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The electronic MEdical Records & GEnomics (eMERGE) network was established in 2007

by the National Human Genome Research Institute (NHGRI) of the National Institutes of

Health (NIH) in part to explore the utility of electronic medical records (EMRs) in genome

science. The initial focus was on discovery primarily using the genome-wide association

paradigm, but more recently, the network has begun evaluating mechanisms to implement

new genomic information coupled to clinical decision support into EMRs. Herein, we

describe this evolution including the development of the individual and merged eMERGE

genomic datasets, the contribution the network has made toward genomic discovery

and human health, and the steps taken toward the next generation genotype-phenotype

association studies and clinical implementation.
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INTRODUCTION

Revolutions in genotyping technology (Ragoussis, 2009) and

computational power coupled with the creation of public sci-

entific resources such as The Human Genome Project (2001;

Venter et al., 2001), The International HapMap Project (2003; The

International HapMap Consortium 2005), and most recently the

1000 Genomes Project (2012), have accelerated genomic discov-

ery, most commonly through genome-wide association studies

(GWAS). As of late March 2014, the National Human Genome

Research Institute (NHGRI) GWAS catalog listed 1201 publica-

tions with 3961 SNPs associated with approximately 571 human

diseases and traits at a significance threshold of 5.0 × 10−8

(Welter et al., 2014) (https://www.genome.gov/26525384)

The majority of genomic discoveries published to date have

been from case-control or cohort epidemiologic studies that

collected specific health-related data and DNA samples. These

traditional epidemiologic collections already exist and are primed

for genomic discovery studies (Willett et al., 2007), mak-

ing them ideal for large-scale GWAS. Also, although currently

under-utilized in genomic discovery, many of the cohorts have

collected exposure data that can be interrogated for gene-

environment interaction studies (Manolio et al., 2006; Thomas,

2010). However, a major disadvantage of accessing existing epi-

demiologic cohorts for genomic discoveries is limited represen-

tation of diverse racial/ethnic groups (Rosenberg et al., 2010) and

of children (Collins and Manolio, 2007). Also, the existing health-

related data can be limiting, especially for cohorts or case-controls

collections designed with very specific disease outcomes for study

such as cancers or cardiovascular disease. Finally, establishing and

maintaining an on-going cohort study can pose significant cost

burden (Rukovets, 2013).

The disadvantages of accessing existing case-control and

cohort studies coupled with the continued need for genotype-

phenotype data for genomic discoveries led to the consideration

of alternative study designs and data sources such as bioreposito-

ries linked to electronic medical records (EMRs). In addition for

the potential for large sample sizes of diverse groups, biobanks

linked to EMRs make possible the study of many different out-

comes and traits, many of which may not be routinely collected by

traditional epidemiologic cohorts. And, in this burgeoning era of

www.frontiersin.org June 2014 | Volume 5 | Article 184 | 1

http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/about
http://www.frontiersin.org/Genetics
http://www.frontiersin.org/journal/10.3389/fgene.2014.00184/abstract
http://community.frontiersin.org/people/u/124512
http://community.frontiersin.org/people/u/130461
http://community.frontiersin.org/people/u/120142
http://community.frontiersin.org/people/u/111492
http://community.frontiersin.org/people/u/76920
http://community.frontiersin.org/people/u/34715
http://community.frontiersin.org/people/u/140591
http://community.frontiersin.org/people/u/140814
http://community.frontiersin.org/people/u/41302
mailto:crawford@chgr.mc.vanderbilt.edu
mailto:crawford@chgr.mc.vanderbilt.edu
https://www.genome.gov/26525384
http://www.frontiersin.org
http://www.frontiersin.org/Applied_Genetic_Epidemiology/archive


Crawford et al. eMERGE Genomics Work Group review

precision or personalized medicine, biobanks in clinical settings

offer unprecedented opportunities to quickly translate research

findings to improvements in patient care.

