'.
% For each property p exported to r1, . . . rn

:- defines global normal property(p) visible to 'r1',. . .,'rn'.
% For each class c imported from s1, . . . sm

:- uses normal class(c)from 's1',. . .,'sm'.
% For each property p imported from s1, . . . sm

:- uses normal property(p)from 's1',. . .,'sm'.
% Let u1, . . . , ud be the r-ERDF ontologies on which O depends
:- uses normal class(mw:Vocabulary)from'u1',. . .,'ud'.

Fig. 1. Simple Modular ERDF Ontologies Interface in MWeb

The first declaration in Figure 1 identifies the rulebase, while the import directive
includes in the interface the necessary declarations for supporting ERDF reasoning,
namely the vocabularies of RDF, RDFS and ERDF. The erdf.mw interface and corre-
sponding rulebase will be presented later on, and implements in MWeb itself the under-
lying semantics of modular ERDF ontologies, including RIF, RDFS and RDF combi-
nation. The next declaration lists a limited number of container membership properties
to be included in the vocabulary, in the case that at least one occurs in the graph or in
the program. However, the property rdf:_1 is always declared by the erdf ontology.
The vocabulary of the rulebase is collected in the pre-defined class mw:Vocabulary
of the MWeb framework and made visible to the allowed potential importing rulebases.
The rulebase vocabulary is used for providing the domain for (scoped) negation as fail-
ure, open and closed world assumptions.

The next group declares the exported classes and properties, via the defines dec-
laration of MWeb. The important point is that all classes and properties are defined
normal and global. This means that all classes and properties exported can be used
and redefined (global), and that rules can use weak negation (normal) and thus are
non-monotonic. The visibility list states where the class or property can be used.

The subsequent uses declarations correspond to the import part of the interface,
and are used in normal mode (weak negation allowed). The meaning of the importing
list is obvious. The last use declaration extends the vocabulary of the rulebase with the
vocabulary of the rulebases in the dependencies (directly or indirectly used modules).
Notice that the vocabulary used in the current interface and corresponding program
documents is automatically included, and need not to be declared.

The translation of the logic document of an r-ERDF ontology is immediate since
the syntax used to represent rules in ERDF and MWeb is almost identical. In general,
the MWeb logic document can start with an optional import declaration which allows
textual inclusion of the rules found in the imported document. Afterwards, the fact and
rules can be stated. The exact translation of simple modular ERDF programs can be

found in [7], which is not presented for lack of space. Several examples of concrete and
full MWeb logic documents will appear in the rest of the paper.

3 Semantics of Modular ERDF Ontologies in MWeb

In this section we specify the semantics of ERDF entailment through MWeb rulebases.
This will be achieved incrementally and hierarchically, by providing first the definition
of the used RIF primitive predicates. Afterwards, the semantics of RDF will be defined
and made compatible with RIF as prescribed in [12], and subsequently a rulebase will
define RDFS. Finally, we take care of the features of ERDF entailment.

3.1 RIF Support

The supported Rule Interchange Format dialect implements fully the semantics of mem-
bership and subclass, frames, and equality (partially). Regarding connectives, the usual
binary conjunction, as well as strong and weak negations are supported. In order to
maintain compatibility with RIF and generality, all properties and classes are assumed
to be global and normal, allowing for the use of weak negation in the bodies, and thus
monotonicity cannot be guaranteed. The MWeb syntax recognizes frames of the form
?O.[?A1->>?V1,...,?An->>?Vn] which internally are translated into a conjunction
'->'(?A1,?O,?V1),...,'->'(?An,?O,?Vn) of the ternary predicate '->'/3. The
other binary RIF predicates '=' (equality), '#' (member), and '##' (subclass) have the exact
syntax of RIF, and for ease of presentation are infix operators. The semantics of these
predicates are provided by the rulebase of Figure 2.

RIF interface (rif.mw)

:- rulebase 'http://www.w3.org/2007/rif'.
:- prefix rif='http://www.w3.org/2007/rif#'.
:- defines internal normal name:'='/2, name:'#'/2, name:'##'/2, name:'->'/3.

