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Abstract: Since Turing’s early speculations, progress with the building of 
intelligent machines has been slow, with obstacles tending to be dealt with in 
ad hoc rather than theoretical ways. This view of history  is reflected in Marvin 
Minsky's comment (Boston University, 2003) that “AI has been brain-dead 
since the 1970s”.

The optimism of Turing's reported “I am building a brain” (Hanslope Park,
1944) has withered before the reality  of the chimera that is embodied 
intelligence. There is a growing sense that the universal Turing machine has 
given rise to a paradigm which, as well as being powerful and successful, is 
misleading in important respects: Firstly, the disembodiment implicit in the 
Turing machine was unreal even for the early construction of a digital 
computer, and this has become more apparent with the modern respect given 
to natural computing in its various guises. And more abstractly, this has made 
us more aware of the extent to which theory has failed to give due 
prominence to the role and structure of information in the computational 
processes that science seeks to characterize.

The theme of this article is the extent to which embodiment, information, and 
its type structure are relevant to the material and mental world, and their 
computational processes. In particular, it is argued that ‘computation’ in the 
real world is more general ― and consequently  harder to control ― than is 
usually imagined. 

1. The Mathematician’s Bias
In October 2010 the ACM, “the world’s largest educational and scientific computing 
society”, launched an online Symposium entitled “What Is Computation?”. The 
Symposium was hosted by the web-based magazine Ubiquity under the umbrella of 
the Communications of the ACM. Ubiquity editor-in-chief Peter Denning’s introduction 
to the Symposium explained: 

What is computation? This has always been the most fundamental question 
of our field. In the 1930s, as the field was starting, the answer was that 
computation was the action of people who operated calculator machines. By 
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the late 1940s, the answer was that computation was steps carried out by 
automated computers to produce definite outputs. That definition did very 
well: it remained the standard for nearly fifty years. But it is now being 
challenged. People in many fields have accepted that computational thinking 
is a way of approaching science and engineering. The Internet is full of 
servers that provide nonstop computation endlessly. Researchers in biology 
and physics have claimed the discovery of natural computational processes 
that have nothing to do with computers. How must our definition evolve to 
answer the challenges of brains computing, algorithms never terminating by 
design, computation as a natural occurrence, and computation without 
computers?

Lance Fortnow would have probably represented a majority  of readers when he 
responded in December:

Alan Turing , in his seminal 1936 paper On computable numbers, with an 
application to the Entscheidungsproblem …, directly answers this question by 
describing the now classic Turing machine model. The Church-Turing thesis 
is simply stated.

Everything computable is computable by a Turing machine.

The Church-Turing thesis has stood the test of time, capturing computation 
models Turing could not have conceived of, including digital computation, 
probabilistic, parallel and quantum computers and the Internet. The thesis has 
become accepted doctrine in computer science and the ACM has named its 
highest honor after Turing. Many now view computation as a fundamental part 
of nature, like atoms or the integers.

So why are we having a series now asking a question that was settled in the 
1930s?

A few computer scientists nevertheless try to argue that the thesis fails to 
capture some aspects of computation. Some of these have been published in 
prestigious venues such as Science …, the Communications of the ACM … 
and now as a whole series of papers in ACM Ubiquity. Some people outside 
of computer science might think that there is a serious debate about the 
nature of computation. There isn't.

Before the 1990s, public dissent from this view would have been a bold step, risking 
ridicule and damage to academic standing. Things have changed, and the ACM 
Symposium is indeed a sign that the ground is moving under our feet. The revolution 
in progress has yet to reach Copernican scale, though promising a change in our 
relationship  with causality ― with our very conception of causality ― as far-reaching 
as any previous shift in world view. A key contribution to the Symposium was Dennis 
Frailey’s Computation Is Process ― including the words:

The concept of computation is arguably the most dramatic advance in 
mathematical thinking of the past century. …  Church, Gödel, and Turing 
defined it in terms of mathematical functions … They were inclined to the view 
that only the algorithmic functions constituted computation. I'll call this the 
"mathematician's bias" because I believe it limits our thinking and prevent us 
from fully appreciating the power of computation.



The view we give voice to below ― increasingly widely held ― is that the discussion is 
about more than the nature of computation. It is part of a growing appreciation of the fact 
that information is not flat, and that the accompanying computational modeling must be 
able to cope with the underlying causal confusions widely affecting science and the 
humanities. Mathematicians, even those aware of the wider challenges, have largely kept 
to their technical and conceptual comfort zones. No wonder there is widespread 
disillusionment regarding the role of mathematics in this informationally extended world. 
For Nassim Taleb, with his ‘ludic fallacy’, what mathematicians can deal with is close to his 
definition of what we should not be interested in. Those that deal with the mathematics of 
information beyond the reach of computation, and of language even, are largely invisible.

2. Causality Under Scrutiny

The ability to mentally image, process, and give meaning to emergent form in nature 
involves a computational process which the human mind manages quite impressively. The 
above termite ‘cathedral’ is produced by relatively  primitive organisms which one might 
simulate on ones computer with some success, including a degree of interactivity: but 
neither termite nor computer will simulate the appreciation of emergent form, of higher 
order information, of which the human brain is observed to be capable of. Still less will the 
termite represent that higher order information in a form suitable for accessing by  further 
computational routines. We will need to look more carefully  at the causal character of 



emergence in the light of a closer engagement with the underlying information, via various 
contexts.

The mathematical character of the challenge presented by causality is specially clear from 
the physics. As Lee Smolin elaborates on at length in The Trouble with Physics (p.241) 
“causality  itself is fundamental”. Causality is key to higher order concepts, while being itself 
in need of clarification. For instance, regarding the tendency to relate questions about 
determinism to ones concerning causality, John Earman says (A Primer On Determinism, 
D. Reidel/Kluwer, 1986, p.5): 

… the most venerable of all the philosophical definitions [of determinism] 
holds that the world is deterministic just in case every event has a cause. The 
most immediate objection to this approach is that it seeks to explain a vague 
concept ― determinism ― in terms of a truly obscure one ― causation.

From our perspective, part of the confusion arises from the attempt to regard causality as 
being a simpler concept than that of determinism. While one might be happy with higher 
order entities being determined, the concept of causality is generally  attached to more 
local phenomena ― events, component individuals. According to the contemporary  focus 
on process, emergence, chaos, turbulence, connectionist models of computation and 
global features of social and economic contexts, it is this leads to philosophical problems 
with causality, and a parallel dissatisfaction with the scope of the classical model of 
computation. Here is Albert Einstein raising (Autobiographical Notes, in Albert Einstein: 
Philosopher-Scientist, P. Schilpp, ed., Open Court Publishing, 1969, p.63) a particularly 
fundamental issue about the standard model of physics ― one which is still with us. 
Implicitly the complaint is that, according to what we know, causality in physics is 
incomplete:

… I would like to state a theorem which at present can not be based upon 
anything more than upon a faith in the simplicity, i.e. intelligibility, of nature … 
nature is so constituted that it is possible logically to lay down such strongly 
determined laws that within these laws only rationally completely determined 
constants occur (not constants, therefore, whose numerical value could be 
changed without destroying the theory) …

Over the years Einstein’s concern has been echoed by many others. For instance Peter 
Woit, in his book Not Even Wrong ― The Failure of String Theory and the Continuing 
Challenge to Unify the Laws of Physics,  Jonathan Cape, 2006, says:

One way of thinking about what is unsatisfactory about the standard model is 
that it leaves seventeen non-trivial numbers still to be explained, ….

In recent months, CERN watchers have looked in vain for confirmation of supersymmetry, 
an important route to clarifying a number of issues ― such as dark matter ― muddying our 
view of the universe. Looking for causality even further up the informational scale, no less 
than Alan Guth (author of The Inflationary Universe ― The Quest for a New Theory of 
Cosmic Origins, Addison-Wesley, 1997), asks about the determination of natural laws:

If the creation of the universe can be described as a quantum process, we 
would be left with one deep mystery of existence: What is it that determined 
the laws of physics?



