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Abstract. We propose EmbedSanitizer, a tool for detecting concur-
rency data races in 32-bit ARM-based multithreaded C/C++ applica-
tions. Moreover, we motivate the idea of detecting data races in embed-
ded systems software natively; without virtualization or emulation or
use of alternative architecture. Detecting data races in applications on
a target hardware provides more precise results and increased through-
put and hence enhanced developer productivity. EmbedSanitizer extends
ThreadSanitizer, a race detection tool for 64-bit applications, to do race
detection for 32-bit ARM applications. We evaluate EmbedSanitizer us-
ing PARSEC benchmarks on an ARMv7 CPU with 4 logical cores and
933MB of RAM. Our race detection results precisely match with results
when the same benchmarks run on 64-bit machine using ThreadSanitizer.
Moreover, the performance overhead of EmbedSanitizer is relatively low
as compared to running race detection on an emulator, which is a com-
mon platform for embedded software development.

1 Introduction

Embedded systems are everywhere: from TVs to robots to smartphones to Inter-
net of Things. Moreover, the computing capability of these systems has tremen-
dously increased in recent years due to multicore support. This has enabled the
implementation of complex multithreaded parallel applications. Unfortunately,
these applications are prone to concurrency errors such as data races. These bugs
are hard to detect in nature and the availability of relevant tools for embedded
systems is still limited.

Most of the software development environment for Embedded systems rely
on hardware emulations, which tend to be slow. Race detection of embedded
system software through emulation can add even more overhead. Nevertheless,
running software for race detection on a real hardware not only provides precise
race reports but also is faster and hence more productive.

Moreover, many practical race detection tools for C++ applications have
not focused on embedded system architectures. Therefore, the alternative is to
compile 32-bit embedded C++ applications for other architectures and do race
detection there. Unfortunately, some parts of the software that use special fea-
tures of the target hardware may not be checked due to unavailability of such



features in alternative platforms. Further, it is more appealing to use full features
of the software on the target devices for race detection.

We propose a tool named EmbedSanitizer [1] for detecting data races for
multithreaded 32-bit Embedded ARM software at runtime by running the in-
strumented application in the target platform. There are two advantages of this
approach: (a) parts of software which use unique features, like sensors and actu-
ators, can be analyzed. (b) enhanced developer productivity and throughput at-
tained due to increased performance of race detection compared to hardware em-
ulator. Our tool modifies ThreadSanitizer [18] to support race detection for the
embedded ARMv7 architecture. Moreover, LLVM/Clang is modified to support
EmbedSanitizer so that it launches in a similar manner to ThreadSanitizer. For
simplicity, EmbedSanitizer has an automated script which downloads necessary
components and builds them together with LLVM/Clang as a cross-compiler.
Multithreaded C/C++ programs through this compiler are instrumented and
finally run on the target 32-bit ARM hardware for race detection.

The key contributions of this paper are as following:

1. We present a tool for detecting data races in C/C++ multithreaded pro-
grams for 32-bit embedded ARM. The tool is easily accessed through Clang
compiler chain like ThreadSanitizer.

2. We motivate the idea of supporting race detection in native embedded sys-
tems hardware and show usability of race detection on such architectures.

3. We evaluate our tool and show its applicability by running PARSEC bench-
mark applications on a TV with ARMv7 CPU.

2 Motivation

We aim to promote utilization of existing race detection tools by adapting them
to different hardware architectures. To show benefits of this approach, consider a
theoretical multithreaded example in Figure 1. It models a TV software compo-
nent which has two concurrent threads. ReceiveThread reads TV signals from
an antenna and puts data in a shared queue queue. Then DisplayThread re-
moves the data from the queue and displays on the TV screen. For the sake
of motivation, the implementation of the queue is abstracted away but uses
no synchronization to protect concurrent accesses. Since ReceiveThread and
DisplayThread do not use a common a lock (LK1 & LK2 are used) to protect
accesses to queue, there is a data race at lines 5(a) and 4(b).

Assume that the developer chooses a method other than the proposed one
for race detection. She has two challenges: (1) Modeling the receipt as well as
the display of the video signal data. (2) After that, she can do race detection
on an alternative architecture, emulation or virtualization rather than the tar-
get architecture. Further overhead is incurred if emulation or virtualization is
used. Conversely, the target hardware already has these features and may be
faster and thus increasing developer productivity. Moreover, the advantage of
instrumenting program and later detecting races on a target hardware is that



1 void ReceiveThread() {

2  while(true) {

3    Signal s = receive(); // from antenna

4    acquire_lock(LK1)

5    queue.put(s);

6    release_lock(LK1)

7  }

8 }

1 void DisplayThread() {

2  while(true) {

3    acquire_lock(LK2)

4    Signal s = queue.get();

5    release_lock(LK2)

6    display(s); // to screen

7  }

8 }

0                            VideoSignalQueue queue;

(a) (b)

Fig. 1. A motivating example with two threads concurrently accessing a shared queue.
A thread in (a) reads video signals from TV antenna and puts them into the queue,
(b) reads from the queue and display to a screen.

the developer uses real features for receiving and displaying the signals. This
aligns exactly well with our proposed solution.

