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ABSTRACT. We will show that there is a strong form of emergence in cell biology.
Beginning with C.D. Broad’s classic discussion of emergence, we distinguish two condi-
tions sufficient for emergence. Emergence in biology must be compatible with the thought
that all explanations of systemic properties are mechanistic explanations and with their
sufficiency. Explanations of systemic properties are always in terms of the properties of
the parts within the system. Nonetheless, systemic properties can still be emergent. If the
properties of the components within the system cannot be predicted, even in principle,
from the behavior of the system’s parts within simpler wholes then there also will be
systemic properties which cannot be predicted, even in principle, on basis of the behavior
of these parts. We show in an explicit case study drawn from molecular cell physiology
that biochemical networks display this kind of emergence, even though they deploy only
mechanistic explanations. This illustrates emergence and its place in nature.

1. INTRODUCTION

We will show that there is a strong form of emergence in cell biology.
Emergent properties have long been discussed in philosophy and in the sci-
ences (Beckermann et al. 1992; Stephan 1999). The philosophical debate
is largely inspired by metaphysical concerns. Metaphysical conceptions
of emergence have metaphysical goals. So understood, the problem is the
nature of the mental, or the nature of life, and whether they differ from
the physical. The key questions are whether mind can be reduced to body
and whether life can be mechanically explained. If some phenomenon
is emergent, in the metaphysical sense, then it is somehow fundamental
and irreducible. It is fundamentally different from the physical basis on
which it nonetheless depends. So, for example, Kim (1999, 4) says the
key idea from emergentism is supposed to be that complex systems exhibit
irreducibly novel properties, and that these novel properties are neither
predictable nor explainable in terms of the properties of their constituents.
The goal of emergentist theories is to find an approach that avoids both
the Scylla of vitalism (or dualism) and the Charybdis of reductionism (or
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materialism). Metaphysical emergence then faces a dilemma that Kim art-
fully exploits. Metaphysical emergentists embrace physicalism, insisting
that all parts are physical constituents. They likewise insist that at least
some macrofeatures could not be explained or deduced as complex mi-
crofeatures (Kim 1999, 10). Kim argues, essentially, that emergentism is
an unstable position; that is, they face a dilemma. If they are consistently
physicalist than they are committed to reductionism (or materialism); al-
ternately, if they avoid reductionism then they are committed to vitalism
(or dualism). So long as properties can be “functionalized”, Kim claims
they are reducible. He illustrates the point with chemical and biological
properties:

Consider the transparency of water: so it would seem that once this property has been
functionally understood, as the capacity of a substance to transmit light beams intact, there
should be no principled obstacle to formulating a microphysical explanation of why H2O
molecules have this power. The same strategy should allow microphysical explanations and
predictions of biological phenomena as well, for it seems that many biological properties
seem construable as second-order functional properties over physical-chemical properties.
(Kim 1998, 100–101)

The same holds true for mental properties: if they are functionalizable they
are reducible, and therefore not emergent. The only residual properties
which elude reduction include the qualitative characters of our phenome-
nal experiences, and they elude reduction only because they have intrinsic
properties that elude any functionalization.

Metaphysical emergence, in this a priori sense, has no place in the
natural sciences. Emergent properties defy any naturalistic explanation.
Emergence is therefore regarded as suspect in those sciences. Any ap-
peal to emergent phenomena is seen as a sign of intellectual weakness.
For emergence to have any positive role to play in a scientific setting, it
must be understood differently. It must be compatible with the thought that
scientific explanations are mechanistic explanations (Bechtel and Richard-
son 1993; Craver 2001; Craver et al. 2001; Darden and Craver 2002;
Machamer et al. 2000; Glennan 2002). Ideally, emergence would be a
natural consequence of physical processes. Finally, emergence should not
be merely an epistemic notion, as Ernest Nagel thought it would be:

It is clear. . . that to say of a given property that it is an ‘emergent’ is to attribute to it a char-
acter which the property may possess relative to one theory or body of assumptions but may
not possess relative to some other theory. Accordingly, the doctrine of emergence . . . must
be understood as stating certain logical facts about formal relations between statements
rather than any experimental or even ‘metaphysical’ facts about some allegedly ‘inherent’
traits of properties of objects. (Nagel 1961, 369)

Nagel thought that ‘emergence’ would disappear with improved theories.
According to Nagel even if some phenomenon cannot be explained or
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predicted by a theory at a time this does not constitute a metaphysical
fact. An improved theory at a later time might be capable of explaining the
phenomenon. Nevertheless, some complex phenomena seem to be emer-
gent, even from a thoroughly mechanistic point of view. For instance,
complex systems that comprise nonlinearly-interacting components can
exhibit qualitatively new behavior relative to the behavior of their parts
(Westerhoff 2000). These systems are often described as emergent.

We seek an account of emergence that is not merely epistemological
and yet does not suffer from the problems of a priori metaphysics.1 We
explore emergence and its place in nature. There are already scientists and
philosophers who embrace naturalistic forms of emergence. For example,
Ernst Mayr describes emergence this way:

Systems almost always have the peculiarity that the characteristics of the whole cannot
(even in theory) be deduced from the most complete knowledge of the components, taken
separately or in other partial combinations. This appearance of new characteristics in
wholes has been designated as emergence. (Mayr 1982, 63)

The quote reflects the ideas of one of the classics of British emergentism,
C.D. Broad, who in 1919 offered a notion of emergence that captures
all that is useful for the natural sciences. He did not base his notion of
emergence merely on the abstract relationship between systemic behavior
and the behavior the components exhibit within the system, as metaphysi-
cians would have it; instead, he also based it on the contrast between the
behavior the components show within the entire system and the behavior
they show in isolation or in other (simpler) systems. Mayr and Broad both
think of systemic properties as emergent if they cannot be deduced, even in
principle, from the behavior the system’s components show within simpler
wholes.

We will present an explicit example from cell biology that displays
emergence in the sense articulated by Broad and Mayr. In Section 2, we
distinguish two conditions for emergence in the work of C.D. Broad. One
is closer to the metaphysical problem. The other is more useful in natural
science. It gives emergence its place in nature. In Sections 3, 4, and 5
we show that biochemical networks display this kind of emergence. Mi-
croorganisms essentially are large biochemical networks. They exhibit a
variety of systemic properties, such as homeostasis, regulation, plasticity,
and adaptation, that appear to transcend the physical properties of their
constituent parts, including enzymes, individual pathways, organelles, and
other systems smaller than the cell. It seems that it is here where life
emerges from its inanimate constituent matter. Nonetheless, every phe-
nomenon in the cell is mechanistically explainable. Emergent phenomena
are mechanical effects.
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2. BROAD’S EMERGENCE

Broad distinguishes between emergent and mechanistic theories in The
Mind and its Place in Nature:

Put in abstract terms the emergent theory asserts that there are certain wholes, composed
(say) of constituents A, B, and C in a relation R to each other; that all wholes composed
of constituents of the same kind as A, B, and C in relations of the same kind as R have
certain characteristic properties; that A, B, and C are capable of occurring in other kinds
of complex where the relation is not the same kind as R; and that the characteristic prop-
erties of the whole R(A, B, C) cannot, even in theory, be deduced from the most complete
knowledge of the properties of A, B, and C in isolation or in other wholes which are not of
the form R(A, B, C). The mechanistic theory rejects the last clause of this assertion. (Broad
1925, 61)

