
Embodied Question Answering in

Photorealistic Environments with Point Cloud Perception

Erik Wijmans1†, Samyak Datta1†, Oleksandr Maksymets2†, Abhishek Das1,

Georgia Gkioxari2, Stefan Lee1, Irfan Essa1, Devi Parikh1,2, Dhruv Batra1,2

1Georgia Institute of Technology 2Facebook AI Research
1{etw, samyak, abhshkdz, steflee, irfan, parikh, dbatra}@gatech.edu

2{maksymets, gkioxari}@fb.com

Abstract

To help bridge the gap between internet vision-style

problems and the goal of vision for embodied perception we

instantiate a large-scale navigation task – Embodied Ques-

tion Answering [1] in photo-realistic environments (Mat-

terport 3D). We thoroughly study navigation policies that

utilize 3D point clouds, RGB images, or their combina-

tion. Our analysis of these models reveals several key find-

ings. We find that two seemingly naive navigation base-

lines, forward-only and random, are strong navigators and

challenging to outperform, due to the specific choice of the

evaluation setting presented by [1]. We find a novel loss-

weighting scheme we call Inflection Weighting to be impor-

tant when training recurrent models for navigation with be-

havior cloning and are able to out perform the baselines

with this technique. We find that point clouds provide a

richer signal than RGB images for learning obstacle avoid-

ance, motivating the use (and continued study) of 3D deep

learning models for embodied navigation.

1. Introduction

Imagine asking a home robot ‘Hey - can you go check

if my laptop is on my desk? And if so, bring it to me.’ In

order to be successful, such an agent would need a range

of artificial intelligence (AI) skills – visual perception (to

recognize objects, scenes, obstacles), language understand-

ing (to translate questions and instructions into actions), and

navigation of potentially novel environments (to move and

find things in a changing world). Much of the recent suc-

cess in these areas is due to large neural networks trained on

massive human-annotated datasets collected from the web.

However, this static paradigm of ‘internet vision’ is poorly

suited for training embodied agents. By their nature, these

† denotes equal contribution

Figure 1: We extend EmbodiedQA [1] to photorealstic en-

vironments, our agent is spawned in a perceptually and se-

mantically novel environment and tasked with answering a

question about that environment. We examine the agent’s

ability to navigate the environment and answer the question

by perceiving its environment through point clouds, RGB

images, or a combination of the two.

agents engage in active perception – observing the world

and then performing actions that in turn dynamically change

what the agent perceives. What are needed then are richly

annotated, photo-realistic environments where agents may

learn about the consequence of their actions on future per-

ceptions while performing high-level goals.

To this end, a number of recent works have proposed

goal-driven, perception-based tasks situated in simulated

environments to develop such agents [1–10]. While these

tasks are set in semantically realistic environments (i.e.

having realistic layouts and object occurrences), most are

based in synthetic environments (on SUNCG [11] or Unity

3D models [12]) that are perceptually quite different from

what agents embodied in the real world might experience.

Firstly, these environments lack visual realism both in terms

of the fidelity of textures, lighting, and object geometries

but also with respect to the rich in-class variation of ob-

6659

jects1. Secondly, these problems are typically approached

with 2D perception (RGB frames) despite the widespread

use of depth-sensing cameras (RGB-D) on actual robotic

platforms [13–15].

Contributions. We address these points of disconnect by

instantiating a large-scale, language-based navigation task

in photorealistic environments and by developing end-to-

end trainable models with point cloud perception – from

raw 3D point clouds to goal-driven navigation policies.

Specifically, we generalize the recently proposed Em-

bodied Question Answering (EmbodiedQA) [1] task (orig-

inally proposed in synthetic SUNCG scenes [11]) to

the photorealistic 3D reconstructions from Matterport 3D

(MP3D) [16]. In this task, an agent is spawned at a random

location in a novel environment (e.g. a house) and asked to

answer a question (‘What color is the car in the garage?’).

In order to succeed, the agent needs to navigate from ego-

centric vision alone (without an environment map), locate

the entity in question (‘car in the garage’), and respond with

the correct answer (e.g. ‘orange’).

We introduce the MP3D-EQA dataset, consisting of

1136 questions and answers grounded in 83 environments.

Similar to [1], our questions are generated from functional

programs operating on the annotations (objects, rooms, and

their relationships) provided in MP3D; however, MP3D

lacks color annotations for objects, which we collect from

Amazon Mechanical Turk in order to generate ‘What color

. . . ?’ questions. The MP3D environments provide signifi-

cantly more challenging environments for our agent to learn

to navigate in due to the increased visual variation.

We present a large-scale exhaustive evaluation of design

decisions, training a total of 16 navigation models (2 archi-

tectures, 2 language variations, and 4 perception variations),

3 visual question answering models, and 2 perception mod-

els – ablating the effects of perception, memory, and goal-

specification. Through this comprehensive analysis we

demonstrate the complementary strengths of these percep-

tion modalities and highlight surprisingly strong baselines

in the EmbodiedQA experimental setting.

Our analysis reveals that the seemingly naive baselines,

forward-only and random, are strong navigators in the de-

fault evaluation setting presented in [1] and challenging to

beat, providing insight to others working in this space that

models can perform surprisingly well without learning any

meaningful behavior. We also find that point clouds pro-

vide a richer signal than RGB images for learning obstacle

avoidance, motivating continued study of utilizing depth in-

formation in embodied navigation tasks.

We find a novel weighting scheme we call Inflection

Weighting – balancing the contributions to the cross-entropy

loss between inflections, where the ground truth action dif-

fers from the previous one, and non-inflections – to be an

1To pervert Tolstoy, each ugly lamp is ugly in its own way.

effective technique when performing behavior cloning with

a shortest path expert. We believe this technique will be

broadly useful any time a recurrent model is trained on long

sequences with an imbalance in symbol continuation ver-

sus symbol transition probabilities, i.e. when P (Xt = x |
Xt−1 = x) >> P (Xt 6= x | Xt−1 = x).