3 Related Work

Zeus Virtual MachineR© Dynamic Framework [22, 21] is a hardware-agnostic
platform which contains tools for detecting runtime data races for kernel and
user-space multithreaded applications. These tools rely on virtualization and
may abstract away real target system interactions with external peripherals like
sensors. Moreover, these tools are proprietary and not much relevant information
is in the literature. Conversely, EmbedSanitizer is open-source and does not rely
on virtualization. Differently, from these tools, we motivate the use of the real
target hardware for race detection. This improves runtime performance with
high precision and developer productivity.

Most of the related solutions for detecting data races do target low end inter-
rupt based, non-multithreaded embedded systems [19, 20, 6, 23]. Therefore, these
solutions can not be directly applied to the multithreaded software for ARMv7.
Moreover, Keul [12] and Chen [7] use static analysis techniques for race detection
in interrupt-driven systems applications. Unfortunately, these techniques do not
capture the runtime behavior of the program. Therefore, they fail to infer many
of execution patterns which would otherwise result in data races.

Goldilocks [8] is a framework for Java programs which triggers an excep-
tion when a race is about to happen. It uses lockset-based and happens-before
approaches to improve precision of race detection as well as static analysis to
filter out local memory accesses for improved runtime overhead. Differently from
our approach, Goldilocks targets Java programs and needs Java virtual machine
which may not be ideal for embedded systems.

Finally, Intel Inspector XE [11], Valgrind DRD [14, 3] and ThreadSanitizer [18]
are race detection tools for C/C++ multithreaded programs. Despite running on
native hardware, these tools have limited support for 32-bit ARM architectures.
Therefore, they can not directly be used for ARMv7 [4]. ThreadSanitizer [18],
for example, is developed by default for x86 64 architecture.



4 Background

This section discusses various concepts employed in EmbedSanitizer.

ThreadSanitizer. ThreadSanitizer [18] is an industrial-level and open-source
race detection tool for Go, and C/C++ for 64-bit architectures. This tool is
accessible through GCC and LLVM/Clang [13] using compiler flag -fsanitize=

thread. It instruments the program under compilation by identifying shared
memory and synchronization operations and injecting runtime callbacks. The
instrumented executable is then run on a target platform for detecting races.

ThreadSanitizer has been successful mainly for two reasons. First, it uses a
hybrid of happens-before and lockset algorithms to improve its precision. Sec-
ond, it uses 64-bit architectural capability to store race detection meta-data
called shadow memory for performance and memory efficiency. The authors of
ThreadSanitizer claim that extending it for 32-bit applications is unreliable and
problematic [2]. Therefore, we benefit from its instrumentation part and extend
it to support race detection of 32-bit ARM applications.

Data Races. A data race [15], [17] occurs when two concurrently executing
threads access a shared memory location without proper synchronization and at
least one of these accesses is a write. Availability of data races in a program can
be a symptom of higher concurrency errors such as atomicity and linearizability
violations, and deadlocks. Moreover, data races may result in non-deterministic
behavior like memory violations and program crashes.

FastTrack Race Detection Algorithm. FastTrack [9] is an efficient and pre-
cise race detection algorithm which improves on purely happens-before vector
clock algorithms such as DJIT++ [16]. FastTrack shows that majority of memory
access patterns do not require a whole vector clock to detect data races. Instead,
an epoch, a simple pair of thread identifier and clock suffices. Without sacrificing
precision, this significantly improves the performance of race detection of a single
memory access from O(n) to O(1) where n is the number of concurrent threads in
the program under test. Moreover, its runtime performance is better than most
of the race detection algorithms in the literature [24]. Finally, there are further
improvements to FastTrack algorithm but tend to sacrifice precision [10].

5 Methodology

EmbedSanitizer improves on ThreadSanitizer. It can also be launched through
Clang’s compiler flag -fsanitize=thread. To achieve this, we modified the
LLVM/Clang compiler argument parser to support instrumentation of 32-bit
ARM programs when the relevant flag is supplied at compile time. Next, Em-
bedSanitizer enhances parts of the ThreadSanitizer to instrument the target pro-
gram. Furthermore, it replaces the 64-bit race detection runtime with a custom
implementation of the efficient and precise FastTrack race detection algorithm,
for 32-bit platforms. In this section, we discuss the important parts of Embed-
Sanitizer as well as its simplified installation process.



