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Abstract. The problem of scale-effects on the performances of concrete struc-
tures is discussed. Experimentally observed decrease of nominal tensile strength,
accompanied by structural embrittlement, occurring in large structures is of crucial
importance in modern concrete engineering. Most of the previous approaches to the
problem are restricted to notched structures and they often fail to predict mechani-
cal behaviour in real situations. The physical approach put forward by us takes into
adequate account the effects of microstructural disorder and seems to be valid in
the whole size range, at least for unnotched structures. Thereby, reliable predictions
can be made of the material properties in large-sized concrete structures.
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1. Introduction

The problem of scaling is of central importance in any physical theory. In the field of structural
mechanics, the study of scale-effects is acquiring a prominent role, due to the need for proper
prediction of the mechanical properties in large-sized structures, starting from the available
test data. The development of high-performance materials, coupled with more restrictive
safety rules, also requires a more precise knowledge of the structural behaviour of large-sized
structures.

In solid mechanics, a distinction has to be made between the structural (intrinsic) scale-
effects andnominalsize effects on the apparent mechanical quantities. Regarding the first
effect, the transition from ductile to brittle behaviour can be evidenced when the size of
the structure increases (Carpinteri 1986). This kind of scale-effect is detected in all engi-
neering materials (e.g., the brittleness of Liberty ships as compared to the ductility of
Griffith’s glass filaments). As the size of a structure increases, a more catastrophic fail-
ure is expected because the rate of energy release due to fracture is progressively higher
than the rate of energy consumption on the crack surface. Dimensional analysis is per-
haps the best tool to get a first physical insight into this phenomenon. While, in fact,
the energy release rate scales with the structure size according to [L]3, the energy dis-
sipated on the crack surface scales according only to [L]2. Carpinteri & Chiaia (1996)
have demonstrated that this dimensional competition is smoothed when energy dissipation
occurs also in the volume, as it is the case of process zones where damage and plasticity
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occur, or when it takes place within fractal domains with dimension larger than 2.0 (inter-
mediate sets between surfaces and volumes). In all these cases, a more ductile collapse
occurs.

The most important scale effect on nominal material properties is the effect of struc-
ture size on apparent strength (Baz̆ant & Chen 1997). This problem was initially addressed
by Leonardo da Vinci, who can be considered the first theorist of the so-called statistical
size-effect. He stated, in fact, that “if two ropes have the same thickness, the longest is
the weakest”. Later, but still two centuries before the development of the modern probabil-
ity theory, the French scientist E Mariotte observed the random scatter of material proper-
ties and shed new light onto material science. However, the modern statistical approach is
based on the weakest link concept, originally proposed by Weibull (1939) and later devel-
oped by Freudenthal (1968) and Carpinteri (1986) among others. In this context, the size
effect on nominal strength is provided by the probability of meeting the most critical defect
(depending on its size and orientation), which obviously increases with increase in structural
size.

A more systematic discussion on the problem can be found in the well-known book by
Galileo (Galilei 1638). Starting from the observation of nature, Galileo concluded that, if
the skeletons of small and large vertebrates are compared, a transition from slender to thick
bones is observed (figure 1). The bones increase more than proportionally to the linear size of
the animal, because of the interplay of the animal weight(∼ [L] 3) and of the bone strength
(∼ [L] 2). Nowadays we know that the contribution of the skeleton to the total weight in
vertebrates is percentually higher in large animals, representing only 8% for mice, 14%
for dogs, 18% for humans and 27% for elephants (D’Arcy 1917). It is interesting to note
that the above conclusion holds only in the case of terrestrial vertebrates. In fact, if the
shapes (and the skeletons) of a whale and of a dolphin are compared, it seems that a perfect
structural similitude is maintained. Recalling dimensional analysis, one can easily conclude
that this is due to the hydrostatic thrust(∼ [L] 3) which counterbalances the gravitational
force.

Figure 1. Original drawings on size-effects
by Galileo.
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Figure 2. Size effect on strength according
to LEFM.

Moving to modern times, a major advance was made by Griffith (1921). Its well-known
energy-based approach for crack propagation naturally provides that the nominal strengthσu

decreases with the structural sizeb according to:

σu ∼ b−1/2. (1)

If the Irwin’s stress approach (Irwin 1957) is adopted, the same scaling behaviour is obtained
by simply applying dimensional analysis to the usual parameters governing Linear Elas-
tic Fracture Mechanics (LEFM). In fact, the dimensional disparity between tensile stress
σ([F][L] −2) and stress-intensity factorKI([F][L] −3/2) causes a constant slope equal to−1/2
in the nominal strength vs. structural size bilogarithmic diagram, as shown in figure 2 (Carpin-
teri 1989). It has been shown (Carpinteri 1994b) that this corresponds to a limit condition of
extreme disorder, and cannot be considered universal behaviour valid for the whole size range
of unnotched structures. Only when the size of the crack is sufficiently large, will the LEFM
singularity play a pre-eminent role. Also, if the smooth cracks are substituted by fractal cracks
(Carpinteri & Chiaia 1996), which are clearly a better approximation to reality, the stress
singularity power exponent decreases yielding a slope smaller than−1/2 in the log-log plot.

In 1984, Băzant proposed the so-called Size Effect Law for concrete (SEL), where LEFM
and limit analysis concepts were joined together yielding:

σu = Bft/ [1 + (b/b0)]
1/2 , (2)

whereft is the plastic limit stress,B andb0 are two constants to be determined in each case
by fitting the experimental data (figure 3).

Nonlinear
Fracture
Mechanics

Limit
Analysis LEFM

log b
Figure 3. Baz̆ant’s size effect
law (SEL).
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As shown in figure 3, in order to derive (2), baz̆ant assumed that the total potential energy,
released during fracture, is proportional to the square of the crack lengtha, which scales
proportionally to the specimen sizeb (i.e., a/b = constant). At the same time, the energy
dissipation is proportional to a, because the width of the crack band is assumed to be constant
and proportional to the maximum aggregate size(ndmax). Several analyses on the notch
sensitivity behaviour using the fictitious crack model by Hillerborget al(1976) have supported
Baz̆ant’s SEL and, because scaling effects are present even in members without initial cracks,
the SEL was erroneously extended also to unnotched geometries.