According to Broad systemic properties are nomologically dependent on
the micro-structure of the system: the behavior of wholes depends on
the behavior of their parts and their relations to one another. A systemic
property, as Broad uses the term here, is emergent if the property can-
not be “deduced from” a “complete knowledge” of the arrangement of
the system’s parts and the properties they have ‘in isolation’ or in other
systems.2

It is important in this context to distinguish between strong and weak
emergence. The weaker version of emergentism pervades “emergentist”
theorizing in various scientific approaches, e.g., connectionism, artificial
life, and theories of self-organization. Its three basic features – the thesis
of physical monism, the thesis of organizational (or collective) properties,
and the thesis of synchronic determinism – are compatible with mecha-
nistic approaches without further ado. Physical monism is a metaphysical
thesis about the nature of systems that have emergent properties. It says
that the properties, dispositions, behaviors, and structures which are clas-
sified as emergent are instantiated by systems consisting exclusively of
physical entities. The thesis denies that there are any supernatural com-
ponents. In a biological setting, this precludes vitalism. Organizational
properties are the candidates for emergent properties. These are properties
that none of the systems’ parts have.3 Synchronic determination specifies
the type of relationship that holds between a system’s micro-structure and
its systemic properties: there is synchronic determination if all of a sys-
tem’s properties and dispositions depend only on its micro-structure, that
is to say, on its parts’ properties and their arrangement. There can be no
difference in the systemic properties without there being some differences
in the properties of the system’s parts or in their arrangement (Broad 1925,
61). In recent debates, the thesis of synchronic determination is sometimes
stated in a weaker version as the thesis of mereological supervenience,
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which claims that intrinsic system properties supervene on the properties
of the parts and their arrangement. Again, there can be no difference in
the systemic properties without some difference in the parts’ properties or
their arrangement. Mereological supervenience, however, is weaker than
synchronic determination, as we use it, since it does not claim the depen-
dence of the system’s properties on its micro-structure. It only claims their
covariance.

Weak emergentism is too weak. All organizational properties turn out
to be emergent. And there are many. This shows that the notion of weak
emergence is too weak to be useful. We are interested in strong emergence.
The central question then is, in Broad’s terms, whether there are properties
of systems which cannot be “deduced” from the behavior of parts, together
with a “complete knowledge” of the arrangement of the system’s parts and
the properties they have in isolation or in other simpler systems. Properties
that are not deducible in this way we call strongly emergent properties.

There are two independent conditions for emergence, not distinguished
at this point by Broad, which we think of as “vertical” and “horizontal”
(see Figure 1). A systemic property PR of R(A, B, C) is emergent if either
of these conditions is fulfilled. The first is the vertical condition: A sys-
temic property is emergent if it is not mechanistically explainable, even
in principle, from the properties of the parts, their relationships within the
entire system, the relevant laws of nature and composition principles.4 The
micro-structural base in this condition (together with the laws and prin-
ciples) will not be sufficient to “deduce” the systemic properties. Broad
assumes that supervenience of macroscopic properties on their subvenient
bases is always fulfilled. What is at issue is whether there is a mechanistic
explanation for PR given the behavior of A, B, and C in R(A, B, C). The
second is the horizontal condition: A systemic property is emergent in this
sense if the properties of the parts within the system cannot be deduced
from their properties in isolation or in other wholes, even in principle. The
properties of, say, part A in the context of system R(A, B, C) would be
emergent in this sense if they were not deducible from the properties of A,
B, and C in isolation or in other systems.

Broad does not explicitly distinguish the horizontal and vertical con-
ditions for emergence; nonetheless, if either is fulfilled, then the behavior
of the system’s parts A, B and C in isolation or in other contexts is not
sufficient to determine the systemic properties PR. Since the two conditions
are independent, there are two different possibilities for the occurrence of
emergent properties: (a) a systemic property PR of a system S is emergent
if it does not follow, even in principle, from the properties of the parts
within S that S has property PR; and (b) a systemic property PR of a system
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Figure 1. This is a graphic illustration of the two conditions for emergence. A, B, and
C are the parts making up the system. S1(A,B), S2(A,C), and S3(B,C) are simpler, binary,
wholes including these parts. R1(A,B,D) is a system with the same number of parts, and
T1(A,C,D,F) is a system with more parts than R(A, B, C). PR is a systemic property. The
diagonal arrow represents Broad’s idea of emergence. The horizontal and vertical arrows
capture the two conditions implicit in Broad.

S is emergent, if it does not follow, even in principle, from the properties
of the parts in constellations different from S how they will behave in S.
These two conditions are captured in Figure 1.

Broad is not wholly unambiguous what kind of “other wholes” we
should be allowed to refer to when trying to deduce the parts’ behavior
within R(A, B, C). The key question is how rich the base for deduction is.
We’ll come back to this point later. The diagonal arrow in figure 1 depicts
Broad’s idea that a systemic property is emergent if it is not “deducible”
from the properties parts exhibit in isolation or in other wholes (e.g., in S1,
S2, S3, R1, R2, R3, T1, T2, T3, . . . ). So Broad says, two pages earlier, that
there is emergence provided

. . . the characteristic behaviour of the whole could not, even in theory, be deduced from the
most complete knowledge of the behaviour of its components, taken separately or in other
combinations, and of their proportions and arrangements in this whole. (Broad 1925, 59)

Once again, this fails to distinguish the two conditions for emergence.
There are two reasons systemic properties might fail to be “deduced”
from the properties of the parts. Fulfilling the vertical conditions means
there would be a failure of mechanistic explanation. The properties (and
behaviors) of the system would then be inexplicable in terms of the prop-
erties (and behaviors) of the parts as they function in the system. Fulfilling
the horizontal condition means the properties (and behaviors) of the parts
within the whole cannot be predicted from their properties (and behaviors)
in other systems. In either case the systemic properties will be emergent.5

Let us look at and comment on the two conditions in more detail now.
Broad is cautious over the question whether the characteristic properties of
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chemical compounds and viable organisms are emergent. These properties
would be emergent if the behavior of the parts in the system were not
predictable from the behavior of the parts in isolation or in other wholes
together with their arrangement in the whole. He does claim that secondary
qualities and phenomenal qualities are emergent, because they are neither
adequately characterizable in qualitatively different macroscopic terms nor
by the microscopic behavior of the system’s parts when embedded in the
entire system, even in principle. They fail to be what Kim would call
a “functionalizable” property. That a certain object is red or a chemical
substance has the smell of ammonia does not mean that the corresponding
parts in the system behave or move in a certain way. If being red is emer-
gent, then redness cannot be identified with any more fundamental physical
properties such as reflectances; neither can it be characterized in structural
terms, though some particular shade of red might be characterizable by
comparison with other shades of red or other colors.