To the best of our knowledge, this is the first work to

explore end-to-end-trainable 3D perception for goal-driven

navigation in photo-realistic environments. With the use

of point clouds and realistic indoor scenes, our work lays

the groundwork for tighter connection between embodied

vision and goal-driven navigation, provides a testbed for

benchmarking 3D perception models, and hopefully brings

embodied agents trained on simulation one step closer to

real robots equipped with 2.5D RGB-D cameras.

2. Related Work

Embodied Agents and Environments. End-to-end learn-

ing methods – to predict actions directly from raw pix-

els [17] – have recently demonstrated strong performance.

Gupta et al. [2] learn to navigate via mapping and planning.

Sadeghi et al. [18] teach an agent to fly using simulated data

and deploy it in the real world. Gandhi et al. [19] collect a

dataset of drone crashes and train self-supervised agents to

avoid obstacles. A number of new challenging tasks have

been proposed including instruction-based navigation [6,7],

target-driven navigation [2, 4], embodied/interactive ques-

tion answering [1, 9], and task planning [5].

A prevailing problem in embodied perception is the lack

of a standardized, large-scale, diverse, real-world bench-

mark – essentially, there does not yet exist a COCO [20]

for embodied vision. A number of synthetic 3D environ-

ments have been introduced, such as DeepMind Lab [21]

and VizDoom [22]. Recently, more visually stimulating

and complex datasets have emerged which contain action-

able replicas of 3D indoor scenes [3, 23–25]. These efforts

make use of synthetic scenes [25, 26], or scans of real in-

door houses [16,27] and are equipped with a variety of input

modalities, i.e. RGB, semantic annotations, depth, etc.

The closest to our work is the EmbodiedQA work of

Das et al. [1], who train agents to predict actions from ego-

centric RGB frames. While RGB datasets are understand-

ably popular for ‘internet vision’, it is worth stepping back

and asking – why must an embodied agent navigating in 3D

environments be handicapped to perceive with a single RGB

camera? We empirically show that point cloud representa-

tions are more effective for navigation in this task. More-

over, contrary to [1, 9] that use synthetic environments, we

extend the task to real environments sourced from [16].

3D Representations and Architectures. Deep learning has

been slower to impact 3D computer vision than its 2D coun-

terpart, in part due to the increased complexity of repre-

senting 3D data. Initial success was seen with volumetric

6660

(a) RGB Panorama (b) Mesh Reconstruction

(c) Point Cloud (d) RGB-D Render

Figure 2: Illustration of mesh construction errors and what

point clouds are able to correct. Notice the warping of flat

surfaces, the extreme differences in color, and texture arti-

facts from reflections.

CNN’s [28–30]. These networks first discretize 3D space

with a volumetric representation and then apply 3D vari-

ants of operations commonly found in 2D CNN’s – convo-

lutions, pooling, etc. Volumetric representations are greatly

limited due to the sparsity of 3D data and the computa-

tional cost of 3D convolutions. Recent works on 3D deep

learning have proposed architectures that operate directly

on point clouds. Point clouds are a challenging input for

deep learning as they are naturally a set of points with no

canonical ordering. To overcome the ordering issue, some

utilize symmetric functions, PointNet(++) [31, 32], and A-

SCN [33]. Others have used clever internal representations,

such as SplatNet [34], Kd-Net [35], and O-CNN [36].

3. Questions in Environments

In this work, we instantiate the Embodied Question An-

swering (EQA) [1] task in realistic environments from the

Matterport3D dataset [16].

3.1. Environments

The Matterport3D dataset consists of 90 home environ-

ments captured through a series of panoramic RGB-D im-

ages taken by a Matterport Pro Camera (see sample panora-

mas in Fig. 2a). The resulting point clouds are aligned and

used to reconstruct a 3D mesh (like those shown in Fig. 2b)

that is then annotated with semantic labels. The Matter-

port3D dataset is densely annotated with semantic segmen-

tations of 40 object categories for ⇠50,000 instances. Room

type is annotated for over 2050 individual rooms.

These reconstructions offer high degrees of perceptual

realism but are not perfect however and sometimes suffer

from discoloration and unusual geometries such as holes in

surfaces. In this work, we examine both RGB and RGB-D

perception in these environments. For RGB, we take ren-

ders from the mesh reconstructions and for point clouds we

operate directly on the aligned point clouds. Fig. 2c and

Fig. 2d show the point cloud rendered for an agent looking

at the scene shown in Fig. 2a.

Simulator. To enable agents to navigate in MatterPort3D

environments, we develop a simulator based on MINOS

[23]. Among other things, MINOS provides occupancy

checking, RGB frame rendering from the mesh, and short-

est path calculation (though we reimplement this for higher

accuracy and speed). It does not however provide access to

the underlying point clouds. In order to render 2.5D RGB-

D frames, we first construct a global point cloud from all of

the panoramas provided in an environment from the dataset.

Then, the agent’s current position, camera parameters (field

of view, and aspect ratio), and the mesh reconstruction are

used to determine which points are within its view. See the

supplementary for full details on this.

3.2. Questions

Following [1], we programmatically generate templated

questions based on the Matterport3D annotations, generat-

ing questions of the following three types:

location: What room is the <OBJ> located in?

color: What color is the <OBJ> ?

color room: What color is the <OBJ> in the <ROOM> ?

While EQA [1] included a forth question type prepositions,

we found those questions in MP3D to be relatively few, with

strong biases in their answer, thus we do not include them.