Several experimental results, however, indicate that even the largest members without initial
crack resist some stress, contrary to the SEL predictions. Therefore, based on this experimental
evidence, some theoretical explanations of the inadequacy of (2) have been provided in the
recent literature. Bruhwileret al(1991) argued that the effect ofdmax on the scaling behaviour
of concrete is not consistent with that predicted by SEL. Tanget al (1992) pointed out the
essential misunderstanding in the hypotheses on which SEL is based. Baz̆ant obtained his
formulation only for notched specimens and assumed that the notch sizea, responsible for the
stress singularity, was scaled proportional to the structural size. When applying the SEL to
unnotched specimens, the above hypothesis falls because in real disordered materials the size
a of the characteristic flaw, which is responsible for the crack propagation, is independent of
the specimen size. This clear disagreement from reality causes the anomalous behaviour of
Baz̆ant’s SEL, which, in the limit of infinite structural size, incorrectly results in being totally
governed by Linear Elastic Fracture Mechanics. In this way, one should expect a (unrealistic)
value of tensile strength equal to zero for very large structures (figure 3).

Some attempts have been made to put into the model the variable influence of the charac-
teristic flaw sizea, in the case of initially unnotched specimens. An empirical Modified Size
Effect Law (MSEL) was proposed by Kim & Eo (1990), in order to fit the experimental data
obtained from Brazilian splitting tests on concrete cylinders (Hasegawaet al 1985), where
the inadequacy of SEL was strongly evidenced (see figure 13 in § 4). The MSEL equation
was obtained by simply adding a constant corrective parameter to Baz̆ant’s equation:

σu = {
Bft/ [1 + (b/b0)]

1/2} + αft . (3)

By applying the MSEL, a more realistic asymptotic non-zero value of the tensile strength
can be determined, in the limit of infinite structural sizes. However, (3) depends on three-
parameters, and Planaset al (1995) showed that the values ofα, obtained by best-fitting of
the experimental data, are close to 0.15, implying that too low an asymptotic value of the
strength is predicted(σu = 0.15ft ).

2. Size effects on the bending strength

It is nowadays widely believed that the true fracture properties of concrete structures can
be unequivocally determined only by means of uniaxial tensile tests. Unfortunately, tensile
tests are difficult to carry out in standard laboratories, either with fixed or rotating bound-
ary conditions. Therefore, the ultimate bending strength, also called themodulus of rupture
σ

f lex
u ,which is measured for beams in either three-or four-point bending, turns out to be an

experimentally convenient measure of strength owing to the relative simplicity of these tests.
On the other hand, the strong size-dependence of the bending properties (not only of the
nominal strength, but also of the rotational capacity and ductility) has been earlier detected in
several investigations carried out on plain and reinforced concrete members (Neville 1981).
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Indeed, the correct determination of the bending strength of real-sized structures is crucial
from engineering viewpoints, due to the large amount of concrete members subjected to
flexure and to the wide diffusion of bending tests throughout the laboratories. This explains
the theoretical and experimental efforts made by the scientific and engineering community in
order to interpret the phenomenon of the size-dependence ofσ

f lex
u , whereas only in the last

ten years attention has been drawn also to the other structural geometries.
It is important to point out that uncertainties in the determination of the bending strength

affect both allowable stress design and limit state design, in the former case by lowering the
reliability of the safety factor and in the latter case by providing unacceptable stress–strain
conditions under service loads. In both cases, exceeding prudence due to uncertainty may lead
to coarse oversizing or to overestimations of the reinforcement ratios. Problems arise not only
in the case of plain concrete structures (large foundation beams or massive walls) but also in
reinforced members, where cracking of the most stressed concrete layers leads to corrosion
of the steel bars and dramatically infers durability. Moreover, the minimum reinforcement
requirements for beams subjected to bending are strongly related to the modulus of rupture. In
fact, it has become clear that, especially for deep beams, the correct minimum reinforcement
ratio can be computed only by means of a fracture mechanics approach (Carpinteriet al1997).

Building codes usually relate the (nominal) bending strengthσ
f lex
u to a constant quantity

fct , which is intended as the uniaxial tensile strength. According to the elastic bending theory,
if Mu is the ultimate bending moment in the central cross section of the beam (subjected to
either three-or four-point bending), andt andb are respectively the thickness and the depth
of the beam, the nominal bending strength is given by:

σf lex
u = 6Mu/b

2t. (4)

If we assume thatfct is the limit tensile stress that the material can locally undergo, it follows
that the bending strengthσf lex

u coincides withfct in the case of an elastic-perfectly brittle
material (figure 4a). No size-effect is provided in this case (figure 4c). In fact, catastrophic
failure is supposed to occur as soon asfct is reached in any point of the beam (figure 4b).
Nevertheless, this would be true in the (ideal) case of pure bending while, in the case of three-
point bending, the modulus of ruptureσ

f lex
u exceedsfct by almost 5% due to the asymmetrical

stress field.
A trivial relation between the modulus of ruptureσf lex

u andfct is provided by the ACI
(1992), which merely assumes, on the average:

σf lex
u = 1.25fct . (5)

(a) (b) (c)

Figure 4. Elastic-perfectly brittle bending model.
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The size-dependence of the bending strength is therefore not taken into account by (5), which
only states thatσf lex

u is larger thanfct , as it had been reported much earlier (Neville 1981).
An analogous approach is maintained by the CEC (1994), where the concrete tensile strength
fct , if measured by means of flexural tests, has to be drastically reduced by 50%:

σf lex
u = 2.0fct . (6)

If plasticity is supposed to occur in the most stressed layers of the beam, the nominal
flexural strengthσf lex

u , computed according to (4), is found to depend upon the strain gradient
(figure 5). Shallower beams (figure 5b) do therefore yield higher values of the nominal bending
strength, according to the larger strain decrease with respect to the depth (steep gradient).
On the basis of this theory and of early experimental results, an empirical expression was
proposed by Heilmann (1976), relating the nominal flexural strengthσ

f lex
u to the deptha of

the tensile zone (figure 5a), which can be considered approximately proportional to the total
beam depthb:

σf lex
u = (0.8 + 0.26a−0.6)fct , (7)

wherea has to be measured in metres. Note that, according to (7), the nominal bending strength
σ

f lex
u of very deep beams (a >1500 mm) may become smaller thanfct . Note also that these

arguments would imply that the nominal bending strength increases if applied compression
loads act upon the beam, thus reducing the sizea of the tensile zone.

