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histological patterns, indicating that ETANTR, EBL, and 

MEPL comprise a single biological entity. As such, future 

WHO classification schemes should consider lumping 

these variants into a single diagnostic category, such as 

embryonal tumor with multilayered rosettes (ETMR). We 

recommend combined LIN28A immunohistochemistry and 

FISH analysis of the 19q13.42 locus for molecular diag-

nosis of this tumor category. Recognition of this distinct 

pediatric brain tumor entity based on the fact that the three 

histological variants are molecularly and clinically uniform 

Abstract Three histological variants are known within 

the family of embryonal rosette-forming neuroepithelial 

brain tumors. These include embryonal tumor with abun-

dant neuropil and true rosettes (ETANTR), ependymo-

blastoma (EBL), and medulloepithelioma (MEPL). In this 

study, we performed a comprehensive clinical, pathologi-

cal, and molecular analysis of 97 cases of these rare brain 

neoplasms, including genome-wide DNA methylation and 

copy number profiling of 41 tumors. We identified uni-

form molecular signatures in all tumors irrespective of 
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will help to distinguish ETMR from other embryonal CNS 

tumors and to better understand the biology of these highly 

aggressive and therapy-resistant pediatric CNS malignan-

cies, possibly leading to alternate treatment strategies.

Introduction

According to the 2007 WHO classification of tumors of 

the central nervous system (CNS), CNS primitive neuro-

ectodermal tumors (PNETs) can be further subdivided into 

CNS neuroblastoma/ganglioneuroblastoma, medulloepi-

thelioma (MEPL), and ependymoblastoma (EBL) [18]. In 

addition, “embryonal tumor with abundant neuropil and 

true rosettes” (ETANTR) has been discussed as a possibly 

unique variant of CNS PNET [1, 2, 4, 6, 8, 10, 11, 19].

CNS neuroblastomas histologically and molecularly 

resemble subsets of medulloblastomas and peripheral neu-

roblastomas [18]. They are characterized by the presence 

of Homer Wright (neuroblastic) rosettes, foci of neuro-

cytic and/or ganglion cell maturation, intense synaptophy-

sin expression, and MYC/MYCN amplifications in almost 

50 % of cases [3, 18]. On the other hand, ETANTR, EBL, 

and MEPL are rare neoplasms characterized by the pres-

ence of similar histological patterns, namely multilayered 

and pseudo-stratified rosette-forming structures of variable 

shape and size. Both EBL and ETANTR include the so-

called “ependymoblastic rosettes” harboring well-formed 

central round or slit-like lumina in the absence of an outer 

membrane [4, 6, 11, 12, 14, 18]. MEPL is histologically 

characterized by papillary and tubular structures sur-

rounded by an external limiting membrane, reminiscent 

of the developing neural tube [4, 18]. These structures are 

sometimes also referred to as “medulloepithelial” rosettes. 

Moreover, some MEPL have also been reported to display 

ependymoblastic rosettes [18]. These three variants of 

embryonal CNS tumors show a clinically uniform behavior, 

in that they predominantly affect infants under the age of 

4 years and are associated with a highly aggressive course 

with reported survival times up to 24–36 months, but typi-

cally averaging 12 months [1, 5, 9, 11, 15, 23].

Applying FISH analysis, we previously found amplifi-

cations at 19q13.42 involving the C19MC cluster in 93 % 

of tumors diagnosed either as ETANTR, EBL, or MEPL 

with ETANTR features, but not in any other pediatric brain 

tumors [15]. These results demonstrate that this genetic 

aberration is highly sensitive and specific to embryonal 

CNS tumors with multilayered rosettes irrespective of 

other features and that these subtypes are highly interre-

lated. Recently, Paulus and Kleihues therefore proposed to 

use the term “embryonal tumor with multilayered rosettes” 

(ETMR) as a general name for these tumors, a new entity, 

in part defined by the C19MC amplification itself [22].

To further test whether the three histological variants 

of ETMR represent a single entity, we performed clinico-

pathological and molecular analyses in 97 ETMR samples 

initially designated as ETANTR, EBL, or MEPL.