In recognition of the potential for EMR-linked biobanks to

genomic discovery and personalized medicine, NHGRI estab-

lished the electronic MEdical Records & GEnomics (eMERGE)

network. The eMERGE network began in 2007 with a

Coordinating Center (Vanderbilt University) and five study

sites: Group Health/University of Washington, Marshfield Clinic,

Mayo Clinic, Northwestern University, and Vanderbilt University

(McCarty et al., 2011). The network expanded to include new

adult study sites (The Icahn School of Medicine at Mount

Sinai and Geisinger Health System) in 2011 as well as pedi-

atric study sites in 2012 (Children’s Hospital of Philadelphia

and Boston Children’s Hospital/Cincinnati Children’s Hospital

Medical Center) (Gottesman et al., 2013). The major goals of

eMERGE I (McCarty et al., 2011) have evolved with experience,

and the major activities of the Genomics Work Group of the

eMERGE II network are outlined in Figure 1. Here we review

from the perspective of the eMERGE Genomics Work Group

the contributions the network has made toward genomic dis-

covery since 2007. We also foreshadow the eMERGE network’s

contributions to the second generation of genotype-phenotype

associations as well as implementation of genomic medicine.

eMERGE GENOMIC RESOURCES

The first few years of the eMERGE network required data gener-

ation both at the phenotype and genotype levels (McCarty et al.,

2011; Gottesman et al., 2013). In the first phase of the eMERGE

network, each study site proposed an outcome or trait for pheno-

type algorithm development and selection of DNA samples for

genotyping. Since EMR data are generated for the purposes of

clinical care, a necessary step to identifying populations of interest

was to create and validate algorithms that queried data elements

from the EMR to find phenotypes of interest (Kho et al., 2011;

Newton et al., 2013). Typically, these algorithms involved Boolean

combinations of billing codes, medication exposures, laboratory,

and test results, and/or natural language processing. All algo-

rithms and their validation results in the eMERGE network are

available on PheKB (www.phekb.org).

After validation of phenotype algorithms by blinded review,

typically by physicians, matching case, and control samples

were genotyped. All DNA samples were genotyped using either

the Illumina 660-Quad (primarily for participants of European

ancestry) or the Illumina 1M (primarily for participants of

African ancestry) at either the Broad Institute Center for

Genotyping and Analysis or the Center for Inherited Disease

Research (CIDR). The eMERGE Coordinating Center established

a pipeline to process each study site’s data for quality control, data

cleaning, and eventual Database of Genotypes and Phenotypes

(dbGaP) (Mailman et al., 2007) documentation and deposition

(Turner et al., 2011a). The initial round of phenotyping and

genotyping resulted in the generation of GWAS-level data on

19,637 samples, of which 18,663 passed quality control metrics.

The phenotypes and samples sizes available from these eMERGE

phase I efforts included cataracts/HDL-C (2642 cases and 1322

controls; led by Marshfield Clinic), dementia (1241 cases and

2043 controls; led by Group Health Cooperative/University of

Washington), electrocardiographic traits (3034 individuals; led by

Vanderbilt University), peripheral artery disease (1641 cases and

1604; controls led by Mayo Clinic), and type 2 diabetes (2706

cases and 1496 controls; led by Northwestern University).

During phase I of the eMERGE network, high-density geno-

typing had matured such that many large cohorts and biorepos-

itories linked to EMRs had existing GWAS-level data. This

included expanded genotype datasets at some eMERGE I sites

and as such, no new high density genome-wide genotyping was

performed in eMERGE phase II. All existing and new study sites

in eMERGE II offered existing data on a variety of genotyp-

ing platforms and genetic ancestries. With the inclusion of the

eMERGE phase I data, a total of 60,766 (47,507 adult and 13,259

pediatric) samples with GWAS-level genotypes or other large-

scale data [such as Metabochip (Voight et al., 2012)] generated

by either Illumina or Affymetrix arrays are available for study in

eMERGE phase II. As detailed in a separate manuscript (Verma

et al., in press), pooling and merging of these data required impu-

tation and extensive quality control. The current eMERGE phase

II merged dataset (version 2) available for analysis includes 51,038

samples linked to EMRs imputed to >36 million SNPs using the

1000 Genomes Project cosmopolitan reference panel (n = 1092)

and IMPUTE2 (Verma et al., in press).