If our incomplete grasp  of the causal character of the physical universe is unsatisfactory, 
even more so is the ‘causality abrogated’ that the uncertainty phenomenon in quantum 
mechanics pushes us towards. Taking its cue from the probability-bound collapse of the 
wave function consequent on a measurement, and Hugh Everett III’s many-worlds setting 
for entanglement, we now have a byzantine landscape of multiverse proposals, structured 
by Max Tegmark into his Multiverse Levels I-IV (see his May 2003 Scientific American 
article on Parallel Universes, pp.40-51). The abrogation finds its quintessential expression 
in the anthropic principle, delivering our universe of conveniently  appropriate fundamental 
constants and natural laws by some sort of cosmic accident. David Deutsch in his 1997 
The Fabric of Reality (Penguin) sees the existence of quantum computers as pointing to 
the existence of the multiverse. Scott Aaronson (Quantum Computing since Democritus, 
Cambridge University Press, 2013, p.149) comments:

… a quantum computer is not a device that could “try every possible solution 
in parallel” and then instantly pick the correct one. If we insist on seeing 
things in terms of parallel universes, then those universes all have to 
“collaborate” ― more than that, have to meld into one another ― to create an 
interference pattern that will lead to the correct answer being observed with 
high probability.

3. Causality Fragmented, Supervenient …  Simulated?
So causality  is basic ― but a ‘truly  obscure concept’, incomplete, abrogated ― and, 
unavoidably fragmented in the context of the human brain. There are many examples of 
philosophers (particularly) rejecting Cartesian dualism in uncompromising style ― echoing 
Susan Blackmore’s “grand illusion of consciousness”. Here is a quote from Professor 
Blackmore, the analysis in terms receptive to an information-theoretic interpretation (page 
220 of The Meme Machine, Oxford University Press, 1999):

Dualism is tempting but false. For a start no such separate [thinking] stuff can 
be found. If it could be found it would become part of the physical world and 
so not be a separate stuff at all. On the other hand if it cannot, in principle, be 
found by any physical measures then it is impossible to see how it could do 
its job of controlling the brain. How would immaterial mind and material body 
interact? Like Descartes’ ‘thinking stuff’, souls, spirits and other self-like 
entities seem powerless to do what is demanded of them.

Such issues are visited in depth by  the philosopher Jaegwon Kim, echoing such questions 
as: How can mentality have a computational role in a world that is fundamentally physical? 
And what about ‘overdetermination’, the problem of phenomena having both mental and 
physical causes? In Physicalism, or Something Near Enough (Princeton, 2005) Kim puts it:

… the problem of mental causation is solvable only if mentality is physically 
reducible; however, phenomenal consciousness resists physical reduction, 
putting its causal efficacy in peril.

The persistent problems in reconciling mentality with its physical host are arranged by 
philosophers who care about such things under the heading of supervenience, which 
(quoting Jaegwon Kim: Mind in a Physical World,  MIT Press, 1998, pp.14-15):



… represents the idea that mentality is at bottom physically based, and that 
there is no free-floating mentality unanchored in the physical nature of objects 
and events in which it is manifested.

Put more mathematically  (Stanford Encyclopedia of Philosophy): ‘A set of properties A 
supervenes upon another set B just in case no two things can differ with respect to A-
properties without also differing with respect to their B-properties.’ 

The widespread consensus around supervenience hosts a huge variety of ideas regarding 
exactly how mentality  is anchored in the physical. Interestingly, even a fairly committed 
reductionist like Daniel Dennett favours an analysis with different orders of information, 
even if it does not directly relate to the supervening. The term ‘subconscious’ may be a 
misleading one ― with consciousness supervening on the physical, but unconscious 
mental activity  ― even that associated with reflex sensorimotor activity ― being mediated 
by a developing consciousness in a quite nonlinear and selective fashion. In his 1991 
Consciousness Explained (Little, Brown & Co.) Dennett can be found plausibly  referring to 
unconscious ‘thoughts’ as a higher order phenomena (p. 308):

Unconscious thoughts are, for instance, unconscious perceptual events, or 
episodic activations of beliefs, that occur naturally ― that must occur ― in the 
course of normal behavior control. Suppose you tip over your coffee cup on 
your desk. In a flash, you jump up from the chair, narrowly avoiding the coffee 
that drips over the edge. You were not conscious of thinking that the desk top 
would not absorb the coffee, or that coffee, a liquid obeying the law of gravity, 
would spill over the edge, but such unconscious thoughts must have occurred 
― for had the cup contained table salt, or the desk being covered with a 
towel, you would not have leaped up. Of all your beliefs ― about coffee, 
about democracy, about baseball, about the price of tea in China ― these 
and a few others were immediately relevant to your circumstances. If we were 
to cite them in an explanation of why you leaped up, they must have been 
momentarily accessed or activated or in some way tapped for a contribution 
to your behavior, but of course this happened unconsciously. 

There are more observable signs of fragmented causality at work: with the task being to 
provide the wherewithal of a successful partnership between different levels. For Alan 
Turing back in the 1940s it was a steep  learning curve. As Solomon Feferman describes 
(pp. 131-2) in his magical Turing in the Land of O(Z)  ― in The Universal Turing Machine: 
A Half-Century Survey (ed. R. Herken), Oxford University Press, 1988: 

Turing, as is well known, had a mechanistic conception of mind, and that 
conviction led him to have faith in the possibility of machines exhibiting 
intelligent behavior.

Since that time, scaling the gap  between computer and mentality  has presented 
investigators with a challenging phase-transition ― an obstacle theoretically based in the 
‘causality’ of the underlying informational structure, we will argue. For those working at the 
practical level, the theoretical approach ― via the logic and mathematical modeling ― has 
been singularly  unrewarding. For Rodney Brooks, the experimental robotic route has made 
more sense. For him (quoted in Nature in 2001):

… neither AI nor Alife has produced artifacts that could be confused with a 
living organism for more than an instant.



On the other hand, such ad hoc investigations leave artificial intelligence theoretician and 
pioneer Marvin Minsky unimpressed ― commenting in characteristically trenchant terms at 
Boston University in May 2003:

AI has been brain-dead since the 1970s.

In his final years, Turing was already anticipating difficulties ahead, with thinking moulded 
by a focus on the human dimension. For instance, the mistake-prone young writer of the 
seminal ‘computable numbers’ article comes to mind when we read (talk to the London 
Mathematical Society, February  20, 1947, quoted by Andrew Hodges in Alan Turing: the 
Enigma, p. 361): 

… if a machine is expected to be infallible, it cannot also be intelligent. There 
are several theorems which say almost exactly that.

And, in Turing’s popular piece on Solvable and Unsolvable Problems (Penguin Science 
News 31, 1954) we read in his final paragraph p. 23: 

The results which have been described in this article are mainly of  a negative 
character, setting certain bounds to what we can hope to achieve purely by 
reasoning. These, and some other results of mathematical logic may be 
regarded as going some way towards a demonstration, within mathematics 
itself, of the inadequacy of ‘reason’ unsupported by common sense.

