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Abstract

In this tutorial presentation, broad-band time-domain electromagnetic interference (EMI) measurement tech-
niques are discussed. Time-domain EMI measurement systems are based on broad-band analog-to-digital
conversion and subsequent real-time digital processing of the EMI measurement signals. This allows us to
reduce the measurement times by several orders of magnitude. Modern time-domain EMI measurement
systems for frequency bands up to 18 GHz and their principles of operation are presented. Like conven-
tional EMI receivers, time-domain EMI measurement systems facilitate the measurement of average-, rms,
peak-, and quasi-peak values of the EMI. Additionally, time-domain electromagnetic interference measure-
ment systems allow measuring phase-spectra, short-time spectra and to performing statistical analysis of the
measured signals.

1 Introduction

The development of electronic circuits and systems towards enhanced functionality and performance,
increased complexity and integration density, and higher bandwidth not only increases the requirements
concerning technology and design methods but also on high frequency and electromagnetic compatibility
measurement techniques. Due to the high bandwidth and their low power levels, modern electronic sys-
tems are highly sensitive to electronic disturbances. Electromagnetic Compatibility (EMC) is the topical
area dealing with the accidental generation, propagation, and reception of electromagnetic energy espe-
cially in reference to the objectionable effects, summarized under Electromagnetic Interference (EMI) [1–4].
Electromagnetic Compatibility denotes a situation where electrical and electronic systems are not mutually
interfering by electric, magnetic or electromagnetic interference. The guideline 2004/108/EG of the European
Community [5] defines Electromagnetic Compatibility as “the ability of equipment to function satisfactorily
in its electromagnetic environment without introducing intolerable electromagnetic disturbances to other
equipment in that environment”. That document also defines “electromagnetic disturbance” as “any electro-
magnetic phenomenon which may degrade the performance of equipment” and states: “An electromagnetic
disturbance may be electromagnetic noise, an unwanted signal or a change in the propagation medium itself.”

Modern electric and electronic systems have to be designed and realized such that the escape of unwanted
electromagnetic energy into the environment is minimized. This requires the characterization of the con-
ducted and radiated electromagnetic interference of electric and electronic systems in the complete frequency
range from low frequencies up to the microwave region.

Broad-band measurement systems for the measurement of electromagnetic interference are important
tools required in development of electric and electronic products and for the test of their electromagnetic
compliance. Traditionally, measurements of electromagnetic interference are performed using EMI receivers
operating by the superheterodyne principle. For the characterization of a device under test, according to
the international EMC standards, the measurements must be performed at thousands of frequency points
sequentially. Due to a dwell time of several seconds at every frequency bin the total measurement time may
be several hour [1–3, 6, 7].

Time-domain EMI measurement systems sample the broad-band EMI signal with GHz sampling rates
and compute the EMI spectrum by digital signal processing, e.g. by the fast Fourier transform (FFT).
This yields a considerable reduction of the measurement time by up to five orders of magnitude. Time-
domain measurement of EMI has been suggested for the first time by E.L. Bronaugh [8, 9]. Further early
work on time-domain EMI measurement was published in [10, 11]. M. Parvis et al have realized a time-
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domain EMI precompliance test set for conducted emission measurements based on a sampling oscilloscope
with subsequent discrete Fourier transform (DFT) signal processing [12]. A time-domain Fast Emission
Measurement system (FEMIT) using DFT for spectral estimation has been presented by C. Keller [13–15].

Florian Krug developed a time domain electromagnetic interference measurement system that uses ultra
high-speed analog-to-digital converters and real-time digital signal processing systems to enable ultra fast
tests and measurements for electromagnetic compliance [16–22]. In 2004, Stephan Braun realized a first time-
domain EMI measurement system for the frequency range from 30 MHz to 1 GHz in [23–28]. The system
performs the calculation of the spectrum by the fast Fourier transform (FFT) and a simultaneous evaluation
of the spectrum in the peak, average, and root-mean-square detector mode. In [29–36], the suitability for
full compliance measurements has been demonstrated. With the time-domain EMI measurement system
described in [37,38], a reduction of the measurement time by a factor of 8000 was achieved. Applying three
parallel analog-to-digital converters a multi-resolution system was realized that fulfills the international
EMC standards CISPR 16-1-1 [39]. Ambient cancellation techniques in time-domain for full compliance
EMI measurements are investigated in [40, 41]. In this system two channels are fed from two broad-band
antennas, where the first antenna is receiving predominantly the EMI radiated from the device under test
and a second antenna receives predominantly the ambient noise. These techniques allow fast measurements
of electromagnetic interference in the time-domain at open area test sites.

A joint working group between CISPR A/1 (EMC Instrumentation Specifications) [42], CISPR A/2
(EMC Measurement Methods, Statistical Techniques and Uncertainty) [43], and CISPR D/2 (Protection of
On-Board Receivers) has been formed in order to perform the expansion of the international EMC standards
CISPR 16-1 and CISPR 16-2 to time-domain EMI measurement systems that use the FFT for the calculation
of the spectrum. The newest CISPR 16-1-1 Ed. 3 Am. 1 [44] adds specifications like gapless acquisition for
time-domain EMI measurement systems.

In Section 2, the meaning and significance of electromagnetic interference is discussed briefly. Section 3
summarizes some important terms and definitions, and in Section 4, fundamentals and standards of EMI
measurements are treated. The conventional EMI measurement method with heterodyne receiver is discussed
in Section 5. This method has set the standards for EMI measurement which also have to be considered
in time-domain measurement. Section 6 introduces into the discrete time signal processing methods upon
which discrete-time EMI measurement systems are based. In Subsection 6.1, the fundamentals of signal
windowing sampling and signal representation by short-time spectra are discussed. Subsection 6.2 gives an
account on the power spectra of random signals. Digital signal processing is treated in Section 7, where
in Subsection 7.1 digital Fourier transformation and in Subsection 7.2 the periodogram are introduced.
In Subsection 7.3 the influence on the signal quantization on the signal–to–noise relation is discussed. In
Section 8, modern commercial time-domain EMI measurement systems are described. A system with one
analog-to-digital converter (ADC) is discussed in Subsection 8.1. The quantization noise limitations of one-
ADC-systems were overcome with systems with three ADCs which allow full compliance measurements up
to 1 GHZ after CISPR standard [42]. Systems applicable to frequencies up to 18 GHz are described in
Subsection 8.3. A system applying ambient noise cancellation techniques as described in Section 9 can be
used outside anechoic chambers in noisy environments.

2 What is Electromagnetic Interference?

Electromagnetic interference (EMI) deals with the generation, transmission and reception of unintended
electromagnetic signals. A simple description of the electromagnetic interference phenomena can be given
by an interference coupling model subdividing the EMI structure under consideration into source, coupling
path, and victim. We distinguish between radiated emissions and conducted emissions along wiring and
transmission lines. The coupling path can be conductive, inductive, capacitive, and/or radiative as shown
schematically in Fig. 1. Inductive and capacitive coupling are near-field effects and only play a role in
the near vicinity of the source. EMI can occur in a wide spectral range from low frequencies up into the



millimeterwave range and beyond. The frequency range in which electromagnetic interference has to be
observed depends on the frequency range in which victims are sensitive.
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Figure 1: EMI coupling models.

Electromagnetic interference can be continuous or transient and impulsive, respectively. Continuous
interference is emitted from power amplifiers, transmitters, receivers, and industrial and medical RF systems.
Broad-band noise signals belong to continuous EMI. Transient or impulsive electromagnetic interference,
also called electromagnetic pulse (EMP) or transient disturbance, occur when electric currents are switched,
especially in the case of inductive load and in connection with electric discharges. EMPs are radiated from
electric machines.

Several international organizations work on the international harmonization of standards and regulations.
The International Electrotechnical Commission (IEC) is the world’s leading organization preparing and pub-
lishing standards for electrical and electronic technologies [4, 45]. Within the IEC the following committees
are interested in the reduction of electromagnetic interference and concerned with EMC issues:

• The Comité International Spécial des Perturbations Radioeléctriques - CISPR (International Special
Committee on Radio Interference), founded in 1934, develops standards concerning EMI and immunity
with respect to EMI and and EMC measurement [46]. More than thirty CISPR standards have been
published so far.

• The IEC Technical Committee 77 (TC77) prepares standards and technical reports on EMC, consid-
ering general applications and use by product committees.

• The IEC Advisory Committee on Electromagnetic Compatibility (ACEC) advises the IEC Standards
Management Board and coordinates IEC activities on EMC issues in order to ensure consistency in
IEC standards.