Similarly, Broad distinguishes between (behaviorally) analyzable and
unanalyzable properties by pointing to the characteristics of being alive
and having a mind, respectively (Broad 1925, 612–614, 621–623). If sec-
ondary and phenomenal qualities are not analyzable, even in principle, then
there is no prospect that an increase of scientific knowledge will close
the gap between physical processes and secondary qualities or between
physiological processes and phenomenal states of consciousness (qualia),
respectively.6 If a property is unanalyzable then the vertical condition is
met: no mechanistic explanation of the property PR in terms of the behavior
of the parts in the system is possible. Notice that the appeal here is to the
behavior of the parts within the system: emergence would entail that even
a complete knowledge of how the parts function within the system must be
insufficient to explain systemic behavior. It is this vertical condition many
philosophers of mind are mainly interested in: the issue is whether, given
complete knowledge about the neural base (or correlates) of our mental
states, we can mechanistically explain the latter.

Systemic properties also will be emergent if the behavior of the parts
in the system could not be predicted from their behavior in isolation or
in other constellations. This is the horizontal condition. Broad thinks that
such examples of emergent behavior might occur in chemical compounds
and also in organisms. The parts of a genuinely novel structure, such as
chemical compounds within an organism, might behave in a way that is not
deducible from the behavior of the parts in other (non-organic) structures.
If the behavior of any part within the system is, in principle, unpredictable
on the basis of their behavior in isolation or in other wholes, then all prop-
erties that depend nomologically on the behavior of the parts in the system
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are emergent. This leaves it open whether these “other wholes” include
only other naturally occurring systems or any other possible systems.

Broad (1919) discusses what we here call “the horizontal condition”
in his earlier article “Mechanical explanation and its alternatives” (1919).
The passage differs importantly from those in The Mind and its Place in
Nature. It is only in this earlier article that he focuses explicitly on this
type of case:

Let A, B, C be compounds in the chemical sense, i.e. first order groups. Let X be a second
order group consisting of A, B, and C in certain definite proportions and positions, and with
a definite structure in space. Let the atoms in A be α1 . . . αp, those in B be β1 . . . βq, those
in C be γ1 . . . γr. Let us call the structures of A, B, and C, σA, σB, and σC, respectively,
and the state of their surroundings SA, SB, and SC, respectively. Then presumably the
chemical behaviour of A is fA(α1 . . . αp, σA, SA), that of B is fB(β1 . . . βq, σB, SB), and
that of C is fC(γ1 . . . γr, σC, SC). What we know from ordinary chemistry is that over a very
wide range of variation a change in the variables SA, SB, SC, is irrelevant. Naturally, we
never know that all possible changes in them are irrelevant. Now take the behaviour of the
second order complex X. In the first place, we can write this as fX(A, B, C, σX, SX) Here
σX, refers to the structure of the second order complex in terms of the first order complexes
taken as elements, and by SX to the surroundings of the complex X taken as a whole. Now
let us consider, e.g., the behaviour of A in this complex. B and C, with their structures and
components, σX, the structure of the complex, and SX, the surroundings of the complex,
will now all be lumped together as SA, the surroundings of A in the function fA(α1 . . . αp,
σA, SA), which expresses A’s chemical behaviour. Now all that we know from chemistry is
that the value of the latter function is unaltered or alters in certain known ways over a wide
range of variation of SA; we do not know that it will remain unaltered or will alter in any
of these ways if SA be varied beyond these limits. Now in some second order complexes,
such as living organisms, SA will be very different from any of the surroundings which
have been tried in ordinary chemistry, and it will not, therefore, be surprising if A should
exhibit new and unexpected properties. (Broad 1919, 113 f.)

This quote is the precursor of the “classical” passage from his book we
quoted above.7 However, the abstract “case study” in the present article
is far more complex and is better suited to cover real cases we encounter,
e.g., in cell physiology, or in biology in general. Whereas Broad here ac-
knowledges that we might encounter “new” and “unexpected” properties
when considering a “biological environment” SA of some compound A
instead of its purely “chemical environments”, he would address this issue
as a possible candidate of non-deducibility in his later publication, even in
the pure chemical case. For instance, in The Mind and its Place in Nature
Broad says that,

so far as we know at present, the characteristic behaviour of Common Salt cannot be
deduced from the most complete knowledge of the properties of Sodium in isolation; or of
Chlorine in isolation; or of other compounds of Sodium, such as Sodium Sulphate, and of
other compounds of Chlorine, such as Silver Chloride. (Broad 1925, 59)
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Notice that, here, Broad allows us to use our knowledge of the behavior
of Sodium and Chlorine in structures that are as complex as the compound
whose behavior we wish to explain. So in explaining the behavior of salt,
we are allowed to appeal not only to the properties of Sodium and Chlo-
ride in isolation, but also to their behavior in compounds such as Silver
Chloride (AgCl) or Sodium Sulphate (Na2SO4). In contrast, in his abstract
model he refers to a hierarchy of complexity in the structures of, e.g.,
biological and chemical systems.

However, in his book, even on the same page, Broad is ambiguous
concerning the resources we can use in explaining a system’s behavior.
Thus, he acknowledges that “the characteristic behaviour of the whole”
may be “deduced from a sufficient knowledge of how the components
behave in isolation or in other wholes of a simpler kind” (Broad 1925,
59; our emphasis). These are what he calls “mechanistic theories”. In the
same vein, he refers to “laws of composition” which have “manifested
itself [themselves] in lower orders” (Broad 1925, 78; our emphasis) when
distinguishing “reducible characteristics” from the “ultimate” ones.

It is important to be careful concerning the extent of the explanatory
resources that are allowed for explaining the behavior of parts within a
system. We might deduce or explain the behavior of the parts in the system
on the basis of systems of greater, equal or less complexity. That is, we
might be allowed to consider the behavior of the parts in

(i) other systems without any restrictions, including even systems which
are more complex (e.g., allow to refer to T2(A,C,D,F) to explain A’s
behavior within R(A, B, C)),

(ii) other systems which may at most have the same degree of complexity
(e.g., allow to refer to T1(A,B,D) to explain A’s behavior within R(A,
B, C)), or

(iii) systems of a simpler kind only (e.g., allow to refer only to the parts A,
B, and C in isolation, and to S1(A,B), S2(A,C), S3(B,C) to explain A’s
behavior within R(A, B, C)).8

Broad does not think we can deduce the behavior of chemical complexes
on the basis of the behavior of parts even when we allow for systems of
the same or greater complexity.9 Thus, he says this about water:

Oxygen has certain properties and Hydrogen has certain other properties. They combine
to form water, and the proportions in which they do this are fixed. Nothing that we know
about Oxygen by itself or in its combinations with anything but Hydrogen would give us
the least reason to suppose that it would combine with Hydrogen at all. Nothing that we
know about Hydrogen by itself or in its combinations with anything but Oxygen would give
us the least reason to expect that it would combine with Oxygen at all. . . . Here we have a
clear instance of a case where, so far as we can tell, the properties of a whole composed of



140 F. C. BOOGERD ET AL.

two constituents could not have been predicted from a knowledge of the properties of these
constituents taken separately, or from this combined with a knowledge of the properties of
other wholes which contain these constituents. (Broad 1925, 62–63)

But Broad is not at all sure about the existence of emergent properties
and behaviors of the components of systems typically studied by the nat-
ural sciences, as witnessed by the following citation where he turned it
into an epistemological problem:10 “Within the physical realm it always
remains logically possible that the appearance of emergent laws is due to
our imperfect knowledge of microscopic structure or to our mathemati-
cal incompetence” (Broad 1925, 81). He also hinted at the fact that the
final proof for the existence of emergent properties due to the horizontal
condition should always come from the empirical sciences: “It is not my
business as a philosopher to consider detailed empirical arguments for or
against mechanism [reductionism] or emergence in chemistry or biology”
(Broad 1925, 81). The horizontal condition is of particular interest for nat-
ural science. In subsequent sections, we will illustrate emergence in cell
biological systems, which are both functionalizable and mechanistically
explainable.11 Their properties are describable in terms of the properties
and behaviors of their realizers. There is no failure of analyzability in these
biological systems. There is emergence nonetheless: knowing the prop-
erties the parts exhibit “in isolation” or “in other systems” is sometimes
insufficient to predict the properties and behavior they exhibit in this very
system. This is the point illustrated by Broad’s (1919) article. Being more
precise on these matters opens the general debate on emergentism.