5.1 Architecture and Workflow

Workflow of the ThreadSanitizer and the changes done by EmbedSanitizer are
described in Figure 2. Figure 2(a) shows default and unmodified relevant compo-
nents of ThreadSanitizer in LLVM/Clang. In Figure2(b) these parts are modified
to enable instrumentation and detection of races for 32-bit ARM applications.

(a) ThreadSanitizer in LLVM/Clang

>$ clang Progam64.cpp -fsanitize=thread

ArgParser

ThreadSanitizer
Linker

Tsan runtime

Program64.exe

LLVM/Clang

1

2

3

3

4

(b) EmbedSanitizer in LLVM/Clang

>$ clang ProgamARMv7.cpp -fsanitize=thread

ArgParser

ThreadSanitizer
Linker

Esan runtime

ProgramARMv7.exe

LLVM/Clang

1

2

3

3

4

ARMv7 support

Sync support

Fig. 2. High level abstraction of ThreadSanitizer and EmbedSanitizer in LLVM/Clang.
In (a) ThreadSanitizer : essential LLVM modules for race detection. In (b) EmbedSan-
itizer : same modules modified to instrument and detect races for 32-bit ARM

At 1© in Figure 2(a), the Clang front-end reads the compiler arguments and
parses them. If the target architecture is 64-bit, Clang passes the program under
compilation through ThreadSanitizer compiler pass for instrumentation 2©. The
pass then identifies all shared memory operations in the program and injects rel-
evant race detection callbacks which are implemented in a race detection runtime
library called tsan. Furthermore, the instrumented application and the runtime
are linked together by the linker 3© to produce an instrumented executable 4©.
This executable once runs on a target 64-bit platform, it reports race warning
in the program. We modify components in the workflow as discussed next.

(a) Enabling Instrumentation of 32-bit ARM Code in LLVM/Clang:
We modify the argument parser of LLVM/Clang to support instrumentation once
EmbedSanitizer is in place, Figure 2(b). Therefore, if -fsanitize=thread flag
is passed while compiling a program for 32-bit ARM code, the instrumentation
takes place. To do this we identified the locations where Clang processes the
flag and checks the hardware before skipping the launching of ThreadSanitizer
instrumentation module because of unsupported architecture.

(b) Modifying the ThreadSanitizer Instrumentation Pass: Despite its
instrumentation pass, ThreadSanitizer has become complex, partly due to its



integration into the LLVM’s compiler runtime. We extended the available in-
strumentation pass to identify and instrument synchronization events and inject
relevant callbacks and kept instrumentation of memory accesses as it is.

(c) Implementation of Race Detection Runtime: The default race de-
tection runtime in ThreadSanitizer uses memory shadow structures which rely
on 64-bit architectural support. Due to the complicated structure of Thread-
Sanitizer, it was not possible to adopt its runtime for 32-bit ARM platform.
Therefore, we implemented a race detection runtime by applying the FastTrack
race detection algorithm. The library is then compiled for 32-bit ARM and is
linked to the final executable of the embedded program at compile time.

5.2 Installation

Figure 3 shows the building process of LLVM compiler infrastructure with Em-
bedSanitizer support. To simplify this process we developed an automated script
with five steps. In the first step, it downloads the LLVM source code from the
remote repository. Then it replaces files of the LLVM/Clang compiler argu-
ment (flags) parser with our modified code to enable ThreadSanitizer support
for ARMv7. Third, the LLVM code is compiled using GNU tools to produce
a cross-compiler which targets 32-bit ARM and supports our tool, EmbedSan-
itizer. Fourth, the race detection runtime which we implemented is compiled
separately and integrated into the built cross-compiler binary. Finally, the built
cross-compiler is installed which can eventually be used to compile 32-bit ARM
applications with race detection support. This whole process is applied once.

Download LLVM/Clang source code

Replace Clang argument parser & instrumentation 
with modified versions for 32-bit ARM

Build the modified version of LLVM/Clang as 
cross-compiler

Build our custom race detection runtime

Install the built cross-compiler, ready for 
instrumenting ARM’s 32-bit applications

1

2

3

4

5

Fig. 3. Showing the automated process for building ThreadSanitizer for the first time.