Materials and methods

Ninety-seven diagnostic specimens diagnosed histopatho-

logically as either ETANTR, EBL, or MEPL were received 

for this study from various sources around the globe and 

collected during the last 5 years. Among these sources were 

Burdenko Neurosurgical Institute, Moscow, Russia; Uni-

versity of Bonn, Germany; Ludwig-Maximilians Univer-

sity, Munich, Germany; University of Münster, Germany; 

University of Tübingen, Germany; Università Sapienza, 

Rome, Italy; Necker Hospital, Paris, France; Academic 

Medical Center, Amsterdam, the Netherlands; University 

of Cambridge, Cambridge, UK; Institute of Neurology, 

Vienna, Austria; Hospital for Sick Children, Toronto, Can-

ada; Memorial Sloan Kettering Cancer Center, New York, 

USA; and University of California, San Francisco, USA. A 

subset of these cases was previously published [15, 16].

All cases were routinely formalin fixed and paraffin 

embedded. For diagnostic purposes, routine histopathologi-

cal examination and immunohistochemical (IHC) analyses 

were performed in the different institutions participating in 

this study. Further centralized evaluation of all H&E slides 

was performed in the Heidelberg University Department 

of Neuropathology. In all 97 cases, IHC analysis applying 
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a LIN28A polyclonal antibody and FISH analysis for the 

19q13.42 locus were performed as previously described 

[15, 16].

For samples for which sufficient DNA was available 

(n = 41), we analyzed copy number aberrations (CNAs) 

using data generated with Illumina Human Methylation 

450 k BeadChip arrays as described previously [13, 26]. 

For the detection of amplifications, chromosomal gains and 

losses, automatic scoring was verified by manual assess-

ment of the respective loci for each individual profile as 

previously described [26].

To evaluate the molecular specificity of potential ETMR 

subtypes, we performed comparative cluster analysis of 

450 k profiles generated for 41 ETMR together with 110 

other primary pediatric brain tumors including pilocytic 

astrocytoma (PA; n = 10), ependymoma (EPN; n = 10), 

glioblastoma grade IV (GBM; n = 40), atypical teratoid 

rhabdoid tumor (AT/RT; n = 10), and medulloblastoma 

(MB; n = 40). Eight normal cerebellum (CBM) samples 

were also included. The following criteria were applied 

to filter the data: removal of probes targeting the X and Y 

chromosomes (n = 11,551), removal of probes contain-

ing a single-nucleotide polymorphism (dbSNP132 Com-

mon) within five base pairs of and including the targeted 

CpG-site (n = 24,536), and probes not mapping uniquely 

to the human reference genome (hg19) allowing for one 

mismatch (n = 9,993). In total, 438,370 probes were kept 

for analysis. For unsupervised hierarchical clustering of 

41 ETMR samples, we selected the 4,756 most variably 

methylated probes across the dataset (s.d. >0.25). Samples 

were clustered using 1-Pearson correlation coefficient as 

the distance measure and average linkage (x-axis). Meth-

ylation probes were reordered by hierarchical clustering 

using euclidean distance and average linkage (y-axis). The 

heatmap illustration of 41 ETMR samples and 118 other 

pediatric brain tumor and control samples was generated by 

separately determining the 2,500 most variably methylated 

probes between the medulloblastoma subgroups, the K27-, 

G34-, IDH-, and wt (not H3.3 or IDH mutated) GBM sub-

groups, the non-ETMR tumor samples, and across the 

whole dataset. Probes were only used once (n = 6,540). 

Methylation probes were reordered by hierarchical cluster-

ing using euclidean distance and average linkage (y-axis).