RIF rulebase (rif.rb)

% RIF member relation
?O # ?CL :- ?O # ?SCL, ?SCL ## ?CL.
neg ?O # ?SCL :- neg ?O # ?CL, ?SCL ## ?CL.
% RIF subclass relation
?C1 ## ?C3 :- ?C1 ## ?C2, ?C2 ## ?C3.
% RIF equality theory.
?T = ?T :- ?T # mw:Vocabulary.
?T1 = ?T2 :- ?T2 = ?T1.
?T1 = ?T3 :- ?T1 = ?T2, ?T2 = ?T3.
neg ?T1 = ?T2 :- neg ?T2 = ?T1.
neg ?T1 = ?T3 :- ?T1 = ?T2, neg ?T2 = ?T3.
% RIF frames obtained by equality reasoning.
?O.[?P ->> ?V] :- ?O1.[?P ->> ?V], ?O = ?O1.
?O.[?P ->> ?V] :- ?O.[?P1 ->> ?V], ?P = ?P1.
?O.[?P ->> ?V] :- ?O.[?P ->> ?V1], ?V = ?V1.

Fig. 2. MWeb Rulebase Implementing RIF Relations

The interface document just defines the RIF primitive predicates being implemented
using predicate indicators (name/arity), and these are hidden with the internal keyword.

Notice the use of the special prefix name which is associated with the empty string.
Class inheritance is captured by the first rule in document 'rif.rb'. Mark the need to
have a rule for taking care of the case where it is known that something does not belong
to the extension of some class (second rule). For subclass relation it is only required
transitivity, which does not have a dual negative rule.

Equality rules implement reflexivity, commutativity and transitivity. Reflexivity is
applied to the declared vocabulary collected in the pre-defined class mw:Vocabulary.
The equality rules are restricted to frames, and cannot handle complex terms6. Notice
that this is very similar to the rules of owl:sameAs in the OWL2 RL profile [11].

3.2 RDF Semantics

The semantics of the combination of RDF with rules is the one adopted by RIF and
specified in [12]. An ordinary triple s p o is syntactically represented by the RIF
frame s.[p ->> o]. RIF lists are not supported because would require introducing
complex terms in the language.

The support of RDF entailment is immediate and can be found in Figure 3. All
the classes and properties of the RDF vocabulary are declared in the interface docu-
ment 'rdf.mw'. Notice also the declaration of the prefix rdf to simplify writing of
URIs using Compact URI notation (CURIEs). A class declaration class(CURIE)
is short for ? # CURIE, while the property(CURIE) is syntactic sugar for the
RIF frame? .[CURIE->>?] resulting in better looking interface documents. The ?
occurrences represent anonymous variables.

By the recommendation governing RIF-RDF compatibility, the predicates '#'/2 and
rdf:type should be made equivalent; this is achieved by the first rules in document
'rif.rb'. The only rule necessary for RDF entailment states that any predicate of a
triple must have type rdf:Property. Then, the axiomatic RDF triples are listed,
concluding with the special treatment of RDF container membership properties.

The RDF container membership properties are handled by external calls to Prolog
underlying system, since they are infinitely many (rdf:_1, rdf:_2, etc. . .), and their
full inclusion would result in the generation of an infinite number of answers for some
non-ground queries. The rule only fires if the subject of the triple is bound at query time
with a ground atom.

3.3 RDFS Semantics

RDF Schema entailment is more complex to specify, but immediate. According to RIF-
RDF compatibility every RIF subclass instance is also an rdfs:subClassOf in-
stance (but not vice-versa). Afterwards, all the RDF schema inference rules and ax-
iomatic triples are encoded; container membership properties are treated as in the im-
plementation of RDF. Besides XML and plain literals, no other datatypes are handled.

A snippet of the MWeb implementation of RDFS entailment is present in Figure 4,
and adopts the complete RDFS entailment rules of [14]. The interface is very similar to
the one of RDF, adapted to the corresponding vocabulary.

6 Full equality is not necessary for ERDF, whose terms are just URIs and literals.

RDF interface (rdf.mw)

:- rulebase 'http://www.w3.org/1999/02/22-rdf-syntax-ns'.
:- prefix rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'.
:- import('rif.mw', interface).

:- vocabulary rdf:nil, rdf:' 1'.
:- defines internal normal class(rdf:Property), . . .
:- defines internal normal property(rdf:type), . . .

RDF rulebase (rdf.rb)

:- import('rif.rb', rulebase).
% RDF compatibility with RIF makes # and rdf:type equivalent
?X # ?Y :- ?X.[rdf:type ->> ?Y].
?X.[rdf:type ->> ?Y] :- ?X # ?Y.
% RDF Entailment rule
?Z.[rdf:type ->> rdf:Property] :- ? .[?Z ->> ?].