New to eMERGE phase II is the eMERGE-PGx project, which

involves the targeted sequencing of 84 pharmacogenes identified

by the Pharmacogenomics Research Network (PGRN) using DNA

capture and contemporary sequencing technologies (known as

PGRN-Seq) (Rasmussen-Torvik et al., in press). For this effort,

each eMERGE II study site is enrolling ∼1000 patients as a

pilot study of pharmacogenetic sequencing in clinical practice.

Enrollment and sequencing is on-going, and the anticipated

network-wide sample size is 9000. All variants annotated through

this effort will be available in summary data form via the eMERGE

on-line resource “Sequence, Phenotype, and pHarmacogenomics

INtegration eXchange” or “SPHINX” (www.emergesphinx.org).

The eMERGE-PGx project will help establish best practices for

implementing personalized medicine including exploring and

establishing guidelines for returning results to physicians and

patients (Kullo et al., 2014). These data will also contribute toward

the catalog of rare and less common variants and couple them to

EMR data which may increase their clinical utility.

eMERGE GENOMIC DISCOVERIES

It was recognized early in the phenotype and genotype data gen-

eration phase of eMERGE I that large sample sizes are needed

to have sufficient statistical power for genetic association stud-

ies. Indeed, initial GWAS of single eMERGE study site datasets

demonstrated that known genotype-phenotype associations such

as SCN10A and PR duration (Chambers et al., 2010; Holm et al.,

2010; Pfeufer et al., 2010) could be replicated albeit at a signif-

icance threshold above 5.0 × 10−8 (Denny et al., 2010b). While

this exercise of replication demonstrated that EMR-derived phe-

notypes could be used in genotype-phenotype studies, genomic

discovery of new associations would require larger sample sizes.

To achieve this goal, the eMERGE network employed several

strategies, including (1) pooled analysis across the network, (2)
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FIGURE 1 | Major activities of the Genomics Work Group of the eMERGE

network. Abbreviations: CHOP, Children’s Hospital of Philadelphia; CCHMC,

Cincinnati Children’s Hospital Medical Center; BCH, Boston Children’s

Hospital; GHC, Group Health Cooperative; UW, University of Washington;

PSU, Pennsylvania State University; QC, quality control; EMR, electronic

medical record; PheWAS, phenomewide association study; EWAS,

environment-wide association study; CNV, copy number variation; PGx,

pharmacogenomics.

meta-analysis within and with outside consortia, and (3) gen-

eration of new phenotype and genotype data for new studies.

In the first strategy, each eMERGE study site deployed not only

the phenotype used to select study subjects for the genotype-

phenotype association studies of the site’s primary phenotype,

but also the phenotype algorithms designed by other sites to

identify additional cases and controls with existing GWAS-level

genotyping for these secondary phenotypes, This strategy was

successful and identified >15,000 additional samples with exist-

ing GWAS-level data to be repurposed for other phenotypes.

This effort to share and deploy phenotype algorithms across

sites enabled network-wide genomic discoveries for a variety of

quantitative traits (Table 1) and facilitated data sharing for meta-

analysis efforts outside of the eMERGE network for complex

diseases such as late onset Alzheimer’s disease (Naj et al., 2011)

and electrocardiographic traits (Jeff et al., in press).

Implicit in the eMERGE data sharing strategy is the concept

that phenotype algorithms are portable across different study sites

with different EMRs software systems as well as different health

care practices and cultures (Kho et al., 2011). Also, it was assumed

that each study site could reuse data collected for a specific phe-

notype or trait to conduct studies for other unrelated phenotypes

without introducing substantial biases. For example, in the type

2 diabetes (T2D) association study, there was considerable het-

erogeneity in the proportion of type 2 diabetes cases at each site,

as well the odds ratio estimates for the index T2D SNP within

each site’s cohort, but when combined across the sites the odds

ratio was indistinguishable from those using larger purposely-

collected T2D case-control collections (Kho et al., 2012). These

data suggest that potential study heterogeneity was magnified or

measurable at the single study level but dampened at the larger

network-wide level of analysis.

