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EMD Revisited: A New Understanding of the

Envelope and Resolving the Mode-Mixing
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Abstract

Empirical Mode Decomposition (EMD) is an adaptive and data-driven approach for analyzing multi-

component nonlinear and non-stationary signals. The stop criterion, envelope technique, and mode-mixing

problem are the most important topics that need to be addressed in order to improve the EMD algorithm.

In this paper, we study the envelope technique and the mode-mixing problem caused by separating

multicomponent AM-FM signals with the EMD algorithm. We present a new necessary condition on the

envelope that questions the current assumption that the envelope passes through the extrema points of an

intrinsic mode function (IMF). Then, we present a solution to the mode-mixing problem that occurs when

multicomponent AM-FM signals are separated. We experiment on several signals, including simulated

signals and real-life signals, to demonstrate the efficacy of the proposed method in resolving the mode-

mixing problem.

I. INTRODUCTION

Single-channel signal separation and estimation has attracted a great deal of attention in recent years

because it affects many applications. Typical single-channel signal separation approaches model a signal
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as a superposition of additive coherent basic signals. For instance, a nonlinear and non-stationary signal

can be modeled as a multicomponent AM-FM signal. The methods used to separate signals vary because

different subcomponents are used to construct the signals. Recently, the Empirical Mode Decomposition

(EMD) approach has generated a lot of interest because it has a number of useful features [1].

The EMD algorithm is a fully data-driven and self-adaptive process that models the target signal as a

series of intrinsic mode functions (IMFs) plus a residual signal. An IMF satisfies two conditions: (1) in the

whole data set, the number of extrema and the number of zero-crossings must be equal, or differ by one

at most and (2) at any point, the local average of the upper and lower envelopes must be zero. To obtain

an IMF, the EMD uses a sifting process based on the estimated upper and lower envelopes, interpolated

from the extrema, of the input signal. The theoretical analysis and experiments on envelope interpolation

are discussed in [2], [3]. However, because of the obscure nature of the envelope, mathematically explicit

and physically meaningful answers to questions like “What is an envelope?” and “What constitutes a

good envelope?” are still elusive. We do not provide a definition of the envelope in this paper; however,

we derive the necessary conditions that an envelope must satisfy in EMD.

EMD extracts the highest frequency component locally as the current IMF, which is derived from

the extrema and the envelopes during the sifting process. Hence, it is inevitable that the IMF will be

affected by the mode mixing problem caused by the intermittency, as noted by Wu and Huang [4]. The

intermittency was originally referred to as the alternation of phases of apparently periodic and chaotic

dynamics in turbulence. In this paper, we use the definition in [5], where the intermittency is referred

to as a component that comes into existence or disappears from a signal entirely at a particular time

scale. The mode mixing problem occurs when the frequency tracks of an IMF jump as an intermittent

component arrives or departs.

In this paper, we analyze the properties of the envelope and the mode-mixing problem caused by

separating AM-FM signals with the EMD algorithm. First, we analyze the properties of the envelope.

Then, we propose an AM-FM demodulation algorithm, which is used later to solve the mode-mixing

problem of an IMF.

Normally, a multicomponent AM-FM signal is used to model a non-stationary signal and applied in the

analysis of a broad range of signals in various fields, such as mechanics and vibrations [4], [6]. The IMF of

a signal is always a monocomponent AM-FM signal, which facilitates meaningful instantaneous frequency

(IF) estimation via the Hilbert transform, Teager-Kaiser energy operator [7] or other techniques [8], [9],

[10], [11]. We study the envelope of a monocomponent AM-FM signal a(t) cos(ϕ(t)) and observe that

its upper (resp. lower) envelope does not necessarily pass through its maximum (resp. minimum) points;
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however, it does pass by, and is tangential to, the points with a phase angle ϕ(t) of 2kπ ((2k+1)π). This

observation motivates us to present a new necessary condition for the envelopes of an IMF as well as a

numerical algorithm to estimate the envelopes. We also propose an optimization approach to demodulate

the AM and FM parts of the IMF from the estimated envelopes.

The mode mixing problem of sine waves has been studied and resolved by Deering and Kaiser [5].

For a signal a1 sin(2πf1t) + a2 sin(2πf2t), the mode mixing problem occurs when some values on a1,

a2, f1 and f2 are chosen. A detailed analysis of the parameter values used to generate the mode-mixing

phenomenon of the EMD for two sine waves can be found in [12]. For example, if a1 = a2 and

0.5 < f1/f2 < 2 [3], then the first IMF of the signal is a modulated signal that contains the higher

frequency component and a portion of the lower frequency component. Basically, Deering and Kaiser’s

solution involves inserting a masking sine signal that prevents the lower frequency component from being

included in the IMF. Their approach is interesting and innovative; however, it cannot resolve the mode

mixing problem in AM-FM modulated signals. Therefore, to address the problem, we propose a new

method that is a generalization of Deering and Kaiser’s algorithm. We derive the conditions for our

method to achieve the goal and demonstrate the efficacy of the proposed algorithm on simulated and

real-life signals.

The remainder of this paper is organized as follows. In Section II, we review the EMD algorithm and

some related works on the envelope and mode mixing problem. In Section III, we propose a new necessary

condition for an IMF’s envelope, as well as a numerical algorithm to derive an envelope that satisfies

the proposed condition. We also present an AM and FM demodulation algorithm based on the derived

envelope. In Section IV, we discuss the mode mixing phenomenon in AM-FM signals and propose an

algorithm to resolve the problem. We also present the results of experiments on simulated and real-life

signals. Section V contains some concluding remarks.

II. EMD PRELIMINARIES AND DISCUSSION

The objective of the EMD method is to identify IMFs by using a sifting process. Given a real input

signal s(t), let r(t) = s(t), k = 1, and i = 0. The steps of the sifting process are as follows.

1) Find all local minima and maxima of r(t).

2) Interpolate between the minima (resp., maxima) to acquire the lower envelope emin(t) (resp., the

upper envelope emax(t)).

3) Compute the mean envelope as an approximation of the local average m(t) = (emin(t)+emax(t))/2.

4) Let i = i+1 and define the proto-mode function (PMF) as pi(t) = r(t)−m(t), and let r(t) = pi(t).
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5) Repeat Steps 1) to 4) on PMF pi(t) until it becomes an IMF; then, record the IMF imfk(t) = pi(t).

6) Let r(t) = r(t) − imfk(t). If the number of extrema of r(t) is greater than three, let k = k + 1,

i = 0, and go to Step 1; otherwise, stop the sifting process.

Steps 3 and 5 compute the mean envelope and test the stopping criterion of an IMF respectively.