In order to see how we can get emergence, the question is whether we can
predict the behavior of parts within a system from more limited resources. If
we cannot predict the behavior of parts within a system, then we cannot pre-
dict system behavior either. Whether we can in turn predict the behavior of
parts depends on the resources available. Assume we know the relevant laws
of nature, we know what the structure of the system is, and we know what
the constituents of the system are. Ultimately, we want to predict system
behavior, and for that we need to predict the properties and the behavior the
parts exhibit within it. The resources we have may be more or less inclusive.
Here are four possibilities. If we are to explain the behavior (or properties)
of a system S, or the behavior of the parts within S, this could be based on

(a) the behavior of the parts within systems including some which are
more complex,

(b) the behavior of the parts within systems as complex but not more
complex,

(c) the behavior of the parts only within less complex systems, or
(d) the behavior of the parts in isolation alone.
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Only (c) is an interesting condition for emergence since condition (d)
trivializes it and conditions (a) and (b) trivialize non-emergence. Let us
begin with (d). The fact that the behavior of S cannot be explained in
terms of the behavior of its parts in isolation alone is not sufficient for
any interesting sense of emergence. We in general cannot predict even the
“ordinally neutral properties” of the system containing these parts based on
the properties of the parts in isolation. Relatively simple properties, such as
the weight of a pile of sand can be predicted from the weight of its grains
only if we know weight is additive. In other cases, such as temperature, we
cannot add the temperatures of subsystems in order to predict the system
temperature. So, under (d), even non-organizational properties would be
emergent. If this were emergence, then everything would be emergent.12

Let us turn to (a) and (b). Remember the issue is whether S displays
emergent properties or behaviors. Using more complex systems always
guarantees that S’s behavior can be explained. If you begin with a complete
explanation of the behavior of a containing system in terms of its compo-
nents then you already have a complete explanation of the behavior of S
and its components since S is a part of the containing system. This would
make emergence impossible by fiat. If we begin with a complete expla-
nation of similarly complex systems, then some of those explanations will
refer to systems that are nearly identical to S. In those systems the behavior
of the components will be similar to the behavior of the components in S.
If these systems are similar to S then they are sufficient to explain the
behavior of S. This trivializes the non-emergent character of the behavior
of S.

The key case for understanding emergence must therefore be (c), in
which we attempt to explain the behavior of S or its parts on the basis of
systems which are less complex than S. In short, the question is whether
the behavior of S is ever emergent relative to these simpler systems or their
parts in isolation.

Notice this does not make emergence epistemological. Excluding cases
(a) and (b) does not limit our knowledge. We could have complete knowl-
edge of the behavior of more complex systems or systems of equal
complexity. We do not use it because it would trivialize the question
whether there is emergence.

Among less complex systems included under (c) are naturally occurring
systems; e.g., bacteria are typically simpler organisms than are eukaryotes.
Some of these simpler systems are not natural systems. Laboratory manip-
ulations allow us to create systems which are very different from natural
ones and nonetheless still informative; e.g., knockout mutants. Some could
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exist only under artificial conditions. We can explore the behavior of sys-
tems we cannot even produce in laboratory settings; e.g., reconstructed
systems in silico. The point is that the range of systems that are “simpler”
is very broad. However, there is one limitation. Consider experiments or
dynamic models in which the boundary conditions of a part within a sys-
tem are mimicked without reproducing the entire system. Prima facie the
resulting systems are “simpler” wholes. Nevertheless, if we replicate the
conditions of the original system relevant to the part, then we use informa-
tion from the original system in order to construct the boundary conditions
of the part in the “simpler system”. That is to say, we use knowledge from
the original system which, of course, is not a “simpler whole”. We then
presuppose already what we want to predict. This would render it a case
like (a) or (b).

In the sections to follow, we will show that physiological properties
can be fully accounted for in terms of system properties of biochemi-
cal networks and that this can be experimentally tested through precise
modeling of biochemistry. These biochemical networks exhibit organiza-
tional properties, ones not manifested at the level of the parts, but which
result from the interactions among the parts. Consequently, they should
be explained in terms of component properties, which depend both on
the properties of the parts and on the state of the entire system. Although
the organizational properties we encounter in biochemistry will always be
vertically reducible, there are some cases of non-deducibility if we restrict
the deduction base appropriately. Thus, we are able to present cases of
emergence from a horizontal perspective.

These are neither what the a priori metaphysicians were looking for nor
are they purely epistemological. These are the conditions we laid down in
Section 1 for understanding emergence and its place in nature.

3. COMPLEX SYSTEMS IN CELL BIOLOGY

The complex systems studied by the biosciences are semi-open or
“metabolic” systems (Westerhoff and van Dam 1987). They are open in-
sofar as they allow free exchange of some chemical and heat with the
environment; however, exchange of other substances is limited because
they have a boundary (a membrane) separating them from their environ-
ment. They are systems that selectively interact with their environment by
way of mass and energy (heat and work) exchange. The mass exchange is
selective. Only certain chemical compounds and ions can enter or exit the
cell. The exchange is often active. It is coupled to a chemical reaction that
dissipates free energy. As long as such systems are driven by an external
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free energy source, they will display what is known as nonequilibrium
behavior. Unless the system is at a steady state they will also show net
changes in their macroscopic state and properties,13 for instance, in net
mass flow, growth or heat generation. The free energy source represents
the Gibbs free energy potential14 of imported chemicals or photons for
systems at constant pressure and temperature.

The Gibbs free energy potential is the amount of energy available to do
‘useful’ work, for instance, the interconversion of chemical compounds,
locomotion (e.g., chemotaxis), or the synthesis of complicated building
blocks (fats, polysaccharides, proteins, RNA, DNA). By consuming the
external Gibbs free energy potential the system can increase its own free
energy and even order itself (decrease its own entropy). The free energy
consuming processes pose an important demand on the organization of the
cell; they require more free energy input than they can consume. These
processes are not directly coupled to the catabolic processes that extract
free energy in the degradation of food. Instead they are often coupled to the
hydrolysis of ATP to ADP and phosphate. Rephosphorylation of ADP to
produce ATP is coupled to processes of food degradation. Upon depletion
of the external free energy source, the system relaxes into an equilibrium
state in which useful work is no longer performed – the system no longer
has the capability to order itself – and, concomitantly, no net changes are
observable in its macroscopic state. The macroscopic equilibrium state is
characterized by a minimal Gibbs free energy, and a maximal entropy: it
represents a state of maximal ‘disorder’.

