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Embryonic POU5F1 is Required 
for Expanded Bovine Blastocyst 
Formation
Bradford W. Daigneault1, Sandeep Rajput  

1, George W. Smith1 & Pablo J. Ross  
2

POU5F1 is a transcription factor and master regulator of cell pluripotency with indispensable roles in 
early embryo development and cell lineage specification. The role of embryonic POU5F1 in blastocyst 
formation and cell lineage specification differs between mammalian species but remains completely 
unknown in cattle. The CRISPR/Cas9 system was utilized for targeted disruption of the POU5F1 

gene by direct injection into zygotes. Disruption of the bovine POU5F1 locus prevented blastocyst 
formation and was associated with embryonic arrest at the morula stage. POU5F1 knockout morulas 
developed at a similar rate as control embryos and presented a similar number of blastomeres by day 
5 of development. Initiation of SOX2 expression by day 5 of development was not affected by lack of 
POU5F1. On the other hand, CDX2 expression was aberrant in embryos lacking POU5F1. Notably, 
the phenotype observed in bovine POU5F1 knockout embryos reveals conserved functions associated 
with loss of human embryonic POU5F1 that differ from Pou5f1- null mice. The similarity observed in 
transcriptional regulation of early embryo development between cattle and humans combined with 
highly efficient gene editing techniques make the bovine a valuable model for human embryo biology 
with expanded applications in agriculture and assisted reproductive technologies.

POU5F1 is a transcription factor and developmental control gene with regulatory roles in mammalian embryo 
development, cell lineage speci�cation and maintenance of germ cell pluripotency1. POU5F1 functions as a 
homeodomain transcription factor of the POU (Pit-Oct-Unc) family by binding to a speci�c octameric sequence 
motif (ATGCAAT) on enhancer and promoter regions of target genes through a POU domain to activate and 
repress gene expression2,3. Although POU5F1 is well-recognized for many roles in mammalian embryo develop-
ment2, the requirement of embryonic POU5F1 in bovine blastocyst formation and cell lineage speci�cation has 
not been determined in fertilized embryos. Technical imitations with gene targeting and the long generational 
interval of livestock species have accounted for the inability to address distinct biological roles of developmental 
control genes in cattle. In addition, prior to the adoption of CRISPR/Cas9 for use in livestock, de�ning roles for 
genomic regulation of bovine blastocyst formation was confounded by the inability to discriminate the func-
tions of maternal and embryonic transcripts with loss of function approaches4. However, characterization studies 
of bovine POU5F1 indicate an important biological role in embryo development5–9 with embryonic POU5F1 
expression beginning at the 8–16 cell stage6. �e function of maternal POU5F1 transcripts has not been di�eren-
tiated from embryonic POU5F1 using traditional siRNA-mediated knockdown approaches for functional studies 
of embryonic genes in bovine embryo development9. Direct zygote injection of CRISPR/Cas9 components target-
ing developmental control genes represents a powerful tool to accurately determine gene function4,10.

Mouse models have provided insight regarding the roles of POU5F1 during mammalian preimplantation 
development11 yet major species di�erences in the timing of gene activation, spatio-temporal expression and 
regulatory interactions of POU5F1 with other transcription factors suggest di�erences in the requirement of 
POU5F1 for cattle and mice12–14. In contrast, similarities in spatio-temporal gene expression and gastrulation 
of bovine and human embryo development may indicate conserved roles for early developmental genes such 
as POU5F1 that could provide a valuable model for understanding human developmental biology and devel-
opment of assisted reproductive technologies13. Among mammals, POU5F1 is consistently expressed at EGA, 
suggesting some conserved roles in early development, including cell lineage speci�cation and blastocyst forma-
tion2. Contrary to the mouse, bovine POU5F1 is not restricted to the inner-cell mass (ICM) but is ubiquitous to 
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both the ICM and trophectoderm (TE) lineages of the early blastocyst6,7,15. In pre-compaction mouse embryos, 
POU5F1 is ubiquitous and becomes restricted to the ICM during the �rst cell lineage speci�cation16,17. CDX2 is a 
transcription factor speci�cally expressed in the TE lineage and is associated with downregulation of POU5F1 in 
mouse embryos, while in bovine POU5F1 is not immediately repressed by TE formation17,18. Depletion of Pou5f1 
in mouse embryos does not prevent blastocyst formation or establishment of the epiblast (EPI) and TE lineages, 
but is required for proper development of the primitive endoderm (PE) as well as expression of multiple EPI 
and PE genes, such as GATA6 and FGF411. Recent evidence obtained from human embryos suggests an earlier 
requirement for POU5F1 with biologically di�erent roles than those described for mouse embryos, such as pri-
mary cell lineage speci�cation and blastocyst formation19.