To further test the boundaries of these assumptions and

early observations, eMERGE undertook a network-wide study of

hypothyroidism, a new phenotype not related to any of the study

site-specific phenotypes. The phenotype algorithm was developed

at the Vanderbilt University study site and deployed and evalu-

ated by all eMERGE study sites, like other eMERGE phenotypes.
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Table 1 | eMERGE and genomic discovery.

Phenotype Nearest gene Genetic effect P Study design Sample References

(rs number) size (Population) size

Alzheimer’s Disease, late

onset

BIN1

(rs7561528)

OR = 1.17

(95% CI: 1.13, 1.22)

4.2 ×10–14 Consortium

meta-analysis, replication

(EA)

8309 cases

7366 controls

Naj et al., 2011

CD2AP

(rs9349407)

OR = 1.11

(95% CI: 1.07, 1.15)

8.6 ×10–9 Consortium

meta-analysis, discovery

+ replication

(EA)

18,762 cases

29,827 controls

CD33

(rs3865444)

OR = 0.91

(95% CI: 0.88, 0.93)

1.6 ×10–9 Consortium

meta-analysis, discovery

+ replication

(EA)

18,762 cases

29,827 controls

CLU

(rs1532278)

OR = 0.89

(95% CI: 0.85, 0.93)

1.9 ×10–8 Consortium

joint-analysis, replication

(EA)

8309 cases

7366 controls

CR1

(rs6701713)

OR = 1.16

(95% CI: 1.11, 1.22)

4.6 ×10–10 Consortium

meta-analysis, replication

(EA)

8309 cases

7366 controls

EPHA1

(rs11767557)

OR = 0.90

(95% CI: 0.86, 0.93)

6.0 ×10–10 Consortium

meta-analysis, discovery

+ replication

(EA)

18,762 cases

35,597 controls

MS4A4A

(rs4938933)

OR = 0.88

(95% CI: 0.85, 0.92)

1.7 ×10–9 Consortium

meta-analysis, discovery

+ replication

(EA)

8309 cases

7366 controls

PICALM

(rs561655)

OR = 0.87

(95% CI: 0.84, 0.91)

7.0 ×10–11 Consortium

meta-analysis, replication

(EA)

8309 cases

7366 controls

Erythrocyte

sedimentation rate

C1orf63

(rs1043879)

β = −0.09 2 ×10–9 eMERGE joint analysis,

discovery + replication

(EA)

7607 individuals Kullo et al., 2011

CR1

(rs650877)

β = −0.18 3 ×10–26 eMERGE joint analysis,

discovery + replication

(EA)

7607 individuals

CRIL

(rs7527798)

β = 0.10 2 ×10–9 eMERGE joint analysis,

discovery + replication

(EA)

7607 individuals

TMEM50A

(rs25547372)

β = −0.10 2. × 10–13 eMERGE joint analysis,

discovery + replication

(EA)

7607 individuals

TMEM57

(rs25631242)

β = −0.10 1 ×10–12 eMERGE joint analysis,

discovery + replication

(EA)

7607 individuals

TMEM57

(rs25641524)

β = −0.10 5 ×10–13 eMERGE joint analysis,

discovery + replication

(EA)

7607 individuals

HDL-C CETP

(rs3764261)

β = 2.25

(SE = 0.21)

1.22 ×10–25 eMERGE analysis,

replication

(EA)

3740 individuals Turner et al., 2011b

LIPC

(rs11855284)

β = 2.00

(SE = 0.26)

3.92 ×10–14 eMERGE analysis,

replication

(EA)

3740 individuals

(Continued)
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Table 1 | Continued

Phenotype Nearest gene Genetic effect P Study design Sample References

(rs number) size (Population) size

Hypothyroidism FOXE1

(rs7850258)