If the external free energy source is kept constant for a sufficiently long
time, the system will often end up in a stationary state. These stationary
states are functional states of complex systems in biology; that is, they
have biological significance. The main examples of stationary states are
steady states and oscillatory states. Chaotic behavior usually represents
pathological functioning of physiological systems, and will not be part
of our focus. Stationary states may have certain characteristic properties,
e.g. being robust to internal and external fluctuations, showing memory,
displaying adaptive behavior. These systemic properties do not in gen-
eral manifest themselves at the level of the parts but arise out of the
interactions among the parts they are therefore organizational properties.
Organizational properties, therefore, are likely to be explained in terms of
the dynamics of these interactions.

The molecular biosciences teach us that all the action in biological cells
is at the level of (macro)molecules: biological cells are physicochemical
systems composed of interacting low-molecular weight molecules (metabo-
lites, e.g., lactate, pyruvate), macromolecules (enzymes, protein complexes,
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Figure 2. Escherichia coli. Typical dimensions are 1 by 2 µm. (a) Scanning electron-
micrograph. (b) Schematic rendering. Figure 2a was reprinted with permission from D.
Lundberg (www.chromosome.com).

DNA, mRNA) and larger structures thereof, all compartmentalized by semi-
permeable lipid-containing membranes. Such systems can be looked upon as
huge supra-processes composed of networks of interacting micro-processes.
These are cells. The proteins interact either through direct physical interac-
tions or indirectly through binding of metabolites. The amino acid sequence
of the proteins is coded by structural genes on the DNA. The genes are
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Figure 3. Metabolic networks. The nodes depict metabolites, connections depict en-
zyme-catalysed reactions. This metabolic network is representative for most eukaryotic
organisms, except that it is very simplified. The bold circle and the pathway feeding
it are Krebs cycle and glycolytic pathway, respectively. Reprinted with permission of
Routledge/Taylor and Francis Books.

transcribed by RNA polymerases into mRNA strands under specific (tightly
regulated) conditions and the transcripts, in their turn, are translated into
proteins by ribosomes. Additionally, there are mechanisms that take care of
the controlled degradation of mRNA strands and proteins. These properties
of the (macro)molecules underlie cell behavior.

One way to investigate the effects of these (macro)molecules is by mak-
ing in silico reconstructions of biological cells, or of subsystems, on the
basis of the (macro)molecular properties. Such models incorporate exper-
imentally determined in vitro properties of (macro)molecules and, relying
on that knowledge, reconstruct the behavior of cells. Not all properties of
enzymes are necessary for predicting cell behavior. For emergence, the
only properties that matter are those that refer to the interactions between
the enzymes and the other (macro)molecular (sub)system constituents.
The structure, mass and composition of the (macro)molecules insofar as
it does not depend on these interactions belongs to the class of non-
emergent properties of both the system and its components. Biochemical
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networks are similar to the linear pathway described in Box 1, but far
more complex due to the occurrence of multiple branches and cycles.15

(See Figure 3 for an illustration.) They are composed of multiple enzymes
that sequentially convert different substrates into different products (mass
flow). They are complicated by regulatory interactions including feedback
and feedforward loops, which both can be activating and inhibiting.

The set of parameters representing all the interactions defines the
topology of the network. K-values reflect affinities of metabolites for
given enzymes. K values are constant for given enzymes and metabolites.
A lower K value means that the enzyme binds the corresponding metabo-
lite at lower concentrations of the latter. Metabolites include substrates,
products, inhibitors and activators. Each has an associated K-value: KS

for substrates, KP for products, Ki for inhibitors, Ka for activators. KEQ

is the equilibrium constant, which is defined as the ratio of products
to substrate concentrations for a particular reaction in thermodynamic
equilibrium.16 The state of the biochemical network at a time is defined
by the magnitudes of the variable metabolite concentrations. The rate
of a particular enzyme-catalysed reaction depends non-linearly on the
concentrations of the metabolites with which it interacts, on the associated
K-values, on KEQ, and linearly on the enzyme concentrations.

BOX 1.

Here is an example of how in silico modelling of biochemical pathways is
carried out. The linear metabolic pathway displayed above is composed of
five consecutive reversible reactions, each catalyzed by an enzyme. The
enzymatic reactions are depicted by solid double-sided arrows and the
respective enzymes are denoted by numbers (1 to 5). Six metabolites (X0

to X5) are interconverted in the pathway. Metabolite X4 inhibits the rate
of enzyme 1 as indicated by the dashed arrow and the minus sign. The
underlined metabolites X0 and X5 are kept constant at all times by the
environment. The other metabolites may vary with time and conditions.

In kinetic models, the changes in the concentrations of the variable
metabolites can be described with differential equations, which consist of
terms describing the consumption or production of all the metabolites. For
this pathway, the set of differential equations would read as follows (in
matrix format):
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d X1

dt
d X2

dt
d X3

dt
d X4

dt




=




v1 − v2

v2 − v3

v3 − v4

v4 − v5


(1)

v1 to v5 each represent the rate of the corresponding enzymatic reaction;
that is, the number of product molecules formed per unit time per unit
volume. As an example of a rate equation, consider enzyme 1 that catal-
yses the reaction X0 ↔ X1, and which is inhibited by metabolite X4.
The enzyme has two binding sites: a substrate (product) binding site for
X0 (or X1) and an allosteric binding site for X4. The rate of the reaction
is a function of the concentrations of X0, X1 and X4. For the simplest
case, the net rate (v1) of product formation can be described in terms of a
(rapid-equilibrium) rate equation:

v1 = 1

1 + X4

K1,X4

·
V +

1 · X0

K1,X0

− V −
1 · X1

K1,X1(
1 + X0

K1,X0

+ X1

K1,X1

) .(2)

The first term represents the inhibitory effect of X4 on enzyme 1. The sec-
ond term represents the net rate of the reaction apart from that inhibition. In
the equation, each K1,s is an equilibrium dissociation constant (in mM) that
indicates the ratio (e1 · s)/e1s when the binding has relaxed to equilibrium
(where s stands for X0, X1 or X4). Here e1s is the concentration of the
enzyme-substrate complex, and e1 · s is the product of the concentrations
of the free enzyme e1 and of the free substrates s. V +

1 , and V −
1 are the max-

imal forward and backward rates of catalysis (in mM min−1), respectively.
The latter rates depend linearly on the enzyme concentration (e1 in mM);
that is, V +

1 = k+
1 · e1, and V −

1 = k−
1 · e1, respectively, with k+ and k−

as catalytic forward and backward rate constants (in min−1). In contrast
to its linear dependency on the enzyme concentration, the rate is a non-
linear function of the metabolite concentrations. Importantly, all kinetic
parameters can be measured in vitro (Segel 1993).

The net rate of the reaction varies monotonically with the extent to
which the reaction is displaced from equilibrium (Westerhoff and van Dam
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1987). The equilibrium constant (KE Q) of the reaction is defined as the
ratio of the product (X1) and substrate (X0) concentration in equilibrium:
KE Q = (X1/X0)E Q . The equilibrium constant of a certain reaction is
determined by the properties of the reactants and by the temperature. It
does not depend on the properties of the enzyme concerned – its kinetic
properties (various K ’s and k’s) – or on its concentration. The enzyme may
considerably shorten the time required to reach the equilibrium state or
stationary state between the reactants, but it does not affect the equilibrium
constant.