The human brain itself uncannily reflects elements of the Brooks-Minsky dialectic, and of 
the Turing preoccupation with cooperation between machine and human. In his 2009 Yale 
University  Press book The Master and his Emissary: The Divided Brain and the Making of 
the Western World, Iain McGilchrist describes how:

The world of the left hemisphere, dependent on denotative language and 
abstraction, yields clarity and power to manipulate things that are known, 
fixed, static, isolated, decontextualised, explicit, disembodied, general in 
nature, but ultimately lifeless. The right hemisphere by contrast, yields a world 
of individual, changing, evolving, interconnected, implicit, incarnate, living 
beings within the context of the lived world, but in the nature of things never 
fully graspable, always imperfectly known ― and to this world it exists in a 
relationship of care. The knowledge that is mediated by the left hemisphere is 
knowledge within a closed system. It has the advantage of perfection, but 
such perfection is bought ultimately at the price of emptiness, of self-
reference. It can mediate knowledge only in terms of a mechanical 
rearrangement of other things already known. It can never really ‘break out’ to 
know anything new, because its knowledge is of its own representations only. 
Where the thing itself is present to the right hemisphere, it is only ‘re-
presented’ by the left hemisphere, now become an idea of a thing. Where the 
right hemisphere is conscious of the Other, whatever it may be, the left 
hemisphere’s consciousness is of itself.

Why should there be different kinds of thinking, and why should the brain architecture so 
separate their physical hosts? Is this a purely  ad hoc, even accidental, adjustment within 
the evolutionary  process, or is there something more fundamental at work? The enduring 
role of natural selection, in the context of the growth of complexity theory, leads us to 
expect something ‘more fundamental’. As Steven Pinker attempts to persuade us (pp. 
161-162 of his How the Mind Works, W W Norton, 1997), with a degree of success: 



The “complexity” that so impresses biologists is not just any old order or 
stability. Organisms are not just cohesive blobs or pretty spirals or orderly 
grids. They are machines, and their “complexity” is functional, adaptive 
design: complexity in the service of accomplishing some interesting outcome. 
…  No set of equations applicable to everything from galaxies to Bosnia can 
explain why teeth are found in the mouth rather than in the ear. And since 
organisms are collections of digestive tracts, eyes, and other systems 
organized to attain goals, general laws of complex systems will not suffice. 
Matter simply does not have an innate tendency to organize itself into 
broccoli, wombats, and ladybugs.

There is certainly an observed level of robustness of the brain architecture across a very 
wide spectrum of living organisms. Though there will be doubts about the degree to which 
the ‘design’ is well enough defined, in terms of mechanism, to be properly termed ‘design’.

A key aspect of the brain architecture of placental mammals, such as humans, is the 
corpus callosum, connecting and mediating the functionality of the separate hemispheres.  
McGilchrist comments (pp. 18-19): 

… the evidence is that the primary effect of callosal transmission is to 
produce functional inhibition. 



… it turns out that the evolution both of brain size and of hemisphere 
asymmetry went hand in hand with a reduction in interhemispheric 
connectivity. And, in the ultimate case of the modern human brain, its twin 
hemispheres have been characterised as two autonomous systems.

So is there actually some purpose in the division of neuronal, and therefore, 
mental processes? If so, what could that be? 

We might further ask: Given this division, to be found in animals generally, what is the 
benefit of the moderated reconnection via the corpus callosum? And what is the 
explanation of the placental mammal connection? Relevant to our more general concerns 
with the computational content of causality in a very general context, we might reframe 
these questions:

What are the computational parallels and distinctions between the different modes of 
dealing with information? And between the ways in which the computational modes can 
effectively combine? How do these modes relate to the classical Turing model of 
computation? And is there a suitable adaptation of classical computability  theory capable 
of accommodating them in an informative way? And crucially for life in our computationally 
hybrid world ― what is the appropriate balance, and level of interaction and autonomy, to 
be granted these computationally different frameworks? And what are the mechanisms, or 
absence of mechanisms, to ensure such a balance?

The hope is that we are seeing a new level of exchange of experiences and analytical 
tools with the potential to give us not just enhanced human functionality, but a new 
consciousness of the special relationship  between different ways of thinking ― based in a 
suitably  updated and more mature appreciation of the nature of causality and its 
computational framework.

A first step is to look more closely at the classical model. 

4. Causality as Computation - “I am building a brain”
Despite the distrust of those with a more spiritual, artistic or humanistic view of their world, 
the scientific world we inherited from Isaac Newton and his contemporaries has served us 
well. Einstein’s comment (p.54 of Out of My Later Years, 1950) that:

When we say that we understand a group of natural phenomena, we mean 
that we have found a constructive theory which embraces them …

underpins a hard-nosed approach to knowledge of the world, which expects epistemology 
to provide off-the-peg knowledge for mass consumption, knowledge machine reproducible 
via proofs and computer calculation. The mechanics of the mathematical model underlying 
so much of the science was originally extracted from a well-defined physical context. 
Turing based them on the actions of human ‘computers’ (usually women in pre-1936 days) 
calculating in a given language, with pencil and paper, according to specific instructions. 

The close relationship of the model to the physical world reflected Max Newman’s 
description of Turing as “… at heart more of an applied than a pure mathematician” ―  
although the model became relevant in many  other contexts: To computing machines, 
physics, and biology, for instance. Turing had a lifelong interest in basic elements of 
science and engineering. But this was not part of what was depicted in the 1936 paper on 
computable numbers. As a schoolboy, Turing had studied Einstein’s theory  of relativity; 



and in Cambridge had attended lectures of Paul Dirac on quantum mechanics. Robin 
Gandy, Turing’s only  doctoral student, actually started out as an applied mathematician, 
and was employed as such as a lecturer at Leeds University  in the late 1950s. The 
postcards Turing sent to Gandy before he died in 1954 (see the example above) seem to 
us now to show the influence of Dirac and the keen interest in questions of causality and 
computation raised by the new science.

The Turing machine disembodied a rather specific part of the real world, and served to 
disembody our vision of computation much more widely ― and, arguably, held in tow a 
deal more disembodiment than was appropriate. 



Having erased the human ‘computers’ from the picture, the disembodied hardware 
appeared trivial. It consisted of no more than an extendable tape subdivided into cells in 
which to record symbols, and a single reading/writing head - see above diagram. While the 
basic actions performed by the reading head were chosen to generate all the more 
complicated actions one might envisage, ensuring that the potential was there to compute 
any real number computable by an algorithm. Essentially, with the right usage, the Turing 
machine hardware was ‘Turing complete’, in that (modulo some less than trivial re-
embodiment) it could compute anything the human ‘computer’ could compute. And various 
people duly  verified that all the other abstract models of such computation which they 
encountered ― some apparently  quite different ― had exactly  the same power. Of course, 
different models could be applied to different languages, with various computing 
conventions, but this was immaterial in relation to overall computing potential. 

So the hardware was as simple as could be, and all the computing power was in the 
program it was presented with. And ― something which underlies the sometimes fractious 
contacts between theoretical computer scientists and engineers ― the convention arose 
whereby the theorists identified the machine with its program. Having disembodied the 
computing machines of earlier centuries ― the machines which had to be physically built 
pre-Turing to do different kinds of computational chores ― the theorists muddied the 
waters by  giving the program, something which was not a machine at all, the name ‘Turing 
machine’. In the course of time, the distinctions between machine and information, and 
between program and data have receded in relation to both the engineering and 
theoretical worlds. And the seeds of this were laid by Turing’s very special universal 
machine, which he used to derive a computational counterpart to Kurt Gödel’s 1931 
Incompleteness Theorem. 

To understand the significance and mathematical sleight of hand encased in the universal 
Turing machine, one needs a little more detail than is usually  given. The important property 
the universal machine (that is, its program) had to have, was crucially: That all one had to 
do was to give the universal machine a piece of data which said “Please, compute with 
input x just like that other Turing machine over there (which you never saw before) would”, 
and it would do it! The trick was, that instead of a lumbering great contraption, like Charles 
Babbage’s Analytical Engine would have been if built, which would be hard to code up as a 
single piece of input data! ― a Turing machine was entirely determined by a finite set of 
instructions, a set which held within it all the logical structure needed for a particular 
computational chore: it could hence be coded up as a single piece of input data ― say a 
number, or a binary string, or whatever the machine was used to. 