The International Organization for Standardization (ISO), developing international standards on a variety
of subjects, including EMC in the context of special industrial product categories [47]. In Europe the
Comité Européen de Normalisation (CEN) [47], the Comité Européen de Normalisation Electrotechniques
(CENELEC) [48], and the European Telecommunications Standards Institute (ETSI) [49], in the USA the
Federal Communications Commission (FCC) [50], in Britain the British Standards Institution (BSI), and
in Germany the Verband der Elektrotechnik, Elektronik und Informationstechnik (VDE) are also concerned
with the definition of EMC standards.

Electric, electronic, and other industrial products have to be designed, manufactured and installed in a
way such that conducted as well as radiated electromagnetic interference is minimized. Compliance with
national and international standards is regulated by laws enacted from the national governments. European



law is harmonized concerning EMC and the manufacturers of electronic devices are requested to perform EMC
test in order to comply with the compulsory CE-labeling of their products. The directive 2004/108/EC [49]
has the objective to regulate the compatibility of equipment regarding EMC. According to this directive
equipment “has to comply with EMC requirements when it is placed on the market and/or taken into service”
and “the application of good engineering practice is required for fixed installations, with the possibility for the
competent authorities of member states to impose measures if non-compliance is established”. The directive
2004/108/EC limits the emission of equipment so that it does not disturb other equipment. Furthermore, this
directive also regulates the immunity such that equipment is not disturbed by other equipment, compliant
with the regulations.

3 Terms and Definitions

In the following we present some terms and definitions which are meaningful in the context of EMI
measurements [42]:

• The bandwidth Bn is the frequency interval between two points of an attenuation of n dB. The
CISPR 16–1–1 definitions usually refer to the 6 dB bandwidth B6.

• An impulse area, also called impulse strength IS, is defined for impulse voltage signals V (t) as

IS =

∫ ∞

−∞
V (t)dt. (1)

The impulse area is expressed either in µVs or dB(µVs). The spectral density, expressed in µV/MHz
or dB(µV/MHz) is related to the impulse area. For rectangular impulses with pulse width T and pulse
rates f ≪ 1/T the relationship is given by D (µV/MHz) =

√
2 × 106 IS (µVs).

• The impulse bandwidth Bimp of a receiver is defined as

Bimp =
A(t)max

2 G0 IS
, (2)

where A(t)max is the peak value of the envelope A(t) of the signal at the intermediate frequency (IF)
output of the EMI receiver. IS refers to the input signal V (t) of the receiver and G0 is the gain from
receiver input to IF output. The impulse bandwidth Bimp is related to the 3 dB bandwidth B3 and
the 6 dB bandwidth B6 by

Bimp = 1.05B3 = 1.31B6. (3)

4 Fundamentals and Standards of EMI Measurements

For the measurement of the EMI spectrum over a broad frequency band and with high spectral resolution
spectral analyzers or EMI receivers are used [42]. We distinguish between conducted and radiated emissions.
CISPR 16-1-1 defines a limit for the conducted emission, which at any connecting pin of external lines
should not exceed a specified limit. For conducted emission measurements, the device or system under test
is connected to the EMI receiver via cable. For radiated emissions the device or system under test is placed
either in a free range test site, in a transverse electromagnetic cell (TEM-cell), a reverberation chamber, or
into an anechoic chamber. CISPR 16-1-1 specifies the limits of the radio disturbance field strength emitted
by the EMI receiver in the frequency range from 9 kHz to 18 GHz [42].

Figure 2 shows an EMI measurement test setup in an anechoic chamber. The inner side of the metallic
screening walls of the chamber usually are first covered with ferrite plates and upon these with high-frequency
absorbing material. The device or system under test is positioned on a rotation table, so that its angular
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Figure 2: Electromagnetic interference measurement setup.

position can be controlled. The conducted EMI is measured via a line impedance stabilization network
(LISN). The LISN is a low-pass filter network that provides a known impedance of the power line for the
connected device under test, blocks electromagnetic interference coming from the power line, and transfers
the electromagnetic interference from the device under test to the EMI receiver [1, p. 450]. The conducted
disturbance voltage is usually measured in the frequency range from 9 kHz to 30 MHz. The radiated EMI
is received by a broad-band antenna and fed into an EMI receiver. The radiated EMI is usually measured
from 30 MHz up into the GHz range.

The international standard for radio disturbance and immunity measuring apparatus methods are defined
in the document CISPR 16-1-1 [42]. Part 1-1 of this document deals with the radio disturbance and immunity
measuring apparatus for the measurement of radio disturbance voltages, currents, and fields in the frequency
range from 9 kHz t 18 GHz.

The American National Standard for electromagnetic noise and field strength instrumentation provides
a summary of the characteristics for quasi-peak-, peak-, average-, and rms-average EMI measuring instru-
mentation in the frequency range from 10 Hz to 18 GHz and refers to CISPR 16-1-1 [42, 51]. US national
deviations to CISPR 16-1-1 in the ANSI C63.2-2009 standard exhibit a starting frequency of 10 Hz with an
upper frequency of 40 GHz with field strength requirements of 0.01 µV for 10 Hz to 20 kHz, 0.5 µV for 9 kHz
to 1 GHz, and 2.2 µV to 3.0 µV for 1 GHz to 40 GHz [51].

5 EMI Measurements in Frequency Domain

Since the mid of the thirties of the past century the traditional method to carry out electromagnetic
interference measurements is based on the use of EMI receivers operating in the frequency domain. [1–
3, 7]. The required frequency resolution is achieved by narrow-band filtering of the interference signal.
Measurements according to the international EMC standards [43] have to be performed sequentially at
several thousand frequency bin positions. Due to a dwell time of several seconds at every frequency point
the complete characterization of a device under test may take several hours. These EMI receivers perform
a bandpass filtering of the EMI signal and a downconversion to an intermediate frequency. The IF-signal
is demodulated and evaluated by the various detector modes, e.g. the average, rms, peak, and quasi-peak
detector modes [42].

Figure 4 shows the block diagram of a conventional EMI receiver. The EMI signal is filtered in the
RF preselection bandpass filter BPF1, amplified in the low-noise amplifiers LNA yielding the signal with
spectrum SIN fed into the mixer M, where the signal from the local oscillator LO with frequency fLO is
superimposed. The intermediate frequency output signal of the mixer M is filtered in a bandpass filter
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Figure 4: Block diagram of an EMI receiver.

BPF2. The bandpass filter determines the bandwidth and the linear signal transfer characteristics of the
EMI receiver. In the demodulator, the IF signal SIF (f) is rectified and, by an integrator or low-pass filter,
limited to the base band, which has half the width of the IF band. The detector DET further processes the
demodulator output signal SDEM (f). This value is displayed by critically damped mechanical indicating
instrument I.

Let us consider the signal processing of the analogue frequency-domain EMI receiver. The spectrum of
the mixer output signal is

SIF (f) = SIN (f − fLO). (4)

The output signal of the mixer is filtered in the bandpass filter BPF2 with the transfer function HBP (f)
yielding

SBP (f) = HBP (f)SIF (f). (5)

The bandpass filter BPF2 determines the bandwidth of the EMI receiver. The bandwidth requirements
according to CISPR 16-1-1 [42] depend on the frequency band. The bandwidth shall be within the values
given in Table 1.

The time-domain signal sBP (t) corresponding to the spectrum SBP (f) is given by

sBP (t) ❝ sSBP (f), (6)

where the symbol ❝ s denotes the Fourier transform.

In the case of a linear mean value demodulator, the absolute value of sBE(t) is formed and averaged over
a time interval from (t − ∆t) to t. In this case the output signal sml

DEM(t) of the detector D is given by

sml
DEM (t) =

∫ t

t−∆t

|sBP (t1)| dt1. (7)



Table 1: Bandwidth Requirements according to CISPR 16–1–1 [42, p. 26, p. 31].

Band Frequency Range 6 dB Bandwidth B6

A 9 kHz – 150 kHz 200 Hz
B 150 kHz – 30 MHz 9 kHz

C and D 30 MHz – 1 GHz 120 kHz
E 1 GHz – 18 GHz 1 MHz

In the square law mean value demodulator the signal is squared and averaged over the time interval from
(t − ∆t) to t, yielding the detector output signal

ssl
DEM(t) =

∫ t

t−∆t

sBP (t1)
2dt1. (8)

In the case of analog signal processing the mean value usually is performed by analog integrators realized
with RC circuits. If the pulse response function of the analog integrator is given by hint(t), the output
signals sml

D (t) of the linear demodulator and ssl
D(t) for the square law demodulator are given by

sml
D (t) =

∫ t

−∞
|sBP (t1)hint(t − t1)| dt1, (9a)

ssl
D(t) =

∫ t

−∞
sBP (t1)

2hint(t − t1)dt1. (9b)
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Figure 5: Analog circuit of (a) a peak detector and (b) a quasi-peak detector.