We hypothesized that bovine POU5F1 plays an important role in bovine embryo development distinct from 
rodents due to di�erences in the timing of expression, localization and regulatory interactions. �e requirement 
of embryonic POU5F1 in bovine blastocyst development and cell lineage speci�cation was investigated using a 
loss-of-function approach based on direct zygotic injection of CRISPR/Cas9 components.

Results
CRISPR-induced POU5F1 mutations prevent blastocyst formation in bovine embryos. A 
synthetic guide RNA targeting exon 2 (E2) of bovine POU5F1 was microinjected into the cytoplasm of bovine 
zygotes in complex with Cas9 protein (Fig. 1A). Targeted mutation of embryonic POU5F1 E2 was highly e�cient, 
with large deletions up to 429 bp in length (Fig. 1B), resulting in a total KO rate of 86% (n = 29, 8–16C embryos; 
Fig. 1C). Furthermore, 78% of sequenced embryos targeted for knockout (TKO) yielded bi-allelic mutations. �e 
mutation e�ciency when targeting exon1 (E1) of embryonic POU5F1 yielded wild-type embryos only and thus 
served as an injected control (IC) for further experiments (Fig. 1D).

�e requirement of embryonic POU5F1 for bovine preimplantation development was tested by evaluating the 
developmental potential of embryos targeted for POU5F1 mutations. No di�erences in embryo cleavage (2C) and 
development to the 8–16C (cell) stage were observed between targeted and control embryos (Fig. 2A). Blastocyst 
formation in the TKO group was signi�cantly lower (P < 0.05) compared to injected and un-injected controls (12, 
42 and 31%, respectively), with no di�erences in blastocyst development among controls (P > 0.05, Figure A,B). 
Similarly, the proportion of 2C and 8C embryos developing to blastocyst stage was lower in TKO group compared 
to controls (P < 0.05; Fig. 2C,D).

Day 7.5 embryos that reached the expanded blastocyst stage following zygotic injection were subjected to 
immunostaining to determine relative expression of POU5F1and CDX2 in both TKO and IC groups. All (n = 14) 
expanded blastocysts in the TKO group (n = 5 reps) stained positive for POU5F1 and CDX2 and displayed similar 

Figure 1. E�ciency of CRISPR-Cas9 POU5F1 targeted deletion in bovine embryos. (A) Target sites and sgRNA 
sequences designed to disrupt the coding regions of bovine POU5F1. (B) Representation of indel mutations 
as a result of intracytoplasmic zygotic injection of Cas9 and sgRNA targeting exon 2 of POU5F1. (C) POU5F1 
mutation e�ciency for exon 2 observed in D3 (8–16C) morulas. (D) Mutation e�ciency in D3 (8–16C) 
embryos when targeting exon 1 of POU5F1.
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POU5F1 ubiquitous staining patterns compared to injected controls (Fig. 3A), indicating that embryos develop-
ing to blastocyst stage contained a functional copy of the POU5F1 gene. To con�rm their genotype, two embryos 
from the TKO group, that were positive for POU5F1 staining, were sequenced following immuno�uorescence 
analysis and were determined to be wild-type embryos (Fig. 3B).

Sequence analysis of D7.5 arrested embryos revealed a 75% POU5F1 mutation rate within the TKO group 
(Fig. 3C,D). POU5F1 protein was detected in 40% of TKO D7.5 arrested/delayed embryos while it was observed 
in 100% of injected controls (Fig. 3C). When positive, POU5F1 staining appeared similar in TKO embryos com-
pared to injected controls (Fig. 3E).

CDX2 is aberrantly expressed in D7.5 arrested morulas. CDX2 expression was evaluated in IC 
embryos at D3, 5 and 7.5 to determine the timing of trophectoderm lineage speci�cation. CDX2 was absent at D3 
and D5 but was strongly expressed in D7.5 blastocysts and morulas (Fig. 4A). �e expression of CDX2 was then 
determined in association with POU5F1 expression in D7.5 arrested morulas (Fig. 4B). In TKO D7.5 morulas 
that expressed POU5F1, CDX2 staining was similar to controls. However, TKO D7.5 morulas lacking POU5F1 
expression presented a weak and inconsistent CDX2 staining (Fig. 4B).