Different implementations of the two steps yield different decomposition results. For details of the EMD

algorithm and its implementation, readers may refer to [1] and [3]. The algorithm represents s(t) as the

summation of IMFs and a residual r(t) as follows:

s(t) =
∑

k

imfk(t) + r(t). (1)

A. The envelope algorithm

Computing a good mean envelope m(t) and testing the stop criterion of an IMF are crucial to the

success of the EMD algorithm. Clearly, the upper and lower envelopes play a significant role in both

of these steps. In the standard EMD algorithm [1], after identifying the extrema, a cubic spline-based

interpolation method is used to generate the upper and lower envelopes. Several interpolation methods

have been proposed to improve the performance of the standard EMD algorithm. For example, the B-spline

and some higher order polynomial interpolation methods are used to replace the cubic spline interpolation

technique [2], [13]. Meanwhile, because of the drawbacks of using extrema, many algorithms designed

for computing the mean envelope directly, such as the PDE method [14], the Genetic Algorithm [15]

and the Local Integral Mean method [10], [16], have been applied to the sifting process. In the image

analysis area, some envelope approaches, such as the radial basis function and optimization, are used

as two-dimensional (2-D) extensions of the EMD algorithm [17], [18], [19], [20]. Although the cited

methods improved on the single channel separation performance of the standard EMD algorithm, the

envelopes are still defined by their algorithms and the criteria for an envelope are still not completely

understood.

B. The mode-mixing problem

Mode mixing is another major problem when EMD is used to decompose signals. According to [21],

there are two possible causes of the problem: 1) the IMF contains signals of widely disparate scales; or

2) signals of a similar scale reside in different IMF components. To decompose s(t) = sh(t) + sl(t) by

the EMD, where sh(t) and sl(t) denote the high frequency component and the low frequency component

respectively, the problem occurs when parts of the components of sh(t) are completely immersed in
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the corresponding parts of sl(t). Thus, the sifting process detects the extrema of sl(t) in the parts of

sh(t) that are immersed. However, the sifting process also detects the extrema of sh(t) in other parts

of the signal s(t). This phenomenon can create intermittency in the extrema of the signal; that is, the

extrema detected in the sifting process belong to different signals. As a consequence, the IMF is a signal

comprised of different scales; some parts are from signal sh and the other parts are from signal sl.

Several methods have been proposed to solve the mode-mixing problem under EMD. In [4], an

intermittency test is used to provide a choice of extrema for the envelopes in the sifting process.

However, for complicated data with variable scales, this approach is rather difficult because some single

intermittency test criteria are not applicable. Deering and Kaiser [5] adopted a pure sine wave as a

masking signal to solve the mode-mixing problem of an IMF of the form a1 sin(2πf1t)+ a2 sin(2πf2t).

The masking signal is a high frequency sine wave that is added to the input signal s(t) to make the

extrema of the immersed parts of the high frequency component detectable in the sifting process. The

steps of the algorithm are as follows.

1) Construct a masking signal, m̂(t).

2) Perform EMD on s+(t) = s(t) + γm̂(t) to obtain the IMF h+(t).

3) Perform EMD on s−(t) = s(t)− γm̂(t) to obtain the IMF h−(t).

4) Derive the IMF of s(t) as z(t) = (h+(t) + h−(t)) /2.

The parameter γ is multiplied by the masking signal m̂(t) to enlarge the amplitude of the high frequency

component so that performing EMD on s+(t) and s−(t) can extract the high frequency component of

s(t). This approach can only be used to resolve the mode-mixing problem of two sine waves, and the

success of the algorithm depends on the accuracy of the estimated high frequency component of the

input signal. The recently proposed ensemble EMD (EEMD) algorithm [21] uses a large number of

noisy signals as masking signals. It is shown that EEMD can resolve the mode-mixing problem in some

real-life signals. However, they did not provide an analysis on the feasibility of using the approach to

solve the mode-mixing problem.

III. A NEW VIEW OF THE ENVELOPE TECHNIQUE

We model the input signal s(t) as a multicomponent AM-FM signal in which

s(t) =

M
∑

i=1

si(t) =

M
∑

i=1

ai(t) cos(ϕi(t)) with ai(t) > 0. (2)

Each mono-component AM-FM signal si(t) can be regarded as an IMF. The rationale is that the FM

part, cos(ϕi(t)), and the AM part (with ai(t) as the upper envelope and −ai(t) as the lower envelope),
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of si(t) satisfy the first and second conditions of an IMF respectively. In this section, we first propose a

new necessary condition on the envelope for a mono-component AM-FM signal to be an IMF; then, we

present a numerical algorithm to estimate the envelope.

A. Envelope for AM-FM signals

Most of the works related to the envelope of the sifting process are based on the two principles

proposed by Huang et al. in [1]:

• The envelope must be continuous and must pass through the extrema (maxima and minima).

• The first derivative of the envelope must be continuous.

Based on these principles, the process for computing a specific signal’s upper (resp. lower) envelope

involves two steps: 1)identify the maximum (resp. minimum) points of the signal; and then 2) use a

smooth interpolation function to interpolate between the maximum (resp. minimum) points. Unfortunately,

if we consider the amplitude part a(t) of a mono-component AM-FM signal s(t) = a(t) cos(ϕ(t)) as its

envelope, in most cases, the envelope a(t) will not pass through the maximum (and minimum) points of

the signal s(t).

For example, if we let t0 be a point in the upper envelope of s(t), we have

a(t0) = s(t0) = a(t0) cos(ϕ(t0)). (3)

If t0 is also a maximum point of s(t), we have

s′(t0) = a′(t0) cos(ϕ(t0))− a(t0) sin(ϕ(t0))ϕ
′(t0) = 0, (4)

where the prime denotes the first order derivative with respect to t. From Equations (3) and (4), we can

derive cos(ϕ(t0)) = 1 and a′(t0) = 0. This indicates that there is a correlation between the amplitude

part a(t) and the phase part ϕ(t) at the maximum points. Because the amplitude a(t) and phase ϕ(t) of

a(t) cos(ϕ(t)) may be completely uncorrelated, we conclude that the envelope a(t) of the signal does

not necessarily pass through the extrema of s(t), as shown in Figure 1.

Based on the above analysis and our observations, we modify the first principle of the envelope

proposed by Huang et al. in [1] and present a new necessary condition on the envelope of an AM-FM

signal s(t) = a(t) cos(ϕ(t)): The upper (lower) envelope should pass through and be tangential to the

signal at all the points that satisfy ϕ(t) = 2kπ ((2k + 1)π). This condition uses the value of the signal

and also exploits the information about the phase angle of a frequency modulated function. Moreover, it

conforms to the intuition that an envelope of an AM-FM signal should be on and tangential to the signal.
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For convenience, we denote the points in s(t) that satisfy the above necessary condition as tangential

points. Let the upper envelope of the signal s(t) be ψu(t). This necessary condition requires that, if

ϕ(τu,i) = 2kπ at the points τu,i, then the the upper envelope ψu must satisfy

s(τu,i) = a(τu,i) cos(ϕ(τu,i)) = a(τu,i) = ψu(τu,i), (5)

and

s′(τu,i) = a′(τu,i) cos(ϕ(τu,i))− a(τu,i) sin(ϕ(τu,i))ϕ
′(τu,i) = a′(τu,i) = ψ′

u(τu,i). (6)

Similarly, we can draw the same conclusion about the lower envelope.