The EMI measurement receivers covered in CISPR 16-1-1 and ANSI C63.2 documents [42, 51] include
the following detector modes:

• The peak detector has a peak-value holding capability. Figure 5 (a) shows the analog maximum-hold
circuit realization of a peak detector. The RC circuit formed by R1 and C exhibits a time constant

τc =
1

R1C
. (10)

The input signal sIN (t) charges the capacitor C with the time constant τc. The charge time constant
is the time that passes until the detector output signal reaches 63 % of its final value after, with a
step-like transition, a continuous wave RF signal is applied to the EMI receiver input. Since the buffer
amplifier BA has an input impedance by several orders of magnitude higher than R1, the capacitor
C holds the peak value of the voltage for a long time indicating the peak value measured over a long
time interval of the interference signal. Furthermore, we have to consider a time constant τm of the
critically damped mechanical indicating instrument I. In order to obtain a meter reading deviation
within 10 % of the true value at a pulse repetition rate of 1 Hz, the ratio charge time constant τc to
discharge time constant should be equal or greater than the values specified in Table 2 [42, p. 23].



Table 2: Bandwidth Requirements according to CISPR 16-1-1 [42, p. 23].

Band Frequency Range Minimum τd/τc

A 9 kHz – 150 kHz 1.89 × 104

B 150 kHz – 30 MHz 1.25 × 106

C and D 30 MHz – 1 GHz 1.67 × 107

E 1 GHz – 18 GHz 1.34 × 108

Figure 6: Pulse response curves of EMI receivers [52].

Figure 6 shows the pulse response curves of an EMI receiver in the various detector modes [52]. In the
peak detector mode, the peak value of impulsive perturbations can be measured even if the EMI pulse
repetition rate is very low.

• The quasi-peak detector prescribed in CISPR and FCC measurement procedures is similar to an RC
maximum-hold circuit, but exhibits a certain time constant τ2 for discharge. The analog circuit of a
quasi-peak detector is shown in Fig. 5 (b). The quasi-peak detector is charged with the time constant
τc and discharged with the time constant τd given by

τd =
1

R2C
. (11)

The characteristics of quasi-peak receivers according to CISPR 16-1-1 are summarized in Table 3.

• The average detector forms the mean value of the demodulated IF signal sDEM(t, f) over a time interval
TD, where f is the frequency to which the EMI receiver is tuned. In general, average detectors are
used for narrowband interference signals and not for impulsive disturbances. The mean value savg

D (t, f)
over TD is given by

savg
D (t, f) =

1

TD

∫ t

t−TD

sDEM (t1, f)dt1. (12)



Table 3: Characteristics of Quasi-Peak Receivers according to CISPR 16-1-1 [42, p. 10].

Frequency Band
Characteristics Band A Band B Band C

9 kHz – 150 kHz 150 kHz – 30 MHz 30 MHz – 1 GHz
6 dB Bandwidth B6 200 Hz 9 kHz 120 kHz

τc 45 ms 1 ms 1 ms
τd 500 ms 160 ms 550 ms
τm 160 ms 160 ms 100 ms

Overload Factor of Circuits 24 dB 30 dB 43.5 dB
Preceding the Detector

Overload Factor of the DC 6 dB 12 dB 6 dB
Amplifier and Indicating

Instrument

The noise floor of the average detector is 12 dB lower than that of the peak detector [53]. This allows
to detect narrow-band interferers which otherwise would be buried in noise [54].

• The rms–average detector forms the effective value of the demodulated IF signal sDEM(t, f), averaged
over a time interval TD. The rms value savg

D (t, f) over TD is given by

srms
D (t, f) =

√

1

TD

∫ t

t−TD

s2
DEM (t1, f)dt1. (13)

The noise floor of the rms–average detector is by 1.2 dB higher than that of the average detector [55].

6 Discrete–Time Signal Processing

Time-domain EMI measurement systems are based on a complex discrete-time signal processing. The
mathematical framework for designing spectrum analysis systems is given by the theory of Fourier analysis.
Investigating EMI we have to deal with time continuous signals of potentially infinite extension in time.
However, in practice we can extend our measurements only over finite time intervals and for digital signal
processing we are restricted to measure sequences of time-discrete signal samples. Furthermore, either due to
the physical nature of the electromagnetic interference under consideration or due to our lack of knowledge,
we have to consider the signals to be measured as stochastic ones. The design of a time-domain EMI
measurement system has to be performed on these given factors.

The discrete Fourier transformation, which is the basis of the numerical computation of amplitude spec-
tra, has been described for the first time by Carl Friedrich Gauss in his treatise written in 1805 “Theoria
interpolationis methodo nova tractata” [56]. Gauss has not considered this work worth being published and
so it has not been published before 1866, after he passed away. Time-domain EMI measurement systems
measure the base-band signal in time domain and compute the signal spectrum by Fourier analysis from this
measured time-signal. In 1822, Jean Baptiste Fourier suggested that a periodic temperature distribution can
be described by a linear combination of sine and cosine functions [57]. The proof has been given in 1829 by
Peter Gustav Lejeune Dirichlet [58].
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6.1 Sampling and Analog–to–Digital Conversion

Time-domain EMI measurement systems are based on digital signal processing. In an analog-to-digital
converter the EMI signal first is sampled with a sampling frequency f0. The sampling period ∆t is given by

∆t =
1

f0

. (14)

Let s(t) be a time-continuous signal. The signal spectrum S(f) and the time signal s(t) are related to each
other via the Fourier integral and the inverse Fourier integral [59]

s(t) =

∫ ∞

−∞
S(f)e2πjftdf, (15a)

S(f) =

∫ ∞

−∞
s(t)e−2πjftdt. (15b)

For the symbolic notation of a pair of Fourier transforms the correspondence symbol ❝ s is introduced in
(6). The time-discrete signal x[n] is given by

s[n] = s(n∆t) . (16)

In the following we discuss the fundamentals of signal sampling, analog-to-digital conversion, and digital
signal processing.

For the representation of line spectra the delta distribution may be used in frequency domain. We note
the following relations [59]:

1 ❝ s δ(f), (17a)

ejω0t ❝ s δ(f − f0), (17b)

cosω0t ❝ s
1

2
[δ(f + f0) + δ(f − f0)] , (17c)

sin ω0t ❝ s
j

2
[δ(f + f0) − δ(f − f0)] , (17d)

where δ(x) is the Delta distribution with the property

f(x) =

∫ ∞

−∞
f(x1)δ(x1 − x)dx1 . (18)

Using the delta distribution we may also represent the Fourier transforms of harmonic signals.

We consider a periodic sequence of Dirac pulses with period width T0 and pulse area a according to
Figure 7 (a) given by

sA(t) = a

∞
∑

n=−∞
δ(t − n∆ts) =

a

∆ts
X

(

t

∆ts

)

, (19)
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where X(x) is the normalized sampling function defined by

X(x) =

∞
∑

n=−∞
δ(x − n) =

∞
∑

n=−∞
e2πjnx . (20)

The symbol X is the cyrillic letter “shah”. The sampling function has the property

X(t) ❝ sX(f), (21)

i.e. it is identical with its Fourier transform. From this it follows

X

(

t

∆ts

)

❝ s∆tsX(∆tsf). (22)

The spectrum SA(f) of sA(t), related to the time signal by

sA(t) ❝ s∆tsSA(f) , (23)

is given by

SA(f) = af0

∞
∑

n=−∞
δ(f − nf0) = aX

(

f

f0

)

. (24)

Figure 7 shows the time function sA(t) and the spectrum SA(f) of the sampling function with frequency f0.