POU5F1 knockout allows normal development to D5 morula stage. The POU5F1 knockout 
embryos did not di�er in their ability to reach the 8–16C stage compared to controls, but underwent develop-
mental arrest at morula stage (Fig. 3). To assess the phenotypic characteristics of embryos at the time of arrest, D5 
morulas were evaluated. Embryos targeted for deletion were discarded if 8–16C development was not achieved by 
72 h post-activation and remaining embryos cultured until D5, at which time morulas were �xed and immunos-
tained to detect POU5F1 protein (Fig. 5). When D5 embryos were evaluated, POU5F1 was detected in all the cells 
from control embryos, while in TKO embryos, three di�erent phenotypes were observed. Some embryos showed 
all cells stained with POU5F1, some were completely negative for POU5F1 expression, and some were mosaic, 
with some cells staining positive and others staining negative. �is last group is consistent with mutation chimer-
isms observed a�er CRISPR/Cas9 direct injection into zygotes attributed to gene editing following DNA replica-
tion20 (Fig. 5A). Only 14% of embryos in the TKO group had ubiquitous (>75% of the cells) POU5F1 expression 
compared to 88% in the IC group (P < 0.05) as determined by immunostaining (Fig. 5B). Advancement from 
D3–5 was not altered (P > 0.05) in IC (70%) vs. TKO (59%) groups for embryos containing ≥16 cells (Fig. 5C). 
Total cell number was similar (P > 0.05) for D5 IC or TKO embryos (Fig. 5D) and also not di�erent (P > 0.05) for 
TKO embryos lacking POU5F1 expression (Fig. 5E).

Figure 2. E�ect of POU5F1 CRISPR-induced mutation on bovine embryo development. (A) Embryo 
development following zygotic injection of CRISPR/Cas9 targeting the POU5F1 locus was determined at the 
2C (cell), 8–16C and blastocyst stages (D7.5). (B) Representative bright�eld image of D7.5 embryo morphology 
and blastocyst development in targeted knockout and injected controls. (C,D) Blastocyst development 
calculated based on the number of embryos reaching the 2C and 8–16 stage, respectively. a,bDi�erent letters 
indicate signi�cant di�erences (P < 0.05). Scale bar = 100 µm.
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SOX2 expression is not altered in POU5F1 knockout embryos. �e expression of SOX2 was eval-
uated in association with POU5F1 to determine the e�ect of POU5F1 deletion on the initiation of ICM lineage 
speci�cation (Fig. 6). POU5F1 knockout did not alter SOX2 expression in morula stage embryos (Fig. 6A,B). �e 
ratio of SOX2 positive cells to total cell number was not di�erent between TKO and control morulas (Fig. 6C). 
�e number of SOX2 positive cells was also not di�erent between POU5F1 positive and negative embryos within 
the TKO group (Fig. 6D).

In-vitro fertilized POU5F1 knockout embryos do not form expanded blastocysts. In-vitro fer-
tilized embryos were produced to determine the requirement of POU5F1 for expanded blastocyst formation 
(Fig. 7). No di�erences were observed in developmental competence at the 2 or 8–16-cell stages. However, blas-
tocyst formation in POU5F1 TKO embryos was signi�cantly lower (2.5%) than the injected and un-injected 
controls (26 and 41%, respectively). No expanded blastocysts were observed in the TKO group. CDX2 expression 
was apparent in D7.5 advanced morulas in both WT and POU5F1 KO embryos, albeit with decreased or atten-
uated staining as observed in D7.5 parthenotes (Fig. 4). Depletion of POU5F1 in D7.5 TKO morulas reached 
75% (n = 32), whereas POU5F1 was detected in 100% of all injected control embryos (n = 20). Embryos that 
stained positive for POU5F1 staining from un-injected, injected control and TKO groups were con�rmed to have 
wild-type genotype. POU5F1 negative embryos (n = 3) from the TKO group that were sequenced con�rmed the 
precense of mutations at the targeted site (Supplementary Table S1).