0 0.5 1 1.5 2 2.5 3
−4

−3

−2

−1

0

1

2

3

4

5

6

Time

A
m

p
lit

u
d

e

 

 

input signal

spline envelope

real envelope

Fig. 1. Ground truth upper envelope (dashed curve) and the constructed upper envelope acquired through cubic spline

interpolation (thin curve) of the signal s(t) = (2+ cos(2πt)) cos(6πt) (thick curve). The stars and circles denote the tangential

points and local maximum points respectively. From the interpolation points and the estimated envelope, we observe that the

envelope passes by, and is tangential to, the signal at the local maximum points, where the first derivative of the envelope is

equal to zero. However, the envelope does not pass through the other local maxima, nor is it tangential to them. In other words,

the envelope will pass through some points (including local extrema points) of the signal, and the first derivative of the envelope

will coincide with that of the signal at those points.

B. Numerical computation of the envelope

Next, we introduce a numerical approximation algorithm for computing the envelope of a discrete

AM-FM signal using the necessary condition defined above. Since the condition is similar for the upper

and the lower envelopes, we only discuss the algorithm for estimating the upper envelope.
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For an upper envelope to satisfy the necessary condition, it must pass through the tangential points,

defined as the points of signal s(t) = a(t) cos(ϕ(t)), where the phase angles of cos(ϕ(t)) are 2kπ. It is

quite difficult to find the tangential points in s(t) because the FM function cos(ϕ(t)) has been modulated

by an AM function a(t). However, if we assume that the AM function varies much more slowly than

the FM function, the tangential points are close to the maximum points of s(t). Therefore, we can locate

the local maximum points, and use the Taylor expansion to compute the offset distance between the

tangential points and the local maximum points. Let ti denote the position of ith local maxima. For each

ti, we search for the offset ∆ti that conforms to the following equations:

ψ(ti +∆ti) = s(ti +∆ti), (7)

ψ′(ti +∆ti) = s′(ti +∆ti), (8)

where ψ is the upper envelope to be estimated. When ∆ti has been determined, the tangential points

are at ti +∆ti. Based on the values of ψ(ti +∆ti) and ψ′(ti +∆ti) at the tangential points, we use an

interpolation method to derive the upper envelope. Spline interpolation can satisfy Equation (7), but not

Equation (8). Thus, we use the Hermite polynomial method [22] to derive the upper envelope because

it interpolates a polynomial that matches both the value and the first derivative of s(t) at the tangential

points.

Since it is hard to find the correct values of ∆ti and the derivatives of ψ(t) at ti+∆ti in one step, we

introduce an alternative optimization approach to calculate the offset ∆ti and the envelope. The approach

involves two steps: estimating the offset ∆ti, and updating the envelope ψ(t). Let us suppose that the

tangential points t
(k)
i and the envelope ψ(k) have been established at the kth iteration. We use the first

order Taylor expansion in (8) to obtain

ψ(k)′(t
(k)
i ) + ψ(k)′′(t

(k)
i )∆t

(k)
i = s′(t

(k)
i ) + s′′(t

(k)
i )∆t

(k)
i , (9)

which yields

∆t
(k)
i =

s′(t
(k)
i )− ψ(k)′(t

(k)
i )

ψ(k)′′(t
(k)
i )− s′′(t

(k)
i )

, (10)

where the prime and the double prime denote, respectively, the first and second order derivatives with

respect to t. In the discrete case, we use a numerical method to compute the first and second order

derivatives of the signal and the envelope. Let u[n] be a discrete signal. The values of u′[n] and u′′[n]

are obtained by calculating u′[n] = (u[n + 1] − u[n − 1])/2 and u′′[n] = u[n + 1] + u[n − 1] − 2u[n].
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Then, we update the tangential points by setting t
(k+1)
i = t

(k)
i +∆t

(k)
i . To update the envelope ψ(k)(t),

we assume that

ψ(k+1)(t
(k+1)
i ) = s(t

(k+1)
i ) (11)

and approximate ψ(k+1)′(t
(k+1)
i ) by using

ψ(k+1)′(t
(k+1)
i ) =

ψ(k+1)(t
(k)
i )− ψ(k+1)(t

(k+1)
i )

−∆t
(k)
i

. (12)

In (12), we need to calculate the values of ψ(k+1)(t
(k)
i ), which can be estimated by the second order

Taylor expansion in (7) as follows:

ψ(k+1)(t
(k)
i ) = s(t

(k)
i ) + (s′(t

(k)
i )− ψ(k)′(t

(k)
i ))∆t

(k)
i + 0.5(s′′(t

(k)
i )− ψ(k)′′(t

(k)
i ))

(

∆t
(k)
i

)2
. (13)

From (11) and (12), we have the values of ψ(k+1)(t) and ψ(k+1)′(t) at all the knots t
(k+1)
i . From the

values and their derivatives on the knots, the upper envelope ψ(k+1)(t) can be derived by using the

Hermite interpolation algorithm.

The two steps discussed above estimate the offset ∆ti and the upper envelope ψ(t) alternately. The

algorithm stops when the values of the offset |∆ti| are close to zero or the maximum number of iterations

have been performed. The procedure is summarized in Algorithm 1, and the results are presented in

Figure 2. The right-hand column of the figure plots the curves of the maximum absolute difference of

|∆t
(k)
i | versus the number of iterations k for the AM-FM signals in the same row of the left-hand column.

The curves decrease and converge to some small number as the number of iterations increases.

C. Demodulation of an AM-FM signal

Here, we demonstrate that a simple optimization algorithm can be applied to the estimated envelope

of an AM-FM signal to demodulate the AM and FM parts of the signal. Let â(t) denote the estimated

envelope of the input signal s(t) = a(t) cos(ϕ(t)) by Algorithm 1. We can use a piecewise polynomial

ϕ̂(t; Θp), where Θp are the coefficients of the polynomial, to derive ϕ(t) by solving the following

optimization problem:

Θ̂p = arg min
φ̂(t;Θp)

{

||ϕ̂(t; Θp)− arccos(s(t)/â(t))||2
}

(16)

for each ti with











ϕ̂(ti; Θp) = kπ

ϕ̂
(j)
i−1(ti; Θp) = ϕ̂

(j)
i (ti; Θp), 1 ≤ j ≤ 2,
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Fig. 2. The estimation procedure in Algorithm 1. Left-hand column: the input signals (top: (2 + cos(πt)) cos(4πt+ 3π/2);

bottom: (t2 + 2) cos(π sin(8t) + π)/16) and the (upper) envelopes derived by the algorithm. Right-hand column: the plots of

the maximum absolute difference of |∆t
(k)
i

| versus the number of iterations k of the signals in the same row of the left-hand

column.

where ti are the tangential points of |s(t)|; ϕ̂i(t; Θp) denotes the segment of the estimated phase function

from ti to ti+1; and ϕ̂
(j)
i (ti; Θp) denotes the jth derivatives of ϕ̂i(t; Θp) at ti. Note that we do not use the

Hilbert transform to estimate the phase because the approach cannot satisfy the constraints in Equation

(16).

Figure 3 shows the results of our demodulation algorithm on a simulated signal. The mono-component

AM-FM input signal is s(t) = (t2+2) cos(π sin(8t))/16, which is taken from [24]. Note that the phase of

the signal is π sin(8t). If we take the derivative of the phase function with respect to t as the instantaneous

frequency (IF), the derived IF may be negative. Thus, we replace the phase function with

π
(

(−1)⌈(8t+3π/2π)⌉ sin(8t) + 2(⌈(8t+ 3π/2π)⌉ − 1)
)

. (17)

The values of the resulting signal are unchanged and the IF of the signal does not have negative values.