So let’s assume we have coded up all the Turing machines as natural numbers e, say, via 
a listing of all the Turing machine programs. We can then program our universal Turing 
machine U, say, so that when it is given a pair (e,x) of natural numbers, it decodes the 
machine T coded by e, and then proceeds to compute exactly like T would with input x. 
You can actually write down the program for such a U, and this has been done in various 
forms. We write φT (φe) for the number theoretic function of one argument computed by T.

The huge significance of the coding trick is that we have reduced some complicated 
information (a suitably set up Babbage machine, say) to a simple piece of data. You might 
not be too impressed. You might say “Ah, but all I need is a set of plans of the machine, 
and I can build it ― and then a code for the plans is essentially the machine ― what’s the 
big deal?” The ‘big deal’ is that you are using Turing’s work with hind-sight. If I gave you a 



bucket of slime mould (see, for instance, Andrew Adamatzky et al, On creativity of slime 
mould, Int. J. of General Systems, vol. 42, 2013, pp.  441-457), the coding capturing the 
computing medium might be a little trickier … i.e., non-trivial, and just perhaps an 
indication of a more complicated level of information that our Turing machine cannot 
handle. Later, we will look at the type structure of information, and look on the reduction of 
machine to code by Turing as a route to less simple computational type reduction. And 
following Turing one must then view the machine itself, regardless of the informational type 
a description it demands,  as an input into the computational process. 

In the more limited context of computer history, it needs to be noticed that the actual 
computing machines built involved a high degree of re-embodiment. It was not just the 
discovery of basic elements of the Turing machine hardware, such as material hosts for 
the memory, which were required. For very important operational reasons, basic logical 
structure was embodied in the hardware. In the more iconoclastic modern re-assessment 
on disembodied computation ― which this article is intended as a contribution to ― 
various writers (usually  from outside mathematics) have immersed themselves in the 
minutiae of particular computer solutions, and discovered that Turing’s universal machine 
was fairly  unrecognizable therein. See for example Thomas Haigh’s conference article on  
‘Stored Program Concept' Considered Harmful: History and Historiography (in The Nature 
of Computation. Logic, Algorithms, Applications, ed. Paola Bonizzoni, Vasco Brattka, 
Benedikt Löwe, Springer, 2013). Though from a mathematical perspective, the big idea of 
universality can be swarmed all over with Lilliputian thoroughness, but its powerful vitality 
is hard to keep down.

It is the universal machine, and its strangely fortuitous genesis in type reduction, that  
underpins the functionalist view of the informational universe and its computational 
structure ― and then brings it into doubt as a comprehensive computing paradigm. The 
functionalist view ― which stresses what a computer does as something realizable via 
different computing platforms ― was first developed in relation to philosophy of mind and 
AI.  A seminal contribution was Hilary Putnam’s 1960 writing on Minds and Machines. The 
idea can also be found in muted form in the notion of virtual machine, emerging in the 
computing world in the late 1960s, for instance in the IBM time-sharing operating system 
CP/CMS (Control Program/Cambridge Monitor System).

The post-1936 developments were dramatic, and must have been very  exciting for those 
in at the start of the computer age. One can excuse Turing for getting carried away, at one 
point quoted by Donald Bayley as saying, while working on the ‘Delilah’ speech encryption 
project at Hanslope Park, that he was “building a brain”. 

In recent times, Putnam has drawn back somewhat from the 1960s functionalist simplicity, 
retaining some elements and disposing of others. Here he is (p.89 of Is the Causal 
Structure of the Physical Itself Something Physical? in Realism with a Human Face, 
Harvard University Press, Cambridge, MA, 1990 [35]), qualifying his earlier view:

… if the physical universe itself is an automaton … , then it is unintelligible 
how any particular structure can be singled out as “the” causal structure of the 
universe. Of course, the universe fulfills structural descriptions - in some way 
or other it fulfills every structural description that dos not call for too high a 
cardinality on the part of the system being modeled; … the problem is how 
any one structure can be singled out as “the” structure of the system.



This does not derail the power of the paradigm. There are many successful reductions of 
‘natural’ examples of computation to the Turing model. A particularly striking example is 
David Deutsch’s 1986 use of the quantum Turing machine model to bring the ‘standard 
model’ of quantum computation within the computationally classical fold. But there is a 
giant step from this to Deutsch’s assertion (Question and Answers with David Deutsch, at 
New.Scientist.com News Service, December 2006) that: 

I am sure we will have [conscious computers], I expect they will be purely 
classical, and I expect that it will be a long time in the future.

5. Complexity, Emergence, and ‘Levels of Abstraction’
Turing’s last published paper is not only his 
most cited, but also the most dramatically 
prescient following the 1936 career-
launching ‘computable numbers’. Today, at 
a time when computational models from 
nature and bioinformatics frame the 
professional lives of  literally thousands of 
scientists, it is instructive to revisit the 
computational underpinnings of Turing’s 
patterns in nature. In 1936 the young Alan 
Turing had broken a computational context 
into basic ingredients which possessed a 
clear computationally causal character. In 
his 1952 paper The chemical basis of 
mo rphogenes i s ( i n Ph i l osoph i ca l 
Transactions of the Royal Society of 
London. Series B, 237 (1952), 37-72) Turing attempts something similar for a selection of 
pattern forming processes in nature. The differential equations he formulated from the 
proposed reaction-diffusion models gave solutions suggesting that the analysis was 
broadly correct. Research since 1952 has partly  confirmed Turing’s approach, and partly 
led to modifications and new directions. What is important for us is that Turing had 
effectively given descriptions of the morphogenesis in computational terms, which pointed 
the way to notions of computation, embodied computation, with the potential to bring 
together the descriptive and computational approaches to epistemology. It opened out a 
route to a better understanding of ‘how the world computes’. For more explanation and 
history of Turing’s work and influence in this area, good sources can be found in Alan 
Turing - His Work and Impact ― particularly informative are the articles by James Murray 
and Philip Maini. 

The solutions to Turing’s differential equations were point-wise computable, and Turing 
was able to simulate them in Manchester using the new computer technology ― in effect, 
placing these surprising outcomes firmly within the classical framework. However, the 
descriptive form of the solutions had the power, potentially, to resist this kind of ― what we 
will call ― type reduction. Notice that what is interesting about the simulations ― and 
morphogenesis in nature ― are the patterns. Whereas the computer’s focus is point-wise. 
It occupies the world of the termite, computing without being able to take full ownership of 
its creation. Turing’s vision brings us closer, not just to understanding morphogenesis as a 



phenomenon, but to a better understanding of levels of computation and how they are 
achieved. 

Concerning the problem of pattern recognition and extraction of meaning, Judson C. Webb 
(Mechanism, Mentalism, and Metamathematics - An Essay on Finitism, D. Reidel 
Publishing Co., 1980, pp. 246-247) writes: 

Our discussion of abstract Turing machines has, of course, taken the problem 
of ‘pattern recognition’ largely for granted, but it is by no means obvious that a 
physical realization of a Turing machine can always be programmed to learn 
to recognize the global properties of arbitrarily degraded symbols. … 
Weizenbaum … points out that the general problem of computer vision “is in 
many respects fundamentally the same as that of machine understanding of 
natural language” … . The historical roots of this problem go back … to the 
issue of blind mechanisms doing geometry that arose in Poincare’s critique of 
Hilbert’s ‘purely logical’ approach to geometry. … I believe that the ultimate 
test of artificial intelligence ― at least in the case of mathematics ― will come 
in this geometric arena which requires the coordinated use of both the 
perceptual and cognitive abilities of machines, as opposed to the relatively 
barren arithmetical arena in which machines need only think.

Poincare’s observation turns out to be a key one, backed up by subsequent developments. 