Sampling a time-continuous signal s1(t) in intervals ∆ts may be described by multiplying s1(t) with the
sampling signal sA(t) given in (19). With (16), this yields

s2(t) = sA(t)s1(t) = a

∞
∑

n=−∞
s[n]δ(t − n∆ts) . (25)

Figure 8 shows the signal s1(t), the sampling signal sA(t), and the sampled signal s2(t). The multiplication
in time-domain, given in (25), corresponds to the convolution in frequency domain

s2(t) = sA(t)s1(t) ❝ s S2(f) = SA(f) ⊗ S1(f), (26)

where ⊗ denotes the convolution operation, defined by

SA(f) ⊗ S1(f) =

∫ ∞

∞
SA(f1)S1(f − f1)df1 . (27)

This yields

S2(f) =

∞
∑

n=−∞

∫ ∞

−∞
S1(f − f1)δ(f1 − nf0)df1 =

∞
∑

n=−∞
S1(f − nf0) . (28)
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Figure 9 shows the spectrum S1(f) of the input signal, the spectrum SA(f) of the sampling signal, and
the spectrum S2(f) of the sampled signal. The spectrum of the sampled signal is the periodic continuation
of the spectrum of the input signal. The frequency spectrum of s(t) has a width [−fc, fc] and fc is smaller
than half of the sampling frequency f0, i.e.

fc <
f0

2
. (29)

In this case the periodically continued spectrum S2(f) does not overlap with the original spectrum S1(f).
Therefore, by band limitation of S2(f) within an interval [−fc1, fc1], with fc < fc1 ≤ f0/2, we obtain the
original signal with the spectrum S1(f). The frequency fc is referred to as the Nyquist frequency [60]

A low-pass filter with rectangular characteristic and the cut-off frequency f0/2 according to (29) exhibits
the transfer function

H(f) = P(f/f0), (30)

where P(x) is the rectangular unit pulse function, defined as

P(x) =

{

1 for|x| ≤ 1/2

0 for|x| > 1/2
. (31)

The Fourier transform of the pulse function is the sinc function, represented by

sinc(x) =
sinx

x
. (32)

The spectrum of a rectangular pulse signal is given by the sinc function and vice versa, the pulse response
of a rectangular signal transfer function is given by the sinc function:

sinc(πf/f0) s ❝ f0P(f0t) , (33a)

P(f/f0) s ❝ f0 sinc(πf0t) . (33b)

Figure 10 shows a rectangular transfer function the corresponding pulse response.

By band limitation of the sampled signal s2(t) to the frequency interval [−f0/2, f0/2] we obtain the
original time-continuous signal s1(t). This can easily be seen from (28) and (30). We obtain

S1(f) = P(f/f0)S2(f) (34)

and with (33b)
s1(t) = f0 sinc(πf0t) ⊗ s2(t) . (35)

After inserting (25) we find

s1(t) =

∞
∑

n=−∞
s[n] sinc(π(f0t − n∆ts)) . (36)
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Figure 10: (a) Rectangular transfer function, (b) Pulse response.
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Figure 11: Signal sampling and reconstruction: (a) Band limited signal, (b) Sampled signal, (c) Reconstruc-
tion.

The ideal low-pass filter interpolates between the impulses of the discrete-time signal and reconstructs the
continuous-time signal. An ideal low-pass filter is a discrete-to-continuous converter. We can formulate the
sampling theorem: A signal, band-limited with a cut-off frequency fc, is completely determined by discrete
samples taken at a sampling frequency f0 > 2fc and may be restored completely. Figure 11 shows the
sampling of a band-limited signal and the subsequent signal reconstruction by band-limitation.

If we deal with real-world measured signals, we are performing the measurement over a time-interval of
finite length. If a time sample of length T0 is taken, we can describe this by a window function. Figure 12
shows rectangular and Gaussian window functions. Taking a segment of the signal s1(t) in the time interval
[τ − T0/2, τ + T0/2] can be described by multiplying s1(t) with the rectangular window function P((t −
τ)/T0). By this we obtain the windowed signal

s1w(t, τ) = P

(

t − τ

T0

)

s1(t), (37)

where τ is the time shift of the window. The rectangular time-windowing of the signal yields a convolution
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Figure 12: —— Rectangular window function, - - - - Gaussian window function.

of the signal spectrum with the transfer function T0 sinc (πfT0). Hence, we obtain

S1w(f, τ) = T0

[

e−2πjfτ sinc (πfT0)
]

⊗ S1(f) . (38)

The spectrum S1w(f, τ) depends on the position τ of the time window and is called short-time Fourier
transform (STFT) [61, pp. 636-747].
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Figure 13: —— sinc transfer function, - - - - Gaussian transfer function.

Figure 13 shows the logarithmic plot of the magnitude of the transfer function T0 sinc (πfT0). The
convolution with the sinc function yields a spectral broadening effect since the spectral lines are replaced by
the sinc function. Rectangular time windowing yields a leaking out of spectral energy into other spectral
regions due to the filtering. Therefore this effect is called spectral leakage.

Spectral leakage can be reduced by a smooth time windowing, where the window function exhibits a
maximum value in the center of the window and goes smoothly down to zero at the boundaries of the
window. The use of a Gaussian window will be an optimum choice in many cases since the Fourier transform
of the Gauss function is also a Gauss function,

e
− t

2

2T2
0 ❝ s

√
2πT0e

−2π2f2T 2
0 . (39)

The signal function windowed by a Gauss function s2w(t, τ) and its spectrum S2w(f, τ) are given by

s2w(t, τ) = e
− (t−τ)2

2T2
0 s1(t), (40a)

S2w(f, τ) =
√

2πT0

[

e−2π2f2T 2
0 −2πjfτ

]

⊗ S1(f). (40b)



Figure 12 also shows a Gaussian window function, and in Fig. 13 the corresponding Gaussian signal
transfer function is depicted. The bandwidth of the transfer function is inversely proportional to the width
of the time window. Different from the case of a rectangular window function, the Gaussian window function
yields a signal transfer function without side lobes and therefore only little spectral spreading. However,
applying a Gaussian time window requires the use of a broader sample of the time signal in order to achieve
the same bandwidth as with a rectangular window.

We can consider s1w(t, τ) as a segment of a time-periodic signal with time period T0. By convolution of
s1w(t, τ) with T−1

0 X(t/T0) we obtain with (20) the time-periodic signal

s1wp(t, τ) = T−1
0 X(t/T0) ⊗ s1w(t, τ) =

∞
∑

n=−∞
s1w(t − T0, τ). (41)

With (33a) we obtain the spectrum of this periodically continued signal

S1wp(f, τ) = X (fT0)S1w(f, τ) . (42)

Since s1wp(t, τ) is a periodic signal with period T0, its spectrum S1wp(f, τ) is a discrete spectrum with
spectral line spacing ∆f = T−1

0 .

We summarize that a signal, frequency limited with a frequency fc, can be sampled with a sampling
frequency f0 > 2fc, i.e. with sampling intervals ∆t = 1/f0 with no loss of information. The sampling
process yields a periodic continuation of the basis band spectrum with the period f0. If the Nyquist condition
f0 > 2fc is fulfilled this periodic spectrum continuation does not overlap with the base band of the original
signal and can be removed by low-pass filtering. The low-pass filtering broadens the pulses of the sampled
signal and reconstructs the time continuous signal. Furthermore, if the signal is bounded in time within an
interval of length T0, we can consider this signal as one period of a periodic signal with period T0. This
yields a discretization of the frequency spectrum with a spectral line spacing ∆f = T−1

0 . We therefore can
discretize a band-limited signal of finite length in time and frequency. Strictly speaking, due to the theory
of Fourier transformation, a signal can either be limited in frequency or in time. However by appropriate
time-windowing of band-limited signals with smooth window functions we can discretize finite segments of
band-limited signals with little loss of information. This allows us to apply discrete Fourier transformation
(DFT) for signal analysis. If the continuous spectrum is substituted in the DFT by a discrete spectrum, one
sees a spectrum like a picket fence. The frequencies in between have to be interpolated.

6.2 Power Spectra of Random Signals

EMI signals, either due to their physical nature or due to the lack of knowledge of them, have to be
considered as stochastic signals. Stationary stochastic signals cannot be described by amplitude spectra.
We can compute an amplitude spectrum of a signal sample of finite length. However, since the phase in
the spectrum of this sample will be random this amplitude spectrum will not characterize the complete
stationary signal [62–65]. However, for certain quantities of stochastic signals expectation values can be
given. Expectation values are defined as statistical average over a large ensemble of identical objects. In
practice, often only a single object is accessible for measurements. In that case, the sample value can be taken
from a single object at times separated by intervals large enough so that the measurements can be considered
to be independent from each other. A process is called stationary if the ensemble averages are independent
from time. Stationarity can be validated by time-sequential measurements, when a large number of signal
samples of lengths T1 are taken within a time interval T2 ≫ T1 and the ensemble averages are computed
within time intervals T2. Now, within a time interval T3 ≫ T2, several ensemble averages can be computed.
If these ensemble averages converge to the same value with increasing length of the time intervals, the process
may be considered stationary.

We can define the autocorrelation function c(τ) of stationary random signals si(t) and sj(t) by

cij(τ) = 〈si(t)sj(t − τ)〉. (43)



The brackets denote the statistical ensemble average. For i = j the function cii(τ) is called the autocorrelation
function and for i 6= j the function cij(τ) is called the cross correlation function. The mathematical definition
of the exact ensemble average refers to an infinite ensemble. By taking the ensemble average over a finite
ensemble with increasing ensemble element number, it should converge to the exact value. The assumption
of stationarity means that the statistical average is independent of t. For stationary signals the statistical
average can also be taken in time by

c(τ) = lim
T→∞

1

T

∫ T/2

−T/2

s(t)s(t − τ)dt. (44)

The correlation function for two different signals (i 6= j) is named cross correlation function. Substituting t
by t + τ in (44) yields

cij(τ) = cji(−τ) . (45)

From this it follows that the autocorrelation function is symmetric, i.e. cii(τ) = cii(−τ).