While room and object annotations and positions sup-

porting the three question types above are available in

MP3D, human names for object colors are not. To rec-

tify this, we collect the dominant color of each object from

workers on Amazon Mechanical Turk (AMT). Workers are

asked to select one of 24 colors for each object. The color

palette was created by starting with Kenneth Kelly’s 22 col-

ors of maximum contrast [37] and adding 2 additional col-

ors (off-white and slate-grey) due to their prevalence in in-

door scenes. Overall, the most reported color was gray. For

each object, we collect 5 annotations and take the majority

vote, breaking ties based on object color priors. We include

details of the AMT interface in the supplementary.

Following the protocol in [1], we filter out questions

that have a low entropy in distribution over answers across

environments i.e. peaky answer priors – e.g. the answer to

‘What room is the shower in?’ is nearly always ‘bathroom’

– to ensure that questions in our dataset require the agent

to navigate and perceive to answer accurately. We remove

rooms or objects that are ambiguous (e.g. “misc” rooms) or

structural (e.g. “wall” objects). Below are the objects and

rooms that appear in our generated questions:

Objects: shelving, picture, sink, clothes, appliances, door,

plant, furniture, fireplace, chest of drawers, seating, sofa, ta-

ble, curtain, shower, towel, cushion, blinds, counter, stool, bed,

chair, bathtub, toilet, cabinet

6661

Homes Floors Total Qns. Unique Qns.

train 57 102 767 174

val 10 16 130 88

test 16 28 239 112

Table 1: Statistics of splits for EQA in Matterport3D

Rooms: family room, closet, spa, dinning room, lounge, gym,

living room, office, laundry room, bedroom, foyer, bathroom,

kitchen, garage, rec room, meeting room, hallway, tv room

In total, we generate ⇠1100 questions across 83 home en-

vironments (7 environments resulted in no questions after

filtering). Note that this amounts to ⇠13 question-answer

pairs per environment compared to ⇠12 per scene in [1].

Color room questions make up the majority of questions.

These questions require searching the environment to find

the specified object in the specified room. Whereas [1] re-

quires both the object and the room to be unique within the

environment, we only require the (object, room) pair to be

unique, thereby giving the navigator significantly less infor-

mation about the location of the object.

We use the same train/val/test split of environments as

in MINOS [23]. Note that in [1], the test environments dif-

fer from train only in the layout of the objects; the objects

themselves have been seen during training. In MP3D-EQA,

the agents are tested on entirely new homes, thus may come

across entirely new objects – testing semantic and percep-

tual generalization. Tab. 1 shows the distribution of homes,

floors, and questions across these splits. We restrict agent

start locations to lie on the same floor as question targets

and limit episodes to single floors.

4. Perception for Embodied Agents

Agents for EmbodiedQA must understand the given

question, perceive and navigate their surroundings collect-

ing information, and answer correctly in order to suc-

ceed. Consider an EmbodiedQA agent that navigates

by predicting an action at at each time step t based on

its trajectory of past observations and actions �t−1 =
(s1, a1, s2, a2, . . . , st−1, at−1), the current state st, and the

question Q. There are many important design decisions for

such a model – action selection policy, question representa-

tion, trajectory encoding, and observation representation. In

this work, we focus on the observation representation – i.e.

perception – in isolation and follow the architectural pat-

tern in [1] for the remaining components. In this section,

we describe our approach and recap existing model details.

4.1. Learning Point Cloud Representations

Consider a point cloud P 2 P which is an unordered

set of points in 3D space with associated colors, i.e. P =
{(xm, ym, zm, Rm, Gm, Bm)}Mm=1. To enable a neural

agent to perceive the world using point clouds, we must

learn a function f : P ! R
d that maps a point cloud to

an observation representation. To do this, we leverage a

widely used 3D architecture, PointNet++ [32].

PointNet++. At a high-level, PointNet++ alternates be-

tween spatial clustering and feature summarization – result-

ing in a hierarchy of increasingly coarse point clusters with

associated feature representations summarizing their mem-

bers. This approach draws an analogy to convolution and

pooling layers in standard convolutional neural networks.

More concretely, let {pi1, ..., p
i

Ni
} be the set of Ni

points at the ith level of a PointNet++ architecture and

{hi
1, ..., h

i

Ni
} be their associated feature representations

(e.g. RGB values for the input level). To construct the i+1th

level, Ni+1 centroids {pi+1

1 , ..., pi+1

Ni+1
} are sampled from

level i via iterative farthest point sampling (FPS) – ensuring

even representation of the previous layer. These centroids

will make up the points in level i+1 and represent their local

areas. For each centroid pi+1

k
, the K closest points within

a max radius are found and a symmetric learnable neural

architecture [31], composed of a series of per-point opera-

tions (essentially 1-by-1 convolutions) and a terminal max-

pool operation, is applied to this set of associated points to

produce the summary representation hi+1

k
. These cluster-

ing and summarization steps (referred to as Set Abstractions

in [32]) can be repeated arbitrarily many times. In this work

we use a 3 level architecture with N1 = 1045, N2 = 256,

and N3 = 64. We compute a final feature with a set of 1-

by-1 convolutions and a max-pool over the 3rd level point

features and denote this network as f(·).
Given an input point cloud Pt from an agent’s view at

time t, we produce a representation st = f(Pt) where

st 2 R
1024. However, point clouds have an interesting

property – as an agent navigates an environment the number

of points it perceives can vary. This may be due to sensor

limitations (e.g. being too close or too far from objects) or

properties of the observed surfaces (e.g. specularity). While

the encoder f is invariant to the number of input points,

representations drawn from few supporting points are not

likely to be good representations of a scene. For a naviga-

tion or question-answering agent, this means there is no way

to discern between confident and unconfident or erroneous

observation. To address this, we divide the range spanning

the possible number of points in any given point cloud –

[0, 214] – into 5 equal sized bins and represent these bins

as 32-d feature vectors that encode the sparsity of a point

cloud. Now, given a point cloud Pt with |Pt| points, we re-

trieve its corresponding sparsity embedding ct and produce

a final encoding [st, ct] 2 R
1056 that is used by the agent

for navigation and question-answering.