Pattern recognition is a first step  towards extracting 
semantic content from patterns. Let us illustrate this 
with an example from mathematics, where both 
computational content and the human appreciation of 
higher type information is familiar to us. The 
Mandelbrot set provides a simple example of a 
computationally based structure which carries with it 
higher order information of great interest to many 
leading researchers ― see for example, Lenore Blum, 
Felipe Cucker, Michael Shub and Stephen Smale, 
Complexity and Real Computation, Springer, 1997. 
The fascinating form of the Mandelbrot set emerges 
via an approximation to its representation in the 
complex plane, embodied on the observer’s computer 
monitor. Despite the book of Blum, Smale et al, there 
are questions concerning the point-wise computability 
of the set. The members of the set are the complex 
numbers c for which the limiting behaviour of the 
sequence z0=0, z1, z2, ..., governed by the recurrence 
relation

 " " " zn+1=zn
2+c, 

is bounded. 

The logician will easily  spot that the description of such numbers c involves the addition of 
a couple of alternating quantifiers, a source of alarm as we shall see that quantification 
was what takes the observed behaviour of Turing’s universal machine U out of the purview 
of itself. The mathematics tells us enough about the bound involved to reduce the 



description to one universal quantifier, giving the description of the Mandelbrot set the 
flavour of Turing’s 1936 example of an incomputable set. 

For the core computable analysis community  the computability of the Mandelbrot set is still 
correspondingly  in question. Interesting as this is,  it is not what impresses us out in the 
real world. Our mental image of the form of the set is unrestricted by  the point-wise 
computations, and we delve deeper and deeper via our computer approximations, 
excavating surprise upon surprise, aesthetic pleasure upon aesthetic pleasure, as the 
infinite variety  of shape within is unfolded. It is not the facility of the brain for receiving and 
internally representing the shapes which is so remarkable ― it is the sense of context 
which comes into play, the resource-based expectations, the higher order comparison with 
previously stored form and the mental repercussions which feed into our subsequent 
thinking. Echoing Judson Webb, it is ‘by no means obvious’ that our computer can be 
programmed to share this experience, still less to iterate the shared experience as the 
human brain might. 

The problem here parallels the challenge of ‘big data’ in today’s wider world. In this context 
great strides are being taken. An appreciation of the mathematical context of the statistical 
tools investigators are driven to here may enable us to better understand the potential 
convergence of real-world models, its scheduling, and the future relationship  of the 
available models ― human and human constructed. 

Underlying this scenario (see the next section) is the role of descriptions, their relationship 
to Turing’s classical computation, and the way  in which this relationship  creates 
informational structure relevant to our residence in the real world. There are different entry  
points to this landscape. There is the ‘levelism’ of the rich repertoire of mathematical 
hierarchies, mainly the domain of the logician ― in general, mathematicians like to be 
given a specific informational context to solve their puzzles within. And there is the 
descriptive natural language based approach of the mass of humanity, at its most 
analytical reaches represented by the philosophically  minded ― and trained. Of course, 
there are increasingly people who can traverse with a degree of expertise the boundaries 
between different approaches and disciplines. 

A recent, and timely, intervention from the philosophical side is Luciano Floridi’s book on 
The Philosophy of Information (Oxford University Press, 2011). Levels of Abstraction play 
a key role in his advocacy of ISR (Informational Structural Realism) as an alternative to the 
informational and computational flatness of the dominant digital ontology. According to 
Floridi: 

A level of abstraction (LoA) is a finite but non-empty set of observables. … 
The introduction of LoAs is often an important step prior to mathematical 
modelling of the phenomenon under consideration … Use of LoAs is effective 
… where a typed theory would be effective … [but] analysis … may be 
conducted at different levels of epistemological levelism.

Floridi is keen to emphasize the full diversity  of LoAs, without being too specific about their 
basis. The more appropriate mathematical analysis is to a given context, such as in 
physics or other physical sciences, the more prepared he is to admit the relevance of 
informational typing. Of course, the mathematical analysis needs to respond to the way in 
which the ‘levelism’ can be transcended by relationships and reductions between levels ― 
duly captured conceptually, if not in specific detail, by corresponding aspects of the 



mathematics; while the semantics need to recognize relationships between the 
constructive levers to hierarchical levels of information, and the physical processes and 
phase transitions which impact on the nature and frontiers of the domains identifiable 
semantically as LoAs. 

This impact is as significant in the ontological and epistemological domains as it is in the 
more abstract logical and mathematical contexts. The typing arose from Bertrand Russell’s 
work on setting rules for the epistemology which purged the science of paradoxical 
description of sets. Kurt Gödel gave a simple description of the basic typing in his 
Russell’s mathematical  logic in 1944: 

By the theory of simple types I mean the doctrine which says that the objects 
of thought ... are divided into types, namely: individuals, properties of 
individuals, relations between individuals, properties of such relations, etc. ... , 
and that sentences of the form: " a has the property φ ", " b bears the relation 
R to c ", etc. are meaningless, if a, b, c, R, φ are not of types fitting together. 
Mixed types (such as classes containing individuals and classes as elements) 
and therefore also transfinite types (such as the class of all classes of finite 
types) are excluded. That the theory of simple types suffices for avoiding also 
the epistemological paradoxes is shown by a closer analysis of these.

We can clearly see the typing at work in the transition from individual type-1 members of 
the Mandelbrot set to its conflated type-2 whole. And the commonly  encountered 
descriptive progression from underlying computational causality  to emergent form can be 
more generally related to the type-theoretic framework. 

The improved clarity concerning LoAs and their relationships pays off. It makes better 
sense of the way in which descriptions leading to new scientific (epistemological) levels 
substantiate and are clarified by what we know about the computational structure 
accompanying the typing, and the finer mathematical infrastructure carried with it. We 
need to carry  this forward. Without it we are only  a step  ahead of the termites in our 
understanding of the emergent forms and the observed LoAs. What is emergence, and 
why is it difficult to identify when it is taking us beyond the classical model? As Ronald C. 
Arkin points out (Behavior-Based Robotics, MIT Press, 1998, p.105): 

Emergence is often invoked in an almost mystical sense regarding the 
capabilities of behavior-based systems. Emergent behavior implies a holistic 
capability where the sum is considerably greater than its parts. It is true that 
what occurs in a behavior-based system is often a surprise to the system's 
designer, but does the surprise come because of a shortcoming of the 
analysis of the constituent behavioral building blocks and their coordination, 
or because of something else?

Appearances without analysis can be misleading, as the so-called ‘British Emergentists of 
the inter-war years discovered (See Brian P. McLaughlin: The Rise and Fall of British 
Emergentism, in Emergence or Reduction? - Essays on the Prospects of Nonreductive 
Physicalism (A. Beckermann, H. Flohr, J. Kim, eds.), de Gruyter, Berlin, 1992, pp.49-93). 
This despite the fact that the conceptual grasp was impressively  modern, anticipating the 
today’s widespread use of the notion of emergence, in very different contexts. Philosopher 
Charlie Broad, at Cambridge at the time as Turing, characteristically  wrote (C. D. Broad, 
The Mind and Its Place In Nature, Kegan-Paul, London, 1923, p.623):



... the mental properties of those events which do have mental properties are 
completely determined by the material properties which these events also 
have ... it is certainly not ... a form of Reductive Materialism; it is a form of the 
theory ... of Emergent Materialism.

6. Higher Type Incomputable Information & Randomness

Turing’s interest in morphogenesis, and the discovery of descriptions of emergent patterns 
in nature based in computationally characterized causality, gave us a better understanding 
of how another level of information could arise ― computed (in some sense to be clarified) 
by nature ― with new properties of its own. Emergence takes us to a new world of higher 
type information computed in a higher type fashion. And in the new world of higher type 
computation, we must get used to things being rather different, and paradigm breaking. 
We must face challenges to universality, closed computational context, and an extended 
Church-Turing thesis. 