Discussion
�e functional genomics of bovine embryo development are largely unde�ned due to historic ine�ciencies in 
gene editing and the inherently long generational gap associated with most large animal models appropriate 

Figure 3. POU5F1 expression is required for blastocyst formation in bovine embryos. (A) Immuno�uorescence 
analysis of POU5F1 (green) and CDX2 (red) expression in D7.5 expanded blastocysts from the POU5F1 
targeted knockout and injected control (IC) groups. (B) Genotype analyses from D7.5 blastocysts (n = 2) 
following con�rmation of POU5F1 expression in embryos targeted for knockout. (C) Proportion of morulas 
collected on D7.5 that were stained and determined as POU5F1 positive (+/+, +/−) or negative (−/−). (D) 
Embryos in the targeted knockout group that failed to form blastocysts by D7.5 were genotyped to determine 
total mutation rate and allelic knockout e�ciency (bi-alleic or monoallelic). (E) Immuno�uorescence analyses 
of POU5F1 (green) and DAPI (blue) staining in D7.5 arrested morulas from targeted knockout and injected 
control groups. Scale bar = 100 µm.
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for biomedical and agricultural research. Adaptation of the CRISPR/Cas9 system for directed intracytoplasmic 
injection of ribo-nucleoprotein constructs using a single sgRNA in a system devoid of cell lines and reconstructed 
embryos has allowed us to evaluate the function of bovine POU5F1 by targeted inactivation of the POU5F1 
gene with high e�ciency and repeatability. Our results indicate the requirement of POU5F1 for bovine blasto-
cyst formation, similar to recent �ndings in CRISPR-edited human embryos19. Following targeted disruption 
of POU5F1, we did not observe a negative e�ect on development to the 8–16C stage, which would be expected, 
since major embryonic POU5F1 expression occurs at the 8–16C stage6,8,21. In addition, no e�ect was observed 
on the ability of morulas to progress post-EGA up to D5, further suggesting that POU5F1 is not required for cell 
proliferation immediately a�er EGA. However, although some POU5F1−/− embryos reached advanced mor-
ula stages, no expanded blastocysts were observed in the complete absence of POU5F1 in parthenogenetic and 
fertilized embryos, indicating a requirement for POU5F1 in orchestrating blastocyst formation and cell line-
age speci�cation beyond D5. Taken as a whole, the biological functions of POU5F1 are not required for bovine 
morula development but are evident for normal blastocyst formation as illustrated by lack of a de�ned ICM 
and failed expansion in TKO embryos. Our �ndings for the requirement of POU5F1 di�er in comparison to 
SCNT-derived POU5F1 de�cient bovine embryos in which the POU5F1 gene was mutated in �broblast cells and 

Figure 4. Failure to reach blastocyst in POU5F1 knockout embryos is associated with altered CDX2 expression. 
(A) Characterization of CDX2 (red) expression in D3, 5 and 7.5 morulas from injected control groups. (B) 
CDX2 (red) staining patterns detected in D7.5 arrested POU5F1-edited and unedited embryos from the 
targeted knockout and injected control groups. Scale bar = 100 µm.
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embryos reconstructed following SCNT22. In SCNT-derived POU5F1 knockout embryos, POU5F1 was detected 
by immuno�uorescence at the 8-cell and up to blastocyst stages with expression attributed to maternal stores of 
POU5F122. Under our conditions, we could not detect POU5F1 in knockout embryos at any stage of develop-
ment, maybe suggesting di�erences between fertilized and SCNT derived embryos.

In light of the phenotype observed with bovine POU5F1 ablation, the speci�c roles of POU5F1 for orches-
trating embryo development appear to be distinct between species, since POU5F1 is not required for murine 
blastocyst development. POU5F1-de�cient mice illustrate developmental roles for POU5F1 that are �rst detected 
during the second cell lineage speci�cation, a�er blastocyst development11. POU5F1- null mice are able to pro-
duce blastocysts, albeit with alterations in epiblast (EPI) and primitive endoderm (PE) gene expression that point 
to a role of murine POU5F1 in second cell lineage speci�cation and extraembryonic cell lineage determination11. 
In contrast, bovine embryos lacking POU5F1 undergo developmental arrest during the �rst lineage speci�cation 
around embryonic D5, preventing blastocyst formation. Di�erences in cell lineage formation between mice and 
human embryos are further disparate at the blastocyst stage where factors localized to the trophectoderm lineage 
in mice are either not present or expressed in other cell lineages in human embryos23. In addition, requirements 
for cell signaling in EPI and PE are di�erent between human and mouse23. Our observations in cattle are in close 
alignment with human POU5F1-null embryos19 in which blastocyst development was compromised following 
POU5F1 CRISPR genome editing. Despite a signi�cant reduction in cattle blastocyst development, some embryos 
from the POU5F1 TKO group (n = 14) did develop to the blastocyst stage but were exclusively POU5F1 positive 
and un-edited as determined upon immuno-cytological and genotype evaluation. �ese observations coincide 
with the lack of consistent 100% mutation e�ciency following CRISPR/Cas9 delivery.