Let us now investigate which statements can be made concerning the spectrum of a random signal. Since
a stationary noise signal is not decaying for t → ∞, the noise signal is not square integrable or absolute
integrable and therefore an amplitude spectrum of a stationary noise signal does not exist. However, we can
consider a sample of a noise signal with finite extension in time. Let us consider the segment sT (t) of the
stationary noise signal s(t). This segment is given by

sT (t) =

{

s(t) for −T
2

< t < T
2

0 for |t| ≥ T
2

. (46)

We call the signal sT (t) the time-windowed signal. In general the Fourier transform ST (f) of the time-
windowed signal sT (t) exists and is given by

ST (f) •−◦ sT (t) . (47)

With (44) and (46) we can represent the correlation function cij(τ) also by

cij = lim
T→∞

1

T

∫ ∞

−∞
siT (t)sjT (t − τ) dt . (48)

For T → ∞, the integrals (44) and (48) become equal. We express siT (t) via its Fourier spectrum and
obtain

cij(τ) = lim
T→∞

1

T

∫ ∞

−∞

[
∫ ∞

−∞
SiT (f)e2πjft df

]

sjT (t − τ) dt . (49)

After interchanging the sequence of both integrations and substituting t − τ = t′, dt = dt′, we obtain

cij = lim
T→∞

1

T

∫ ∞

−∞
SiT (f)e2πjfτ

[
∫ ∞

−∞
sjT (t′)e2πjft′ dt′

]

df , (50)

where the second integral yields S∗
jT (f), so that we obtain

cij(τ) = lim
T→∞

1

T

∫ ∞

−∞
SiT (f)S∗

jT (f)esπjft df . (51)

The limit process T → ∞ in general cannot be interchanged with the integration. Since the spectra SiT (f)
are not existing for T → ∞. Since cij(t) according to (43) is an ensemble average, we also can apply
the evaluation of the ensemble average to the right side of (51) and we may interchange the sequence of
integration and ensemble averaging. For the ensemble average of the product SiT (f)S∗

jT (f) in general the
limit

Cij(f) = lim
T→∞

1

T
<SiT (f)S∗

jT (f)> (52)



exists. Therefore, after forming the ensemble average integration and the limit process in (51) may be
interchanged. Cij(f) is the Fourier transform of the correlation function.

Cij(f) •−◦ cij(τ) , (53)

Cij(f) =

∫ ∞

−∞
cij(τ)e−2πjfτ dτ , (54)

cij(τ) =

∫ ∞

−∞
Cij(f)e2πjfτ df . (55)

The function Cij(f) is named the correlation spectrum. For i = j the correlation spectrum Cii(f) is called
the autocorrelation spectrum, and for i 6= j the correlation spectrum is called the cross correlation spectrum.

From (54) it follows
Cij(f) = C∗

ji(f) . (56)

For real time functions of the signals, si(t) and sj(t) the real part of Cij(f) is symmetric and its imaginary
part is antisymmetric. The autocorrelation spectrum Cii(f) is real and symmetric.

From(55) follows, that the autocorrelation spectrum integrated over the whole frequency domain yields
the variance of the signal:

∫ ∞

−∞
Cii(f) df = cii(0) = σ2

i . (57)

The variance σ2
i of the random signal si(t) in the frequency interval [f, f + df ] is given by

σ2
i = 2Cii(f) df . (58)

7 Digital Signal Processing

7.1 Digital Fourier Transformation

To evaluate the signal spectrum, a digitized signal s[n] is further processed by Digital Fourier Transform
(DFT). Computationally efficient DFT algorithms exist for computation of the Fourier transform at N
equally spaced frequency values from N equally spaced time samples [59, 60, 66–69]. These algorithms are
called Fast Fourier Transformation (FFT) algorithms. Consider a discrete time sequence of a sampled signal
s[n], where n is integer and s[n] is periodic with N , so that s[n + N ] = s[n].

The discrete-time signal function s[n] is related to the continuous-time signal function s(t) of length T0

by
s[n] = s(n∆t) with T0 = N∆t, (59)

where ∆t is the sampling interval. The discrete-frequency spectrum S[k] is related to the continuous-
frequency spectrum S(f) by

S[k] = S(k∆f), (60)

where k is integer ∆f is the spacing of the spectral lines. The quantities N , T0, ∆t, and ∆f are related by

∆f =
N

T0

. (61)

The discrete Fourier transform (DFT) is given by

S[k] =

N−1
∑

n=0

s[n] exp

(

−2πj
nk

N

)

. (62)



In the spectrum S[k], the term S[0] is the DC mean value of x[n]. The Nyquist frequency kNyq is given by

kNyq =

{

N
2

for even N
N+1

2
for odd N

. (63)

Since S[k] is periodic in k with period N , the frequencies 0 < k < kNyq are the positive frequencies, whereas
kNyq ≤ k < N correspond to the negative frequencies.

The discrete Fourier transform S[k] has integer arguments k and is also periodic with N . The inverse
discrete Fourier transform is given by

s[n] =
1

N

N−1
∑

k=0

S[k] exp

(

2πj
nk

N

)

. (64)

For the case where N is an integer power of 2, i.e. N = 2l with integer l, very efficient FFT algorithms are
available [59, 60, 67–70].

The spectral estimation is performed on the basis of the DFT under the assumption that the s[n] is
periodic in n with a period N . However, s[n] is not really periodic since we only have periodically continued
measured signal sequence of length N . To avoid spectral leakage the time record s[n] needs to be multiplied
with a window function w[n] which exhibits a maximum value for n = N/2 and smoothly goes to zero for n
approaching 0 or N − 1, respectively [22, 28],

sw[n] = w[n] s[n] . (65)

In the frequency domain this yields a convolution

Sw[k] = W[k] ⊗ S[k] . (66)

where the time-discrete convolution of two signals Sa[k] and Sb[k] is given by [60]

Sa[k] ⊗ Sb[k] =

N−1
∑

m=0

Sa[((l))N ]Sb[((k − l))N ], (67)

The notation ((n))mod N means “n modulo N ”, i.e. ((n))mod N ∈ [0, N − 1] and ((n))mod N − n is an integer
multiple of N . According to this definition s[n, m] in the interval [n ∈ [0, N − 1] is a sample taken from s[n]
in the interval [n ∈ [m, m + N − 1].

A Gaussian window function

w[n] =
1

GCN
exp

[

−1

2

(

π√
2 ln 2BIF T0n

)2
]

(68)

is used, where the coherent gain GC is a scaling factor to compensate for the signal energy loss due to the
windowing [66]. It is given by

GC =
1

N

N−1
∑

n=0

w [n] . (69)

7.2 Digital Signal Processing with Periodogram

The periodogram is an estimation of the spectral density of a signal. It is an efficient tool for the Fourier
analysis of stationary random signals [60, pp. 730-754], [71, pp. 393-426], [61, pp.616-618]. The periodogram
method was first published by Bartlett [72]. In Bartlett’s method the data is smoothed by averaging over



the power computed for a number P of short-time signal segments. Welch has combined DFT methods with
the use of a data window and developed a method for averaging of short, modified periodograms [73]. The
periodogram method exploits the short-time Fourier transformation (STFT) for spectral estimation using a
window function. The STFT is a time-dependent Fourier transformation since it depends on the position of
the time window.

Consider a time-discrete signal s[n] of infinite extension in time, i.e. with n = −∞· · ·−2,−1, 0, 1, 2, . . .∞.
By multiplying with a window function w[n] of length N − 1 we obtain the time windowed function

s[n, m] = s[((n))mod N + m]w[n], (70)

where ((n))mod N means n modulo N . Outside the interval [n ∈ [0, N − 1] the function s[n, m] is periodically
continued.