Based on a similar strain-gradient approach, a size-dependent empirical relationship
between the modulus of rupture and the tensile strength has been specified in the CEB-FIP
(1991) Model Code and is given by:

σf lex
u = fct

[
1 + 2.0(b/b0)

0.7

2.0(b/b0)0.7

]
, (8)

whereb is the beam depth andb0 is a reference size equal to 100 mm. Equation (8) is applicable
to unnotched beams withb ≥ 50 mm. Note that the above equation comes from experimental

(a) (b) (c)

Figure 5. Effect of variable strain gradients on nominal bending strength. Shallow(b) vs. deep(c)
beams.
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observations and no considerations are involved regarding the role of the microstructure,
whereas aggregate interlocking is explicitly taken into account in the aforementioned codes
when dealing with the ultimate shear strength.

If the elastic-perfectly brittle constitutive model is abandoned, and the Cohesive Crack
Model (Hillerborget al1976) is assumed to represent the mesoscopic mechanical behaviour
of concrete, the size-dependence of the modulus of rupture can be more adequately described.
Indeed, a unique relationship cannot be deduced, since solutions may appreciably differ from
one another, depending on the shape of the softening curve (Planaset al 1995). Different
failure mechanisms may take place, depending on the rate of consumption of the fracture
energyGF . Nevertheless, the asymptotic behaviour predicted by the cohesive approach is
GF -independent, and yields the following relations:

σf lex
u → 3fct for b → 0, (9a)

σf lex
u → fct for b → ∞, (9b)

where the limit (9a) for structural sizes tending to zero represents a plastic limit solution, as
it was shown by Carpinteri (1986).

Primary importance has been given by the Japanese scientific community to the size effect
on bending strength. Among the various proposed solutions, it is worth mentioning the empir-
ical equation put forward by Uchida (1992):

σf lex
u = fct

[
1 + 1

0.85+ 4.5(b/ lH )

]
, (10)

wherelH = EGF /f 2
ct is the Hillerborg’s characteristic length (Hillerborget al 1976) and

b/lH ≥ 0.1. For a typical concretelH ≈ 300 mm whereas, in the case of high-strength
mixtures, this value can eventually be halved.

The aforementioned empirical models fit the experimental results only in a narrow size
range, due to the lack of theoretical bases. Moreover, appreciable differences arise between
the curves, either in the case of the smaller or, which is more important, in the case of the
larger beam sizes (Carpinteriet al 1997). However, Băzant’s Size Effect Law, (2), although
based on theoretical arguments, failed to interpret various three-point bending and four-point
bending tests on unnotched beams (see § 4). Other nonlinear fracture mechanics models have
been recently developed to explain the size-dependence of the modulus of ruptureσ

f lex
u , but

they work only in a limited range. This is the case of the boundary layer model by Baz̆ant &
Li (1995) and of the two-parameter model by Jenq & Shah (1985). The former model gives
an interpretation of size-effect which is alternative to SEL, and is supposed to hold when
macrocracking is not occurring and energy release is not primarily involved in the definition
of the peak-load. In the case of the latter model, astonishingly, the modulus of rupture seems
to increase with the depth of the beam in the smaller sizes range, which represents a clear
inconsistency.

In conclusion, a completely different approach should be pursued and a more general inter-
pretation of scaling should be provided. Scale-effects have been detected in all the testing
geometries and loading schemes. Thus, not only should bending size-effects be explained,
but a physical model capable of interpreting all the particular situations should be put for-
ward. Fractal geometry, coupled with the theory of critical phenomena, gives the means for
developing such a non-conventional model.
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3. The multifractal scaling law

3.1 Fractal modelling of disordered materials

It is nowadays established that the process of fracture in brittle and quasi-brittle materials
should be set in the framework of critical phenomena, and should be considered acooperative
phenomenonwith interactions at all the length scales. Moreover, experimental evidence of
fractality (self-similar morphologies with non-integer physical dimensions) has been detected
in the microstructure of many heterogeneous materials. Networks of surface cracks, Fracture
surfaces of concrete, rocks, ceramics and metals, and Distributions of microcracks in the bulk
of a stressed body possess fractal properties in a well-defined scale range. Only by an adequate
modelling of the disordered microstructure, can the scaling behaviour of the mechanical
quantities be consistently explained.

Carpinteri (1994a) demonstrated that the non-integer dimensions of the domains on which
the physical quantities are defined assume deep significance with respect to the scaling
behaviour of the same quantities. In this respect, a fundamental distinction among fractal
domains has to be pointed out. Theinvasiveor densifyingfractals, i.e., the spatial sets whose
Hausdorff dimension1 is strictly larger than their topological dimension, produce positive
scaling of the quantities (e.g. the fracture energyGF ) defined over them. In the case of brittle
fracture, figure 6a gives an example of an invasive fractal set(1 = 2.30), which is well-
suited for modelling of the energy dissipation domain, conventionally defined as a fracture
“surface” (Carpinteri & Chiaia 1995).

On the contrary,lacunaror rarefyingfractals like the Sierpinski carpet (figure 6b) possess
Hausdorff dimension lower than that of the domain where they are contained(1 = 1.89),
and therefore provide negative scaling of the quantities (e.g. the tensile strengthσu) defined
over them. The rarefied (damaged) ligament of a heterogeneous solid subjected to tensile
loading can be consistently modelled by means of this kind of fractal sets. The fundamental
difference between invasive and lacunar fractals is represented by the asymptotic behaviour
of the euclidean measure of the set. While, in fact, the area of an invasive fractal surface tends
to infinity as the scale of observation is refined, the area of a lacunar set tends to zero. With
reference to figure 6, finite measures of the fractal domains can be obtained only by means
of non-integer dimensions ([L]2.30 in the first case and [L]1.89 in the second case.