OR = 0.74

(95% CI: 0.67, 0.82)

3.96 ×10–9 eMERGE joint analysis,

discovery

(EA)

1317 case

5053 controls

Denny et al., 2011

LDL-C APOE

(rs7412)

β = −20.0 mg/dl

(95% CI: −25.9,

−14.1)

6.3 ×10–11 eMERGE joint analysis,

discovery

(AA)

618 individuals Rasmussen-Torvik

et al., 2012

Monocyte count CCBP2

(rs2228467)

β = 0.32 2.39 ×10–8 eMERGE joint analysis,

discovery

(EA)

11,014

individuals

Crosslin et al., 2013

IRF8

(rs424971)

β = −0.25 6.32 ×10–18 eMERGE joint analysis,

discovery

(EA)

11,014

individuals

ITGA4

(rs2124440)

β = −0.22 1.35 ×10–14 eMERGE joint analysis,

replication

(EA)

11,014

individuals

RPN1

(rs2712381)

β = −0.22 4.52 ×10–14 eMERGE joint analysis,

replication

(EA)

11,014

individuals

PheWAS EXOC2

(rs12210050)

OR = 1.32

(95% CI: 1.20, 1.45)

1.9 ×10–8 eMERGE pooled

analysis, discovery for

actinic keratosis

(EA)

13,835

individuals

Denny et al., 2013

IRF4

(rs12203592)

OR = 1.69 (95% CI:

1.53, 1.86)

4.1 ×10–26 eMERGE pooled

analysis, discovery for

actinic keratosis

(EA)

13,835

individuals

IRF4

(rs12203592)

OR = 1.50

(95% CI: 1.36, 1.64)

3.8 ×10–17 eMERGE pooled

analysis, discovery for

non-melanoma skin

cancer

(EA)

13,835

individuals

NM37

(rs16861990)

OR = 3.71

(95% CI: 2.57, 5.34)

2.0 ×10–12 eMERGE pooled

analysis, discovery for

hypercoagulable state

(EA)

13,835

individuals

TYR

(rs1847134)

OR = 1.28

(95% CI: 1.18, 1.38)

2.6 ×10–10 eMERGE pooled

analysis, discovery for

non-melanoma skin

cancer

(EA)

13,835

individuals

Platelets ARHGEF3

(rs1354034)

β = −0.19 9.0 ×10–34 eMERGE pooled

analysis, discovery for

mean platelet volume

(EA)

6291 individuals Shameer et al., 2014

ARHGEF3

(rs1354034)

β = 7.97 6.0 ×10–24 eMERGE pooled

analysis, discovery for

platelet counts

(EA)

13,424

individuals

BET1L

(rs11602954)

β = −6.46 5.0 ×10–12 eMERGE pooled

analysis, discovery for

platelet counts

(EA)

13,424

individuals

(Continued)
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Table 1 | Continued

Phenotype Nearest gene Genetic effect P Study design Sample References

(rs number) size (Population) size

DNM3

(rs2180748)

β = 0.09 2.0 ×10–8 eMERGE pooled

analysis, discovery for

mean platelet volume

(EA)

6291 individuals

FLJ36031-

PIK3CG

(rs342240)

β = −0.15 5.0 ×10–22 eMERGE pooled

analysis, discovery for

mean platelet volume

(EA)

6291 individuals

HBS1L-MYB

(rs4895441)

β = −5.42 9.0 ×10–10 eMERGE pooled

analysis, discovery for

platelet counts

(EA)

13,424

individuals

JMJD1C

(rs4379723)

β = 0.13 3.0 ×10–16 eMERGE pooled

analysis, discovery for

mean platelet volume

(EA)

6291 individuals

NFE2

(rs10506328)

β = −0.09 2.0 ×10–9 eMERGE pooled

analysis, discovery for

mean platelet volume

(EA)

6291 individuals

RCL1

(rs423955)

β = 4.94 1.0 ×10–9 eMERGE pooled

analysis, discovery for

platelet counts

(EA)