Results

Pathological examination of the ETMR cohort

According to published histopathological criteria, the 97 

ETMR cases studied were diagnosed as ETANTR (55 

cases), EBL (34 cases), or MEPL (eight cases) after cen-

tral review. ETANTR was defined according to the criteria 

previously described by Eberhart et al. [6]. These tumors 

showed a biphasic pattern featuring highly cellular clusters 

of small cells with round or polygonal nuclei and scanty 

cytoplasm admixed with large fibrillar and paucicellu-

lar neuropil-like areas, infrequently containing neoplastic 

neurons. Among the clusters and aggregates of small cells, 

numerous true multilayered ependymoblastic rosettes were 

identified (Fig. 1a). In some cases, these rosettes were 

observed abruptly in the neuropil areas and neoplastic neu-

rons were found between the cells composing layers of the 

rosettes. EBL and MEPL were diagnosed according to cur-

rent WHO classification criteria [18]. EBL was identified 

as a tumor with the exclusive presence of nests and clus-

ters of poorly differentiated cells forming true multilayered 

ependymoblastic rosettes but lacking a neuropil-like matrix 

(Fig. 1d). These rosettes were intermixed with small to 

medium-sized primitive cells having a high nucleus/cyto-

plasm ratio and variably developed fibrillary processes. 

MEPL was characterized by the presence of papillary, tubu-

lar, and/or trabecular arrangements of neoplastic pseudo-

stratified epithelium with an outer membrane resembling 

the primitive neural tube (Fig. 1g). In zones distinct from 

tubular structures, large areas of poorly differentiated cells 

including collections of true multilayered ependymoblastic 

rosettes were found in all eight cases studied.

Recently, we have shown that expression of LIN28A is a 

highly specific and sensitive marker for pathological verifi-

cation of ETMR [16, 23]. In the present series, strong and 

diffuse LIN28A cytoplasmic immunostaining was found in 

all 97 tumors studied irrespective of their histopathological 

appearance mentioned above (Fig. 1c, f, i). LIN28A posi-

tivity was found to be more prominent and intense in mul-

tilayered rosettes and poorly differentiated small-cell tumor 

areas of ETANTR/EBL, and in papillary and tubular struc-

tures of MEPL.

Pathological analysis of recurrent ETMR samples

We were able to perform histological and molecular anal-

ysis of 14 samples obtained from local recurrences of 

ETMR: 11 were initially diagnosed as ETANTR, two as 

EBL, and one as MEPL. In addition, three samples from 

extracranial metastases of ETANTR (one in cranial soft tis-

sue and two in the peritoneal cavity) were analyzed.

Upon secondary surgery at the time of relapse, histopa-

thology in all 11 ETANTR samples showed a loss of neu-

ropil-like foci. The secondary biopsy specimens obtained 

from nine ETANTRs disclosed extended collections of 

multilayered rosettes with various size and shape reflecting 

a histological pattern compatible with EBL (Fig. 2a, b). The 

other two samples showed prominent papillary and tubu-

lar structures, closely resembling MEPL (Fig. 2c, d). The 

extracranial metastasis of one ETANTR was predominantly 
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composed of clusters of ependymoblastic rosettes varying 

in shape and size. In two other ETANTR metastases, papil-

lary and tubular “MEPL-like” structures were detected. The 

two recurrent EBL samples and one MEPL showed histo-

pathological features reminiscent of the corresponding pri-

mary tumors.

Immunohistochemical expression of the ETMR marker 

LIN28A was retained in all recurrent tumor samples and the 

number of positively stained cells in recurrent ETANTRs 

was higher in comparison to their primaries [16].

Clinical parameters do not differ between the three ETMR 

groups

Basic clinical characteristics from all 97 patients included 

in this study are summarized in Table 1. All tumors 

occurred in very young children: range 0.5–6 years 

(median 2.3 years), and only eight patients (8 %) were 

older than 3 years. The male:female ratio was 1.1:1. The 

mean age for the three histological variants of ETMR did 

not differ significantly. Most tumors (64 cases; 70 %) were 

located supratentorially, with almost half of these (n = 30) 

found in the fronto-parietal region. Infratentorial location 

was less frequent (27 cases; 30 %) affecting either the cer-

ebellum (n = 10) or brain-stem (n = 17). Exact informa-

tion about tumor location was not available for six patients. 