Visual Pretraining Tasks. To train the encoder architecture

to extract semantically and spatially meaningful representa-

tions of agent views, we introduce three pretraining tasks

based on the annotations provided in Matterport3D. Specif-

ically, these tasks are:

6662

RGB Output Target Output Target

RGB Encoder

Skip Connection
C

o
n

v
 1

R
es

id
u

al
 B

lo
ck

 1

R
es

id
u

al
 B

lo
ck

 2

R
es

 B
lc

o
k

 3

R
es

 4

Semantic

Autoencoding

Depth

Semantic

Autoencoding

Depth

Pointcloud

U
p

 1

U
p

 2

U
p

 3

U
p

 4

U
p

 1

U
p

 2

U
p

 3

U
p

 4

U
p

 1

U
p

 2

U
p

 3

U
p

 4

Skip Connection

S
et

 A
b

st
ra

ct
io

n
 1

F
P

 1

F
P

 2

F
P

 3

F
P

 4

S
et

 A
b

st
ra

ct
io

n
 2

S
et

 A
b

s.
 3

S
A

 4

Semantic Semantic

Color Color

Structure Structure

F
P

 1

F
P

 2

F
P

 3

F
P

 4

F
C

 1

F
C

 2

F
C

 3

PC Encoder

Figure 3: The visual encoders a trained using three pertaining tasks to imbue their scene representations with information

about semantics (segmentation), color (autoencoding), and structure (depth). All decoder heads share the same encoder. Up-

sampling for RGB (Up #) is done with bi-linear interpolation. Upsampling for pointclouds (FP #), is achieved with Feature

Propagation layers [32]. After pretraining, the decoders are discarded, and the encoder is treated as a static feature extractor.

– Semantic Segmentation in which the model predicts the

object annotation for each point, ys
i
, from the summa-

rized representation si = f(P). We train a PointNet++

feature propagation network gs(·) to minimize the cross-

entropy between ys
i

and ŷs
i
= gs(f(P)) [32]. This en-

courages the encoder, f(·), to include information about

which objects are in the frame.

– Color Autoencoding mirrors the semantic segmentation

task. However, the network gc(·) is now trained to mini-

mize the smooth-L1 loss between yc
i

and ŷc
i
= gc(f(P)).

This task encourages the encoder f(·) to capture holistic

information about the colors in the scene.

– Structure Autoencoding where point coordinates must

be recovered from the summarized representation, i.e.

{(xi, yi, zi, Ri, Gi, Bi)}
N
i=1 ! {(xi, yi, zi)}

N
i=1. We

implement this decoder as a multi-layer perceptron that

regresses to the N ⇥ 3 spatial coordinates. As in [38],

we use the earth-movers distance as the loss function.

We demonstrate these tasks in Fig. 3. These tasks encourage

the model features to represent colors, objects, and spatial

information including free-space and depth that are essen-

tial to navigation. We collect ⇠100,000 frames from Mat-

terport3D using our simulator and train the point cloud en-

coder for these tasks. We discard the decoder networks after

training, and use the encoder f as a fixed feature extractor.

RGB Image representations. We utilize ResNet50 [39]

trained using an analogous set of tasks (semantic segmen-

tation, autoencoding, and depth prediction) to learn a repre-

sentation for egocentric 224 ⇥ 224 RGB images as in [1].

We find that ResNet50 is better able to handle the increased

visual complexity of the Matterport3D environments than

the shallow CNN model used in Das et al. We provide fur-

ther details about perception model and decoder architec-

tures in the supplement.

4.2. Navigation and Question Answering

We now provide an overview of the navigation and ques-

tion answering models we use in this work.

Question Encoding. In order to succeed at navigation and

question answering, it is important for an embodied agent

to understand the queries it is being tasked with answering.

We use two layer LSTMs with 128-d hidden states to en-

code questions. The question encoding for navigation and

question answering are learned separately.

Question Answering Models. We experimented with three

classes of question answering models:

– Question-only We examine the question-only baselines

proposed in [1] – a small classification network that pre-

dicts the answer using just the question encoding. We

also examine the recently proposed question-only base-

lines in [40] – a simple nearest neighbors approach and

a bag-of-words with a softmax classifier.

– Attention This is the best performing VQA model from

[1]. It computes question-guided attention over the fea-

tures of the last five frames observed by the agent before

stopping, followed by element-wise product between the

attended feature and question encoding to answer; and

– Spatial Attention utilizes the bag-of-words encoder

proposed in [40] to compute spatial attention over the

last-frame. We use scaled dot-product attention [41] over

the feature map, perform an element-wise product be-

tween attended features and the question feature, and

predict an answer. This model only uses RGB inputs.

Navigation Models. We consider two baseline navigators:

– Forward-only (Fwd) which always predicts forward.

– Random which uniformly chooses one of forward,

turn-left, and turn-right at every time step.

We consider two navigation architectures:

– Reactive (R) which is a simple feed-forward network

that takes a concatenation of the embedding of the five

most recent visual observations as input to predict an ac-

tion. As such, this is a memory-less navigator.

– Memory (M) which is a two-layer GRU-RNN that takes

the encoding(s) of the current observation and previous

action as inputs to predict the current action.

For each navigation architecture, we examine the combi-

nation of our 4 different perception variations, None (i.e. a

6663

blind model as suggested by Thomason et al. [42]), PC, RGB,

and PC+RGB, with the 2 different language variations, None

and Question. For reactive models that utilize the ques-

tion, we incorporate the question embedding by concatena-

tion with the visual embedding. For memory models, the

question embedding is an additional input to the GRU. Due

to the highly correlated observations our agents see during

training, we utilize Group Normalization layers [43] in our

navigation models. The action space for all our navigation

models is forward, turn-left, turn-right, and stop.