Following (62), the STFT S[k, m] of a signal s[n] is defined as

S[k, m] =
1

N

N−1
∑

n=0

s[n, m] exp

(

−2πj
nk

N

)

, (71)

where w[n] is the time window, and the discrete time coordinate m indicates the amount of shift in the time
window. If the window has a finite length N , the Fourier transform needs to be performed over this window
length only. Due to the time windowing of the signal, the spectrum S[k, m] can be taken for various delays
m. However, due to the statistical distribution of the phases in the spectral samples taken at different times,
the mean spectrum will be zero and the spectrum does not provide a useful characterization of the random
signal. We can reconstruct the continuous amplitude spectrum S(f, m) of the finite-time signal segment by
substituting in (71) k/N → fT . This yields

S(f, m) =
1

N

N−1
∑

n=0

s[n, m] exp (−2πjnfT ) . (72)

Figure 14 shows as an example the STFT of the main EMI burst at the electric start of a combustion en-
gine [22]. The measurement of the radiated EMI during the electric start of a combustion engine impressively
demonstrates the advantages of time-domain EMI measurement techniques which allow us to measure short-
time EMI events and to obtain complete information about the EMI spectrum. The recorded frequencies
were limited to the frequency band of FM radio from 88 MHz to 108 MHz. In that special case, maximum
interference was found at 104.3125 MHz.

When the signal under consideration is generated by a stationary random process, it can be characterized
by averaged quantities such as the mean value and the variance. The mean value of a signal segment with
length N , the sample mean, represented by s[n], is given by

〈s[m]〉 =
1

N

N−1
∑

n=0

s[n, m]. (73)

The mean value of the signal represents its DC level. The sample variance of the considered signal segment
is

σ2
s [m] = 〈(s[n, m] − 〈s〉[m])2〉 =

1

N

N−1
∑

n=0

(s[n, m] − 〈s〉[m])2. (74)

Let us consider the time-discrete autocorrelation function of the signal si[n], given by

c[n, m] =
1

N

N−1
∑

n=0

s[n + m]s∗[m]. (75)



Figure 14: STFT of the main EMI burst at the electric start of a combustion engine [74].

The superscript ∗ denotes the complex conjugate. However, usually we have to deal with real time signals.
In order to ensure that the values of s[n] outside the interval [0, N −1] are excluded, we modify this equation
as follows:

c[n, m] =
1

N

N−1−n
∑

n=0

s[n + m]s∗[m]. (76)

Different from the signal amplitudes, the correlation functions converge to non-vanishing limit values when
averaged over samples with various time delays m.

Applying the STFT, defined in (71), we obtain the frequency-discrete autocorrelation spectrum

C[k, m] =
1

N

N−1
∑

n=0

c[n, m] exp

(

−2πj
nk

N

)

(77)

of the signal sample taken at a time shift m. The autocorrelation spectrum also can be represented as the
absolute square of the short-time Fourier spectrum S[k, m] given in (71),

C[k, m] =
1

N
S[k, m]S∗[k, m]. (78)

We can reconstruct the continuous autocorrelation spectrum C(f, m) of the finite-time signal segment by
replacing in (77) or (78), respectively, k/N → fT . From (72) and (77) we obtain

C[f, m] =
1

N
|S[f, m]|2 . (79)

This time-dependent short-time spectrum is called periodogram.

In the Bartlett method [72], the periodograms C[f, mp] are calculated for a number of P non-overlapping
samples of the signal. The delays mp, with p = 0, 1, 2, . . . P , are spaced such that mp+1 − mp ≥ N . This



yields the Bartlett periodogram [66, 74]

PB(f) =
1

PN

P−1
∑

p=0

N−1
∑

n=0

C[k, mp]e
2πjkfT . (80)

The Bartlett periodogram can also be written as

PB(f) =
T

PN

P−1
∑

p=0

∣

∣

∣

∣

∣

N−1
∑

n=0

s[n, mp]e
−2πjnfT

∣

∣

∣

∣

∣

2

(81)

or, with (79), as

PB(f) =
1

PN

P−1
∑

p=0

|S[f, mp]|2 . (82)

The Bartlett averaging reduces the variance of the spectrum estimation by a factor of P , however, at the
cost of a reduction of the frequency resolution by the same factor [75]. Welch has modified Bartlett’s method
by using windowed, time-overlapping data segments [73]. The Welch periodogram is given by

PW (f) =
T

PU

P−1
∑

p=0

∣

∣

∣

∣

∣

N−1
∑

n=0

w[n]s[n, mp]e
−2πjnfT

∣

∣

∣

∣

∣

2

, (83)

where w[n] is the window function and U is the discrete-time window gain, given by

U = T

N−1
∑

n=0

w
2[n] . (84)

Figure 15 shows the comparison of the EMI spectra measured in the frequency range from 30 MHz to
1 GHz with a conventional EMI receiver and time-domain EMI measurement system [74]. The measurements
were made in both cases in the average detector mode. The use of the Welch periodogram yielded a reduction
of the noise floor by 8 dB, compared with the use of the Bartlett periodogram.

Figure 15: Comparison of periodogram (black line) and EMI receiver (grey line) for (a) Bartlett periodogram
and (b) Welch periodogram [74].



7.3 The Signal-to-Noise Ratio

The signal-to-noise ratio SNR is defined as the ratio of signal power Ps to noise power Pn and usually
is expressed in decibel

SNR = 10 log10

Ps

Pn
dB = 20 log10

σs

σn
dB , (85)

where σ2
s is the variance of the signal s(t), given by

σ2
s =

〈(

s2(t) − 〈s(t)〉2
)〉

. (86)

The signal-to-noise ratio of a time-domain EMI measurement system is limited by the quantization noise. For
quantizers which round the sample value to the closest quantization level, the amplitude of the quantization
noise e[n] is in the range

−∆

2
< e[n] ≤ ∆

2
, (87)

where ∆ is the quantization interval. Assuming that the random variable e[n] is uniformly distributed over
this interval, the mean value of e[n] is zero and the variance is given by [60, p.120]

σ2
e =

∆2

12
. (88)

With a binary code of B + 1 bits, we can code 2B+1 quantization levels. Let sm be the maximum signal
amplitude and consider that the signal can assume positive and negative sign. One bit is used for coding
the sign and B bits are used for coding the magnitude of the signal. In that case the quantization interval
is given by

∆ =
2sm

2B+1
=

sm

2B
. (89)

From (85), (86), (88), and (89) we obtain

SNR = 10 log10

(

12 · 22Bσ2
s

s2
m

)

dB =

[

6.02B + 10.8 − 20 log10

(

sm

σs

)]

dB . (90)

The parameter sm is fixed for a given ADC converter. The parameter σs is the rms value of the signal and
will be necessarily smaller than sm. For a sinus signal with maximum amplitude, for example, we obtain
σs = sm/

√
2.

Let s[n] be the sampled but not yet amplitude quantized signal. The signal s1[n] is time-discrete and
amplitude-continuous. After quantization of s[n] we obtain the digitized signal s̃[n]. We can consider the
the digitized signal as a superposition of the original signal s[n] and the quantization noise e[n],

s[n] = s̃[n] + e[n]. (91)

Applying a time-window w[n] to the sampled function yields the windowed function

sw[n] = w[n]s[n] = w[n]̃s[n] + w[n]e[n] . (92)

From (85), (86), (85), and (92) we obtain the average signal-to noise-ratio of the calculated spectrum [27,28]
given by

SNR =

1

N

∑N−1

n=0

(

w[n]̃s[n] − 1

N

∑N−1

m=0
w[m]̃s[m]

)2

1

N

∑N−1

n=0

(

w[n]e[n] − 1

N

∑N−1

m=0
w[m]e[m]

)2
. (93)

For |e[n]| ≪ s̃[m] we can replace s̃[m] by s[n] and obtain

SNR =

1

N

∑N−1

n=0

(

w[n]s[n] − 1

N

∑N−1

m=0
w[m]s[m]

)2

1

N

∑N−1

n=0

(

w[n]e[n] − 1

N

∑N−1

m=0
w[m]e[m]

)2
. (94)



8 Modern Time-Domain Electromagnetic Interference Measurement Systems

8.1 The Time-Domain EMI Measurement System with one ADC

The first time-domain EMI measurement systems for the frequency range 30 MHz - 1 GHz have been
described in [16, 17]. Figure 16 shows the block diagram of a time-domain EMI measurement system. The
system can be applied for the measurement of radiated or conducted electromagnetic interference. For
the measurement of radiated electromagnetic interference a broad-band antenna, for the measurement of
conducted EMI either a current clamp or line impedance stabilization network (LISN) is used. In the EMI
measurement system the incoming signal is first amplified and then low-pass filtered by the low-pass filter
LPF, so that the signal fulfills the Nyquist condition, i.e. that it is band-limited with the Nyquist frequency
fc which, according to (29) is smaller than half the sampling frequency f0. Then, in the analog-to digital
converter ADC, the signal is converted into a digital signal and a block s[n] of N signal samples is stored.
Via the short-time fast Fourier transform (STFFT), using (62), the short-time spectrum Sw[k] is computed.
The periodograms are computed using (81) or (83), respectively.
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CURRENT
CLAMP
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Figure 16: Time-domain EMI measurement system.