13,424

individuals

SH2B3

(rs3184504)

β = −5.33 5.0 ×10–11 eMERGE pooled

analysis, discovery for

platelet counts

(EA)

13,424

individuals

TAOK1

(rs9900280)

β = 0.10 1.0 ×10–10 eMERGE pooled

analysis, discovery for

mean platelet volume

(EA)

6291 individuals

TMCC2

(rs9660992)

β = 0.11 3.0 ×10–13 eMERGE pooled

analysis, discovery for

mean platelet volume

(EA)

6291 individuals

WDR66

(rs7961894)

β = −0.31 6.0 ×10–38 eMERGE pooled

analysis, discovery for

mean platelet volume

(EA)

6291 individuals

QRS duration SCN5a

(rs1805126)

β = −1.0 1.45 ×10–8 eMERGE pooled

analysis, replication

(EA)

5272 individuals Ritchie et al., 2013

Red blood cell traits G6PD

(rs1050828)

β = −0.20

(SE = 0.03)

4.0 ×10–13 eMERGE pooled

analysis, discovery +

replication for RBC count

(AA)

2315 individuals Ding et al., 2013

G6PD

(rs1050828)

β = 2.46

(SE = 0.32)

1.0 ×10–14 eMERGE pooled

analysis, discovery +

replication for mean

corpuscular volume

(AA)

2315 individuals

(Continued)
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Table 1 | Continued

Phenotype Nearest gene Genetic effect P Study design Sample References

(rs number) size (Population) size

G6PD

(rs1050828)

β = 0.72

(SE = 0.12)

9.0 ×10–9 eMERGE pooled

analysis, discovery +

replication for mean

corpuscular hemoglobin

(AA)

2315 individuals

ITFG3

(rs9924561)

β = −3.57

(SE = 0.32)

5.0 ×10–29 eMERGE pooled

analysis, discovery +

replication for mean cell

volume

(AA)

2315 individuals

ITFG3

(rs9924561)

β = −1.56

(SE = 0.12)

8.0 ×10–36 eMERGE pooled

analysis, discovery +

replication for mean

corpuscular hemoglobin

(AA)

2315 individuals

ITFG3

(rs9924561)

β = −0.47

(SE = 0.06)

4.0 ×10–13 eMERGE pooled

analysis, discovery +

replication for mean

corpuscular hemoglobin

concentration

(AA)

2315 individuals

(rs7120391) β = 0.30

(SE = 0.05)

5.0 ×10–9 eMERGE pooled

analysis, discovery +

replication for mean

corpuscular hemoglobin

concentration

(AA)

2315 individuals

Red blood cell traits CDT1

(rs837763)

−0.06 2.0 ×10–8 eMERGE pooled

analysis, discovery +

replication for mean

corpuscular hemoglobin

concentration

(EA)

12,486

individuals

Ding et al., 2012

PTPLAD1/

C15orf44

(rs8035639)

0.13 8.0 ×10–9 eMERGE pooled

analysis, discovery +

replication for mean

corpuscular hemoglobin

(EA)

12,486

individuals

THRB

(rs9310736)

0.35 6.0 ×10–9 eMERGE pooled

analysis, discovery +

replication for mean

corpuscular volume

(EA)

12,486

individuals

(rs9937239) 0.06 2.0 ×10–8 eMERGE pooled

analysis, discovery +

replication for mean

corpuscular hemoglobin

concentration

(EA)

12,486

individuals

Type 2 diabetes TCF7L2

(rs7903146)

OR = 1.41 2.98 ×10–10 eMERGE meta-analysis,

replication

(EA)

2413 cases

2392 controls

Kho et al., 2012

(Continued)
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Table 1 | Continued

Phenotype Nearest gene Genetic effect P Study design Sample References

(rs number) size (Population) size

White blood cell count DARC

(rs12075)

β = 1.28

(SE = 0.12)

4.92 ×10–24 eMERGE joint analysis,

discovery

(AA)

361 individuals Crosslin et al., 2012

White blood cell count GSDMA

(rs3859192)