Supra- and infratentorial location within the three ETMR 

groups did not differ significantly (Table 1). Data on meta-

static stage at tumor diagnosis were available for only 32 

patients. Most presented with M0 disease (26/32, 80 %), 

two with M2 stage, and four with M3 stage.

Details of patient treatment were known for 36 patients 

(18 ETANTR; 14 EBL, and 4 MEPL). Sixteen patients 

had undergone gross total tumor resection, while for the 

other 20 children only subtotal tumor removal could be 

achieved. Only three patients received postoperative 

cranio-spinal irradiation, whereas all 36 patients were 

treated with chemotherapy based on the HIT-SKK2000 

C19MC

19p13

C19MC

19p13

C19MC

19p13

a b c

g

d e

h i

f

Fig. 1  Microscopical appearance (a, d, g), FISH analysis of the 

19q13.42 locus (b, e, h), LIN28A immunohistochemistry (c, f, i) 

of ETANTR (a–c), EBL (d–f) and MEPL (g–i). Amplification of 

19q13.42 (b, e, h) and LIN28A immunoexpression (c, f, i) was 

detected in all three histological ETMR subtypes. For the FISH 

analysis the C19MC 19q13.42 probe (green signals) and a reference 

19p13 probe were used (red signals)
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protocol [9]. Follow-up data were available for 55 

patients demonstrating that 50 tumors recurred during 

follow-up with a median progression-free survival (PFS) 

of 8 months, and 84 % (46/55) of patients died within 

3 years after their initial diagnosis. Median overall sur-

vival (OS) was 12.3 months and did not differ signifi-

cantly between the three histological variants of ETMR 

(log-rank; p = 0.63, Fig. 3). Only two patients with an 

initial histological diagnosis of ETANTR are still alive 

more than 4 years after the first intervention (57 and 

68 months, respectively).

Patterns of disease progression were highly variable. 

Most of the patients experienced local tumor regrowth as 

a first recurrence pattern, whereas a smaller number devel-

oped widespread leptomeningeal metastatic dissemination, 

very often after intervention on the recurrent lesion. Four 

patients additionally showed systemic metastases outside 

of the CNS in the cranial soft tissue, as well as pleural and 

peritoneal cavities.

Fig. 2  Two examples of 

primary ETANTR (a, c) with 

further tumor transformation 

in either EBL (b) or MEPL 

(d) histology as it has been 

identified during analysis of the 

recurrence samples

a b

c d

Table 1  Patient characteristics of 97 ETMR cases

Variable ETANTR 

(n = 55)

EBL  

(n = 34)

MEPL 

(n = 8)

Age (years)

 Median 2.5 2.6 2.2

 Range 1–5 0.5–6 1–3

Gender

 Male 29 15 3

 Female 26 19 5

Tumor location

 Supratentorial 37 21 6

 Infratentorial 14 11 2

Events

 Recurrence 29/32 16/17 5/6

 Death 26/32 14/17 5/6

Survival

 Median PFS (months) 9.3 7.1 7.3

 Median OS (months) 13.1 11.4 10.8
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Fig. 3  Overall survival curves generated for ETANTR (32 cases, 

blue), EBL (17 cases, red), and MEPL (6 cases, green). No differ-

ences in survival time were found (log-rank, p = 0.63)
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Fig. 4  Cluster analyses of DNA methylation profiles of ETMR 

alone and compared to various other pediatric brain tumors and nor-

mal cerebellum. a Unsupervised cluster analysis of ETMR samples 

only shows that DNA methylation profiles of the histological variants 

ETANTR, EBL and MEPL are not distinct. Also, clusters outlined do 

not differ in terms of clinical findings, including age, gender, tumor 

location and outcome. b DNA methylation profiles of ETMRs are 

distinct from other pediatric brain tumors and normal cerebellum
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Cytogenetic analysis of 19q13.42 locus in ETMR

All 97 tumor samples were analyzed by FISH for 

amplification of the 19q13.42 locus. A high-level focal 

amplification of this locus (present in 40–80 % of tumor 

nuclei) was detected in 93 samples (96 %) (Fig. 1b, e, h). 