When the enzymatic reaction approaches equilibrium, i.e. when the
actual ratio of product and substrates � (= X1/X0) becomes equal to
KE Q , its rate becomes zero. Thus the ratio �/KE Q quantifies the extent
to which the reaction is displaced from equilibrium. If the above equation
is rewritten incorporating the last term and by using the Haldane relation
(KE Q = V +

1 K1,X1/V −
1 K1,X0), one obtains:

v1 = 1

1 + X4

K1,X4

·
V +

1 · X0

K1,X0

·
(

1 − �

KE Q

)

(
1 + X0

K1,X0

+ X1

K1,X1

) .(3)

The displacement from equilibrium is directly related to the molar Gibbs
free energy difference or chemical potential differences that drives the
reaction (�µ1),

�µ1 = R · T · ln
�

KE Q
(4)

(with R being the ideal gas constant and T the absolute temperature). This
equation shows that in equilibrium the chemical potential of the reaction
indeed equals zero.

Silicon cell modelling starts from the experimental (often ex vivo) deter-
mination of the rate equation and of the magnitude of all parameter values
(K ’s and V ’s) for each reaction. This gives vi as a unique function of all
x j . Using Equation (1), changes in x j can be written as a vector function
of x j . Starting from initial values for the state variables x j , Equation (1)
can be integrated to calculate x j at other times.
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4. KINETIC MODELLING IN CELL BIOLOGY

There are two general approaches to modelling complex systems such
as biochemical pathways (Bechtel and Richardson 1993). One approach
predicts behavior of the components from information about the systemic
behavior of the actual system. This is, in practice, a top-down approach.
The properties of the components are retrieved from system properties.
If we know that a bacterium is in a steady state, and we know the input
and output together with the topology of the network, then in principle we
can retrieve many of the rates at which individual enzymes convert their
substrates into products. This is called flux balance analysis.

Another approach predicts system behavior using information about
the properties of parts, independently of their systemic context. This is
a bottom-up approach. We begin with the properties of the parts indepen-
dent of their relations with other parts. We can, for example, measure the
parameters that characterize the rates at which enzymes convert substrates
directly. These for instance are the K1,X1 and V +

1 values in Box 1. Know-
ing these values we know the capacities of the parts. The behavior of the
system is in part a function of these values. This is kinetic modelling. We
will focus on this latter approach.

The dynamics of a system is a function of the properties of the con-
stituents, the configuration of the system, and the external and internal
conditions. The structure of the system is in turn a function of the parts,
whose properties we can characterize in isolation. A bacterium includes
a set of enzymes whose properties can be characterized in isolation. This
is sufficient information to determine all the behavioral capacities of the
organism. Once situated in an appropriate environment, we can capture its
actual behavior. The behavioral capacities of the system include the entire
range of possible dynamic behaviors, including the actual behavior. This
is represented in Figure 4a.

Modelling the dynamics of a system follows an analogous pattern.
There are two kinds of properties which characterize the parts: (i) intrinsic
properties, which are completely determined by the part itself, such as its
mass or the amino acid sequence of a protein; and (ii) relational properties,
which are determined not only by the parts but also by one or more other
parts. Among these properties are, for instance, the dissociation constants
that characterize the dissociation of a complex into its parts. These re-
lational properties are sufficient to determine which parts of the system
interact with each other and in what manner.17 In Box 1, they were used to
describe the dependency of the rate of an enzyme on the concentrations of
its substrates, products, and effectors.
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Figure 4. Kinetic modelling in complex systems: (a) System perspective: The structure
of the system is determined by a set of parts subject to some composition relations and
physical laws; the dynamics of the system is determined by the structure of the system
together with external and internal conditions. (b) Property perspective: State-independent
properties of the system result from properties of parts and their relations; state-dependent
properties are determined by state-independent properties, and by boundary and initial
conditions.

A model of the static system combines the relational properties of
the parts, through a composition relation.18 This composition relation
amounts to the spatial organization of the cell. The application of physical
laws, given this information suffices to determine the state-independent
properties of the system. To a first approximation, we can treat cells
as homogeneously stirred (Francke et al. 2003); that is, we assume that
the constituents of the cells are randomly distributed. Introducing, for
example, organelles would compartmentalize the system. Using these
composition relations and the relational properties, we can then derive the
state-independent properties of the system. This is represented in Figure
4b. Examples of state-independent properties would include the number of
cycles or branches in a biochemical network, or what we earlier called the
topology. These structural properties of the network can be retrieved from
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biochemical pathways (see Figure 3). The composition relations do not
generally depend on the intrinsic properties of the constituents; thus, not all
the properties of the parts are necessary to reconstruct system properties.
If a system is purely aggregative, all its systemic properties depend only
linearly on the properties of the parts (Wimsatt 1976, 1986). In complex
biochemical systems, aggregative system properties are a function only of
the intrinsic properties of the parts; for example, the mass of a bacterium
is simply the sum of the masses of the parts. The flux through a biochemi-
cal pathway, in contrast, depends non-linearly on the concentrations of its
constituent enzymes. This is not an aggregative property.

A characterization of the system in terms of state-independent proper-
ties is not sufficient by itself to determine the dynamic properties of the
system. For this we need, in addition, to impose boundary conditions and
initial conditions. For a bacterium, this would include concentrations of
nutrients, enzymes, metabolites, mRNA, as well as physical conditions
such as temperature and pressure. The external environment as defined by
the boundary conditions provides the free energy source for the system
to function. The initial conditions are the starting state for the system.
The result is a set of state-dependent properties of the system at a par-
ticular moment in time. These include rates of free energy dissipation,
rates of heat liberation, nutrient uptake fluxes, and growth rate. The state-
dependent properties differ from state-independent properties in a number
of ways. The former are associated with the dynamics of the system, and
the latter with the structure of the system. State-independent properties do
not change with time: they do not depend on dissipation of free energy
through the system. In the case of state-dependent properties, the system
consumes free energy to perform work. This displaces the system from
the state of minimum free energy. The parts constituting the system now
display what we call component properties. These properties are deter-
mined in part by the relational properties of the parts, and in part by the
state of the entire system. Examples of component properties would be
the enzymatic rates of metabolite conversion, the sensitivity of these rates
to changes in metabolite concentrations, the saturation level of enzymes,
and their displacement from equilibrium. Experimentally, we can recre-
ate component properties provided that we can recreate the appropriate
systemic context in vitro or in silico; for example, we can measure the
rate of a particular enzyme in vitro if we supply substrates and products at
concentrations matching those in vivo. (See Box 2 for an explicit example.)
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BOX 2.