% RDF Axiomatic triples
rdf:type.[rdf:type->>rdf:Property]. rdf:subject.[rdf:type->>rdf:Property].
rdf:predicate.[rdf:type->>rdf:Property]. rdf:object.[rdf:type ->> rdf:Property].
rdf:first.[rdf:type ->> rdf:Property]. rdf:rest.[rdf:type ->> rdf:Property].
rdf:value.[rdf:type ->> rdf:Property]. rdf:nil.[rdf:type ->> rdf:List].

% Infinitely many membership properties. Uses side-effects to restrict.
?X.[rdf:type ->> rdf:Property] :-
External(name:atom(?X),prolog), External(name:atom concat(rdf:' ',?N,?X),prolog),
External(name:is number atom(?N),prolog).

Fig. 3. MWeb Rulebase Implementing RDF Entailment

3.4 ERDF Semantics

The Extended Resource Description Framework vocabulary introduces the notions of
total and closed class, as well as total and closed property, and a mechanism to express
complementary properties, whose interface file 'erdf.mw' is depicted below:

:- rulebase 'http://erdf.org'.
:- prefix erdf='http://erdf.org#'.
:- import('rdfs.mw', interface).

:- defines internal normal class(erdf:TotalClass),
class(erdf:PositivelyClosedClass), class(erdf:NegativelyClosedClass).

:- defines internal normal class(erdf:TotalProperty),
class(erdf:PositivelyClosedProperty), class(erdf:NegativelyClosedProperty).

:- defines internal normal property(erdf:complementOf).

Totalness is enforced by declaring the class and property having erdf:TotalClass
and erdf:TotalProperty type, respectively, corresponding to open world assump-
tions with respect to the declared vocabulary. Closed classes can be declared using type
erdf:PositivelyClosedClass or erdf:NegativelyClosedClass, similarly
erdf:PositivelyClosedProperty, and erdf:NegativelyClosedProperty can
be used to declare closed properties. These correspond to closed world assumptions
with respect to the declared vocabulary.

The semantics of the ERDF constructs is specified in the rulebase 'erdf.rb'. Ob-
viously, the document 'erdf.rb' starts by importing the defining rules of RDFS, RDF
and RIF rulebases with the initial declaration :- import('rdfs.rb', rulebase).

RDFS interface (rdfs.mw)

:- rulebase 'http://www.w3.org/2000/01/rdf-schema'.
:- prefix rdfs='http://www.w3.org/2000/01/rdf-schema#'.
:- import('rdf.mw', interface).

:- defines internal normal class(rdfs:Resource), class(rdfs:Literal),
class(rdfs:Datatype), class(rdfs:Class), ...

:- defines internal normal property(rdfs:domain), property(rdfs:range),
property(rdfs:subClassOf), property(rdfs:subPropertyOf), ...

RDFS rulebase (rdfs.rb)

:- import('rdf.rb', rulebase).

% RDFS compatibility into RIF requires including ## into rdfs:subClassOf
?X.[rdfs:subClassOf ->> ?Y] :- ?X ## ?Y.

% Some of RDFS entailment rules
?Z.[rdf:type ->> ?Y] :- ?X.[rdfs:domain ->> ?Y], ?Z.[?X ->> ?W].
?W.[rdf:type ->> ?Y] :- ?X.[rdfs:range ->> ?Y], ?Z.[?X ->> ?W].
?Z.[rdf:type ->> ?Y] :- ?X.[rdfs:subClassOf ->> ?Y], ?Z.[rdf:type ->> ?X].

?X.[rdfs:subClassOf ->> ?X] :- ?X.[rdf:type ->> rdfs:Class] .
?X.[rdfs:subClassOf ->> ?Z] :-

?X.[rdfs:subClassOf ->> ?Y], ?Y.[rdfs:subClassOf ->> ?Z].

.

.

.
% other entailment and RDFS axiomatic triples follow

Fig. 4. MWeb Rulebase Implementing RDFS Entailment

The relationship to RIF primitive predicates is extended to negative extensions of the
predicates by the following rules:

neg ?X # ?Y :- neg ?X.[rdf:type ->> ?Y].
neg ?X.[rdf:type ->> ?Y] :- neg ?X # ?Y.
neg ?X.[rdfs:subClassOf ->> ?Y] :- neg ?X ## ?Y.

The next rule extends RDF entailment by assigning the type rdf:Property to
properties which are used in negative triples:

?Z.[rdf:type->>rdf:Property] :- neg ? .[?Z->>?].