Ablation of POU5F1 hindered the ability of bovine embryos to develop beyond the morula stage and the 
�rst cell lineage speci�cation, similar to �ndings reported in human embryos19. At day 7.5, arrested morulas in 
control groups stained positive for POU5F1. On the other hand, 60% of arrested morulas were POU5F1 negative 

Figure 5. Embryonic POU5F1 is not required for D5 morula development. (A) Immuno�uorescence staining 
for POU5F1 revealed embryos with negative, mosaic (MO) and positive expression in the CRISPR-targeted 
knockout group. (B) Quanti�cation and characterization of POU5F1 expression patterns as negative (−/−), 
Mosaic or positive (+/+: >75% positive cells) from injected control and POU5F1 targeted embryos. * indicates 
di�erence (P < 0.05) between groups (TKO vs. IC) within mutation type. (C) Percentage of morulas with ≥16C 
that advanced from D3 to D5 in control and POU5F1 targeted groups. (D) Total cell number from injected 
control and targeted knockout (+/−, −/−) embryos. (E) Total cell number in targeted knockout embryos with 
zero (POU5F1−/−) or mosaic (POU5F1+/−) POU5F1 staining.
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in the TKO group, which indicates successful mutation of the POU5F1 gene. In addition, the mutation e�ciency 
of D7.5 sequenced morulas in TKO embryos was high (75%), and equally matched (75%) by immuno�uorescent 
staining in IVF-produced embryos. �e lack of blastocysts with absent POU5F1 staining supported by the high 
proportion of arrested morulas that lacked POU5F1, indicates that POU5F1 is necessary for blastocyst formation 
and in its absence, embryos arrest at the morula stage.

Zygotes targeted for POU5F1 deletion did not display altered development prior to the 8–16C stage (D3) but 
consistently arrested at the morula stage when observed at the termination of culture (D7.5). Consistent with 
D7.5 TKO morulas, D5 TKO morulas also had a signi�cant reduction in POU5F1 detection (36%), suggesting 
a high editing e�ciency consistent with morula arrest and reduced blastocyst formation. Furthermore, some 
morula embryos showed mosaic POU5F1, consistent with expectations when editing zygotes due to the inability 
to control gene editing prior to DNA replication in all embryos19. Importantly, no POU5F1 mosaic blastocysts 
were found, indicating the requirement for ubiquitous expression or a threshold level of POU5F1 necessary for 
blastocyst development. While the potential for POU5F1 chimeric blastocysts in embryos targeted for deletion 

Figure 6. Lack of POU5F1 does not alter SOX2 expression in D5 bovine morulas. (A) Temporal expression of 
SOX2 (red) and POU5F1 (green) in bovine embryos. (B) SOX2 (red) expression in POU5F1 (green) knockout 
and injected control D5 morulas. (C) Ratio of SOX2 positive cells to total cell number from injected control 
and POU5F1 targeted knockout groups (D). Number of SOX2 positive cells in POU5F1 positive and negative 
embryos within the targeted knockout group. Scale bar = 100 µm.
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cannot be completely ruled out, all blastocysts from the TKO group contained >75% of their blastomeres staining 
positive for POU5F1, which was similar to the staining pattern observed in injected control blastocysts.

Morula cell number and development rate achieved by D5 was independent of POU5F1 expression, as shown 
when comparing total cell number between TKO and control groups or between POU5F1 positive (mosaic) and 
negative embryos within the TKO group. Equivalent cell numbers between groups indicate that lack of POU5F1 
does not alter cell proliferation, and therefore the incapacity for blastocyst formation must be related to alter-
ations in cell di�erentiation and not cell proliferation capacity that additionally, are not supported by mosaic 
expression of POU5F1.