The symbol ⌈x⌉ denotes the operation that rounds the element x to the nearest integers greater than

or equal to x. The input signal s(t) and its IF are shown in Figures 3(a) and (b) respectively. Figure

3(c) compares the estimated IF of our method and that of the Normalized Directly Compute Quadrature

(NDQ) algorithm [23]. The errors with respect to the true IF of different methods are plotted in Figure
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Fig. 3. AM-FM decomposition of a mono-component signal s(t) = (t2 + 2) cos(π sin(8t))/16 with −4 ≤ t ≤ 4 by our

algorithm and the Normalized Direct Compute Quadrature (NDQ) algorithm [23]: (a) the input mono-component AM-FM signal;

(b) the IF, which is normalized between 0 and 0.5; (c) the estimated IF of our algorithm and the NDQ approach, plotted by

dotted and solid lines respectively; (d) the differences between the estimated instantaneous frequency of our approach and that

of NDQ with the real IF, indicated by the dotted and solid lines respectively.

3(d). Note that the result derived by the NDQ algorithm does not necessarily satisfy the constraints in

Equation (16).

IV. RESOLVING THE MODE-MIXING PROBLEM OF AM-FM SIGNALS

In Section IV-C, we describe how the mode-mixing problem of sine waves can be solved by Deering

and Kaiser’s approach [5]. However, the method cannot be used to solve the mode-mixing problem of

AM-FM signals. In many physical systems, such as complicated vibration systems with damping [25]

and communication systems with non-linear modulation functions, the signals can be modeled as AM-

FM functions. Recall that two possible causes of the mode-mixing problem under EMD were mentioned

in Section I. Figure 4 shows an example of mode-mixing in AM-FM signals. The input signal and its

two subcomponents are shown in Figures 4(a), (b), and (c) respectively. The first IMF extracted by the

EMD is shown in Figure 4(d). Note that the four segments, S1 to S4, in the IMF are low frequency FM
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components from the subcomponent in Figure 4(b); while the other parts of the IMF are high frequency

FM components from the subcomponents in Figure 4(c). Obviously, the IMF is affected by the mode

mixing-problem because it contains segments of different scales from different signals. In segments S1

to S4, the high frequency component is completely immersed in the low frequency component; thus,

the EMD algorithm only detected the extrema of the low frequency component. Our approach is a

generalization of Deering and Kaiser’s approach, which we use to create a high frequency FM signal

that can mask the extrema of the low frequency FM component in segments S1 to S4 during the EMD

sifting process.

Our approach is comprised of three steps. First, we recover the high frequency information hidden

in the extracted IMF; second, we construct a masking signal and use it to recover the desired IMF. We

propose an algorithm to resolve the mode-mixing problem of two additive AM-FM signals and present a

detailed discussion and analysis of the three steps of our algorithm in subsections A, B, and C respectively.

The algorithm can be extended to solve the mode-mixing problem of more than two additive AM-FM

signals.

In our model, the input signal is defined as

s(t) = sl(t) + sh(t) = al(t) cos(ϕl(t)) + ah(t) cos(ϕh(t)), (18)

where al(t), ah(t) > 0 and ϕ′h(t) > ϕ′l(t); that is, sl(t) and sh(t) are the low frequency and high

frequency FM components respectively. The condition al(t), ah(t) > 0 precludes the signals containing

segments with zero values. We assume that the first IMF g(t) of the s(t) has the following form:

g(t) = ãl(t) cos(ϕ̃l(t)) + ãh(t) cos(ϕ̃h(t)), (19)

where ϕ̃′l(t) ≈ ϕ′l(t) and ϕ̃′h(t) ≈ ϕ′h(t), and ãh(t), ãl(t) ≥ 0. The mode-mixing problem of an IMF

implies that some segments of g(t) contain information from the low frequency FM signal sl(t) and the

other segments contain the high frequency FM signal sh(t).

A. Recovering the hidden high frequency component in an IMF

First, we use an AM-FM signal ĝ(t) to approximate the IMF g(t). Then, we analyze the difference

between signals g(t) and ĝ(t), denoted as d(t) = g(t)−ĝ(t). We partition the domain of the IMF g(t) into

low frequency components and high frequency components. Let S denote the union of the low frequency

segments (e.g. S is the union of S1 and S4 in Figure 4(d)), and let S̄ denote the high frequency segments.

In addition, we assume that the end points of the segments in S and S̄ of g(t) are not extrema points.
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Fig. 4. An example of the mode mixing phenomenon in a two-component AM-FM signal: (a) the input multi-component

signal s(t) = sl(t) + sh(t); (b) the first mono-component signal sl(t) = 5(2 − 1.2 cos(πt)) cos(6πt + 3 sin(πt/2)); (c) the

second mono-component signal sh(t) = (2 + 1.2 cos(πt)) cos(12πt + 6 sin(πt/2)); (d) the first extracted IMF of the input

signal s(t); (e) the signal d̂(t) used to calculate the masking signal; (f) the normalized masking signal m̂(t); (g) and (h) the

first subcomponent extracted by Algorithm 2 and the difference from the real subcomponent sh(t) respectively.

To analyze the properties of g(t) and d(t), we divide the IMF g(t) into gS(t) and g
S̄
(t) as follows:

g(t) = gS(t) + g
S̄
(t) = g(t)RS(t) + g(t)R

S̄
(t), (20)

where RS(t) and R
S̄
(t) are the indicator functions of S and S̄ respectively. The indicator function is

defined as RA(t) = 1 for t ∈ A and RA(t) = 0 for t /∈ A. Because g(t) only contains information about

sh(t) when t ∈ S̄, we assume that ãl(t) = 0 and conclude that g
S̄
(t) = ãh(t) cos(ϕ̃h(t)). Moreover, when
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the mode-mixing phenomenon occurs, the extrema on segments in S are contributed primarily by the low

frequency FM component sl(t). In this case, sh(t) is almost immersed in sl(t); therefore, al(t)≫ ah(t)

for t ∈ S. If the condition (ãl(t)/ãh(t))(ϕ̃
′
l(t)/ϕ̃

′
h(t))

2 > 1 is satisfied, we can assume that the positions

of the extrema in gS(t) are very close to the locations of the extrema in cos(ϕ̃l(t)). The condition is

derived by

gS(t) = ãl(t) cos(ϕ̃l(t)) + ãh(t) cos(ϕ̃h(t))

= ãl(t) cos(ϕ̃
′
l(t)t+ βl) + ãh(t) cos(ϕ̃

′
h(t)t+ βh), (21)

where βl and βh are the phase values at t = 0. If we assume that ãl(t), ãh(t), ϕ̃
′
l(t) and ϕ̃′h(t) are

constants in a sufficiently small neighborhood of t, we can also assume that, in the neighborhood of t,

g(t) can be approximated as the sum of two sine waves. In this case, we can use the analysis results in

[12] to derive that the locations of the extrema points of gS(t) are close to those of ãl(t) cos(ϕ̃l(t)), and

the distance between an extremum of gS(t) and the corresponding extremum of ãl(t) cos(ϕ̃l(t)) is less

than 1/(2πf(t)) arcsin(1/a(t)f(t)) with a(t) = ãl(t)/ãh(t) and f(t) = ϕ̃′l(t)/ϕ̃
′
h(t).