4.3. Imitation Learning from Expert Trajectories

To train our models, we first create a static dataset of

agent trajectories by generating training episodes based on

shortest-paths from agent spawn locations to the best view

of the object of interest. For example, if a question asks

‘What color is the sofa in the living room?’, we spawn an

agent randomly in the environment in the same floor as the

target object – the sofa – and compute the shortest naviga-

ble path to the best view of the sofa. The best view of the

sofa is determined by exhausting all possible view positions

within a reasonable radius of the target object. The quality

of a view is determined by the intersection over union of a

pre-determined bounding box and the segmentation mask of

the target. In normalized image coordinates, the bounding

box’s top left corner is at (0.25, 0.25) and it has a height of

0.6 and a width of 0.5. We use this metric instead of simply

maximizing the number of visible pixels in the segmenta-

tion mask to maintain context of the object’s surroundings.

To provide enough data to overcome the complex-

ity of Matterport3D environments, we generate ⇠11,796

such paths in total (corresponding to approximately ⇠15

episodes per question-environment pair, each for a different

spawn location of the agent). For computational efficiency

in the large Matterport3D environments, we compute short-

est paths in continuous space using LazyTheta* [44] and

greedily generate agent actions to follow that path, rather

than directly searching in the agent’s action space.

Perception. We use the frozen pre-trained perception mod-

els as described in Section 4.1. For PC+RGB models we sim-

ply concatenate both visual features.

Question Answering. The question answering models are

trained to predict the ground truth answer from a list of 53
answers using Cross Entropy loss. The models with vision

use the ground-truth navigator during training.

4.4. Imitating Long Trajectories Effectively

All navigation models are trained with behavior cloning

where they are made to mimic the ground truth, shortest

path agent trajectories. That is to say the agents are walked

through the ground truth trajectory observing the corre-

sponding frames (though reactive models retain only the

last five) up until a given time step and then make an ac-

tion prediction. Regardless of the decision, the agent will

be stepped along the ground truth trajectory and repeat this

process. One challenge with this approach is that relatively

unintelligent policies can achieve promising validation loss

without really learning anything useful – one such strategy

simply repeats the previous ground truth action. Insidiously,

these models achieve very high validation accuracy for ac-

tion prediction but miss every transition between actions!

Inflection Weighting. To combat this problem and encour-

age agents to focus on important decisions along the tra-

jectory, we introduce a novel weighting scheme we call In-

flection Weighting. Conceptually, we weight predictions at

time steps more heavily if the ground truth action differs

from the previous one – that is if the time step is an in-

flection point in the trajectory. More formally, we define a

per-time step weight

wt =

(

N

nI

at−1 6= at

1 otherwise
(1)

where N/nI is the inverse frequency of inflection points

(approximately 5.7 in our dataset). We can then write an

inflection weighted loss between a sequence of predictions

Ŷ and a ground truth trajectory A over as:

`IW (Ŷ , A) =
1

PT

t=1
wt

T
X

t=1

wt` (ŷt, at) (2)

where `(·, ·) is the task loss – cross-entropy in our setting.

We define the first action, t = 1, to be an inflection. In

practice, we find inflection weighting leads to significant

gains in performance for recurrent models.

Inflection weighting may be viewed as a generalization

of the class-balanced loss methods that are commonly used

in supervised learning under heavily imbalanced class dis-

tributions (e.g. in semantic segmentation [45]) for a partic-

ular definition of a ‘class’ (inflection or not).

5. Experiments and Analysis

We closely follow the experimental protocol of Das et

al. [1]. All results here are reported on novel test environ-

ments. Agents are evaluated on their performance 10, 30, or

50 primitive actions away from the question target, corre-

sponding to distances of 0.35, 1.89, and 3.54 meters respec-

tively. One subtle but important point is that to achieve these

distances the agent is first randomly spawned within the en-

vironment, and then the agent is walked along the shortest

path to the target until it is the desired distance from the

target (10, 30, or 50 steps).

We perform an exhaustive evaluation of design deci-

sions, training a total of 16 navigation models (2 architec-

tures, 2 language variations, and 4 perception variations), 3

visual question answering models, and 2 perception models.

6664

dT (meters, ↓ better)

1.0

1.5

IoUT (↑ better)

0.050

0.075

0.100

0.125

QA Accuracy (↑ better)
0.30

0.35

0.40

Random R/Fwd M R+PC M+PC

Figure 4: Models with memory significantly outperform

their memory-less counterparts. Surprisingly, the baselines,

random and forward-only, and a vision-less navigator with

memory perform very well.

dT (meters, ↓ better)

1.0

1.5

2.0

IoUT (↑ better)

0.05

0.10

0.15

QA Accuracy (↑ better)
0.30

0.35

0.40

R/Fwd NoIW-R+PC+Q

R+PC+Q

NoIW-M+PC+Q

M+PC+Q

Figure 5: Models trained with inflection-weighted cross-

entropy loss significantly outperform their unweighted

cross-entropy counterparts and the baselines.

5.1. Metrics

Question Answering. For measuring question answer-

ing performance, we report the top-1 accuracy, i.e. did the

agent’s predicted answer match the ground truth or not.

Navigation. For navigation, we report the distance to the

target object from where the agent is spawned (d0) for ref-

erence, measure distance to the target object upon naviga-

tion completion dT (lower is better), and the percentage of

actions that result in a collision with an obstacle %collision

(lower is better). All the distances are geodesic, i.e. mea-

sured along the shortest path.