On the positive side, we may build a bridge from the digital ontology  of the scientist and 
classical computational model, to the world of language, common sense, imagination and 
intuition, still incorrigibly inhabited by most of us: a world which haunted Alan Turing 
throughout his life, as we observe in his ‘popular’ writings and broadcasts after the war, 
and even glimpse in occasional informal comments in his more technically arcane writings, 
such as in his 1939 ‘ordinal logic’ paper. One can think of this bridge between intellectual 
heuristics as a form of virtual corpus callosum: a kind of abstract correlate of the complex 
connectivity  between two kinds of thinking, a connectivity special to placental mammals, 
and most highly developed in humans. 

Of course, the main aim of Turing’s 1936 paper was not just to model basic computational 
practice, but to also show that the model was mathematically transcended. Incomputability 
was the point of the paper ― not the laying of the theoretical foundations of computer 
science. And in a mathematically precise way he mapped out the steps up a level of the 
type structure, a Jack and the Beanstalk scaling of the heights leading to a new world of 
dangers and opportunities. The ascent would be easier than the way back, a familiar part 
of the computational terrain. But with ingenuity one might contend successfully with the 
‘big data’ and deliver - like Churchill’s workers at Bletchley Park - the golden egg of 
decrypted information content. 

Taking a universal Turing machine U and a natural number x, and one can ask whether 
there is a computer program to tell us (in general) whether U given input x ever stops 
computing. In 1936 Turing (essentially) proved the unsolvability of this so-called Halting 
Problem for U:

No computer can tell us, for each given input x, whether U will ever complete 
its computation with input x.

Actually, what Turing did was have his machines compute binary real numbers. And a 
computable real r∈(0,1) would be one whose non-terminating decimal representation was 
computed by a Turing machine T, say, writing r = rT. Then Turing gave us an effective 
version of Cantor’s theorem concerning the uncountability  of the open interval (0,1). In the 
spirit of Gödel’s Incompleteness Theorem, Turing showed that U could not have 
computational knowledge of its own collated outputs (the jump in type): there were Turing 



machines T for which U could not tell whether the decimal representation rT was a fully 
computed real or not. Otherwise, one could computably list all computable reals, 
computably diagonalize the list, and get a new real rT*, say, not on the list. 

The more usual incomputable object associated with U is its Halting Set 

HU = {x∈ℕ | φU(x) is computed}. 

The power of first-order Peano Arithmetic (PA) to ‘semi-represent’ the Halting Set gave 
undecidability  of PA ― and most strikingly, the negative solution to David Hilbert’s 1928 
Entscheidungsproblem, in the form of ‘Church’s Theorem’ saying, in simple terms:

No computer can tell us, for each given sentence of first-order logic, whether 
it is logically valid or not.

Church’s Theorem can seem somewhat counter-intuitive at a first encounter, though our 
frustrating experiences with embodied computers prepares us for the unpredictability of 
computational outcomes! 

Out in the real world, unpredictability is omnipresent, without shaking the confidence of 
many in the basic validity of the classical model, and its comprehensive extendability. To 
others, it seems more likely  that we can blame faulty  epistemology for an imperfect 
understanding of the structure of embodied information than for the unpredictability  of the 
phenomena it encloses. Just as we had to get used to the reality  of wave-particle duality at 
the quantum level, we may yet have to accept the crushingly simple observation that both 
quantifiers and limits provide instruments for the ascending of the informational type 
structure. And that machine, as embodied higher type information will not always come 
with parallel devices (statistical or otherwise) for type reduction. 
Given that the observer will meet difficulties in observing beyond her operative LoA, 
particularly in traversing phase transitions between basic causal context and emergent 
form encasing it (in either direction), it will not be so easy to validate speculations 
concerning the computational character of these informational frontiers. Some of the most 
theoretically intractable problems in science and the humanities can be located around 
such boundaries ― between quantum and classical reality, between brain and mentality, 
and around the balance between the human individual and the emergent social and 
economic outcomes we seem unable to control.  

We conclude this section with a few remarks on how the incomputability accords with what 
we observe in the outside world, in particular, in regard to the tendency  to replace the 
robustly defined notion of incomputability in the real context with the more arbitrary notion 
of randomness.

If the precise character of probabilities governing the outcome of a quantum measurement 
are determined by higher order rules emergent from subatomic structure, what is this 
subatomic structure? We know from work with networks and emergent biological form that 
the particularities are often key to the global outcome. The invoking of an absolute 
randomness to relieve us of the task is philosophically unsatisfying. The mathematician 
knows that there is no such thing as a robustly  defined absolute randomness. There are 
different approaches to clarifying randomness as a meaningful concept, with some degree 
of convergence at the very basic levels. But randomness is about avoidance of obstacles 
to our intuitive vision of the concept. And it is in the pinning down of the obstacles that we  
discover that there is a whole inexhaustible hierarchy (even hierarchies) of randomness.



Of course, quantum randomness is a familiar experimental and theoretical phenomenon 
for the physicist. As computer scientist Cristian Calude says:

It passes all reasonable statistical properties of randomness.

So the question arises: Just how random is quantum randomness? And given that mere 
incomputability can look like randomness ― maybe quantum randomness is not random at 
all? Such questions are hard to get a grip on. In a joint paper on Quantum Randomness 
and Value Indefiniteness (Advanced Science Letters 1 (2), 2008, pp.165-168), Calude and 
physicist Karl Svozil formulate some basic assumptions concerning the quantum physics, 
and on the basis of these manage to demonstrate the incomputability, but not as yet any 
proof of any level of randomness.

The economics presents very different problems. There are certainly basic computational 
mechanisms at work in the economic context. But the economics is subject to forces which 
originate in diverse and quite different contexts, in particular, within the minds of 
individuals. There is a corresponding 
interplay of the global and local, with the 
human apt i tude for absorbing and 
representing observed macro-economic 
activity  for further economic intervention, 
presenting the economist with complexities 
crying out for the identification of emergent 
pattern. This identification must needs be 
based on observation, as must any 
resulting computational structure imposed 
on what one takes as significantly 
emergent. If one attends conferences of 
economists, one finds different approaches 
to pinning down the patterns, sometimes 
taking the cue from more theoretical areas 
such as physics, with econophysics one of 
the more interesting and active areas. But 
here is Nassim Taleb  again, decrying the 
all-too-often failure of the computational and 
mathematical approaches: 

I have spent my entire life studying randomness, practicing randomness, 
hating randomness. The more that time passes, the worse things seem to 
me, the more scared I get, the more disgusted I am with Mother Nature .....  
The more I think about my subject, the more I see evidence that the world we 
have in our minds is different from the one playing outside.

Again, in what sense is it randomness? Is it incomputability? Or even some complexity-
theoretic toy version of classical incomputability? If one wants to distinguish between 
paradigms, one needs to know a lot about both the reality and the theory one is seeking to 
impose on it. 

http://dx.doi.org/10.1166/asl.2008.016
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K. Vela Velupillai is one of the select few economists who have a good understanding of 
the logic, and in particular, the computability theory. His view of the economic uncertainties 
that Taleb ponts to, by which we are all beset, is nicely  captured in The unreasonable 
ineffectiveness of mathematics in economics (Cambridge Journal of Economics, 29, 2005, 
pp.849-872; reprinted in Computable Economics, pp.723-746): 

Through [parametric Diophantine equations], we enter the weird and 
wonderful world of undecidabilities and uncomputabilities, which is why the 
economic world, in its macroeconomic and microeconomic incarnations, is full 
of financial ambiguities. To pretend that the economic world can exist without 
such ambiguities and, hence, occasional and systematic exploitation of logical 
loopholes by unethical and immoral practitioners of financial wizardry is 
dangerous. On the other hand, recognising the intrinsic inevitability of such 
ambiguities may mean that we might happily, in a quantitative economics of 
the future, return to the Linnean fold, to classify and systematise particular 
intractable accounting schemes in increasingly and morally transparent ways. 

It is in Velupillai’s spirit of seeking out the source of the balance between unpredictability 
and form in computationally complex environments that we focus more closely on the 
mathematics underlying the apparent randomness. 