The sensitivity of the rate of the enzymatic reaction to a substrate
concentration is a component property. We will illustrate this for the
enzyme treated in Box 1. The sensitivity of this enzyme to its substrate X0

is described by an elasticity coefficient (εv1
X0

). This is a component property
of the enzyme, because its magnitude depends both on the concentrations
of the metabolites it communicates with and on the relational properties
of the enzyme. An elasticity coefficient quantifies the fractional change in
the rate of an enzymatic reaction (∂v1/v1) upon a fractional change in the
concentration of any of its substrates (∂ X0/X0), products, or effectors.
For εv1

X0
this would read:

εv1
X0

= ∂v1

∂ X0
· X0

v1
= 1

1 − X1
X0

/
KE Q

−
X0

K X0

1 + X0
K X0

+ X1
K X1

.(5)

The first term expresses how sensitivity changes when approaching
thermodynamic equilibrium. The second term expresses how sensitivity
changes as the amount of substrate-bound enzyme increases. The elastic-
ity coefficient is a function of the state of the biochemical pathway; in
this case, it depends on the concentrations of X0, and X1. The elasticity
coefficient is also a function of the relational properties of the enzyme and
the reactants; in this case K X0 , and K X1 , and KE Q , respectively. These
K values are state-independent and relational properties of the parts. The
elasticity coefficient is also affected by the displacement from equilibrium;
in this case, by the term X1/(X0 · KE Q). At equilibrium this value is 1.
Upon displacement from equilibrium the first (thermodynamic) term in the
equation for εv1

X0
becomes smaller; as the reaction approaches equilibrium,

this value approaches infinity. If we increase X0 the right (kinetic) term
becomes larger. The properties of the enzyme (K X0 and K X1 ) are important
for determining the sensitivity of the enzyme to X0 only if the enzyme
operates at nonequilibrium states. There are similar elasticity coefficients
for all enzymes with respect to their substrates, and products.

To explain systemic properties mechanistically, it is essential to turn to
component properties. This can be exemplified with metabolic control ana-
lysis. Suppose we change the concentration of the first enzyme (e1) in the
metabolic pathway shown in Box 1 and study the resulting change in the
steady-state flux (J ) through the pathway. The rate of the first enzyme re-
action depends linearly on the concentration of the enzyme and nonlinearly
on the concentrations of metabolites X0, X1, and X4. This was illustrated
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in Box 1. An increase in e1 initially increases the rate of conversion of
metabolites X0 to X1 linearly. This will affect the other enzymes in the
system: the change propagates through the network and ultimately affects
the rate catalyzed by e1 nonlinearly.

Formally, the fractional change in the steady-state rate through the path-
way (J ) upon a fractional change in e1 is given by (Kacser and Burns 1973;
Heinrich and Rapoport 1974; Westerhoff and van Dam 1987):

d ln J

d ln e1
= d ln v1

d ln e1
= ∂ ln v1

∂ ln e1
+ ∂ ln v1

∂ ln X1
· d ln X1

d ln e1
(6)

+ ∂ ln v1

∂ ln X4
· d ln X4

d ln e1
= 1 + εv1

X1
· C X1

1 + εv1
X4

· C X4
1 .

The term d ln J/d ln e1 describes the effect the change in the concentration
of e1 has on its own rate after the entire system has responded and a new
steady state has been attained. This relationship shows that the immediate
effect of the enzyme on its own rate (εv1

e1
= ∂ ln v1/∂ ln e1 = 1) is affected

by the remainder of the system through the other two terms, which rep-
resent the effects of X1 on v1 and of X4 on v1 (εv1

X1
· C X1

1 and εv1
X4

· C X4
1 ).

Changes propagate through the system.
The concentration control coefficients (Ci ) can be expressed in terms

of elasticities through utilization of so-called summation and connectivity
theorems (Westerhoff and Kell 1987; Bruggeman et al. 2002a). As a conse-
quence mechanistic explanations of changes in the steady-state properties
of complex systems should ultimately be expressed in terms of changes in
component properties.

5. COMPONENT PROPERTIES AND MECHANICAL EXPLANATION

The component properties described in this paper are reminiscent of the
roles played by parts – subcapacities – in a mechanical explanation of
a complex capacity of the containing system (Cummins 1975; Bechtel
and Richardson 1993; Wouters 1999; Craver 2001). Robert Cummins
(1975) defended a “functional” analysis of systemic phenomena; that is,
a top-down analysis in which systemic properties are explained as the
effects of functionally defined components. Cummins’ was exclusively
a top-down analysis. Cummins saw that these functional or mechanical
explanations are interesting only if the analyzing subcapacities are ‘less
sophisticated’ than and ‘different in type’ from the analyzed capacity;
furthermore, they must show a ‘complex organization’. In addition to the
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top-down constraints emphasized by Cummins, an adequate mechanical
explanation requires independent information concerning the capacities of
the realizing mechanisms. In what Bechtel and Richardson (1993) call a
strategy of “decomposition and localization”, in addition to the analysis
or decomposition of capacities, localization requires identifying the physi-
cal components and identifying their capacities. Peter Machamer, Lindley
Darden, and Carl Craver, among others, have more recently insisted on
the importance of these mechanistic explanations, though the models they
appeal to are largely qualitative (Machamer et al. 2000; Craver 2001). The
case we described emphasizes the importance of the properties of the parts
within the system (component properties), as well as the significance of a
rigorous and precise mathematical quantification of mechanical explana-
tions. We combine the roles played by the parts in a mathematical model
to yield a description and explanation of the systemic behavior; that is, we
describe a mechanical explanation of the systemic phenomenon in math-
ematical terms. This is a mathematical equivalent of what Stuart Glennan
introduced as a mechanical model (Glennan 2002). Having a precise math-
ematical description allows for a more exact examination of the properties
exhibited by the system.

6. EMERGENCE IN MODULAR SYSTEMS

Modular organization introduces an intermediate level of complexity: sys-
tems may be composed of modules which in turn are composed of multiple
parts. This is analogous to Broad’s description of a system in terms of
subsystems. Modules, like their constituents, have intrinsic properties, re-
lational properties, and component properties. System behavior depends
on the component properties of modules. The behavior of modules de-
pends in turn on the component properties of their parts. Suppose we have
a complex system A that includes n variable factors X = {X1 . . . Xn}.
These might be metabolites that are interconverted by enzymes. If A is
a dynamic system, it is displaced from thermodynamic equilibrium by a
fixed external Gibbs free-energy potential. When the external conditions
and internal parameter values are time independent, the state of system A
at time t can be defined as,19

A(t) : {dX(t, p)/dt = F(X(t, p), p) | X(0, p) = x0, p = {pK, pBC}}
X(t, p) is the state of system A, and is a vector composed of the concen-
trations of all the individual species Xi at time t . The state changes as a
function of time as a result of the processes (enzyme-catalyzed reactions)
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that mediate the changes in the concentrations of the components of A.
The vector F(X(t , p), p) is sufficient to determine the state-independent
properties of the system. It is the structure of the system. The state of A
at a particular time t depends on the initial conditions of A and on F. The
former are given as the concentrations Xi at t = 0 (denoted by X(0, p)).
The state of A also depends on two sets of parameters: (i) the kinetic
parameters (pK) that define the relational properties of the enzymes and
(ii) the boundary conditions (pBC) that define the relationship of A with
the environment. This is illustrated in Figures 4a and b.