We propose a new metric, IoUT (higher is better), to

evaluate the quality of the view of the target the agent ob-

tains at the end of navigation. We compute the intersection-

over-union (IoU) score between the ground-truth target seg-

mentation and the same centered bounding box used to se-

lect views during dataset generation (see Section 4.3). To

compensate for object size, we divide by the best attainable

IoU for the target object. We define IoUT as the maximum

of the last N IoU scores. We set N to 5 as the VQA model

receives the last 5 frames.

5.2. Results and Analysis

Question Answering. The top-1 accuracy for different

answering modules on the validation set using the ground-

truth navigator is shown below.

Top-1 (%)

spatial+RGB+Q 46.2

attention+RGB+Q 40.0

attention+PC+RGB+Q 38.4

attention+PC+Q 36.1

lstm-question-only 32.8

nn-question-only [40] 35.4

bow-question-only [40] 38.3

In-order to compare QA performance between navigators,

we report all QA results with the best-performing module

– spatial+RGB+Q – regardless of the navigator.

Navigation. We use the following notation to specify our

models: For the base architecture, R denotes reactive mod-

els and M denotes memory models. The base architectures

are then augmented with their input types, +PC, +RGB, and

+Q. So a memory model that utilizes point clouds (but no

question) is denoted as M+PC. Unless otherwise specified (by

the prefix NoIW), models are trained with inflection weight-

ing. We denote the two baseline navigators, forward-only

and random, as Fwd and Random, respectively.

Due to the large volume of results, we present key find-

ings and analysis here (with T
−30) and, for the intrepid

reader, provide the full table (with 300+ numbers!) in the

supplement. We make the following observations:

Forward-only is a strong baseline. One of the side-effects

of the evaluation procedure proposed in [1] is that the agent

is commonly facing the correct direction when it is handed

control. This means the right thing to do to make progress

is to go forward. As a result, a forward-only navigator does

quite well, see Fig. 4. Forward-only also tends to not over-

shoot too much due to its ‘functional stop’: continually run-

ning into an obstacle until the max step limit is reached. Our

vision-less reactive models (R/Fwd and R+Q/Fwd) learn to

only predict forward, the most frequent action.

Fig. 4 also shows that the random baseline is a decep-

tively strong baseline. The lack of a backward action, and

left and right cancelling each other out in expectation,

results in random essentially becoming forward-only.

Inflection weighting improves navigation. We find inflec-

tion weighting to be crucial for training navigation models

with behavior cloning of a shortest-path expert; see Fig. 5.

While we see some improvements with inflection weighting

for most models, memory models reap the greatest benefits

– improving significantly on both dT and IoUT. Interest-

ingly, these gains do not translate into improved QA ac-

curacy. While we have only utilized this loss for behavior

cloning, we suspect the improvements seen from inflection

weighting will transfer to models that are fine-tuned with re-

inforcement learning as they begin with better performance.

Memory helps. Fig. 4 shows that models with memory are

better navigators than their reactive counter parts. Surpris-

6665

dT (meters, ↓ better)

1.0

1.5

%collision (↓ better)

25

50

IoUT (↑ better)

0.1

0.2

QA Accuracy (↑ better)
0.30

0.35

0.40

R/Fwd R+RGB R+PC R+PC+RGB M M+RGB M+PC M+PC+RGB

Figure 6: Vision generally hurts distance-based navigation metrics. However metrics that are dependent on the navigators

ability to look in a particular direction (IoUT and QA) generally improve, and the models collide with the environment less.

dT (meters, ↓ better)

0.75

1.00

1.25

IoUT (↑ better)

0.1

0.2

QA Accuracy (↑ better)
0.30

0.35

0.40

M+RGB

M+RGB+Q

M+PC

M+PC+Q

M+PC+RGB

M+PC+RGB+Q

Figure 7: Comparison of memory navigation models with

and without the question. Interestingly, adding the question

doesn’t appear to aid models trained with behavior cloning.

ingly, a vision-less navigator with memory performs very

well at distance based navigation metrics. Like a vision-

less reactive navigator (forward-only), a vision-less mem-

ory navigator is only able to learn priors on how shortest

paths in the dataset tend to look, however memory allows

the model to count and therefore it is able to stop and turn.

Vision helps gaze direction metrics. Fig. 6 shows the ef-

fect of adding vision to both reactive and memory models.

The addition of vision leads to improvements on IoUT and

QA, however, the improvements in IoUT do not translate

directly improvement on QA. This is likely due to naive

VQA models. Models with vision also tend to collide with

the environment less often, as can be seen by %collision usu-

ally being lower.

Vision hurts distance metrics. Surprisingly, adding vision

hurts distance based navigation metrics (dT). For reactive

models, adding vision causes the models to collide signifi-

cantly less frequently, resulting in a loss of the ‘functional

stop’ that forward-only uses, i.e. continually colliding until

the step limit is reached. For memory models, the story isn’t

as clear; however, memory models with vision stop less

often and thus have a higher average episode length than

their vision-less counterpart, which causes them to over-

shoot more often. We suspect this is because they learn a

more complex function for stopping than the simple count-

ing method used by vision-less memory models and this

function is less able to handle errors during navigation.

Question somewhat helps. Fig. 7 provides a comparison of

M+PC and M+RGB and M+PC+RGB with and without the ques-

tion (Q). Interestingly, we do not see large improvements

when providing models with the question. Given how much

color room dominates our dataset, it seems reasonable to

expect that telling the navigation models which room to go

to would be a large benefit. We suspect that our models

are not able to properly utilize this information due to lim-

itations of behavior cloning. Models trained with behav-

ior cloning never see mistakes or exploration and therefore

never learn to correct mistakes or explore.

PC+RGB provides the best of both worlds. Fig. 6 also pro-

vides a comparison of the three different vision modalities.

The general tend is that point clouds provided a richer signal

for obstacle avoidance (corresponding to lower %collision

values), while RGB provides richer semantic information

(corresponding to a higher IoUT and QA). Combining

both point clouds and RGB provides improvements to both

obstacle avoidance and leveraging semantic information.