By applying a renormalization group procedure, Carpinteri (1994a) demonstrated that, if
the ligament of a stressed solid is supposed to be a self-similar lacunar set with dimension
1 < 2, the nominal strengthσu defined over this ligament scales with the linear dimension by
following a power law with exponent equal to(2− 1). Since physical plausibility imposes a
limit on the scale rarefaction rate,1 is larger than 1.50 for most engineering materials. Thus,
the decrease of strength with size is less rapid than in the case of LEFM (figure 7).

3.2 Homogenization for infinite sizes

The depicted self-similar (monofractal) scaling ofσu (figure 7) is valid only within a nar-
row range of sizes, where the fractal dimension can be considered constant. Topological
multifractality implies progressive vanishing of fractality as the scale increases. Since the
microstructure of a disordered material is the same and is independent of the macroscopic size,
the influence of disorder on the mechanical properties essentially depends on the interplay
between an intrinsic characteristic lengthlch and the external sizeb of the specimen. There-
fore, the effect of microstructural disorder on the mechanical behaviour of materials becomes
progressively less important at the largest scales, whereas it represents a fundamental feature
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Figure 6. Invasive fracture surface and lacunar stress-carrying ligament.

at the smallest scales. In particular, at the smallest scales, a Brownian disorder is the highest
possible one (Carpinteri 1994b).

On the basis of these hypotheses, a Multifractal Scaling Law (MFSL) for the apparent
tensile strength was proposed by the authors (Carpinteriet al1995a).

σu(b) = ft [1 + (1ch/b)]1/2 . (11)

This scaling law, shown in figure 8a, is a two-parameter model, where the asymptotic
value of the nominal strengthft , corresponding to the lowest nominal tensile strength, is
reached only in the limit of infinite sizes. The dimensionless term into square brackets,
which is controlled by the characteristic length valuelch, represents the variable influence
of disorder on the mechanical behaviour, thus quantifying the difference between the nom-
inal quantity measured at the scaleb and the asymptotic characteristic value. In the bilog-

Figure 7. Monofractal size effect law.
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arithmic diagram, shown in figure 8b, the transition from the fractal regime to the homo-
geneous one becomes evident. The threshold of this transition is meaningfully represented
by point Q, whose abscissa is equal to loglch. The oblique asymptotic is controlled by a
quantity with the dimensions of a stress-intensity factor([F][L] −3/2), signifying that LEFM
comes into play only when the characteristic sizea of micro defects is comparable with
the external size (highest disorder), whereas, at larger scales, the correlation among the
microcracks increases, leading to the homogenization in the limit of infinite size (ordered
regime).

It is worth pointing out here thatlch is a quantity related to the material microstructural
characteristics, but also depends on the loading geometry and on the choice of the reference
sizeb. As a first approximation, the characteristic lengthlch can be related to some peculiar
component of the concrete microstructure, e.g. to the maximum aggregate sizedmax. This
length parameter is important when the scaling behaviour of two different materials is com-
pared, as shown in figure 9. It can be stated that, in the case of a finer grained material like
a high-strength concrete (HSC), the MFSL is shifted to the left with respect to the case of
ordinary concrete (NSC), the value of the internal length being much lower for HSC than
for NSC. Therefore, two specimens of different materials, with the same structural sizeb1,
besides obviously showing two different values of the nominal tensile strength, have to be set
in two different scaling regimes.

With reference to figure 9, the normal concrete specimen behaves accordingly to the fractal
regime, whereas the HSC one lies on the asymptotic branch of the MFSL, thus showing homo-
geneous macroscopic behaviour. It is interesting to note the faster transition to homogeneous
scaling occurring in the case of HSC. This corresponds to the well-known brittle structural
behaviour of plain high-strength concrete structures, where the comparatively large strength
values are counterbalanced by smaller toughness values with respect to ordinary concrete
structures. Generally speaking, one has to determine for each material the proper range of
scales where the fractal regime is predominant, and consequently the minimum structural size
beyond which the local mechanical fluctuations are macroscopically averaged and a constant
value of the strength can be determined.

ft

Figure 8. Multifractal scaling law for ultimate strength.
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Figure 9. The MFSL applied
to two different concretes.

4. Application to unnotched structures

As already pointed out in the previous sections, several experimental results indicate that even
the largest members without initial crack possess an intrinsic strength, contrarily to the SEL
predictions. Therefore, based on the experimental evidence, wide statistical investigation has
been carried out by the authors on the size-effect data available in the literature (Carpinteri
et al 1995b). Many testing geometries have been considered, either with unnotched or with
notched specimens. In this section, some of the most significant tests on unnotched specimens
are described. In the next section, attention will be drawn to notched specimens, and the basic
differences between the two cases will be discussed. The nominal strength at failure will be
hereinafter calledσu (or τu, in the case of prevailing shear), regardless of the testing geometry.

The first geometry that will be discussed is a three-point bending test campaign performed at
the Politecnico di Torino (Boscoet al1990) on high strength concrete specimens. The beams
used in this experimental investigation were made of concrete with crushed aggregate of
maximum sizedmax = 12.7 mm. The amount of cement was 4.8 kN/m3, and the water/cement
ratio was equal to 0.27. The average compressive strength (after 28 days), obtained from 20
cubic specimens, wasfc = 91.2 N/mm2. The elastic modulus was determined by testing
three specimens measuring 150× 150× 450 mm. An average value of the secant modulus
E equal to 34300 N/mm2 was obtained. The fracture energyGF was determined according
to the recommendation of the RILEM (1985). The average value wasGF = 0.090 N/mm, so
that the critical value of the stress-intensity factor could be evaluated asKIC = (GF E)−1/2 =
55.56 N/mm−3/2.