Before doing that, it is worth saying that computational complexity  does not always arrive 
in the material world red in tooth and claw. Georg Kreisel, an early  thinker on stronger 
versions of the Church-Turing thesis, speculates on the potential for incomputability  in the 
apparent simplicities of Newtonian dynamics, via the underlying infinitary mathematics 
(Church’s Thesis: a kind of reducibility axiom for constructive mathematics, in Intuitionism 
and proof theory: Proceedings of the Summer Conference at Buffalo N.Y. 1968, North-
Holland, 1970, pp.121–150), proposing a collision problem related to the 3-body problem, 
which might result in “an analog computation of a non-recursive function”. 

7. Meaning What We Say - and Computing What We Mean

When Ludwig Wittgenstein says (Tractatus Logico-Philosophicus, Proposition 1):

The world is everything that is the case.

he is setting out on a path consistent with longstanding intuitions concerning the role of 
language and symbolic representation. It is an intuition which predates the scientific era, 
one dignifying our representations of the world via language and picture, granting them 
meaning relevant to how things really are. Having developed this view, his concluding 
main Proposition 7:

Whereof one cannot speak, thereof one must be silent.

brings with it a granting of the world an epistemological, maybe even ontological, 
elusiveness evidenced by the failure of our representations ― of the rule of ‘facts’. 

In Alan Turing - His Work and Impact, in her commentary Turing, Wittgenstein and Types: 
Philosophical Aspects of Turing’s ‘The Reform of Mathematical Notation and 
Phraseology’ (1944–5), Juliet Floyd points (pp.250-253) to important parallels in Turing 
and Wittgenstein’s respect for and understanding of the function of language:

Wittgenstein and Turing are often regarded, in a misleading caricature, as 
philosophical opponents. Wittgenstein is taken to be a humanistic philosopher 



of meaning and ‘forms of life’, hostile to mathematical logic and the very idea 
of a Turing machine; Turing is taken to be a mechanistic or behaviouristic 
theorist of the mind, intent on reducing the concept of meaning to that of 
information. Neither picture is correct ...

Wittgenstein and Turing shared ... a particular sort of anti-reductionist attitude 
toward logical and conceptual analysis. On their view, it is the everyday, 
purposeful uses we humans make of language that crucially animate and 
frame the notions of meaning and information.

What Alan Turing had done in 1952 for the emergence of form in nature is capture 
particular examples via descriptions using the limiting mechanisms of the differential and 
integral calculus. He had also shown in 1936 how relatively modest extensions of the 
language used to describe Turing machines and their computations might lead (for 
example, via the Halting Set for a universal Turing machine), to levels of incomputability 
captured for us via the descriptions. 

The intuition is that natural phenomena not only generate descriptions, but arise and 
derive from them. The potential for reconciling on the one hand the pre-Newtonian hybrid 
heuristic yielding a world captured informally  via symbolic representation, with ― on the 
other hand ― the more modern scientific vision limited by modeling under controlled 
computational conditions, is striking. Out of such a reconciliation emerges a more coherent 
world, bringing together the historic experience of the power of descriptions for building a 
picture of reality, with an appropriate analysis of a logically parallel language and its 
computability theoretic infrastructure. 

In mathematics, the experience of very real and novel features of structures arising via 
descriptions is a familiar one. And classically, one has no problem accepting such 
structural features as important and interesting characteristics, even if the logical 
complexity  of the descriptions is beyond that acceptable within the computational domain. 
The formal notion, with which few outside of logic are very  familiar, is that of mathematical 
definability. And yes, as well as the real world of ad hoc definitions, one which is important 
in mathematics and beyond, the logicians have developed a framework within one can 
discuss what, out there in the real world, one might hope to describe ― or what is 
theoretically beyond description. There is also a working out of relationships between 
computation and description! This could be useful if more people knew what the logicians, 
a very few of them working in this area, were up to. 

The 1930s work of the logician Alfred Tarski in formalizing a notion of definability  of truth in 
a structure was a seminal development, helping build the framework, not just for a better 
understanding of basic algebraic and number theoretic structures, but for the better 
understanding via hierarchies of the relationship between definability and computability 
theoretic structure.  See Tarski’s 1931 paper Sur les ensembles définissables de nombres 
réels, I, in Fundamenta Mathematicae.

Hans Reichenbach’s 1924 work (Axiomatik der relativistischen Raum-Zeit-Lehre) on 
axiomatizing special relativity was an early indication that 20th century science would test 
post-Newtonian strictures defining what a good scientific theory  should deliver, bringing 
definability in science back into focus. The axiomatization of general relativity is a current 
project, carried forward by the Budapest group of Istvan Nemeti and Hajnal Andreka. 

For the the ontological realism one might find a mathematical approach via invariance 
under comprehensive enough automorphisms a more appropriate. There is much 



discussion of multiverses and alternative realities in relation to the physics. To properly 
constrain the possible alternatives one does need to filter in a comprehensive underlying 
causal structure, and a proper mathematical analysis of the possible representations in 
terms of an analysis of the potential automorphism groups. Anyone who has worked with 
this kind of mathematical challenge across a range of structures will know that ‘many 
worlds’ are nowhere as easy to manipulate into existence as one might expect. But more 
on this later. The basic question is how one models the basic underlying causal structure. 
For invariance a partial modeling may suffice. For failure of invariance, for ontological 
ambiguity, such as that encountered at the quantum level, one needs to be 
comprehensive. Note, that the sort of determination of natural characteristics ― laws, 
constants, the geometry of space-time ― that come to mind in this context, is unlikely to 
be algorithmic, or mechanical in any  recognizable sense. And this challenges us to model 
the higher order mode of natural ‘computation’ via suitably generalized computability 
theoretic notions. The aim is to provide computational approaches to this higher world of 
real information, a mathematics with properties well enough devised and understood for us 
to substantiate its link with what we observe. 

Of course, a definition in terms of basic causality  can be viewed as a corresponding 
computation, and descriptions grounded in a logic appropriate to the context will deliver 
invariance of what they  define. In this sense, a definition pinning down an invariant feature 
in nature does persuasively ‘compute’ that feature. We have seen this in terms of 
emergent form in nature, where the termite cathedral we saw earlier is there to be 
appreciated, an embodied example of a type-2 computation. 

But unlike the Turing patterns, we do not have a description of the termite cathedral. 
Turing found his descriptions by paying attention to the specific chemical iterations 
underlying the pattern formation. And this is not an uncommon phenomenon in the real 
world. One often needs to take a more explicitly computational route, carefully adapted to 
the observed process, to provide a computational framework with an explanatory  and 



efficiently computational role. And it is this which the various notions of higher finite type 
are designed to tackle. For a history and review of notions, see John Longley’s article 
Notions of Computability at Higher Types I, in Logic Colloquium 2000, Lecture Notes in 
Logic 19, ASL (2005), pp.32-142. Early work grew out of the classical case, with key 
contributors being Stephen Kleene and Gerald Sacks. 

As Longley describes though, the notions have multiplied, and the computational 
frameworks confirms much of what we observe regarding the uncertainties attendant on 
the bringing of the mathematics of turbulence, emergence or big data into our classical 
computational comfort zone. Regarding the conceptual robustness we have come to 
expect, Longley writes:

It is ... clear that very many approaches to defining higher type computability 
are possible, but it is not obvious a priori whether some approaches are more 
sensible than others, or which approaches lead to equivalent notions of 
computability. In short, it is unclear in advance whether at higher types there 
is really just one natural notion of computability (as in ordinary recursion 
theory), or several, or no really natural notions at all.

The definitive book on the subject promises to be Longley and Normann’s book.