6. Conclusion

We present an extension of the task of EmbodiedQA

to photorealistic environments utilizing the Matterport 3D

dataset and propose the MP3D-EQA v1 dataset. We then

present a thorough study of 2 navigation baselines and 2 dif-

ferent navigation architectures with 8 different input varia-

tions. We develop an end-to-end trainable navigation model

capable of learning goal-driving navigation policies directly

from 3D point clouds. We provide analysis and insight

into the factors that affect navigation performance and pro-

pose a novel weighting scheme – Inflection Weighting –

that increases the effectiveness of behavior cloning. We

demonstrate that two the navigation baselines, random and

forward-only, are quite strong under the evaluation settings

presented by [1]. Our work serves as a step towards bridg-

ing the gap between internet vision-style problems and the

goal of vision for embodied perception.

Acknowledgements. This work was supported in part by NSF (Grant #

1427300), AFRL, DARPA, Siemens, Samsung, Google, Amazon, ONR

YIPs and ONR Grants N00014-16-1-{2713,2793}. The views and con-

clusions contained herein are those of the authors and should not be in-

terpreted as necessarily representing the official policies or endorsements,

either expressed or implied, of the U.S. Government, or any sponsor.

6666

References

[1] Abhishek Das, Samyak Datta, Georgia Gkioxari, Stefan Lee,

Devi Parikh, and Dhruv Batra. Embodied Question Answer-

ing. In CVPR, 2018. 1, 2, 3, 4, 5, 6, 7, 8

[2] Saurabh Gupta, James Davidson, Sergey Levine, Rahul Suk-

thankar, and Jitendra Malik. Cognitive mapping and plan-

ning for visual navigation. In CVPR, 2017. 1, 2

[3] Yi Wu, Yuxin Wu, Georgia Gkioxari, and Yuandong Tian.

Building generalizable agents with a realistic and rich 3d en-

vironments. In ICLR Workshop, 2018. 1, 2

[4] Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim, Ab-

hinav Gupta, Li Fei-Fei, and Ali Farhadi. Target-driven vi-

sual navigation in indoor scenes using deep reinforcement

learning. In ICRA, 2017. 1, 2

[5] Yuke Zhu, Daniel Gordon, Eric Kolve, Dieter Fox, Li Fei-

Fei, Abhinav Gupta, Roozbeh Mottaghi, and Ali Farhadi.

Visual Semantic Planning using Deep Successor Represen-

tations. In ICCV, 2017. 1, 2

[6] Devendra Singh Chaplot, Kanthashree Mysore Sathyen-

dra, Rama Kumar Pasumarthi, Dheeraj Rajagopal, and

Ruslan Salakhutdinov. Gated-attention architectures

for task-oriented language grounding. arXiv preprint

arXiv:1706.07230, 2017. 1, 2

[7] Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark

Johnson, Niko Sünderhauf, Ian Reid, Stephen Gould, and

Anton van den Hengel. Vision-and-language navigation: In-

terpreting visually-grounded navigation instructions in real

environments. In CVPR, 2018. 1, 2

[8] Karl Moritz Hermann, Felix Hill, Simon Green, Fumin

Wang, Ryan Faulkner, Hubert Soyer, David Szepesvari, Wo-

jtek Czarnecki, Max Jaderberg, Denis Teplyashin, et al.

Grounded language learning in a simulated 3d world. arXiv

preprint arXiv:1706.06551, 2017. 1

[9] Daniel Gordon, Aniruddha Kembhavi, Mohammad Raste-

gari, Joseph Redmon, Dieter Fox, and Ali Farhadi. IQA:

Visual question answering in interactive environments. In

CVPR, 2018. 1, 2

[10] Abhishek Das, Georgia Gkioxari, Stefan Lee, Devi Parikh,

and Dhruv Batra. Neural Modular Control for Embodied

Question Answering. In Proceedings of the Conference on

Robot Learning (CoRL), 2018. 1

[11] Shuran Song, Fisher Yu, Andy Zeng, Angel X Chang, Mano-

lis Savva, and Thomas Funkhouser. Semantic scene comple-

tion from a single depth image. In CVPR, 2017. 1, 2

[12] Arthur Juliani, Vincent-Pierre Berges, Esh Vckay, Yuan Gao,

Hunter Henry, Marwan Mattar, and Danny Lange. Unity: A

general platform for intelligent agents, 2018. 1

[13] Albert S Huang, Abraham Bachrach, Peter Henry, Michael

Krainin, Daniel Maturana, Dieter Fox, and Nicholas Roy.

Visual odometry and mapping for autonomous flight using

an rgb-d camera. In Robotics Research. 2017. 2

[14] Andy Zeng, Shuran Song, Kuan-Ting Yu, Elliott Donlon,

Francois Robert Hogan, Maria Bauza, Daolin Ma, Orion

Taylor, Melody Liu, Eudald Romo, Nima Fazeli, Ferran

Alet, Nikhil Chavan Dafle, Rachel Holladay, Isabella Mo-

rona, Prem Qu Nair, Druck Green, Ian Taylor, Weber Liu,

Thomas Funkhouser, and Alberto Rodriguez. Robotic pick-

and-place of novel objects in clutter with multi-affordance

grasping and cross-domain image matching. In ICRA, 2018.

2

[15] Shiqi Zhang, Yuqian Jiang, Guni Sharon, and Peter Stone.

Multirobot symbolic planning under temporal uncertainty.

In Proceedings of the 16th International Conference on Au-

tonomous Agents and Multiagent Sytems (AAMAS), May

2017. 2

[16] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Hal-

ber, Matthias Niessner, Manolis Savva, Shuran Song, Andy

Zeng, and Yinda Zhang. Matterport3D: Learning from RGB-

D data in indoor environments. International Conference on

3D Vision (3DV), 2017. 2, 3

[17] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter

Abbeel. End-to-end training of deep visuomotor policies.