Thirty reinforced concrete beams were tested, with constant cross-section thicknesst = 150
mm and depthsb = 100, 200 and 400 mm, respectively. The span L between the supports was
assumed to be equal to six times the beam depthb(L = 600, 1200 and2400 mm, respectively).
Thus, only a two-dimensional similitude was present. The content of steel depended on the
beam size and on the brittleness numberNP = (fysb

1/2As)/(KICAc) (Carpinteri 1986).
Four different values of brittleness number, corresponding to four different collapse mech-
anisms, were adopted. Here, results are presented for beams withNP = 0.53. For these
beams, the steel bars had nominal diametersφ equal to 4, 5, 8 and 10 mm respectively.
The distance of the bars from the lower beam edge was, in each case, equal to one tenth of
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the total beam depthb. No shear reinforcement was present. All the beams were initially
unnotched.

The three-point bending tests were performed by a servo-controlled machine. The beams
were supported by a cylindrical roller and a spherical connection at the two extremities. The
load was applied through an hydraulic actuator, and the loading process was displacement-
controlled by a strain-gauge, placed on the lower beam edge, parallel to the beam axis and
symmetrical with respect to the force. Its length was equal to the beam depth.

The nominal stress at failure used for the statistical analysis can be set, according to the
elastic bending theory, equal to:

σu(b) = 6Mu/tb2, (12)

whereMu is the failure bending moment. The test results (average values) are plotted as data
points in a logσu versus logb diagram (figure 10a). The data are fitted by the MFSL in the
form of (11). In this way, the best-fit parametersft (asymptotic strength valid for large-sized
beams) andlch (characteristic length governing the transition from the region of strong size
effect to the large sizes with constant strength) are provided. In this case, their values are
determined asft = 5.65 MPa andlch = 102.12 mm. The dimensionless ratio betweenlch
and the maximum aggregate size is equal to 8.04.

Afterwards, data can be fit by baz̆ant’s Size Effect Law, (2). While the correlation coefficient
R (computed from the mean values) is equal to 0.974 in the case of the MFSL fitting, it is only
equal to 0.883 in the case of the SEL fitting. Thus, the MFSL provides a better fit of test data.
Graphically, it is evident that the data in the log-log plot suggest a curvature opposite to that
of the SEL and that the decrement of the nominal strength tends to attenuate by increasing
the structural sizeb. This means that, asb → ∞, the nominal strength attains an asymptotic
finite value, as predicted by the MFSL.

Four-point bending tests were carried out by Sabnis & Mirza (1979) on unnotched plain
concrete specimens in the size range 1:17. The span to depth ratio was set equal to 4 for all the
beams. As in the case of three-point bending, the nominal bending strength can be defined,
according to (12), as the elastic stress acting upon the extreme fibre under failure load. Best-
fit of the experimental data is shown in figure 10b. The asymptotic bending strengthft , valid
for the largest beams, is found to be equal to 3.83 MPa, whereas the characteristic length is
lch = 42.02 mm. The correlation coefficientR is equal to 0.999 in the case of MFSL and
to 0.952 in the case of SEL, being the concavity of the data which is clearly upwards in the
bilogarithmic diagram.

Another series of four-point bending tests was carried out by baz̆ant & Kazemi (1991)
on unnotched reinforced concrete beams. Only longitudinal steel bars were present in the
beams. The examined size range was 1:16 (b= 20.64÷ 330.2 mm), and a two-dimensional
similitude was ensured, the thickness t being constant for all the beams(t = 38.1 mm). A
micro-concrete was used, with maximum aggregate sizedmax equal to 4.8 mm and average
compressive strengthft = 46.2 MPa. The span/depth ratio was set equal to 7. Therefore,
even if diagonal shear failure was forced by the presence of the bars, flexural effects cannot
be excludeda priori. The steel bars, anchored with right-angled hooks at their ends to prevent
bond slip and pull-out, provided a reinforcement ratioρ = As/Ac = 1.62%.

According to the assumed diagonal shear collapse, the nominal strength can be set equal
to the nominal shear strength, that is:

τu = Pu/2bt, (13)
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1.5

(a)

(b)

Figure 10. Fitting the data by Bosco
et al(1990)(a), and the data by Sabnis
& Mirza (1979)(b).

wherePu is the failure load. Best-fit of the data by means of MFSL yields the following
parameters:ft = 0.571 MPa andlch = 485.9 mm, with a correlation coefficient R equal
to 0.986 Instead, fitting the data by SEL yields the valueR = 0.980 (figure 11). If the
characteristic length is supposed to be directly proportional todmax, a nondimensional ratio
can be found equal toα = lch/dmax = 101.23.

Figure 11. Fitting the data by
Baz̆ant & Kazemi (1991).



438 Alberto Carpinteri and Bernardino Chiaia

Another interesting test geometry is represented by thesplitting cylinder testscarried out
by Hasegawaet al (1985). Concrete cylinders, geometrically similar in two dimensions (the
heighth of the cylinders is constant and equal to 500 mm), have been tested in the wide size
range 1:30(bmin = 100 mm, bmax = 3000 mm). The maximum aggregate size was equal
to 25 mm, whereas the average compressive strength was equal to 23.4 MPa. The nominal
tensile strength is supposed to be equal to the maximum principal stress, according to the
theory of elasticity:

σu(b) = 2Pu/πbh, (14)

wherePu is the ultimate load, andb andh are respectively the diameter and the (constant)
height of the cylinder specimens.

Application of the MFSL is plotted in the bilogarithmic diagram (figure 12), where best-
fit by Baz̆ant’s SEL is also shown for comparison. The computed best-fit values areft =
1.45 MPa andlch = 199.2 mm. Note that the asymptotic strengthft is equal to 80% of the
average of the ultimate tensile stresses (1.80 MPa) and only to 56% of the smallest specimens’
strength. The parameterα = lch/dmax is equal to 7.96. The correlation coefficient yielded by
the MFSL isR = 0.966, whereas Băzant’s SEL yields R = 0.663. Note that, in the case of
tests characterized by wide size ranges, MFSL reproduces the scaling behaviour of tensile
strength, much better than SEL, the concavity of data being clearly upwards according to the
aforementioned transition to the homogeneous regime.