Let Ep{g(t)} denote the extrema points of the signal g(t). Then, we have

Ep{g(t)} = Ep{gS(t)}+ Ep{gS̄(t)} (22)

≈ Ep{ãl(t) cos(ϕ̃l(t))RS(t)}+ Ep{ãh(t) cos(ϕ̃h(t))RS̄
(t)}. (23)

Equation (22) is derived because the segments in S and S̄ form a partition in the signal domain and the

end points of segments do not contain the extrema points of g(t). From Ep{g(t)}, we can approximate

g(t) by an AM-FM signal ĝ(t) = â(t) cos(ϕ̂(t))1, where â(t) and ϕ̂(t) are the estimated AM and FM

components respectively. The difference between g(t) and ĝ(t) is

d(t) = g(t)− ĝ(t)

=





∑

i=l,h

ãi(t) cos(ϕ̃i(t))− â(t) cos(ϕ̂(t))



RS(t) +
(

ãh(t) cos(ϕ̃h(t))− â(t) cos(ϕ̂(t))
)

R
S̄
(t)

= dS(t) + d
S̄
(t). (24)

Next, we discuss the two components in (24).

Case 1. t ∈ S̄:

1The steps for computing ĝ(t) are given in the remarks of Algorithm 2
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As mentioned earlier, we have ãl(t) = 0 and Ep{gS̄(t)} = Ep{ãh(t) cos(ϕ̃h(t))}. The AM-FM signal

ĥ(t) = â(t) cos(ϕ̂(t)), estimated from the extrema of g
S̄
(t) by EMD, will have â(t) ≈ ãh(t) and

ϕ̂(t) ≈ ϕ̃h(t). Thus, the absolute difference in S̄ is bounded by a small value ϵ; i.e., |d
S̄
(t)| < ϵ.

Case 2. t ∈ S:

Although gS(t) = ãl(t) cos(ϕ̃l(t)) + ãh(t) cos(ϕ̃h(t)), the positions of the extrema of gS(t) are close

to those of the low frequency FM component cos(ϕ̃l(t)). Thus, we can assume that ϕ̂(t) ≈ ϕ̃l(t). On the

other hand, the amplitude of the extrema of gS(t) cannot be approximated as ãl(t) because gS(t) also

contains the other component ãh(t) cos(ϕ̃h(t)). We assume that â(t) = ãl(t) + ∆a(t). Since both â(t)

and ãl(t) are smoothly varying functions, ∆a(t) is also a smoothly varying function. As shown in (25),

the difference between g(t) and ĝ(t) is

dS(t) =
∑

i=l,h

ãi(t) cos(ϕ̃i(t))− â(t) cos(ϕ̂(t)) (25)

=
(

ãl(t)(cos(ϕ̃l(t))− cos(ϕ̂(t)))−∆a(t) cos(ϕ̂(t))
)

+ ãh(t) cos(ϕ̃h(t)) (26)

= −
(

2ãl(t) sin((ϕ̃l(t)− ϕ̂(t))/2) sin((ϕ̃l(t) + ϕ̂(t))/2) + ∆a(t) cos(ϕ̂(t))
)

+ ãh(t) cos(ϕ̃h(t))

(27)

≈ −
(

ãl(t)(ϕ̃l(t)− ϕ̂(t)) sin(ϕ̂(t)) + ∆a(t) cos(ϕ̂(t))
)

+ ãh(t) cos(ϕ̃h(t)) (28)

= ãh(t) cos(ϕ̃h(t))− ãl(t)

√

(ϕ̃l(t)− ϕ̂(t))2 + (
∆a(t)

ãl(t)
)2 sin(ϕ̂(t) + α(t)), (29)

where α(t) = arctan
(

∆a(t)

ãl(t)(φ̃l(t)−φ̂(t))

)

. To calculate (27) and (28), we use the fact that ϕ̃l(t) ≈ ϕ̂(t) and

the approximations (ϕ̃l(t) + ϕ̂(t))/2 ≈ ϕ̂(t) and sin(ϕ̃l(t)− ϕ̂(t)) ≈ ϕ̃l(t)− ϕ̂(t).

In Appendix B, we show that if ϕ̃l(t)− ϕ̂(t) ≈ 0, we can estimate ϕ̃l(t) accurately when t ∈ S, and

(|∆a(t)|/ãh(t))(ϕ̃
′
l(t)/ϕ̃

′
h(t)) < 1. Then, we have

Ep{dS(t)} ≈ Ep{ãh(t) cos(ϕ̃h(t))}. (30)

Equation (30) indicates that the extrema of the hidden high frequency component sh(t) can be retrieved

from dS(t). On the other hand, d
S̄
(t) is upper bounded by a small ϵ; thus, we can apply a threshold

or some morphological operators on d(t) such that the values of d on segments S̄ become zero. The

resultant signal d̂(t) is dS(t) for t ∈ S, and it has a zero value for t ∈ S̄. Figure 4(e) plots the derived

d̂(t) for the example in Figure 4(d). Note that in segments S1 to S4, d(t) contains the high frequency

component of Figure 4(c) and the rest are zero.
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B. Constructing a masking signal

To construct a masking signal, we form the following signal y(t) = g(t)+λd̂(t), where λ > 0. Because

d̂
S̄
(t) = 0, we have

y(t) = gS(t) + λd̂S(t) + g
S̄
(t). (31)

Calculating the extrema of y(t), we obtain

Ep{y(t)} = Ep{gS(t) + λd̂S(t) + g
S̄
(t)}

= Ep{gS(t) + λd̂S(t)}+ Ep{gS̄(t)}+ Ey(t), (32)

where Ey(t) is the extrema of y(t) at the intersection points of two segments on y(t); one is in S and

the other is in S̄. If we substitute (30) into (32) and use the fact that

gS(t) = (ãl(t) cos(ϕ̃l(t)) + ãh(t) cos(ϕ̃h(t)))RS(t), (33)

and

g
S̄
(t) = (ãh(t) cos(ϕ̃h(t)))RS̄

(t), (34)

we have

Ep{y(t)} = Ep{(ãl(t) cos(ϕ̃l(t)) + (1 + λ)ãh(t) cos(ϕ̃h(t)))RS}+Ep{ãh(t) cos(ϕ̃h(t))RS̄
(t)}+Ey(t).