β = 0.14

(SE = 0.02)

1.75 ×10–12 eMERGE joint analysis,

discovery

(EA)

13,562

individuals

Crosslin et al., 2012

MED24

(rs9916158)

β = −0.13

(SE = 0.02)

4.92 ×10–10 eMERGE joint analysis,

discovery

(EA)

13,562

individuals

PSMD3

(rs4065321)

β = 0.14

(SE = 0.02)

3.47 ×10–11 eMERGE joint analysis,

discovery

(EA)

13,562

individuals

The eMERGE network has conducted or contributed data toward genome-wide association studies. For each study with genome-wide significant results

(p < 5 × 10−8), we list the primary phenotype, the nearest genes associated, the index rs number, the reported genetic effect size, the p-value, the study design,

the population, the sample size, and the reference. Abbreviations: AA, African American; EA, European American; β, beta; CI, confidence interval; OR, odds ratio;

SE, standard error.

Despite potential differences in billing and coding practices across

study sites, a total of 1317 cases and 5053 controls were identi-

fied with average weighted positive predictive values of 92.4 and

98.5, respectively (Denny et al., 2011). The subsequent GWAS

identified common genetic variants near FOXE1 associated with

European American cases, and the findings were replicated in an

independent dataset from the Mayo Genome Consortia as well

as externally in the literature (Eriksson et al., 2012). These stud-

ies illustrate that existing genotype data linked to EMR data can

be reused for other genomic discovery studies, a potentially cost-

effective strategy. However, further study is needed to determine

the extent of biases that were introduced in the generation of these

data that may impact the widespread adoption of this strategy

across a range of phenotypes available in the EMR.

As evident in the FOXE1/hypothyroidism example, existing

genotype data linked to EMR data enable the relatively rapid

identification of cases and controls for traditional GWAS where

one disease or trait is studied. These data have also enabled

the study of pleiotropy, whereby a genetic variant influences or

impacts multiple phenotypes or traits (Stearns, 2010; Solovieff

et al., 2013). In one popular approach, known as phenome-

wide association studies or PheWAS, a GWAS-identified variant

is interrogated for other associations throughout the available

phenome. PheWAS has been performed in both epidemiologic

(Pendergrass et al., 2013a) and EMR-based datasets such as

eMERGE (Denny et al., 2010a, 2013). Collectively, these and other

data (Sivakumaran et al., 2011) suggest that pleiotropy among

GWAS-identified variants is not uncommon. PheWAS con-

ducted in the EMR setting can reveal novel genotype-phenotype

pleiotropic relationships not possible in traditional epidemio-

logic cohorts. For example, a recent PheWAS in the eMERGE

participants of European ancestry revealed a potential associ-

ation between actinic keratosis and IRF4 rs12203592 (Denny

et al., 2013) (Table 1), a GWAS-identified variant previously

associated with hair color, eye color, and non-melanoma skin

cancer (Han et al., 2008; Eriksson et al., 2010; Zhang et al.,

2013).

Much like its contributions toward the study of pleiotropy,

the eMERGE network is beginning to make substantial contribu-

tions to understudied or burgeoning areas of interest in genomic

discovery such as the study of pediatric populations and diverse

racial/ethnic groups. Indeed, with the addition of the pediatric

study sites, eMERGE II boasts one of the largest collections of

pediatric DNA samples linked to EMRs for genomic discovery

(Gottesman et al., 2013). The current version (2) of the merged,

imputed eMERGE II dataset includes >12,000 pediatric samples

linked to EMRs. As of March 15, 2014, fewer than 5% of the

GWAS annotated by the NHGRI GWAS Catalog (Welter et al.,

2014) mention children as a study population, highlighting the

tremendous opportunity for genomic discovery in this cohort.