The four remaining tumors (two diagnosed as ETANTR 

and two as EBL) displayed polysomy 19, i.e., a low-level 

Table 2  Copy number aberrations in 41 ETMR cases

ETANTR embryonal tumor with abundant neuropil and true rosettes, EBL ependymoblastoma, MEPL medulloepithelioma, DOD died of disease, 

POD alive, progression of disease, NED alive, no evidence of disease, NA not available

N Age (years) Gender Location Histology Amplification Gains Losses Outcome

1 2 F Supra ETANTR 19ql3.42 2 No DOD (21 m)

2 2 M Supra ETANTR 19ql3.42 7 6q NED (57 m)

3 3 F Supra ETANTR 19ql3.42 2 19q DOD (18 m)

4 2 M Infra ETANTR 19ql3.42 2 No DOD (l0 m)

5 1 F Infra ETANTR No lq, 19p No DOD (32 m)

6 2 M Supra ETANTR 19ql3.42 2, 14, 17, 20 No D0D (12 m)

7 3 F Supra ETANTR 19ql3.42 2 No DOD (15 m)

8 2 M Supra ETANTR 19ql3.42 2 No DOD (10 m)

9 2 F Infra ETANTR 19ql3.42 7, llq 6q, 9, 12q, 16 DOD (23 m)

10 3 F Supra ETANTR 19ql3.42 2, 7, 11 6q, 19q DOD (10 m)

11 3 M Infra ETANTR 19ql3.42 2, 4, 7, llq lp, 19q DOD (10 m)

12 2 F Supra ETANTR 19ql3.42 2, 21q No DOD (12 m)

13 3 M Supra ETANTR 19ql3.42 2, 16 No DOD (11 m)

14 2 F Supra ETANTR 19ql3.42 No 6q DOD (12 m)

15 3 M Supra ETANTR 19ql3.42 2 No POD (6 m)

16 2 F Supra ETANTR 19ql3.42 2 No NA

17 3 M Supra ETANTR 19ql3.42 2 No DOD (14 m)

18 3 F Supra ETANTR 19ql3.42 No 7q NA

19 2 M Supra ETANTR 19ql3.42 lq, 2, 4, 7q, 12q, 13q, 21q 8q, l0q POD (4 m)

20 5 M Infra ETANTR 19ql3.42 2, 11 No DOD (9 m)

21 2 M Supra ETANTR 19ql3.42 lq, 2, 6p, 7, llq, 21q lp, lip, 18p, 22q DOD (7 m)

22 3 F Supra ETANTR 19ql3.42 lq, 2, 4, 7, 8, 11, 16, 17, 20, 21q No NED (68 m)

23 2 M Supra ETANTR 19ql3.42 2, 15q No DOD (9 m)

24 2 F Supra EBL 19ql3.42 2, 3, 4, 7, 8, 13q No DOD (10 m)

25 2 F Supra EBL 19ql3.42 llq lp, 19q, 22q DOD (12 m)

26 3 M Supra EBL 19ql3.42 lq, 7 6q, 19q DOD (10 m)

27 2 M Supra EBL 19ql3.42 6p, 7 No DOD (10 m)

28 2 F Supra EBL 19ql3.42 lq, 2, 3q, 4 No DOD (11 m)

29 2 M Supra EBL 19ql3.42 2 6q, 17p DOD (6 m)

30 2 M Infra EBL No lq, 2, 17q No DOD (9 m)

31 3 F Supra EBL 19ql3.42 2 No NED (6 m)

32 3 F Infra EBL 19ql3.42 2, 19, 20, 21q No NA

33 2 F Supra EBL 19ql3.42 2, 5q, 7, llq, 15q, 21q 22q POD (11)

34 3 M Supra EBL 19ql3.42 lq, 2, 6p, 17, 20q 6q, 14q, 19q POD (21 m)

35 2 F Supra EBL 19ql3.42 No 19q NA

36 3 M Supra MEPL 19ql3.42 2, 5p, llq, 17q, 20q lp, 6q, 12p, 19q DOD (6 m)

37 2 M Supra MEPL 19ql3.42 2, 17, 19 No DOD (5 m)

38 1 F Supra MEPL 19ql3.42 2 No DOD (7 m)

39 NA NA NA NA 19ql3.42 2 No NA

40 NA NA NA NA 19ql3.42 2 No NA

41 NA NA NA NA 19ql3.42 2, 7q, 8 No NA
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gain of both the target locus and the reference locus, 

compatible with an aberration affecting large parts of 

the chromosome or with an overall state of polyploidy. 