Pull-out tests have been performed by Eligehausenet al (1992) and by Băzant & Sener
(1988). The first series consists in the extraction of anchor steel bolts from similar prismatic
concrete specimens, with the dimensional ratio 1:3:9 (b = bar embedment depth= 50, 150
and 450 mm). Three-dimensional similitude is ensured by proper scaling of all the sizes of the
specimens. All the specimens have been cast from the same batch of concrete, characterized
by an average compressive strength equal to 30 MPa and by the maximum aggregate size
equal to 22 mm.

In all the specimens, a tensile failure mechanism was detected, consisting in the removal
of a concrete cone with height equal to the depth of the steel bar (figure 13a). The nominal
stress at failure, computed from the ultimate loadPu, is defined according to:

σu(b) = Pu

Acone

= Pu

(π3b2)/4
. (15)

Figure 12. Fitting the data by
Hasegawaet al (1985).
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Figure 13. Fitting the data by Eligehausenet al (1992) (a), and the data by Baz̆ant & Sener
(1988)(b).

The application of MFSL and SEL to the experimental data is shown in figure 13a. The
strength values have been normalized to the average compressive strength. The best-fit values
areft = 0.518 MPa andlch = 438.6 mm, yieldingα = lch/dmax = 19.9. Fitting by the MFSL
providesR = 0.996, whereas fitting by the SEL givesR = 0.977. In this case, also due to the
limited size range tested, data could be adequately fitted by a straight line (monofractality).

The pull-out tests by Băzant & Sener (1988) confirm the slight upward concavity in the
bilogarithmic diagram. Anyway, in this case, the size range (1:4) is too small to ensure suf-
ficient statistical reliability. Cubic micro-concrete (dmax = 6.4 mm) specimens have been
tested, with average compressive strengthfc equal to 45.8 MPa. A three-dimensional simi-
larity is ensured among the specimens. The collapse mechanism was totally different from
the cone failure detected by Eligehausenet al (1992) because, in this case, the contrast plates
act close to the steel bar. Failure occurred either by slipping of the bar or by splitting of the
surrounding concrete, caused by the strong radial tractions originating from the bar. A con-
ventional strength can be defined according to:

τu(b) = Pu

Aadherence

= Pu

(πdbar)b
, (16)

beingdbar andb respectively the diameter and the embedment depth of the bar. The appli-
cation of MFSL and SEL to the experimental data is shown in figure 13b. In this case the
strength values have not been normalized. The best-fit procedure yieldsft = 6.4 MPa, lch =
362.5 mm andα = lch/dmax = 56.6. Best-fit by MFSL providesR = 0.993, whereas appli-
cation of the SEL givesR = 0.984. Note that, also in this case, the linear (monofractal)
approximation of the scaling laws is satisfactorily reliable, due to the narrow range of sizes
that has been considered.

Many other test geometries have been investigated by means of MFSL and SEL (Carpinteri
et al 1995b). The upward curvature in the log-log plot has been detected in almost all cases
(see, for instance, the uniaxial tensile tests by Carpinteri & Ferro (1994) or the torsional tests
by Barr & Tokatly 1991). Only rare exceptions have been found, one being represented by
the double-punch tests carried out by Marti (1989) where a downward curvature was detected
in the log-log plot. In conclusion, it seems that, in the case of unnotched specimens, energy
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release effects assume a leading role in the definition of strength only when the crack formed
before maximum load is large compared to the dimension of the structure, that is, when the
(unnotched) structure is sufficiently small. Thereby, the transition from the fractal regime to
the homogeneous one prevails, and size effects are interpreted by the MFSL consistently.

5. Application to notched structures

In this section, some experimental results obtained by tests on notched specimens are dis-
cussed. It should be pointed out that, although in this case a more controlled failure behaviour
can be ensured, concrete structures with macro-notches scaling proportionally to their size
are far from engineering practice.

The first tests to be considered are the uniaxial tensile tests performed by Baz̆ant & Pfeif-
fer (1987). Prismatic specimens have been tested, where the rectangular cross-sections had
constant thicknesst = 19 mm and span/height ratio equal to 8/3. The cross-section heights
of the specimens wereb = 38.1,76.2 and 152.4 mm. Thus, a narrow scale range (1:4) was
investigated. Two symmetrical notches were cut by a diamond saw at midspan, with deptha

equal tob/6 and thicknesst equal to 2.5 mm. Therefore, as required by baz̆ant’s SEL, the
notches scaled proportionally to the specimens’ linear size. The concrete mixture was made
with a water/cement ratio of 0.6 and a maximum aggregate sizedmax = 12.7 mm. The mean
compressive strength after 28 days curing wasfc = 33.5 MPa. The special loading grip
designed for these specimens was made by two aluminum plates bolted together. According
to the classical theory, the nominal strength can be defined as the stress acting upon the net
section at maximum load:

σu = Pu/ [t (b − 2a)] , (17)

wherePu is the maximum tensile load andt (b − 2a) is the net cross-section. Fitting the
experimental data by MFSL yieldsft = 2.82 MPa andlch = 29.2 mm, withα = lch/dmax =
2.30. The correlation coefficient obtained by the MFSL isR = 0.952, while the SEL provides
a better fit, withR = 0.998 (figure 14a).

Another series of uniaxial tensile tests on notched concrete specimens was carried out
by Nooru-Mohamed & Van Mier (1991). Prismatic specimens were tested, with dimensions
(span× height× thickness) equal to 200× 200× 50, 100× 100× 50 and 50× 50 × 50
mm. Thus, only a narrow scale range (1:4) was investigated. Tests were carried out under
displacement control by four LVDTs mounted very close to the notches. Two symmetrical
notches were cut at midsize of the specimens. As in the tests by Baz̆ant & Pfeiffer (1987), the
notch deptha scaled proportionally to the specimen’s heightb by setting, in each specimen,
a/b = 0.125. A micro-concrete (with water/cement ratio equal to 0.5 and mean compressive
strengthfc = 49.7 MPa) was used, withdmax = 2 mm. The nominal tensile strength can
be defined again as the stress acting upon the net section at maximum load (17). Fitting the
data by MFSL yieldsft = 0.96 MPa andlch = 44.8 mm, withα = lch/dmax = 22.4. The
correlation coefficient obtained by the MFSL isR = 0.917, while the SEL provides a better
fit, with R = 0.988 (see figure 14b).