JMLR, 17(1):1334–1373, Jan. 2016. 2

[18] Fereshteh Sadeghi and Sergey Levine. CAD2RL: Real

single-image flight without a single real image. RSS, 2017.

2

[19] Abhinav Gupta Dhiraj Gandhi, Lerrel Pinto. Learning to fly

by crashing. IROS, 2017. 2

[20] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollr, and C. Lawrence

Zitnick. Microsoft COCO: Common Objects in Context. In

ECCV, 2014. 2

[21] Charles Beattie, Joel Z. Leibo, Denis Teplyashin, Tom Ward,

Marcus Wainwright, Heinrich Küttler, Andrew Lefrancq,

Simon Green, Vı́ctor Valdés, Amir Sadik, Julian Schrit-

twieser, Keith Anderson, Sarah York, Max Cant, Adam Cain,

Adrian Bolton, Stephen Gaffney, Helen King, Demis Hass-

abis, Shane Legg, and Stig Petersen. Deepmind lab. arXiv.

2

[22] Michal Kempka, Marek Wydmuch, Grzegorz Runc, Jakub

Toczek, and Wojciech Jaskowski. Vizdoom: A doom-based

AI research platform for visual reinforcement learning. arXiv

1605.02097, 2016. 2

[23] Manolis Savva, Angel X. Chang, Alexey Dosovitskiy,

Thomas Funkhouser, and Vladlen Koltun. MINOS: Multi-

modal indoor simulator for navigation in complex environ-

ments. arXiv:1712.03931, 2017. 2, 3, 4

[24] Simon Brodeur, Ethan Perez, Ankesh Anand, Florian

Golemo, Luca Celotti, Florian Strub, Jean Rouat, Hugo

Larochelle, and Aaron C. Courville. Home: a household

multimodal environment. arXiv 1711.11017, 2017. 2

[25] Eric Kolve, Roozbeh Mottaghi, Daniel Gordon, Yuke Zhu,

Abhinav Gupta, and Ali Farhadi. AI2-THOR: An Interactive

3D Environment for Visual AI. arXiv, 2017. 2

[26] Shuran Song, Fisher Yu, Andy Zeng, Angel X Chang, Mano-

lis Savva, and Thomas Funkhouser. Semantic scene comple-

tion from a single depth image. CVPR, 2017. 2

[27] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Hal-

ber, Thomas Funkhouser, and Matthias Nießner. Scannet:

Richly-annotated 3d reconstructions of indoor scenes. In

CVPR, 2017. 2

[28] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-

guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d

6667

shapenets: A deep representation for volumetric shapes. In

CVPR, 2015. 3

[29] Daniel Maturana and Sebastian Scherer. Voxnet: A 3d con-

volutional neural network for real-time object recognition.

In Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ

International Conference on, pages 922–928. IEEE, 2015. 3

[30] Charles R Qi, Hao Su, Matthias Nießner, Angela Dai,

Mengyuan Yan, and Leonidas J Guibas. Volumetric and

multi-view cnns for object classification on 3d data. In Pro-

ceedings of the IEEE conference on computer vision and pat-

tern recognition, pages 5648–5656, 2016. 3

[31] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.

Pointnet: Deep learning on point sets for 3d classification

and segmentation. In CVPR, 2017. 3, 4

[32] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J

Guibas. Pointnet++: Deep hierarchical feature learning on

point sets in a metric space. In NIPS, 2017. 3, 4, 5

[33] Saining Xie, Sainan Liu, Zeyu Chen, and Zhuowen Tu. At-

tentional shapecontextnet for point cloud recognition. In

CVPR, 2018. 3

[34] Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji,

Evangelos Kalogerakis, Ming-Hsuan Yang, and Jan Kautz.

Splatnet: Sparse lattice networks for point cloud processing.

In CVPR, 2018. 3

[35] Roman Klokov and Victor Lempitsky. Escape from cells:

Deep kd-networks for the recognition of 3d point cloud mod-

els. In ICCV. IEEE, 2017. 3

[36] Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun,

and Xin Tong. O-cnn: Octree-based convolutional neu-

ral networks for 3d shape analysis. ACM Transactions on

Graphics (TOG), 36(4):72, 2017. 3

[37] Kenneth L Kelly. Twenty-two colors of maximum contrast.

Color Engineering, 3(26):26–27, 1965. 3

[38] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and

Leonidas Guibas. Learning representations and gen-

erative models for 3d point clouds. arXiv preprint

arXiv:1707.02392, 2017. 5

[39] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016. 5

[40] Ankesh Anand, Eugene Belilovsky, Kyle Kastner, Hugo

Larochelle, and Aaron Courville. Blindfold Baselines for

Embodied QA. arXiv preprint arXiv:1811.05013, 2018. 5, 7

[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-

reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia

Polosukhin. Attention is all you need. In Advances in Neural

Information Processing Systems, pages 5998–6008, 2017. 5

[42] Jesse Thomason, Daniel Gordan, and Yonatan Bisk. Shifting

the baseline: Single modality performance on visual naviga-

tion & qa. arXiv preprint arXiv:1811.00613, 2018. 6

[43] Yuxin Wu and Kaiming He. Group normalization. arXiv

preprint arXiv:1803.08494, 2018. 6

[44] Alex Nash, Sven Koenig, and Craig Tovey. Lazy theta*:

Any-angle path planning and path length analysis in 3d. In

Third Annual Symposium on Combinatorial Search, 2010. 6

[45] David Eigen and Rob Fergus. Predicting depth, surface nor-

mals and semantic labels with a common multi-scale convo-

lutional architecture. In ICCV, 2015. 6

6668