FISH analysis of the 14 recurrent tumors showed that 

the 19q13.42 amplification was retained in all samples. 

Moreover, the number of nuclei with amplification was 

significantly higher in secondary lesions (up to 100 % of 

nuclei) in comparison to their matched primary tumors 

[15].

DNA copy number analysis and methylation profiling 

of ETMR

Next, we analyzed the genome-wide DNA methyla-

tion profiles of 41 ETMR samples using the Illumina 

450 k DNA methylation arrays. As shown previously 

for glioblastoma and medulloblastoma [13, 26], DNA 

methylation profiling provides an excellent tool for the 

molecular sub-classification of distinct tumor entities. 

Unsupervised clustering analysis of the methylation 

data of the 41 ETMR samples did not reveal subgroup-

ing according to ETMR histological subtypes (Fig. 4a). 

However, comparison to a large cohort of other pediatric 

brain tumors (n = 110) revealed that ETMRs are clearly 

distinct from other CNS tumors (Fig. 4b). In addition, 

data generated from these arrays can be used to detect 

CNAs in individual tumor samples. All CNAs detected 

from the methylation arrays for these 23 ETANTR, 12 

EBL, 3 MEPL, and 3 additional histologically unidenti-

fied cases are outlined in Table 2. Amplification of the 

19q13.42 locus was confirmed for 39/41 (95 %) primary 

tumors examined. Only one ETANTR and one EBL 

showed no amplification confirming the FISH analyses 

in these two samples. No other genomic amplifications 

were detected in this series of primary ETMR. Other 

recurrent low-level CNAs in these tumors included gain 

of chromosome 2 in 31 cases (76 %), gain of 7q (12/41, 

29 %), gain of 11q (9/41, 22 %), gain of 1q (8/41, 20 %), 

and loss of 6q in eight cases (20 %). In eight cases, we 

additionally identified a focal genomic loss at 19q13.2–

13.3, i.e., centromeric to the C19MC amplified region, 

suggesting complex intra-chromosomal rearrangements 

on the 19q13 locus in a subset of ETMR. No significant 

differences in the frequency of any of these CNAs were 

detected between the three histological ETMR variants 

(Fig. 5).

Discussion

Currently, the verification of a distinct nosologic posi-

tion for various human malignancies is complemented (or 

sometimes defined) by a comprehensive molecular work-

up [23, 26]. A number of refinements have recently been 

introduced into the current histological classification of 

pediatric CNS tumors. For example, the routine applica-

tion of molecular diagnostics distinguishes AT/RTs from 

other PNETs [18] and current studies strongly suggest 

incorporating four molecular medulloblastoma subgroups 

into the classification as separate tumor entities [20]. These 

molecular data will help to further subdivide existing tumor 

entities by identifying disease variants with diverse clini-

cal outcomes, distinct biology and clues regarding cell of 

origin. In contrast, molecular analyses of a representative 

cohort of ETANTR, EBL, and MEPL, three rare variants 

of embryonal CNS neoplasms, strongly suggests their 

integration into one single tumor entity called ETMR. All 

tumors were positive for LIN28A, a marker highly specific 

for ETMRs, and almost all cases displayed amplification 

of the C19MC miRNA cluster at 19q13.42, as well as fre-

quent trisomy 2. Furthermore, no significant differences in 

other CNAs were observed between these three histological 

variants and their DNA methylation patterns were highly 

concordant.

Morphologically, ETMR manifests uniformly with the 

presence of multilayered true rosettes: “ependymoblastic” 

and/or “medulloepithelial”, with variable shape and size. 