Three-point bending tests on notched plain concrete beams were carried out by Perdikaris &
Romeo (1992). Two mixtures of concrete were examined, with the same granularity (dmax =
6.4 mm), but with different compressive strengths. In the case of the first series,fc(I) was
equal to 35 MPa whereas, in the case of series II, higher strength was obtained (fc(II) = 75.5
MPa). The examined size range was equal to 1:4 for both the series and only a two-dimensional
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Figure 14. Fitting the data by Băzant & Pfeiffer (1987)(a), and the data by Nooru–Mohamed &
Van Mier (1991)(b).

similitude was present, beingL = 4b and the thicknesst of the beams constant and equal
to 127 mm. A nominal strengthσu can be defined, according to the elastic bending theory,
equal to:

σu = 6Mu/
[
t (b − a0)

2
]
, (18)

whereMu is the bending moment at failure,t andb are respectively the beam thickness and
depth, anda0 = 0.3b is the initial notch length. The application of the MFSL to the nominal
strength data from series I (normal-strength concrete, NSC) is described in figure 15a. The
best-fit values are respectivelyft = 1.41 MPa andlch = 562.8 mm, with the nondimen-
sional parameterα equal to 87.9. The correlation coefficient determined by MFSL results
in R = 0.980, whereas fitting by SEL providesR = 0.991. The application of the MFSL
to the data from series II (high-strength concrete, HSC) is shown in figure 15b. In this case,
best-fit providesft = 4.21 MPa, lch = 131.1 mm, α = 20.5 andR = 0.901. SEL provides
a better goodness of fit in this case also, beingR = 0.965. Note that, according to the MFSL
arguments,lch (HSC)< lch (NSC).

Figure 15. Fitting data by Perdikaris & Romeo (1992).
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An interesting comparison can be made between the strength and toughness properties
of the two series. While, in fact, the compressive strength value of series II is 114% larger
than in the case of series I, and the asymptotic (nominal) tensile strength of series II is
almost 300% larger than in the case of series I, a much smaller difference (24%) between the
asymptotic fracture energies of the two series has been detected. This confirms the (relative)
increase of brittleness corresponding to the increase of compactness and homogeneity in the
microstructure which, in its turn, aims to increase the strength value. The transition to more
brittle behaviour, in the case of the HSC, can be synthesised by means of the brittleness number
s = GF /σub. Setting, for instance,b = 100 mm for both series, one obtainsS(Series I) =
0.00091 andS(Series II) = 0.00038, thus concluding that the larger the strength, the larger the
brittleness.

Another three point bending campaign was carried out, by Gettuet al (1990), on notched
high strength concretebeams, with average compressive strength equal to 96 MPa. This
kind of material, where silica fume and fly ash are also present, is characterized by rela-
tively small aggregates and by a strong bond between matrix and aggregates. The strength of
the cementitious matrix is comparable with that of the aggregates, thus resulting in amore
homogeneousfracture process with respect to ordinary concrete. In fact, the width of the
fracture process zone, according to the cohesive model, decreases almost by 60%. Conse-
quently, while the compressive strength increases almost by 160%, the material’s fracture
energy increases only by 25%, resulting in thebrittleness numberthus being halved. This
provides definitely more brittle behaviour with respect to ordinary concrete, implying, in
the multifractal scaling law, rapid transition towards an ordered regime, characterized by the
absence (or, better, by the homogenization) of the positive contribution to microstructural
disorder.

Four similar prismatic specimens were tested, all notched at midspan and subjected to
bending. The reference structural sizeb was chosen equal to the total beam depth (considering
also the notch), that is, equal to 38.1, 76.2, 152.4 and 304.8 mm respectively (range 1:8).
The notch deptha0, scaled in a proportional manner withb, was set equal tob/3, while the
net span between the supports wasL = 2.5b. Note that only a two-dimensional similitude
was provided, being the thicknesst of all the specimens, constant and equal to 38.1 mm. The
maximum aggregate size was 9.5 mm. Nominal tensile strength can be computed according
to the theory of elasticity, assuming the initially uncracked ligament (see (18)) as the resistant
section.

Fitting the data by the MFSL providesft = 4.1 MPa andlch = 156.9 mm, withα =
lch/dmax = 16.51. The MFSL correlation coefficient isR = 0.981, whereas the application
of SEL yieldsR = 0.914 (figure 16). It can be argued that the strength values obtained from
the largest specimens are too large, because they are in clear disagreement with the SEL
predictions. On the contrary, these values show perfect agreement with the MFSL, as they
are placed in the asymptotic homogeneous regime of the scaling, which, in the case of high
strength concrete, comes into play much earlier. Note also that the asymptotic strengthft is
equal to 60% of the specimens’ average strength (σm = 6.8 MPa), and only to 43% of the
smallest specimens’ one.

In conclusion, the downward curvature in the log-log plot has been detected mostly in
cases where initially notched structures have been considered, with their notches scaling
proportionally to the structure size (Carpinteriet al1995b). It seems that, in these cases, energy
release effects are prominent and thus the size effect law according to baz̆ant is an appropriate
scaling model. However, some exceptions are present, like the three-point bending tests by
Gettuet al (1990) where the MFSL is more adherent to the experimental data. Moreover, the
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Figure 16. Fitting the data by Gettu
et al (1990).

engineering significance of tests where the initial notch can be larger than a few centimetres, is
questionable. Unfortunately, the size range considered in the tests is often too narrow to draw
final conclusions. The need for large-scale testing is nowadays widely diffused in concrete
engineering, and only experiments on large structures can give the final validation to the
theories.

6. Conclusions

6.1 Engineering considerations

Despite the need for large-scale testing, the major advantage of the MFSL is that it allows
for the determination of the finite asymptotic strength of very large concrete structures. On
the contrary, Băzant’s SEL would uselessly predict zero strength for large elements. A wide
number of experimental tests confirm the MFSL hypotheses. Size-dependence is found to be
stronger in the range of smaller sizes, as well as the scatter of the strength values corresponding
to a certain size is smaller for the largest sizes. This clearly indicates that heterogeneity plays
a fundamental role. Recent experimental results by Adachiet al (1995) demonstrate that the
same transition is present also in the scaling of the deformability characteristics of concrete
beams subjected to bending. The negative size-effect on the maximum rotational capacity
turns out to be, in fact, more pronounced as the depth of the beams becomes shallower.