(35)

We can select a λ value with (1 + λ)ãh(t) > ãl(t) so that, for t ∈ S, we have

Ep{(ãl(t) cos(ϕ̃l(t)) + (1 + λ)ãh(t) cos(ϕ̃h(t)))RS} ≈ Ep{((1 + λ)ãh(t) cos(ϕ̃h(t)))RS}. (36)

Substituting (36) into (35), we can derive that

Ep{y(t)} ≈ Ep{((1 + λ)ãh(t) cos(ϕ̃h(t)))RS(t)}+ Ep{ãh(t) cos(ϕ̃h(t))RS̄
(t)}+ Ey(t). (37)

Usually, the number of extrema in Ey(t) is much smaller than in ãh(t) cos(ϕ̃h(t)); thus, we can omit

the term Ey(t) in (37) and obtain

Ep{y(t)} ≈ Ep{((1 + λ)ãh(t) cos(ϕ̃h(t)))RS(t)}+ Ep{ãh(t) cos(ϕ̃h(t))RS̄
(t)}. (38)

Because ãh(t) is a slowly varying function, the positions of the extrema of y(t) are close to those of

cos(ϕ̃h(t)). Thus, the IMF m̃(t) of y(t) should maintain a similar frequency function to ϕ̃h(t). Through

the AM-FM demodulation of m̃(t), a normalized m̂(t) can be obtained by dividing m̃(t) by the derived

envelope. The m̂(t) is our masking signal, which is an FM signal of the form cos(ϕ̂h(t)) with ϕ̂′h(t) ≈

ϕ̃′h(t) ≈ ϕ
′
h(t). The masking signal of Figure 4(d) is shown in Figure 4(f).
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C. Recovering the desired IMF, and evaluations and comparisons

To recover the desired hidden subcomponent signal sh(t) when t ∈ S, we adopt Deering and Kaiser’s

method by using m̂(t) as the masking signal. Our method is summarized in Algorithm 2. Steps 3 to 7

of the algorithm estimate our masking signal. The last three steps are from Deering and Kaiser’s method,

which we use to recover the desired IMF. Figures 4(g) and (h) depict the desired IMF recovered by our

method and the difference between the recovered IMF and the ground truth IMF in Figure 4(c).

The difference between Deering and Kaiser’s method and our method is the way the masking signal is

estimated. Figure 5 compares the results of applying the methods to the mode-mixing problem of a two-

component FM signal. The IMF extracted by the EMD method is shown in Figure 5(d). It is obviously

affected by the mode-mixing problem. The masking signals of Deering and Kaiser’s method and our

method are shown in Figures 5 (h) and 5(g) respectively. Deering and Kaiser use a pure sine wave as the

masking signal. The frequency is estimated from the weighted mean of the extracted IMF’s frequency

acquired by the Hilbert transform. The IMF extracted by their approach, shown in Figure 5(f), is not the

desired IMF of the input signal. In contrast, our masking signal is an FM signal that solves the problem.

Our recovered IMF is shown in Figure 5(e), which corresponds to the high frequency component in

Figure 5(b).

Finally, we evaluate the proposed approach on the mode mixing phenomenon in a simulated signal

containing more than two AM-FM signals and a real life signal. The multi-component AM-FM signal

s(t) and its three subcomponents, s1(t), s2(t), and s3(t), are shown in Figures 6(a),(b),(c), and (d)

respectively. Although s1(t) has the highest frequency, s2(t) has the second highest, and s3(t) has the

lowest frequency, the amplitude of the lowest frequency component s3(t) is larger than those of the other

two components. Consequently, the signal s(t) appears to be of low frequency. The first desired IMF

is s1(t) and the second desired IMF is s2(t); however, the first IMF extracted by EMD is not s1(t), as

shown in Figure 7(a). The IMF is obviously affected by the mode-mixing problem, as shown in segments

S1 to S5. In segments S1, S2, S4, and S5, we can only observe the low frequency information about

s3(t); while segment S3 contains the information about s1(t) as well as the information about s2(t). We

resolve the mode-mixing problem in the IMF by applying our method with the estimated masking signal,

as shown in Figure 7(b). The resulting IMF, shown in Figure 7(c), is the desired high frequency IMF

ŝ1(t). Then, EMD is applied on the signal s(t) − ŝ1(t) and the IMF is extracted, as shown in Figure

7(d). This IMF is also affected by the mode-mixing problem. As shown in segments S1 and S2 in Figure

7(d), the high frequency information of s2(t) is hidden in the low frequency component s3(t). We then
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Fig. 5. Comparison of the results derived by our method and Deering and Kaiser’s method. (a) The input two component

FM signal: s1(t) and s2(t) in (b) and (c) respectively; (b) the signal s1(t) is 0.2 cos(22πt+ 6 sin(πt)); (c) the signal s2(t) is

cos(8πt); (d) the first IMF extracted by EMD from the input signal in (a). This IMF has a mode-mixing problem; (e) and (f)

the extracted signals derived by our algorithm and Deering and Kaiser’s method respectively; (g) and (h) the estimated masking

signals of our algorithm and Deering and Kaiser’s method respectively. Since Deering and Kaiser’s method can only construct

a pure sine wave mask, it cannot separate the signal well in the segments where the signal’s frequencies are not close to that

of the mask. Thus, in those segments, the desired component cannot be extracted by the masking signal. A close inspection

reveals that our masking signal’s frequency is not exactly the same as the frequency of s1(t), but it is very close. Hence, our

masking signal can extract the desired subcomponent.

apply our method to the IMF with the masking signal derived in Figure 7(e). The resulting IMF is shown

in Figure 7(f), which is the desired IMF ŝ2(t). The residual signal is ŝ3(t), shown in Figure 7(g). This

example demonstrates that the proposed method can successfully resolve the mode-mixing problem in

more than two AM-FM signals.
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Fig. 6. (a) A multicomponent AM-FM signal is comprised of three subcomponents: s1(t), s2(t), and s3(t) in (b), (c), and

(d) respectively; (b) the signal s1(t) is cos(18πt); (c) the signal s2(t) is (2 + cos(πt)) cos(12πt + 4 sin(π
2
t)); (d) the signal

s3(t) is 7.5(2 − cos(πt)) cos(6πt + 2 sin(π
2
t)); s1(t) has the highest frequency, s2(t) has the second highest, and s3(t) has

the lowest frequency.

Our real-life signal is the airline passenger data from [26]. The data has 144 points corresponding to

the 144 months in a 12-year period. The input data and its spectrum are shown in Figures 8 (a) and 8(b)

respectively. Since a real-life signal always contains noise, we use the ensemble EMD algorithm (EEMD),

which is more robust than EMD, to decompose a noisy signal. Figures 8(c),(e), (g), and (i) correspond to

the first, second, third, and fourth IMFs of the EEMD algorithm; Figure 8(k) is the residual. We observe

that the first and second IMFs have a mixture of extrema with different rates. Thus, we apply the proposed

method to the IMF in Figure 8(c) and derive our first IMF, as shown in Figure 8(d). After subtracting

that IMF from the input signal, we apply the EMD algorithm on the resulting signal and obtain another

IMF. We then apply our method to that IMF and obtain our second IMF, which is shown in Figure 8(f).

Our third and fourth IMFs and our residual signals are shown in Figure 8(h), (j) and (l) respectively.