6 Evaluation

We evaluate EmbedSanitizer for detecting runtime data races for 32-bit embed-
ded ARM applications, based on two categories. First, we want to see how the
precision of race detection in EmbedSanitizer deviates from that of ThreadSani-
tizer [18] since EmbedSanitizer extends it by using its instrumentation features,
and implements a custom FastTrack [9] for detecting races. Second, we want to
compare the overhead of EmbedSanitizer when running on a target embedded
device against when running on an emulator. The key motivation is to show that
running race detection on a target device is better than on emulation.



For experimental setup, we built LLVM/Clang, with EmbedSanitizer tool,
as a cross-compiler in a development machine running Ubuntu 16.04 LTS with
Intel i7 (x86 64) CPU and 8GB of RAM. As our benchmarks, we picked four(4)
of the PARSEC benchmark [5] applications. We adopted these applications to
Clang compiler and our embedded system architecture. A short summary about
the applications we used for evaluation is given below.

– Blackscholes: parallelizes the calculation of pricing options of assets using
the Black-Scholes differential equation.

– Fluidanimate: uses spatial partitioning to parallelize the simulation of fluid
flows which are modeled by the Navier-Stokes equations using the renowned
Smoothed particle hydrodynamics.

– Streamcluster: is a data-mining application which solves the k-means clus-
tering problem.

– Swaptions: employs Heath-Jarrow-Morton framework with Monte Carlo sim-
ulation to compute the price of a set of swaptions.

6.1 Tool Precision Evaluation

We compare the race reports detected by EmbedSanitizer against ThreadSani-
tizer. To do this we run the same benchmark applications with ThreadSanitizer,
as well as with EmbedSanitizer. The instrumented program using ThreadSani-
tizer is run on an x86 64 machine, whereas the binary compiled through Embed-
Sanitizer is executed on ARM Cortex A17 TV. In this setting of four PARSEC
benchmark applications, in an application where ThreadSanitizer reported races,
EmbedSanitizer also reported them as shown in Table 1. Therefore EmbedSani-
tizer did not sacrifice any race detection precision.

Table 1. Experimental results to compare race detection in ARMv7 using EmbedSan-
itizer vs in x86 64 with ThreadSanitizer.

Input ThreadSanitizer EmbedSanitizer

Benchmark size Threads Addresses Reads Writes Locks Races Races

blackscholes 4K options 2+1 28686 5324630 409590 0 NO NO

fluidanimate 5K particles 2+1 149711 25832663 8457516 790 YES YES

streamcluster 512 points 2+1 11752 21710589 352605 2 YES YES

swaptions 400 simulations 2+1 243945 11000763 3377226 0 NO NO

6.2 Tool Performance Evaluation

To compare race detection overhead, we ran non-instrumented and instrumented
versions of the benchmarks on embedded TV with ARM-Cortex A17 CPUs of
4 logic cores and 933MB of RAM, and on Qemu-ARM emulator running on
a workstation. The slowdown is calculated as a ratio of the execution time of
the instrumented program with race detection on and the execution time of the
program without race detection. The number of threads was 3 because using the
full set of 4 logical cores was crashing the TV. Next, the input sizes were the



same in each benchmark setting. Results in Figure 4 show that detecting races
in an emulator incurs between 13x and 371x slowdown whereas the slowdown
in the TV is between 12x and 214x. In overall, results in Figure 4 suggest that
detecting races in a target hardware is faster than in an emulator.

blackscholes fluidanimate streamcluster swaptions
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ARMv7 Qemu-ARM emulation

Fig. 4. Slowdown comparison of race detection on ARMv7 vs on Qemu-ARM

7 Conclusion and Future Work

This paper presented EmbedSanitizer, a tool for detecting data races for ap-
plications targeting 32-bit ARM architecture. EmbedSanitizer extends Thread-
Sanitizer, a race detection tool widely accessible through Clang and GCC, by
enhancing its instrumentation. Moreover, we implemented our own 32-bit ver-
sion of race detection runtime to replace ThreadSanitizer ’s race detection run-
time which is incompatible with 32-bit ARM. Our custom race detection library
adopts FastTrack, an efficient and precise happens-before based algorithm.

To evaluate the consistency of EmbedSanitizer, we used four PARSEC bench-
mark applications. First, we evaluated the precision of the tool by comparing
the race report behavior with that of ThreadSanitizer. Next, we compared its
slowdown with running race detection on the Qemu emulator as a representative
for testing ARM code in a high-end developer platform.

As a future work, there are four areas to improve. First, improving the ef-
ficiency of the custom race detection runtime by hybridizing it with other race
detection algorithms. Second, supporting other 32-bit based architectures like
the Intel’s IA-32. Third, evaluating EmbedSanitizer with real-world applications
which use special features of the embedded systems such as sensors and actua-
tors, which is the real motivation of our work.
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