ERDF extends RDFS with rules for propagating “downwards” in the hierarchy neg-
ative class and negative property extensions:

neg ?Z.[rdf:type ->> ?X] :- ?X.[rdfs:subClassOf->>?Y], neg ?Z.[rdf:type->>?Y].
neg ?Z1.[?X ->> ?Z2] :- ?X.[rdfs:subPropertyOf->>?Y], neg ?Z1.[?Y->>?Z2].

The remaining rules take care of specificities of ERDF entailment itself. The seman-
tics of total classes and properties are captured by the next rules encoding open-world
assumptions. Since these rules require the use of negation as failure, we have to guar-
antee grounding of the free variables in order to avoid unsoundness of reasoning. The
grounding of variables is made with respect to the rulebase declared vocabulary, and
therefore is a scoped negation as failure:

neg ?Z.[rdf:type->>?X] :- ?X.[rdf:type ->> erdf:TotalClass],
?Z#mw:Vocabulary, naf ?Z.[rdf:type->>?X].

?Z.[rdf:type->>?X] :- ?X.[rdf:type ->> erdf:TotalClass],
?Z#mw:Vocabulary, naf neg ?Z.[rdf:type->>?X].

neg ?Z1.[?X->>?Z2] :- ?X.[rdf:type ->> erdf:TotalProperty],
?Z1#mw:Vocabulary, ?Z2#mw:Vocabulary, naf ?Z1.[?X->>?Z2].

?Z1.[?X->>?Z2] :- ?X.[rdf:type ->> erdf:TotalProperty],
?Z1#mw:Vocabulary, ?Z2#mw:Vocabulary, naf neg ?Z1.[?X->>?Z2].

The semantics of closed classes and properties are captured by using one of the rules
in the definition for total ones. For instance, a positively closed class means that its pos-
itive instances are exhaustive, therefore all the remaining individuals in the vocabulary
are known to not belonging to the class (this is captured in the first rule below). Nega-
tively closed classes have a dual interpretation. The notion of positively and negatively
closed properties are similar.

neg ?Z.[rdf:type->>?X] :- ?X.[rdf:type->>erdf:PositivelyClosedClass],
?Z#mw:Vocabulary, naf ?Z.[rdf:type->>?X].

?Z.[rdf:type->>?X] :- ?X.[rdf:type->>erdf:NegativelyClosedClass],
?Z#mw:Vocabulary, naf neg ?Z.[rdf:type->>?X].

neg ?Z1.[?X->>?Z2] :- ?X.[rdf:type->>erdf:PositivelyClosedProperty],
?Z1#mw:Vocabulary, ?Z2#mw:Vocabulary, naf ?Z1.[?X->>?Z2].

?Z1.[?X->>?Z2] :- ?X.[rdf:type->>erdf:NegativelyClosedProperty],
?Z1#mw:Vocabulary, ?Z2#mw:Vocabulary, naf neg ?Z1.[?X->>?Z2].

For legacy applications to be able to express negative triples in ordinary RDF graphs,
the ERDF vocabulary includes a mechanism to state that properties are complementary
with the property erdf:complementOf. The net effect is the exchange of the positive
and negative instances of the complementary properties:

neg ?S.[?P->>?O] :- ?P.[erdf:complementOf->>?Q], ?S.[?Q->>?O].
neg ?S.[?P->>?O] :- ?Q.[erdf:complementOf->>?P], ?S.[?Q->>?O].
?S.[?P->>?O] :- ?P.[erdf:complementOf->>?Q], neg ?S.[?Q->>?O].
?S.[?P->>?O] :- ?Q.[erdf:complementOf->>?P], neg ?S.[?Q->>?O].

Finally, the axiomatic triples of ERDF are included which basically state that all
classes in the ERDF vocabulary are subclasses of rdfs:Class and that the special
property erdf:complementOf has domain and range rdf:Property. For lack of
space these are not included here, but are trivial to state.

A direct translation into extended logic programming of the MWeb rulebases has
been defined in [7], which uses a quad representation '->'('m',p,s,o) predicate to
state that triple s p o is true at MWeb rulebase m. Briefly, a uses class(C) decla-
ration in the interface of m generates, for each rulebase 'ri' in its from list, the rule
'#'('m',?X,C) :- '#'('ri',?X,C). A uses property(P) generates, for each
rulebase 'ri' in its from list, the rule '->'('m',P,?S,?O):-'->'('ri',P,?S,?O).
Program rules are translated by introducing an extra first argument 'm' to all literals in
the rule, except for qualified literals L@o whose new (first) argument is 'o'. This trans-
lation has been shown sound and complete with respect to the simple modular ERDF
ontologies semantics [3], and can be used for query answering of simple modular ERDF
ontologies.