SOX2 is a well-known marker of ICM development and as a POU5F1 binding partner24,25. Less is known 
about the requirement of POU5F1 for orchestrating ICM formation in the bovine embryo. Disruption of POU5F1 
prevented development beyond the morula stage but did not alter immunostaining detection of SOX2. �e 
ability to detect SOX2 in POU5F1-KO embryos suggests the initiation of ICM formation followed shortly by 
developmental arrest. �ese �ndings are in close agreement with human embryos in which mutations a�ecting 
POU5F1 result in poor ICM formation followed by collapsed embryos19, pointing to a conserved role of human 
and cattle POU5F1 in preimplantation embryo development. �us, a primary role of POU5F1 at the initiation of 
genome activation may be more related to maintenance rather than transcriptional regulation required for initial 
establishment of the inner-cell mass11. Notably, due to di�erences in the methods used to evaluate single cells 
from human embryos19 versus evaluation of whole cattle embryos herein as well as a reduced number of human 
embryos evaluated, direct comparisons of POU5F1 on embryo development suggest a number of conserved 
functions but have not been thoroughly investigated under identical conditions.

Blastocyst formation is dependent on formation of a functional TE. Interestingly, in arrested D7.5 moru-
las from the TKO group, CDX2 expression was altered. In bovine embryos POU5F1 is expressed in both ICM 
and TE lineages. Our results suggest and important role for POU5F1 in establishment of the TE lineage, since 
TE formation appeared to be compromised in POU5F1-KO embryos. �e expression of CDX2 was evaluated 
in KO embryos as a marker of trophectoderm cell lineage speci�cation �rst detected in advanced morula and 
blastocyst stages of development8,26–28. Day 7.5 blastocysts displayed normal CDX2 staining27. Likewise, all 
(18/18) D7.5 control morulas also expressed CDX2, albeit with attenuated staining intensity when compared to 
blastocysts. However, D7.5 POU5F1 KO morulas showed reduced and uncharacteristic CDX2 staining, while 
unedited embryos from the TKO group displayed similar CDX2 staining to the injected controls. POU5F1-null 

Figure 7. Zygotic POU5F1 is required for expanded blastocyst formation in in vitro fertilized bovine embryos. 
(A) Embryo development following peri-zygotic injection of CRISPR/Cas9 targeting the POU5F1 locus was 
determined at the 2C (cell), 8–16C and blastocyst stages (D7.5) of oocytes fertilized with frozen-thawed bull 
sperm. (B) Immuno�uorescent detection of POU5F1 expression was determined in D7.5 morulae from the 
targeted knockout (TKO) and injected control (IC) groups. (C) Developmentally advanced embryos from 
the TKO and IC groups were evaluated for POU5F1 (green) and CDX2 (red) expression. Arrows indicate a 
POU5F1 negative morula. a,bDi�erent letters indicate signi�cant di�erences (P < 0.05). Scale bar = 100 µm.
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cells from human embryos show downregulation of CDX219. In addition, lower levels of CDX2 transcripts 
have been reported in bovine POU5F1 knockdown embryos9. However, CDX2 transcripts are upregulated in 
POU5F1-de�cient mouse embryos11. Taken together, disruption of the bovine POU5F1 gene appears to result in 
failed trophectoderm speci�cation as evidenced by lack of blastocyst formation and aberrant CDX2 expression.

In conclusion, direct intracytoplasmic zygotic injection of CRISPR/Cas9 using a single sgRNA was highly 
e�cient at inducing POU5F1 mutations and thus represents a valuable tool for investigating functional genom-
ics of the bovine embryo. CRISPR-induced POU5F1 mutations in bovine embryos resulted in developmental 
arrest prior to blastocyst formation but showed no alteration in development up to the morula stage. Consistent 
with the lack of blastocyst formation in POU5F1 KO embryos, CDX2, a TE marker, was aberrantly expressed in 
D7.5 embryos. On the other hand, SOX2, a pluripotency related gene that is speci�c to the ICM, was unaltered 
by lack of POU5F1 expression. Overall, bovine embryonic POU5F1 is required for expanded bovine blastocyst 
formation, and given the similarities observed in human POU5F1 KO embryos, the bovine embryos represents 
an excellent model for early human development.

Methods
Ethics Statement. No live animals were used in this research. Unless otherwise speci�ed, reagents were 
purchased from Sigma-Aldrich, St. Louis, Missouri. USA.