The spectrograms of the Gabor transform on the IMFs in Figures 8(c) and (d) are shown in Figures

9(a) and 9(b) respectively. Because the first IMF derived by EEMD is not an AM-FM signal, shown in

Figure 8(c), our analysis of the AM-FM signals cannot be applied to the signal correctly. However, if

we compare the spectrograms of Figures 9(a) and 9(b), the pattern of our IMF, as shown in Figure 9(b),
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Fig. 7. (a) The first IMF extracted by EMD from the signal in Figure 6(a). Although the high frequency information other than

segments S1 to S5 is correctly extracted, the information is hidden in the segments; (b) our FM masking signal, derived from

(a); (c) our first extracted IMF, which is the desired IMF ŝ1(t); (d): the IMF of s(t)− ŝ1(t), where s(t) and ŝ1(t) are shown in

Figures 6(a) and 7(c) respectively. The mode-mixing phenomenon appears in segments S1 and S2; (e) our FM masking signal,

derived from (d); (f) our extracted IMF which is ŝ2(t), the desired IMF of s(t) − ŝ1(t); and (g) the residual signal, which is

ŝ3(t).

is more regular than that of the EEMD algorithm shown Figure 9(a). The spectrograms of the Gabor

transform for the second IMFs in Figures 8(e) and 8(f) are shown in Figures 9(c) and 9(d) respectively.

As shown in Figure 9(c), in the rectangle enclosed by the dashed lines, the IMF of the EEMD has more

than two distinctive frequencies in the interval between 70 and 120; while our IMF, shown in Figure 9(d)

only contains one dominant frequency.

November 25, 2011 DRAFT



21

20 40 60 80 100 120 140
0

0.5

1
(a)

−0.1

0

0.1
(c)

−0.1

0

0.1
(e)

−0.2

0

0.2
(g)

−0.1

0

0.1
(i)

20 40 60 80 100 120 140
0

0.5

1
(k)

0 0.1 0.2 0.3 0.4 0.5
0

20

40

(b)

−0.1

0

0.1
(d)

−0.1

0

0.1
(f)

−0.2

0

0.2
(h)

−0.1

0

0.1
(j)

20 40 60 80 100 120 140
0

0.5

1
(l)

Fig. 8. Analysis of the airline passenger data: (a) the input signal; (b) the input signal’s Fourier spectrum. (c),(e),(g),and (i)

are the first, second, third, and fourth IMFs derived by applying the EEMD algorithm to the input signal. The value of the

parameter σ in EEMD is 2.5 and the ensemble number is 1000, which means that we add 1000 realizations of Gaussian noise

sampled with a standard deviation σ to the input signal and then perform EMD on the resultant signal. (d),(f),(h),and (j) are the

first, second, third, and fourth IMFs derived by applying our method on the first two IMFs of the EMD method.

V. CONCLUDING REMARKS

We propose a new necessary condition on the IMF of EMD. In addition, we introduce an approximation

algorithm to estimate the envelope of an AM-FM signal. We demonstrate that the envelope does not
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Fig. 9. The spectrograms of the Gabor transform for IMFs; (a) the spectrogram of the first IMF derived by EEMD; (b)

the spectrogram of the first IMF, derived by our algorithm. The first IMF derived by EEMD is not an AM-FM signal; (c)

and (d) the spectrograms of the IMFs derived by the EEMD algorithm and our algorithm respectively. The frequency axis is

normalized between 0 and 0.5. Comparing the regions enclosed by the dashed lines, the IMF derived by EEMD is affected by

the mode-mixing phenomenon because (c) has two distinct frequencies in the corresponding interval from 70 to 120.

necessarily pass through the extrema of an IMF. Furthermore, based on the AM-FM signal model, we

generalize Deering and Kaiser’s approach to resolve the mode-mixing problem in the IMFs of AM-FM

signals. We evaluate our approach via simulations and an experiment on real-life signals. Our research

is a step towards gaining a clearer understanding of the envelope of the EMD method. Providing a clear

mathematical definition of the envelope is an important issue that warrants further study. Moreover, in

many real-life signals, the IMF of the EMD method cannot be modeled as a multicomponent AM-FM

signal. To extend our mode-mixing method to such signals is another issue that merits further study.
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APPENDIX

A. The convergence of Algorithm 1

We use the second order Taylor expansion of s(t
(k+1)
i ) in (11) to obtain

ψ(k+1)(t
(k+1)
i ) = s(t

(k)
i +∆t

(k)
i ) = s(t

(k)
i ) + s′(t

(k)
i )∆t

(k)
i + 0.5s′′(t

(k)
i )∆t

(k)
i

2
+ o(∆t

(k)
i

2
). (39)

Substituting ψ(k+1)(t
(k+1)
i ) in Equation (39) and ψ(k+1)(t

(k)
i ) in (13) into equation (12), we have

ψ(k+1)′(t
(k+1)
i ) = ψ(k)′(t

(k)
i ) + 0.5ψ(k)′′(t

(k)
i )∆t

(k)
i + o(∆t

(k)
i ). (40)

Then, from equations (40) and (10), we can obtain the offset ∆t
(k+1)
i :

∆t
(k+1)
i =

s′(t
(k+1)
i )− (ψ(k)′(t

(k)
i ) + 0.5ψ(k)′′(t

(k)
i )∆t

(k)
i + o(∆t

(k)
i ))

ψ(k+1)′′(t
(k+1)
i )− s′′(t

(k+1)
i )

. (41)

If we apply the first order Taylor expansion on s′(t(k+1)) in equation (41), then we have

∆t
(k+1)
i =

s′(t
(k)
i )− ψ(k)′(t

(k)
i ) +

(

s′′(t
(k)
i )− ψ(k)′′(t

(k)
i )

)

∆t
(k)
i

ψ(k+1)′′(t
(k+1)
i )− s′′(t

(k+1)
i )

+
0.5ψ(k)′′(t

(k)
i )∆t

(k)
i + o(∆t

(k)
i )

ψ(k+1)′′(t
(k+1)
i )− s′′(t

(k+1)
i )

.

(42)

Substituting ∆t
(k)
i in equation (10) into equation (42) and ignoring the high order term o(∆t

(k)
i ), we can

derive

∆t
(k+1)
i ≈

0.5ψ(k)′′(t
(k)
i )∆t

(k)
i

ψ(k+1)′′(t
(k+1)
i )− s′′(t

(k+1)
i )

= αk
i∆t

(k)
i . (43)

Since the point t
(k)
i is near the local maximum point of the signal when computing the upper envelope,

we can assume that s′′(t
(k+1)
i ) < 0. We can also assume that an envelope varies much more slowly than a

signal; therefore, |ψ(k)′′(t
(k)
i )| ≈ |ψ(k+1)′′(t

(k+1)
i )| < 2/3|s′′(t

(k+1)
i )|. If the two assumptions are verified,

then we have |αk
i | < 1.

Thus, we conclude that if there is some integer l such that s′′(t
(k+1)
i ) < 0 and |ψ(k)′′(t

(k)
i )| ≈

|ψ(k+1)′′(t
(k+1)
i )| < 2/3|s′′(t

(k+1)
i )| for all k ≥ l and for all i, then Algorithm 1 converges.

B. The sufficient condition to derive Equation (30)

Let us consider Equation (29) where

dS(t) = gS(t)− ĝS(t) = ãh(t) cos(ϕ̃h(t))−
√

(ϕ̃l(t)− ϕ̂(t))2ã2l (t) + ∆a2(t) sin(ϕ̂(t) + α(t)), (44)
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where ĝS(t) = â(t) cos(ϕ̂(t)), ∆a(t) = â(t) − ãl(t), and α(t) = arctan
(

∆a(t)

ãl(t)(φ̃l(t)−φ̂(t))

)

for t ∈ S.