8. A Computationally Host for Definability

Our underlying theme has been the extent to which mathematics can give substance and 
informative structure to emergent intuitions about how the world works. The background 
has been Alan Turing’s corpus callosal joining together of shoe and star gazing. Above we 
commented on how Turing’s discovery (along with Alonzo Church) of incomputability 
connected with Nassim Taleb’s insights concerning economics and ‘randomness’. In his 
1939 paper on Systems of Logic Based on Ordinals (Proc. London Math. Soc. (2) 45 
(1939), 161-228) we see how Turing grapples with incompleteness and incomputability, 
using computable ordinals during the deconstruction of mathematical phase transitions, 
while delivering observations on intuition and ingenuity ― echoing by those of Jacques 
Hadamard (1945), based on Henri Poincaré’s Société de Psychologie lectures on creative 
thinking and free will. Alan Turing’s 1952 examples of mathematical descriptions of 
morphogenic emergence anticipated later developments across a whole spectrum of 
disciplines, and gave us a key insight into the role of definability in structuring information, 
while helping us understand its elusive computational character.  

There exists a mathematical basis for the contemporary  content of these anticipations of 
the role of definitions, definability and their bearings on what we can compute. This is 
informed by the buzz of current interest in big data, emergence and the familiar fuzzy 
thinking, based in statistical approximation, that makes us human. We keep in mind John 
Longley’s questioning of the likelihood of us being able to establish a Church-Turing thesis 
above the type-one level. 

Douglas Hofstadter and Emmanuel Sander have written a whole book (Surfaces and 
Essences ― Analogy as the Fuel and Fire of Thinking, from 2013) about definability  ― 
craftily  concealed within a detailed focus on the role analogies play in our thinking. They 
refer (p.184) to “the recognition of a correspondence between a newly-minted mental 
structure and an older one ― in short, the construction of an analogical bridge.” In 



emphasizing ― what we recognize as ― a computational difference between an analogy 
and a categorization, they describe:

― the seemingly trivial case of the recognition of a cup as a cup. Suppose 
you are at a friend’s house and want to fix yourself a cup of tea. You go into 
the kitchen, open a couple of cupboards, and at some point you think, “Aha, 
here’s a cup.” Have you just made an analogy? If, like most people, you’re 
inclined to answer, “Obviously not ― this was a categorization, not an 
analogy!”, we would understand the intuition, but we would propose another 
point of view. Indeed, there is an equally compelling “analogy” scenario, in 
which you would have just constructed inside your head a mental entity that 
represents the object seen in your friend’s cupboard. In this scenario, you 
would have created a mental link between that mental representation and a 
pre-existing mental structure in your head ― namely, your concept named 
“cup”. In short, you would have created a bridge linking two mental entities 
inside your head.  

What is it underpins this linking of previous and current mental entities? The authors 
clearly  see these ‘entities’ as being far from simple. There are contextual of relationships at 
play, ones which are familiar and arising from experience. It is the functionality of the cup 
in a somewhat elaborated mental picture which supports the recognition. Something which 
is not simple is brought into focus by detailed relationships over which we exercise a 
degree of mental ownership. How can start to model such relationships and what they 
deliver. How can we carry out the sort of structural comparisons between diverse contexts 
that support such analogy forming. We suspect a corresponding hierarchical construct, 
involving increasingly  complex descriptions ― and based in relationships that we have a 
basic grip of. What we do have a secure grip of is the level at which categorization, 
supported by computational criteria, comes into play. And the analogy which comes into 
play for us, is that of the emergent higher type (mathematically type-2) patterns in nature, 
which Turing deconstructed in terms of computable reaction-diffusion elements, and hence 
found descriptions of via appropriate differential equations. Of course, networks and their 
pattern-forming are extensively investigated nowadays according to all their fascinating 
specificities, and high-impact journals trace their surprising intricacies ― as one does as 
one encounters real emergence. But surely there is more to do than experience the 
botanical garden, and make interesting observations. What are the overarching  
informational structures which host these wonders?

Faced with the incomputability  of important relations, Turing introduced the notion of an 
oracle Turing machine, in order to compare degrees of incomputability. At a stroke, this 
gave us a structuring of information according to its relative computational complexity. The 
oracle machine computes just like the standard machine described earlier, but has an 
extra facility for occasionally  asking a question about a finite part of a given real number 
provided as the oracle ― the oracle being a repository  of auxiliary  information to be used 
during any given computation.

This idea gave us a model of how we compute using data given to us from unknown 
sources. It not only gave us a way of comparing computability of reals. It could also be 
used to model real world causality, where the mathematical law for computing applications 
of the law from one state to another was computable. This was a framework within which 
Newtonian computable laws fitted nicely, at the basic level. Looked at globally, one 



obtained a model of computable content of structures, based on partial computable (p.c.) 
functionals over the real numbers. So any physical context, characterised by computable 
relationships between pairs of reals representing particular physical states, could be 
presented as an instantiation of part of the resulting mathematical structure ― often 
termed the Turing universe. Strangely, despite Turing’s later interest in interactive 
computation, he never returned to the oracle machine.

In 1948, Emil Post mathematically  prepared the Turing universe for further investigation by 
grouping reals together into equivalence classes (called degrees of unsolvability) of inter-
computable reals, the degrees ordered by the induced ordering got from relative 
computation. The resulting structure, over the years, was discovered to have a very  rich 
infrastructure. Mathematically, what was seen as a high degree of pathology provided the 
means for defining a rich array of relations and individuals. The complexity, of course, was 
just what one might expect from a mathematical structure capable of reflecting causal 
structure from different physical contexts. The definable relations formed a mathematical 
counterpart of the richness of emergent phenomena in the real world.

By the 1960s, the theory  of this basic structure ― now termed the Turing degrees ― was 
becoming a very active area of pure research, one of formidable technical complexity. And 
this leads us to what has become known as Hartley Rogers’ Programme, originating with a 
paper of his on Some problems of definability in recursive function theory, based on an 
invited talk at the 1965 Logic Colloquium in Leicester. The fundamental problem implicit in 
the paper and talk, was that of characterizing the Turing definable/invariant relations over 
the structure of the Turing degrees. The intuition was that these definable relations are key 
to pinning down how higher order relations on the real world can appear to be computed. 
An important observation being that the breakdown of definability  potentially underpins 
ontological and epistemological ambiguities in the real world ― such as confused mental 
states, or uncertainty at the quantum level in physics. 

This aspect of physical computation ― the Turing 
universe and emergent relations ― is treated in 
more detail elsewhere (for example, in The 
Mathematician's Bias, and the Return to Embodied 
Computation, in H. Zenil, A Computable Universe: 
Unders tand ing and Exp lo r ing Na tu re as 
Computation, World Scientific, 2012). The key 
message is that in the real world one may describe 
global relations in terms of local structure, so 
capturing the computational basis of large-scale 
phenomena. And that mathematically  this can be 
formalized as definability, or more generally 
invariance under automorphisms, over structure 
based on relative computation. 

This is just one important ingredient in liberating us 
from the computational flatness of real world 
information. Its role is particularly appropriate to the 
scientific context, with clearly  observed counterparts 
to the computability  of basic relations, representable 
at accessible type levels. Here, the correspondence between the levels of abstraction, 



over which Hofstadter and Sander’s analogies play out, fits well with the mathematical 
type structure. Scientifically, one may need to focus on local instantiations of context, but 
the relationship to the mathematics is both useful and informative. 

Over the sort of information the human brain deals with, one has difficulty isolating closed 
systems, and the selection of pertinent relations is essentially  heuristic and shifting in 
particulars. Analogies weaken to metaphors, and the grasp  of computers becomes at best 
statistical, made fallible by the patchy reducibility  of informational type. What we are left 
with is a better understanding of the underlying patterns of knowing and not knowing, and 
appreciation of the appropriate relationship between the algorithmic and more 
characteristically  human thought. Most importantly, we properly situate digital computation 
within the wider computational context, and rediscover the role of language in navigating 
our increasingly real sense of the typing of embodied information. 
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