As already noted, it may frequently be difficult to distin-

guish between EBL and MEPL [18]. Diagnostic differences 

between these tumor categories are descriptive and concep-

tual because they are, in general, based only on the absence 

of an outer collagen IV-positive membrane and apical cyto-

plasmic blebs in EBL structures. Moreover, similar clinical 

parameters and a highly aggressive course of disease for all 

ETMR histological variants (resistance to treatment, inevi-

table tumor recurrence and rapid death) also support our 

suggestion of commonality [1, 8, 9, 11, 15, 16, 19].

Previously, molecular analysis of various ETMR sub-

types has been hampered by limited cohort sizes and to 

date, only a few chromosomal imbalances were detected by 

conventional CGH analysis [7, 25]. Recently, we described 

a focal unique amplicon at 19q13.42 spanning 0.89 Mb 

and covering the C19MC genomic locus, the largest known 

cluster of human microRNA-coding genes [24]. Further, 

the C19MC locus was found to be amplified in 93 % of 

ETMR diagnosed previously on the basis of their char-

acteristic morphology [15], and these findings have been 

confirmed by others [5, 17, 21, 23, 27, 28]. Thus, C19MC 

amplification is a highly specific genetic ETMR hallmark, 

similar to loss of the SMARCB1 locus in AT/RT or t(11;22) 

in Ewing sarcoma [18]. This suggests that the C19MC 

Fig. 5  Copy number plots generated from 450 k methylation data. 

Amplifications and gains are indicated in green, losses in red. a 

Example of an ETANTR showing amplification 19q13.42, gain of 

2 and loss of 19q13.3. b Example of an EBL showing amplification 

19q13.42, gain of 2, and losses of 6q and 17p. c Example of a MEPL 

showing amplification 19q13.42, trisomy of 2, 17 and 19. d Summa-

rizing profiles for all 41 cases analyzed

◂
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amplification could serve as a “driver” oncogenic event in 

ETMR. Comprehensive analysis of CNAs in our ETMR 

cohort revealed few other recurrent chromosomal gains and 

losses, and no subtle cytogenetic differences between the 

tumors with various histological features could be defined.

Common molecular signatures between the three his-

tological variants of ETMR suggest that they may share a 

common origin, such as a primitive cell population in the 

subependymal region, with further evolution into a wide 

range of morphological appearances and mimics. In support 

of this suggestion, analysis of the 11 recurrent ETANTR 

samples revealed its frequent histological evolution into 

either EBL or MEPL phenotypes, while at the same time 

the molecular genetic make-up did not change between the 

initial and advanced stages of disease. Such stepwise mor-

phologic transformations in the “classic” ETANTR appear-

ance due to disease progression allow one to suppose that 

the three “histological variants” of ETMR may constitute 

either “polar ends” of a morphologic spectrum or varying 

differentiation stages of a single tumor entity rather than 

separate nosologic categories.

In conclusion, we identified uniform molecular signa-

tures occurring in a representative subset of embryonal brain 

tumors with multilayered rosettes indicating that ETANTR, 

EBL, and MEPL comprise a single biological entity, which 

could potentially be designated in future WHO schemes 

as ETMR. For molecular diagnosis of this tumor category 

and to distinguish them from other embryonal tumors of 

the CNS, combined LIN28A IHC and FISH analysis of 

the 19q13.42 locus are recommended as routine diagnostic 

markers. Since misdiagnosis for controversial “poorly dif-

ferentiated” embryonal CNS neoplasms is not uncommon, 

all tumors and especially CNS-PNETs harboring combined 

LIN28 expression and 19q13.42 amplification should be 

classified as ETMR, even in absence of the key histological 

patterns. As a next step, it will be important to understand 

the distinct biological significance of the prototypic molecu-

lar events in ETMR which may provide therapeutic targets 

for novel treatment strategies for these highly aggressive 

and therapy-resistant pediatric CNS malignances.

Open Access This article is distributed under the terms of the Crea-

tive Commons Attribution License which permits any use, distribu-

tion, and reproduction in any medium, provided the original author(s) 

and the source are credited.
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