Equation (44) can be re-written as

dS(t) = ãh(t) cos(ϕ̃
′
h(t)t+βh)+

√

(ϕ̃l(t)− ϕ̂(t))2ã2l (t) + ∆a2(t) cos((ϕ̂(t)+α(t))′t+3π/2+βl), (45)

where βl and βh are the phase values at t = 0. If we assume that there is a neighborhood of t, where ã(t),

ϕ̃′h(t),
√

(ϕ̃l(t)− ϕ̂(t))2ã2l (t) + ∆a2(t), and (ϕ̂(t) + α(t))′ are constants, then we can use the analysis

results in [12], as mentioned in Section IV-A, to approximate dS(t) as the sum of two sine waves in the

neighborhood of t. Let

a(t) =

√

(ϕ̃l(t)− ϕ̂(t))2ã2l (t) + ∆a2(t)/ãh(t) (46)

and

f(t) = (ϕ̂(t) + α(t))′/ϕ̃′h(t). (47)

If we use the following inequality:

√

(ϕ̃l(t)− ϕ̂(t))2ã2l (t) + ∆a2(t) <
∣

∣

∣
ϕ̃l(t)− ϕ̂(t)

∣

∣

∣
ãl(t) + |∆a(t)|, (48)

and assume that

∣

∣

∣
ϕ̃l(t)− ϕ̂(t)

∣

∣

∣
≈ 0, we obtain

a(t) <
(

|ϕ̃l(t)− ϕ̂(t)|ãl(t) + |∆a(t)|
)

/ãh(t) ≈ |∆a(t)|/ãh(t). (49)

The assumption,

∣

∣

∣ϕ̃l(t)− ϕ̂(t)
∣

∣

∣ ≈ 0, can also be used to derive that α(t) in (29) can be approximated as

π/2; therefore, α′(t) = 0. As discussed in Section IV-A, the extrema detected on gS(t) are very close to

the local maximum points of |ãl(t) cos(ϕ̃l(t))|. Thus, we have (ϕ̂(t) + α(t))′ ≈ ϕ̃′l(t) < ϕ̃′h(t), such that

f(t) = ϕ̃′l(t)/ϕ̃
′
h(t) < 1. (50)

Summarizing our discussion, if we have

∣

∣

∣
ϕ̃l(t)− ϕ̂(t)

∣

∣

∣
≈ 0 and

a(t)f(t) = (|∆a(t)|/ãh(t))(ϕ̃
′
l(t)/ϕ̃

′
h(t)) < 1, (51)

then, according to [12], the extrema of dS(t) are very close to the extrema of the high frequency

component, which is ãh(t) cos(ϕ̃h(t)). Thus, we can derive Equation (30).
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Algorithm 1 Upper Envelope Computation Algorithm

1: Let s(t) be the input signal and let the positions of all the local maxima be denoted as ti(i =

1, 2, · · · , N).

2: Set k ← 0, t
(k)
i ← ti, the maximum number of iterations K, the threshold ϵ, and initialize the

envelope ψ(k)(t) by using cubic spline interpolation on s(ti).

3: Let I = {i| i = 1, 2, · · · , N}.

4: repeat

5: for i ∈ I do

6: Compute the values of ∆t
(k)
i according to (10) using ψ(k)(t).

7: Set t
(k+1)
i ← (t

(k)
i +∆t

(k)
i ).

8: Compute the values of ψ(k+1)(t
(k+1)
i ) and ψ(k+1)′(t

(k+1)
i ) by (11) and (12) respectively.

9: end for

10: Interpolate the envelope ψ(k+1)(t) using the values of ψ(k+1)(t
(k+1)
i ) and ψ(k+1)′(t

(k+1)
i ) with

a piecewise Hermite polynomial interpolation method.

11: Set I = {i| |∆t
(k)
i | > ϵ}.

12: Set k ← k + 1.

13: until I = ∅ (|∆t
(k)
i | ≤ ϵ for all i) or k > K.

14: return The estimated envelope ψ(t) = ψ(k)(t).

Remarks. 1. In step 2, we use cubic spline interpolation rather than Hermit polynomial interpolation

because we only know the values of the extrema points at that point.

2. In the implementation of Step 9 of Algorithm 1, we do not need to interpolate the whole envelope

because, according to (10), the value of ∆t
(k)
i only depends on the first and second derivatives of the

signal and the envelope. Therefore, we only need to interpolate the values of points in the neighborhood of

tk+1
i . We also use a higher order piecewise Hermite interpolation method [22] to improve the smoothness

of the estimated envelope. More specifically, we define the kth order piecewise Hermite interpolation as

follows:

Pi−1(ti) = Pi(ti) = s(ti), P ′
i−1(ti) = P ′

i (ti) = s′(ti), (14)

P
(j)
i−1(ti) = P

(j)
i (ti), 2 ≤ j ≤ k, (15)

where Pi denotes the segment of the estimated envelope from ti to ti+1, and P
(j)
i (ti) denotes the jth

derivatives of Pi at ti.

3. The stopping criterion k > K is enforced because we cannot prove that the algorithm always stop

when I = ∅ is obtained. In Appendix A, we derive the conditions for the algorithm to converge with

I = ∅.November 25, 2011 DRAFT
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Algorithm 2 Recovering the desired IMF

1: Input signal s(t) = sh(t) + sl(t), perform EMD on s(t) to obtain the IMF g(t).

2: Let us assume that g(t) has a mode-mixing problem.

3: Estimate the signal ĝ(t) from g(t) and compute d(t) = g(t)− ĝ(t).

4: Derive d̂(t) from d(t) = dS(t)+dS̄(t) by setting |d(t)| = 0, where |d(t)| < ϵ, where ϵ is a parameter.

5: Set a sufficiently large λ value and obtain y(t) = g(t) + λd̂(t).

6: Perform EMD on y(t) to obtain the IMF m̃(t).

7: Normalize m̃(t) by dividing the envelope of m̃(t) to obtain the FM signal m̂(t).

8: Perform EMD on s+(t) = s(t)+γm̂(t) to obtain the IMF g+(t). We can obtain the IMF g−(t) from

s−(t) = s(t)− γm̂(t) in a similar manner.

9: return The desired IMF is z(t) = (g+(t) + g−(t))/2.

Remarks. 1. In Step 3, ĝ(t) = â(t) cos(ϕ̂(t)) is estimated as follows. We use Algorithm 1 to calculate the

tangential points {τi} of |g(t)|, and derive the envelope â(t); then, we perform cubic spline interpolation

on those tangential points by assuming that ϕ(τi) = iπ.

2. In Step 4, we choose a threshold ϵ and let d̂(t) = 0 when |d(t)| < ϵ at any t. Our analysis in Section

IV-A ensures that d̂(t) = dS(t) after Step 4.

3. In Step 7, we use Algorithm 1 to estimate the envelope of |m̃(t)| and denote it as ψm(t); and then

derive the normalized masking signal m̂(t) = m̃(t)/ψm(t).
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