To calibrate the eMERGE II datasets, a site-specific investigation

was recently performed for body mass index (BMI) z-scores using

BMI extracted from the pediatric EMRs and calculated using

the Centers for Disease Control and Prevention (CDC) growth

charts (Namjou et al., 2013). Similar to epidemiologic datasets

(Frayling et al., 2007; Meyre et al., 2009; Scherag et al., 2010), this

EMR-based study demonstrated that adult GWAS-identified obe-

sity variants such as those in FTO were also relevant for children

of European-descent (Namjou et al., 2013). Genomic discovery

using GWAS in pediatric populations is currently underway in

eMERGE II for complex phenotypes such as autism and asthma.

In the past several years, most GWAS have included indi-

viduals of European ancestry (Rosenberg et al., 2010). Indeed,

only approximately 10% of the GWAS annotated in the NHGRI

GWAS Catalog include populations of African ancestry (https://

www.genome.gov/26525384). The eMERGE network is signifi-

cantly poised to contribute to GWA studies for populations of

non-European ancestry given that several study sites (notably

Northwestern University, Vanderbilt University, and The Icahn

School of Medicine at Mount Sinai) include participants of
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African ancestry. eMERGE I has already contributed genome-

wide associated variants (at a threshold of p < 10−5) in par-

ticipants of African ancestry to the NHGRI GWAS Catalog for

LDL-C (Rasmussen-Torvik et al., 2012), red blood cell traits

(Ding et al., 2013), white blood cell traits (Crosslin et al., 2012),

type 2 diabetes (Kho et al., 2012), and electrocardiographic traits

(Jeff et al., 2013). As an extension of GWAS, eMERGE investiga-

tors have also begun fine-mapping GWAS-identified regions to

identify the best index variant in African ancestry populations as

well as exploring alternative genomic discovery methods such as

admixture mapping to identify potentially novel or population-

specific associations (Jeff et al., 2014).

Beyond conventional GWAS, the eMERGE network has also

led efforts to identify genetic (G × G) and environmental (G × E)

modifiers of common, complex phenotypes. In an early example,

eMERGE investigators used extrinsic biological knowledge via the

Biofilter algorithm (Bush et al., 2009) to prioritize genetic vari-

ants for SNP-SNP modeling to identify gene-gene interactions

relevant for HDL-C (Turner et al., 2011b). The extrinsic biolog-

ical knowledge approach has also been recently implemented for

both G × G and G × E tests of association for cataracts, with the

latter including only environmental variables known to be asso-

ciated with the eye disease (Pendergrass et al., 2013b,c). Finally,

eMERGE investigators have implemented environmental-wide

association studies (EWAS) to identify and prioritize environ-

mental factors important for type 2 diabetes (Hall et al., 2014),

a relatively new approach to identify all possible environmental

variables that may be relevant for G × E studies for the disease of

interest.

eMERGE SECOND GENERATION GWAS

The majority of GWAS described to date for the eMERGE net-

work represent data and efforts from phase I of the network’s

existence. Phase II analyses of larger, more diverse sample sizes are

on-going (Gottesman et al., 2013). As documented and described

in an accompanying article (Verma et al., in press), eMERGE

II network datasets include single site datasets, a network-

wide merged genotyped dataset, single site imputed datasets,

and a network-wide merged imputed dataset; the merged set

includes >36 million SNPs for samples from >50,000 indi-

viduals linked to EMRs. Imputation of the X-chromosome is

underway, and future eMERGE II analyses will include this

chromosome. Network-wide efforts are also underway to anno-

tate copy number variants (Connolly et al., 2014) as well as

to annotate and identify potentially deleterious null variants.

Site-specific efforts are also underway to collect or extract addi-

tional standardized environmental data for GxE studies using

the PhenX Toolkit (Hamilton et al., 2011; McCarty et al.,

2014). Efforts are underway to develop analytical approaches

for repeated measures data characteristic of the EMR, to con-

duct mapping studies for populations with three-way admixture

events, and to incorporate phenotyping uncertainty when bal-

ancing sample size/power and misclassification (McDavid et al.,

2013). With >36 million SNPs, large sample sizes, and phe-

notypically dense EMRs, eMERGE II and beyond promises

to continue genomic discovery in the second generation of

GWAS.
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