Further signal processing strategies for broad-band and narrowband signals have been discussed in [18,
19, 22]. To avoid spectral leakage the time signal blocks s[n] are windowed with a window function w[n] as
described in Subsection 6.1, yielding the windowed signal block

sw[n] =
1

GC
w[n] s[n] , (95)

where GC is the coherent gain, defined in (69) [18] .

For the statistical averaging of the spectral samples only the magnitudes of the spectral amplitudes is used
and the phase information is not further considered. We use the single-sided amplitude spectrum defined as

SA[k] =

{

1

N |Sw[0]| for k = 0√
2

N |Sw[k]| for 1 ≤ k < kNyq
, (96)

where kNyq is the Nyquist frequency defined in (63). We take only the spectral amplitudes up to the
Nyquist frequency. The frequencies k above the Nyquist frequency, i.e. with kNyq ≤ k < N , correspond
to the negative frequencies and the respective spectral amplitudes are conjugate complex to the spectral
amplitudes in the region 1 ≤ k < kNyq. So we have to take twice the spectral amplitudes in the region
1 ≤ k < kNyq and to divide them by

√
2 to account for the effective value.

For statistical averaging of multiple short-time spectra SA[k, p] with p ∈ [0, P − 1], the periodogram



S
avg
P [k] is computed by averaging the spectral amplitude for each frequency bin, yielding

S
avg
P [k] =

1

P

P−1
∑

p=0

SA[k, p] . (97)

The RMS spectrum S
rms
P [k] is obtained by

S
rms
P [k] =

√

√

√

√

1

P

P−1
∑

p=0

S
2
A[k, p] . (98)

The peak value spectrum S
peak
P [k] is given by

S
peak
P [k] = maxSA[k, p] for p ∈ [0, P − 1] . (99)
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b1

−a1

b0

s1[k]

s2[k]

Figure 17: Signal fow in a digital IIR1 filter.

A time-domain measurement system that can evaluate spectra in the quasi-peak detector mode has been
presented in [23,24]. To realize the discharge characteristics according to Figure 5 (b) a digital infinite impulse
response (IIR) filter was implemented [68, pp. 621-664]. Figure 17 shows the signal flow characteristics of
the digital IIR1 filter. Applying the bilinear transform

s =
2

∆t

z − 1

z + 1t
, (100)

where s is the complex frequency in the Laplace domain to the discharge transfer function H(s) of the analog
circuit in Figure 5 (b), given by

H(s) =
1

1 + sτd
, (101)

we obtain the IIR1 described by the signal flow characteristics given in Fig. 17.

The software implementation of the described detector modes facilitates the simultaneous evaluation of
the peak, average and rms spectra.

The modeling of the IF-filter by a Gaussian window function has been presented in [18–28]. The system
generates a statistical model from the EMI signal. This statistical model is used to reconstruct the virtual
IF signal at each discrete spectral value. The IF signal is demodulated and evaluated by a digital quasi-
peak detector. An improved version of the system for conducted emission measurements has been presented
in [25].



8.2 A Low-Noise High-Dynamic Ultra-Broad-Band
Time-Domain EMI Measurement System

The dynamic range of the TDEMI measurement system is limited by the resolution of the used ADCs.
Today, high-speed ADCs with sampling rates beyond 2 GBit/s usually have a resolution of only 10 bit.
According to (90) this would limit the signal-to-noise ratio for stationary signals between 60 dB and 70 dB.
This would fulfill the requirements of CISPR 16-1. However, for transient or impulsive noise the SNR would
be below 10 dB. The dynamics of a time-domain EMI measurement system can be considerably increased by
using multiresolution analog-to-digital conversion [27,28, 30, 34, 38, 76]. By several parallel analog-to-digital
converters a multiresolution TDEMI measurement system has been developed that shows sufficient dynamic
range to fulfill the international EMC standards CISPR 16-1-1 [39].
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Figure 18: Block diagram of the multi-resolution time-domain EMI measurement system.

Figure 18 shows the block diagram of the multi-resolution time-domain EMI measurement system. The
EMI input signal is split via the power splitter PSP into three channels. The first channel, which is the upper
channel in Fig. 18, is the most sensitive channel. It digitizes the signals in the amplitude range from 0 V to
1.8 mV. The second channel is dedicated to the amplitude range from 0 V to 200 mV, and the third channel
digitizes the signals in the amplitude range from 0 V to 10 V. The channels 1 and 2 have non-saturable
diode limiters at the input so that these channels are not overloaded by signals exceeding their dedicated
amplitude range. The system uses three 10 bit ADCs that operate with a sampling rate of 2.3 GS/s [34].
The digitized signals are processed in the digital signal processing unit by a Field Programmable Gate Array
(FPGA) [33].

Using a polyphase decimator [60] the range from 30 MHz to 1 GHz is subdivided into eight frequency
bands which are measured sequentially in real-time [33,39]. Figure 19 shows the block diagram of the digital
down-converter DDC unit. For the in-phase and quadrature channel a polyphase decimation filter reduces
the sampling frequency in order to fulfill the Nyquist criterion. Every sub-band is digitally down-converted
and the sub-bands are processed sequentially [30]. By the continuous processing via the STFFT a virtual
IF-signal for a selectable frequency can be provided as requested by CISPR 16-1-1. The measurement time
has been reduced by a factor of 2000 in comparison to measurements in frequency domain. It has been shown
that a 16 bit fixed point operation of the STFFT is sufficient to fulfill the requirements according to the
dynamic range. The requirements for full compliance measurements with the real-time time-domain EMI
measurement system are discussed in [31]. A more detailed description of the hardware has been presented
in [27, 34].

In [29–36] the suitability for full compliance measurements has been demonstrated. In [37,38] a realtime
time-domain EMI measurement system for automotive testing is reported. In this system a reduction of the
measurement time by a factor of 8000 has been achieved. Automotive tests require dense frequency bins and
small IF-bandwidth. In frequency domain such measurements take extremely long. Sometimes they would
exceed the life-time of a component. With a numerical implementation of the 9 kHz IF filter, 8192 frequency
bins can be calculated in parallel in real-time. A reduction of the measurement time by a factor of 8000 has
been achieved. In [35] a test procedure based on an enhanced pre- and final scan has been presented. This
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Figure 20: Radiated EMI of a desktop computer measured in the peak detector mode in the frequency
intervals (a) 296–302 MHz, (b) 30 MHz to 1 GHz. [39].

procedure yields a further reduction of the test time by at least one order of magnitude.

The commercially available GAUSS Instruments TDEMI 1G® measurement system exhibits a frequency
range of 9 kHz 1 GHz, the CISPR bandwidths 200 Hz, 9 kHz, 120 kHz, and 1 MHz, and a spurious free
dynamic range of about 55 dB [77]. Compared with traditional EMI receivers the measurement time is
reduced by a factor of 4000. In the quasi-peak mode the overall Measurement time for a single scan in
the frequency range 30 MHz - 1 GHz takes about 2 minutes. Pre-scans are performed to detect only the
critical frequencies, and to reduce the total scan time of the following final measurement. The time-domain
EMI measurement system allows us to improve the quality of such prescans, because the pre-scans can
be carried out with dwell times that are typical two orders of magnitude longer compared to conventional
EMI receiver technology. Furthermore, the total scan time is reduced for the pre-scan. Final measurements
can be performed at the identified frequencies and positions. The short measurement time allows for the
measurement of EMI radiation patterns in order to identify EMI sources.

To evaluate the accuracy of the low-noise high-dynamic ultra-broad-band time-domain EMI measurement
system the EMI emission of an Intel Celeron 600-MHz has been measured [39]. The measurements have been



Figure 21: Radiated EMI of desktop computer measured in the frequency interval 296–302 MHz in the (a)
quasi-peak detector mode, (b) average mode [39].

compared with measurements performed with a conventional EMI receiver ESCS30 from Rohde & Schwarz.

Figure 20 (a) shows the results of the measurements in the peak detector mode in the frequency interval
296–302 MHz. The dwell time was 100 ms and the frequency step was 30 kHz. The maximum deviation
between both measurements is 0.8 dB. Figure 20 (b) shows the radiated EMI measured in the frequency
range from 30 MHz to 1 GHz. The dwell time has been 100 ms. The measurement with the time-domain
EMI measurement system took 11 s, whereas the measurement with the conventional frequency domain EMI
receiver required 50 min. The maximum deviation between both measurements has been 1 dB.