4 Discussion and Conclusions

This work provides a rule-based declarative specification of ERDF entailment in simple
modular ERDF ontologies, via the embedding of simple modular ERDF ontologies into
the MWeb framework filling in the details in [7]. The specification is based on a novel

program transformation. It reports, to the best of our knowledge, the first complete
approach combining for the first time RIF and RDFS semantics, and extends it to the
case of graphs capable of expressing negative information and ontologies with open,
closed world assumptions, and scoped negation as failure. The representation power is
complemented with features for combining modularly ontologies in the Semantic Web.

A complete working system resorting to the MWeb implementation in XSB Pro-
log 3.2 has been developed, and is available for download with promising results. We
performed a first comparison using the W3C’s Wine ontology, determing CPU times
for RDFS inference without equality reasoning (discarding loading and compile times).
Briefly, Jena’s (2.6.2) inbuilt RDFSReasoner was 2 times slower than our MWeb imple-
mentation, while Jena’s Generic reasoner was 100 times slower. Euler Yap (Eye 3414)
shown to be 4 times slower and CWM-1.2.1 was 100 times slower.

References
1. J. J. Alferes, C. V. Damásio, and L. M. Pereira. A Logic Programming System for Non-

monotonic Reasoning. Journal of Automated Reasoning, 14(1):93–147, 1995.
2. A. Analyti, G. Antoniou, and C. V. Damásio. A Principled Framework for Modular Web

Rule Bases and Its Semantics. In Proc. of KR-2008, pages 390–400. AAAI press, 2008.
3. A. Analyti, G. Antoniou, and C. V. Damásio. A Formal Theory for Modular ERDF Ontolo-

gies. In Web Reasoning and Rule Systems (RR 2009), volume 5837 of LNCS, pages 212–226.
Springer, 2009.

4. A. Analyti, G. Antoniou, and C. V. Damásio. MWeb: a Principled Framework for Modular
Web Rule Bases and its Semantics. Accepted in ACM Transactions on Computational Logic
(TOCL), 2010.

5. A. Analyti, G. Antoniou, C. V. Damásio, and G. Wagner. Extended RDF as a Semantic
Foundation of Rule Markup Languages. Journal of Artificial Intelligence Research, 32:37–
94, 2008.

6. J. Bao, G. Voutsadakis, G. Slutzki, and V. Honavar. Package-based description logics. In
Modular Ontologies, volume 5445 of LNCS, pages 349–371. Springer, 2009.

7. C. V. Damásio, A. Analyti, and G. Antoniou. Implementing Simple Modular ERDF ontolo-
gies. In Proc. of 19th European Conference on Artificial Intelligence, 2010. To appear.

8. F. Ensan. Formalizing Ontology Modularization through the Notion of Interfaces. In 16th
Int. Conf. on Knowledge Engineering: Practice and Patterns (EKAW-2008), pages 74–82,
2008.

9. M. Gelfond and V. Lifschitz. Logic programs with Classical Negation. In 7th International
Conference on Logic Programming (ICLP’90), pages 579–597, 1990.

10. B. C. Grau, B. Parsia, and E. Sirin. Ontology integration using epsilon-connections. In
Modular Ontologies: Concepts, Theories and Techniques for Knowledge Modularization,
pages 293–320. Springer, 2009.

11. OWL 2 RL in RIF W3C Working Group Note 22 June 2010. Edited by Dave Reynolds.
Latest version available at http://www.w3.org/TR/rif-owl-rl/.

12. RIF RDF and OWL Compatibility W3C Recommendation 22 June 2010. Edited by Jos de
Bruijn. Latest version available at http://www.w3.org/TR/rif-rdf-owl/.

13. L. Serafini, A. Borgida, and A. Tamilin. Aspects of Distributed and Modular Ontology
Reasoning. In 19th Int. Joint Conf. on Artificial Intelligence, pages 570–575, 2005.

14. H. J. ter Horst. Completeness, Decidability and Complexity of Entailment for RDF Schema
and a Semantic Extension Involving the OWL Vocabulary. Journal of Web Semantics, 3(2-
3):79–115, 2005.