Embryo production. Bovine ovaries were obtained from a local abattoir. Follicles ranging between 3–6 mm 
in diameter were aspirated using a 20 gauge needle and syringe. Morphologically normal oocytes with a rela-
tively uniform radial distribution of compact cumulus cells were selected and cultured for 22 h in Medium-199 
with Earle salts (base medium) supplemented with 20 mM Na-pyruvate, 1 IU/ml FSH, 5 IU/ml LH (Sioux 
Biochemical), 1 µg/ml estradiol-17β, 10% fetal bovine serum (FBS, Hyclone, Logan, UT), and 0.1% gentamycin 
at 38.5 °C and 5% CO2 in humidity saturated air29. Expanded cumulus-oocyte-complexes (COCs) were vortexed 
for 4 min in 1% hyaluronidase and held in HEPES-based embryo culture medium (HH)30 for selection. Oocytes 
appearing morphologically normal with a homogeneously granulated cytoplasm and visible polar body were par-
thenogenetically activated by placement in a droplet of 5 µM ionomycin in HH for 4 min, washed three times in 
HH medium and placed in 2 mM of 6-DMAP in culture medium for 4 h to prevent second polar body extrusion30. 
Activated oocytes were washed �ve times and presumptive embryos were incubated in KSOM culture medium 
(EMD Millipore, Billerica, MA) supplemented with 0.3% BSA at 38.5 °C and 5% CO2 in air. �e culture medium 
was supplemented with 5% FBS at 72 h post-activation (HPA). Following activation (D0), embryos were evaluated 
for cleavage at 48 h (D2), 8–16 cell stage at 72 h (D3) and for blastocyst development at 180 h (D7.5).

In-vitro fertilized embryos were collected and matured as reported herein. Following maturation, 
frozen-thawed sperm were passed through a 45:90% Percoll step gradient consisting of a HEPES bu�ered Tyrode’s 
lactate sperm medium (99 mM NaCl, 24.8 mM NaHCO3, 10 mM HEPES, 0.33 mM NaH2PO4, 24 mM sodium lac-
tate (60%), 2.4 mM MgCl2 ∙ 2H2O, 2.6 mM CaCl22H2O). COCs were co-incubated with motile sperm at a ratio of 
8000:1 sperm per oocyte for 10 h in fertilization medium (114 mM NaCl, 25 mM NaHCO3, 3.2 mM KCl, 0.39 mM 
NaH2PO4, 0.18 mM penicillin-G, 16.6 mM sodium lactate, 0.76 mM MgCl22H2O, 2.7 mM CaCl22H2O) at 38.5 °C 
in 5% CO2 and humidity saturated air. COCs were then stripped of cumulus and CRISPR/CAS9 components 
were injected into presumptive zygotes as described above. Injected zygotes were then returned to KSOM culture 
medium and supplemented with 5% FBS at 72 HPI and cultured until D7.5 as described for activated embryos.

CRISPR design and embryo microinjection. Guide RNA (gRNA) sequences were designed using 
AddGene Cas-designer so�ware (rgenome.net/cas-designer) targeting the coding sequence of bovine POU5F1 at 
exons 1 and 2. �e selected sequences were blasted against the bovine genome (blast.ncbi.nlm.nih.gov) to elimi-
nate the potential for predicted o�-target sites. �e gRNA targeting exon 1 of POU5F1 was determined to be inef-
fective for introducing mutations and was thus used as a control. Embryo micromanipulations were performed on 
a Nikon-Eclipse TE2000-U inverted microscope using an Origio ICSI needle with a 5.5 µm inner diameter and a 
custom holding pipette controlled by Vizio oil and Cell-Tram air microinjectors30. One-cell embryos were placed 
in 50 µl droplets of HH medium containing 10% FBS under oil and microinjections were performed at room tem-
perature within 1 h of activation10. Synthetic gRNAs (Synthego) and Cas9 protein (PNA Bio) were delivered via 
intracytoplasmic injection at a concentration of 140 and 70 ng/µl, respectively. Following injections, lysed embryos 
were discarded and the remainder were placed in 50 µl droplets of culture medium and returned to incubation.

DNA preparation and genotyping of single embryos. Single embryos ranging between 8–16 cell to 
blastocyst stage were individually collected in 10 µl of DNA lysis bu�er (Epicentre Quick X-Tract), placed in a 
thermocycler at 65 °C for 6 min and 98 °C for 2 min31 and stored at −20 °C until use. Ampli�cation of DNA was 
performed by nested PCR using primers (IDT, Table 1) spanning exon 2 on the bovine POU5F1 locus. �e �rst 
reaction consisted of a total volume of 20 µl (GoTaq Hot Start Green Master Mix – Promega). Five microliters 
of the �rst reaction were used as template for the nested reaction. PCR conditions were as follows: 95° for 3 min, 
followed by 35 cycles of 95° for 30 sec, 56° for 30 sec, 72° for 30 sec and a �nal extension of 72° for 7 min.