The measurements in the frequency interval 296–302 MHz have also been performed in the quasi-peak
detector mode and in the average mode, with frequency steps of 30 kHz in both cases. Figure 21 (a) shows
the results of the quasi-peak measurements. The dwell time was 2 s. The maximum difference between
the measurements with the time domain EMI measurement system and the results obtained with the EMI
receiver have been 0.4 dB. Figure 21 (b) shows the results of the measurements in the average mode. The
dwell time has been 4 s. The maximum difference between the measurements with the time domain EMI
measurement system and the results obtained with the EMI receiver have been 0.2 dB.

8.3 Time-Domain EMI Measurement Systems for Frequency Bands up to 18 GHz

In order to protect modern electronic systems also above 1 GHz from electromagnetic perturbations
and to develop electromagnetic compliant circuits and systems, there is an increasing demand on EMI
measurement systems for the frequency bands beyond 1 GHz. Currently such measurements are carried out
by using spectrum analyzers and applying the maximum hold function. However, since the traditional EMI
receiver can observe only one spectral frequency at the same time and the EMI is changing over a period
of seconds, spectrum analyzers are not suited to measure non-stationary EMI with a reasonable scan time.
Time-domain EMI measurement systems, using an FFT-based bank of receivers yield short measurement
times, and also at frequencies are the better choice beyond 1 GHz.

In [78–81] a broad-band time-domain EMI measurement system for measurements from 9 kHz to 18 GHz
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Figure 22: Block diagram of the 9 kHz - 18 GHz time-domain EMI measurement system.

that complies with CISPR 16-1-1 is presented. The combination of floating-point analog-to-digital conversion
and digital signal processing on a field-programmable-gate-array (FPGA) with the multi-stage broad-band
down-conversion enhances the upper frequency limit to 18 GHz. Measurement times are reduced by several
orders of magnitude in comparison to state-of-the-art EMI receivers. The ultra-low system noise floor of
6-8 dB and the spectrogram mode allow for the characterization of the time behavior of EMI near the noise
floor.

Figure 22 shows the block diagram of the 9 kHz - 18 GHz time-domain EMI measurement system. For
the frequency range from 9 kHz to 1.1 GHz the EMI signal received by the broad-band antenna is directly
fed to the 1.1 GHz time-domain EMI measurement system. This 1.1 GHz system corresponds to the system
described in the previous section. For frequencies above 1.1 GHz the EMI is down-converted into the base
band from 9 kHz to 1.1 GHz. The frequency bands from 1.1 GHz to 6 GHz are down-converted by the down-
converter DC1 into the base band. The frequency bands from 6 GHz to18 GHz first are down-converted by
the down-converter DC2 into the frequency range from 1.1 GHz to 6 GHz and than further down-converted
into the base band.

BPF2BPF1 LNA

PLL1 PLL2

IF2IF1

Figure 23: Down-converter for 1.1 GHz - 6 GHz.

Figure 23 shows the block diagram down-converter for the frequecy range from 1.1 GHz to 6 GHz. A
two-stage mixing scheme is employed to suppress the image frequency band. The mixer output signal can
exhibit the intermediate frequencies [82].

fm,±n
IF = |mf0 + nfrf | with m, n ∈ N , (102)

where frf is the frequency of the RF input signal and f0 is the local oscillator frequency. The frequency
conversion yields two side-bands. The image frequency is converted to the same intermediate frequency band
as the input frequency band. The preselection bandpass filter BP1 enhances the spurious -free dynamic range
of the system by filtering out high-level out-of band EMI. The RF input band is subdivided into 14 sub-
bands with a bandwidth of 325 MHz each. Each of the bands is first up-converted to a high intermediate
frequency band IF1, located above the RF input band. This intermediate frequency signal is filtered by a
narrow bandpass filter BPF2. By this way the unwanted in-band mixing products are suppressed. A second
mixer down-converts the intermediate frequency signal from the IF1 band to the IF2 band which is in the
frequency range below 1.1 GHz. PLL1 and PLL2 are the local oscillators, both realized with phase-locked
loops.
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Figure 24: Down-converter for 6 GHz - 18 GHz.

The block diagram of the 6 GHz - 18 GHz down-converter is shown in Fig. 24. The input band is divided
into three sub-bands, band 1 from 6 GHz to 9 GHz, band 2 from 9 GHz to 13 GHz, and band 3 from
13 GHz to 18 GHz. The low-insertion-loss single-input - triple-output PIN diode switches PDS1 and PDS2
are used to select the appropriate bandpass filter for the chosen band. These bandpass filters suppress the
image bands and the out-of-band interferences. The EMI signal is amplified by a low-noise amplifier and
down-converted to the frequency band from 1.1 GHz to 6 GHz via a broad-band mixer with low conversion
loss. The local oscillator PLL3 is a low-noise phase locked loop oscillator.

Figure 25: The Gauss Instruments TDEMI 18G® measurement system.

Figure 25 shows a photograph of the Gauss Instruments TDEMI 18G® measurement system for the
frequency range from 9 kHz to 18 GHz [77]. This system exhibits the CISPR bandwidths 200 Hz, 9 kHz,
120 kHz, and 1 MHz, and a spurious free dynamic range of about 55 dB. Above 1 GHz it has a significantly
lower noise floor than state of the art systems. Emission measurements above 1 GHz are carried out at
several angular positions. At each angular position a complete scan is performed. A maximum-hold mode
of operation allows to record the maximum values of the spectra. By the report generator the maxima are
calculated and listed in a table and the report is generated.

Figure 26 shows the radiated average and quasi-peak EMI spectra of a personal computer with opened
cover [79]. The measurements show several narrowband emission lines, supposably originating from the
central processing unit, clocked at 2.4 GHz.



Figure 26: Radiated EMI spectrum of a personal computer [79].

Some household appliances radiate considerable EMI at frequencies beyond 1 GHz. Figure 27 shows the
spectrogram of of the radiated emission of the 6th harmonics of a microwave oven [79]. The high sensitivity of
the time-domain EMI measurement system facilitates the measurement of the EMI due to the 6th harmonic
of the microwave oven magnetron. The measurement of the spectrogram enables the detection of singular
and transient events.

Figure 27: Spectrogram of the radiated emission of the 6th harmonic of a microwave oven [79].



9 Ambient Cancellation Techniques

EMI measurements usually are performed either in shielded anechoic chambers or at open area test
sites. Since the inner surfaces of broad-band anechoic chambers must be covered with broad-band radiation
absorbent material, anechoic chambers are very expensive, especially if a large size is required. Open area
test sites, especially in urban areas, have the disadvantage of unwanted electromagnetic interferers like radio
broadcast stations, mobile phone stations and others. An alternative would be to perform the measurement
at an open test site in the presence of ambient noise and to use ambient noise cancellation as suggested in [83].
The method described in [83] is based on the use of two coherent EMI receivers fed per two antennas, where
one antenna is directed towards the device under test and the other antenna receives the ambient noise.
Comparing both received signals the ambient noise can be cancelled. An example of such a system has been
presented in [84]. To speed up such measurements the time-domain EMI measurement technique is highly
attractive.
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Figure 28: TDEMI measurement system with ambient noise cancellation [40, 41].

An advanced digital signal processing technique for fast measurements of electromagnetic interference in
the time-domain at open area test sites has been developed [40, 41].

Figure 29: Spectrum of the radiated EMI of a household hand mixer [40].

Measurements performed with this system already have shown the successful cancellation of ambient



noise at an urban test site in the frequency range 30 to 1000 MHz. In this system two channels are used.
The two channels are fed from two broad-band antennas, where the first antenna is receiving predominantly
the EMI radiated from the device under test and a second antenna receives predominantly the ambient noise.
In the two channels both signals are digitized independently and simultaneously.

Figure 29 shows the measured radiated EMI of a household hand mixer as the device under test (DUT).
The reference antenna of the measurement setup was separated from the DUT and only received the ambient
noise. The EMI measurement system was operated in the average mode and the spectrum was computed
with 120 kHz IF bandwidth as required by CISPR 16-1-1 for band C, and D. The algorithm was successful
in canceling the ambient noise in the FM band, GSM band, and other frequency components along the
spectrum and, hence, the DUT signal was recovered.

10 Conclusions

The foundations of time-domain EMI measurement systems and the realization and performance of time-
domain EMI measurement systems were presented in this paper. Examples of commercially available time-
domain EMI measurement systems for frequencies up to 18 GHz have been discussed. Modern time-domain
EMI measurement systems fulfill the CISPR standards and are suitable for full compliance measurement
of EMI. In comparison to a conventional EMI receiver, the measurement time is reduced by a factor up to
4000 for the time-domain EMI measurement system. Depending on the applied IF filter bandwidth, the
measurement time is reduced by a factor of 100 for an IF filter bandwidth of 1 MHz, 1000 for an IF filter
bandwidth of 120 kHz and by a factor of 4000 for an IF filter bandwidth of 9 kHz.
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