In order to apply the MFSL to real engineering cases, it is worth discussing the definition
of the reference sizeb to be considered in the scaling law. If a perfect three-dimensional
similitude were presentwith respect to the failure mechanism, any linear size of the structure
could be used. But this is seldom the case, and thus one should determine, in each case,
the opportune definition ofb. For instance, given two structures to compare, one should
determine the representative region (this being an area or a volume) where similar stress–
strain conditions are present and failure is more likely to occur. In the case of bending, for
example, the heightb at midspan of the beam would be the representative size only if the
beam spanL and the beam thicknesst were both scaled proportional tob (3D similitude). If
this were not the case, for instance, if the thicknesst were constant, it would be more correct
to adopt the value as the reference sizeb∗ = √

bt . Analogously, in the case of two cooling
towers, one should compare the circular strips where failure is expected to originate caused
by tensile membrane stresses (figure 17). The thicknesst of the membrane should be adopted
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Figure 17. Structural similitude for
concrete cooling towers.

as the reference size only if the radius (and the tower height) were scaled proportionally.
Otherwise, it could be more correct to use the valueb∗ = √

Rt as the reference size.

6.2 Final remarks

On the basis of theoretical and experimental evidence, the following conclusions may be
drawn:

(1) The current building-code requirements need to be revised, if consistent and reliable pre-
dictions are to be made for the strength of real-sized concrete structures. Poor extrapola-
tions from laboratory-sized specimens are obtained, if the size-dependence of the ultimate
strength is not properly taken into account. Moreover, existing formulas (CEB-FIP 1991;
ACI 1992; CEC 1994) are based on an empirical approach which cannot be considered
suitable for the huge variety of material properties and structural types that are nowadays
encountered.

(2) The need for correct prediction of the bending strength of concrete beams is neither
restricted to unreinforced elements nor confined to the durability requirements of the
reinforced ones, but rather plays a fundamental role in the definition of the minimum
reinforcement ratio and of the failure characteristics of the largest members. The deter-
mination of reliable values of the modulus of rupture seems to be even more important in
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the case of high-strength concrete, where more brittle behaviour is expected and bending
failure may be catastrophic.

(3) The heterogeneity of the concrete microstructure is strongly responsible for the size-
dependence of strength. Therefore, mechanical arguments have to be supported by
an adequate topological description of the failure process, for which fractal geometry
seems to represent a powerful and successful tool. The interplay between microstruc-
tural characteristic length and external size of the beam implies progressive vanishing
of disorder effects on the strength characteristics, which can be adequately modelled by
means of a multifractal scaling transition. The same transition also seems to affect the
deformability properties, namely the maximum rotational capacity of concrete beams in
bending.

(4) Multifractal scaling law has been put forward by the authors, which allows for the extrapo-
lation of a reliable value of the ultimate strength holding for real-sized structural members.
The validity of the MFSL has been confirmed by statistical investigation over a multitude
of experimental data reported in the literature. On the other hand, wider ranges of sizes
should be tested in order to get better statistical reliability.

(5) The very general physical arguments underlying the aforementioned approach seem to
claim its applicability not only in the case of purely tensile and bending failures but also
in the case of shear failures, where aggregate interlock and mixed mode cracking are
affected by microstructural heterogeneities.

(6) Regarding the long-time controversy with Z P Băzant, it is worth pointing out that invasive
fractals, i.e. fractal sets with scale-densifying topological properties (see §3.1), have never
been put forward to justify strength size-effects, as erroneously reported by Baz̆ant (1997).
The invasive fractals, on the other hand, are useful for explaining the (positive) size-
effect on fracture energy (Carpinteri & Chiaia 1995). In addition, the lacunar fractality
assumption is regarding the material ligament (or the net cross-section), and not the
microcracks array, as Baz̆ant (1997) probably misunderstood.

(7) Moreover, Băzant (1997) properly affirms that the energy release due to fracture increases
with the structure size faster than the energy dissipated by the fracture. This is nothing but
the very well-known Griffith’s energy approach which produces a strength decrease with
slope equal to−1/2 in the logσu − logb plot. The size effect caused by the release of
energy from the structure is taken into account in the MFSL exactly when, as Baz̆ant notes,
the crack formed before maximum load is large compared to the size of the structure, i.e.
when the (unnotched) structure is sufficiently small. When the structure is larger, the crack
formed before maximum load could be very small, or even absent when a very brittle
(catastrophic) failure occurs. On the other hand, a homogenization effect should prevail
in the case of very large specimen sizes, due to the limited size of the heterogeneities
(aggregates, pores, cracks etc.). The two-limit situations of small scales (slow crack growth
and geometric disorder) and large scales (fast crack propagation and geometric order),
must be connected by an envelope curve with decreasing slope in the log-log plot (from
−1/2 to zero). The MFSL derived from the above arguments presents a characteristic
internal length, as expected by Baz̆ant (1997).

(8) Several of the test data reported in the literature could be equally well fitted by the size
effect law (Băzant 1984), but only when the scale range is below one order of magnitude.
In the other few cases, a finite asymptotic value of nominal strength emerges for large-
sized (unnotched) specimens, exhibiting an upward curvature in the log-log plot. This is
nothing but the homogenization effect mentioned above.
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(9) As a last remark, we willingly admit that the size effect law according to baz̆ant is appro-
priate when initially cracked or notched structures are considered, with their cracks or
notches scaling proportionally to the structure size. On the other hand, when the structures
are initially uncracked and unnotched, this law is not appropriate and must be generalized
to consider the homogenization effects, in the framework of self-affine geometry.

The authors gratefully acknowledge financial support by the Ministry of University and Sci-
entific Research (MURST), by the Italian Research Council (CNR) and by the EC-TMR
Contract N◦ ERBFMRXCT 960062.
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