Nested PCR reactions were visualized by gel electrophoresis on a 1% agarose gel with 0.1% ethidium bromide 
and run at 95 volts for 45 min followed by 2 ms UV exposure. PCR products resulting from individual embryos 
with a single band were puri�ed using QIAquick Puri�cation Kit (QIAGEN). Reactions containing more than one 
band were excised from agarose and gel-puri�ed using QIAquick Gel extraction kit (QUIAGEN). Resulting ampli-
cons from single embryos were submitted for Sanger sequencing to Quintara Biosciences (http://www.quintarabio.
com/services, Allston, Ma). Sequences were analyzed using TIDE Analysis So�ware (https://tide-calcualt.nki.nl) 
for quantitative assessment of genome editing by sequence trace decomposition32. SnapGene so�ware was used in 
complement with TIDE so�ware to align sequences for characterization of mutation frequency and allele editing.

http://www.quintarabio.com/services
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Immunofluorescence staining. Embryos evaluated for immuno�uorescence were �xed in 4% paraform-
aldehyde and held in PBS (0.1% PVA) under oil at 5 °C until evaluation. Fixed embryos were washed 3 × 10 min 
in PBS (0.1% Triton X-100) and then permeabilized for 30 min in PBS and 1% Triton X-100. Following a 10 min 
wash, embryos were placed in blocking bu�er of PBS containing 0.1% Triton-X-100 with 1% BSA and 10% 
Normal Donkey Serum (sc-2044). Embryos were washed and then incubated overnight at 4 °C in antibody bu�er 
(PBS with 0.1% Triton-X-100 and 1% BSA) at a 1:300 primary antibody concentration. All secondary staining 
was performed at a 1:500 dilution. POU5F1 staining was conducted using a goat polyclonal antibody (sc-8628) 
and detected by donkey anti-goat IgG-CFL 488 secondary staining (sc-362255). A CDX2 rabbit monoclonal 
antibody (AB7648) and SOX2 anti-rabbit (Biogenex AN833-RTU) followed by secondary staining with donkey, 
anti-rabbit 568 �uorophore (AB175470) were used to di�erentiate trophectoderm and inner cell mass, respec-
tively. For co-immunostaining, identical primary and secondary concentrations were maintained in 80 µl total 
volumes. Embryos were mounted on a glass slide with a coverslip using Vector mounting solution containing 
DAPI for nuclear counterstaining and then sealed. Mounted embryos were imaged by epi�uorescence micros-
copy with the following �lter combinations and exposure times: donkey anti-rabbit 568- HCRed 41043 �lter, Ex 
575/50 –Em 640/50, 300 ms exposure time; donkey anti-goat 488- HQ:Y GFP 96345 �lter, Ex 500/20 –Em 535/30, 
2 s exposure; DAPI Vectashield-11000v3-UV �lter, Ex 350/50–Em 420/lpv2, 4 ms exposure. Images were captured 
using Axiocam so�ware and cells were objectively quanti�ed using ImageJ so�ware. Classi�cation of D5 embryo 
knockout phenotype was achieved by standardization to injected control embryos following quanti�cation of 
whole embryo POU5F1 blastomere expression as a percentage of total cell number by the following: Embryos 
expressing ≥75% POU5F1 were considered wild-type (+/+, WT), 1–74% mosaic (+/−) and 0% POU5F1 were 
complete (−/−) knockouts (KO). Analyses of targeted knockout (TKO) embryos included all phenotypes (+/+, 
+/−, −/−) from the TKO group. POU5F1 background staining was not removed from images of KO embryos 
but was linearly reduced in POU5F1 positive embryos to clearly distinguish characteristic nuclear staining.

Statistical analyses. Developmental comparisons were calculated using a one-way ANOVA with 
Tukey’s-post hoc analysis to adjust for pairwise comparisons. Chi-squared tests were employed for analyses of cat-
egorical indel mutation type and t-tests were used to determine di�erences in cell number. Comparisons for cell 
number data excluded wild-type embryos in the TKO group and mutated embryos in the IC group. Embryo was 
considered the experimental unit for cell number data and replicate was the experimental unit for development 
rate. Fixed e�ects included treatment and random e�ect were assigned for replicate. Di�erences among treat-
ments were considered signi�cant when P < 0.05. Percentage data were assessed for normality (Shapiro-Wilk) and 
when necessary, arcsine transformed. SAS 9.0 so�ware (St. Louis, Missouri) was used for all statistical analyses.
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