Assuming a modular organization, the properties of the system A can
be predicted in terms of the properties of its subsystems in the systemic
context. The result is a decrease in complexity, and this may help in under-
standing the system (Kahn and Westerhoff 1990). Suppose our organism
includes an organelle. The functioning of the organelle can be understood
in nearly the way we have described above, assuming its environment
is constant. Since it is embedded in a dynamic system (the rest of the
organism), its boundary conditions change with time. We then have two
modules, in a nested hierarchy. One provides the boundary conditions for
the other, which in turn provides part of the boundary conditions for the
first. Each has different variables defining their states. Together, their states
define the state of the entire system. Changes in the state of one module
can affect the state of the other, and can be affected by the state of the
other module (Bruggeman et al. 2002b). In such cases, we can mechanis-
tically explain the behavior of the entire system in terms of the component
properties of the modules.20

The system shown in Box 1 will serve as an example. The complete
metabolic pathway would then constitute system A, which can be decom-
posed into two subsystems: A1 containing enzymes 1 and 2 and subsystem
A2 containing enzymes 2, 3, 4, and 5. The state of A1 is defined by the
concentration of metabolite X1 and, similarly, the state of A2 by the con-
centrations of X2, X3, and X4. The boundary conditions for A are X0 and
X5, for A1, X0 and X2, and for A2, X1 and X5.

Beginning with the subsystems (A1 and A2), the dynamics of the entire
system can be explained in terms of the properties of the modules; how-
ever, this requires an appeal to the component properties of the modules.
This is exactly parallel to the case we explored in the last section, except at
a higher level of organization. Experimentally, the behavior of the subsys-
tems can be investigated in vitro – by reconstitution of A1 or A2 in the test
tube – or in silico using mathematical models.21 These subsystems interact
dynamically in A. This means that the strengths of their interactions gener-
ally depend on the state of the subsystems and on time. Hence, to approach
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reality the interactions between the components of A2 and A1 somehow
have to be mimicked if A1, is studied in isolation without adding back all
the components of A2. The reverse holds for the study on A2 in isolation.
Generally, the behavior of a particular subsystem of A is approximated in
vitro by artificially reproducing the conditions of the systemic context, so
that the concentration values external to the subsystem are representative
of the concentration values in A under typical conditions: for subsystem
A1, the amount of X2 added at least would have to be representative of its
value in A.22 This means that we recreate the component properties. This
does not allow us to predict or explain the component properties, for the
reason that aside from already knowing the systemic context there is no
principled reason for selecting one value of X rather than another. Without
a determinate X value the component property is indeterminate. Moreover,
precise mimicking of boundary conditions of the subsystem in vitro is not
a base for prediction or explanation, but for reconstruction.

If the interactions between a subset of the components of A2 and some
of the components of A1 are mimicked for subsystem A1 in isolation by
incorporating them in the boundary conditions of A1, then in most cases
the dynamic behavior of A1 will only change quantitatively. That is, the
behavior of A1 is only quantitatively different in vitro from its behavior
in vivo. This is because we have artificially substituted a static boundary
condition for a dynamic interaction.

Remarkably, we can also get qualitatively different systemic behavior
in the two contexts. (This is shown in detail in Box 3.) This sometimes
fulfills the horizontal condition. This could then include oscillatory, or
chaotic states that are not present in simpler systems. The behavior of A1,
in isolation is sometimes qualitatively different from the behavior of A1 in
A, and therefore, since the behavior of A is a function of A1, understood as
a component, the behavior of A cannot generally be derived from studies
on simpler subsystems of A. In general, the (dynamic) behavior of A is
not simply the superposition of the (dynamic) behaviors of its subsystems
studied in isolation. Dynamic interactions can bring about qualitatively
new behavior in complex systems. This is precisely where prediction of
system behavior on the basis of simpler subsystems fails. We cannot pre-
dict the behavior of the components within the entire system and so cannot
predict systemic behavior. This is emergence, with novel system behavior
that cannot be predicted on the basis of the behavior of simpler subsystems.
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BOX 3.

Instability can occur in a system composed of interacting subsystems that
are both dynamically stable in isolation. We will illustrate this with a
simple metabolic pathway. The pathway consists of three enzymes (1, 2,
and 3), two variable metabolites (X1 and X2), and the constant metabolites
X0 and X3. The latter metabolites constitute the boundary conditions that
keep the system removed from thermodynamic equilibrium.

where vi is the rate equation of enzyme i (cf. Box 1), the system dynamics
is obtained through integration of these differential equations:




d X1

dt
d X2

dt


 =

[
v1 − v2

v2 − v3

]
(7)

We can decompose the network into two subsystems, whose behavior can
be described in isolation:

We get the first subsystem by holding X2 constant, and the second by fixing
X1. If the entire system is at steady state d X1/dt and d X2/dt equal zero. If
the system is stable, then any small change in X1 and X2 is corrected by the
system. It returns to its initial state. Assume that the two subsystems above
are stable in isolation. The enzymes in these subsystems have component
properties, such as the sensitivity of each enzyme to the metabolites it in-
teracts with within the relevant subsystem. Stability of the two subsystems
assumes that the following relationships hold among component properties
of the enzymes in the subsystems:
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∂v1

∂ X1
− ∂v2

∂ X1
< 0 and

∂v2

∂ X2
− ∂v3

∂ X2
< 0(8)

The first conjunct tells us that the sensitivity of enzyme 1 to X1 is less than
the sensitivity of enzyme 2 to X1. The second conjunct tells us that the
sensitivity of enzyme 2 to X2 is less than the sensitivity of enzyme 3 to
X2. These component properties (expressed by differentials) quantify the
sensitivity of a rate to a metabolite and are known as unscaled elasticities
(cf. Box 2). The entire system is stable if both of the following relations
hold (Murray 1989, 148):

(9)
∂v1

∂ X1
− ∂v2

∂ X1
+ ∂v2
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)(
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)
−

(
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) (
∂v2

∂ X1

)
> 0.

The first condition is always met if the subsystems are stable, as we are
assuming. The second condition is violated if;

(10)
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∂ X2︸︷︷︸
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> 0 < 0
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︸ ︷︷ ︸
< 0

(
∂v2

∂ X2
− ∂v3

∂ X2

)

︸ ︷︷ ︸
< 0

The left hand term captures the interactions between the two component
subsystems. The right hand term captures the interactions within each
component subsystem. (The positive and negative signs of the differentials
∂v2/∂ X1 and ∂v2/∂ X2 respectively, would hold in most real cases.) So
what this tells us is that, even with stable subsystems, the system can be
unstable if the interactions among subsystems are more significant than the
interactions within them. Thus, it is possible to have an unstable system
even under the assumption that subsystems are stable in isolation. In other
words, the enzymatic parameters and boundary conditions can be chosen
such that systemic instability occurs. This particular phenomenon is called
a saddle-node bifurcation.

Under slightly different circumstances, oscillations appear if the first
condition is violated. This, however, is impossible with subsystems
containing only one variable metabolite that are dynamically stable in
isolation. The simplest system to display oscillations and having dynami-
cally subsystems in isolation is when one subsystem contains two variable
metabolites and the other one variable metabolite. Additionally, these
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conditions show that instability is impossible with two dynamically stable
subsystems if the influence is one-directional. They must mutually affect
each other, as in the case above (Bruggeman et al. 2002a).
This example also illustrates the importance of nonlinearity. The unscaled
elasticities are constant for a linear system and therefore result in the same
behavior: if a linear system is stable it will remain stable with changed
boundary conditions, and if it is unstable it will remain unstable. With
nonlinearity the values of the elasticities depend on the system state, which
changes with changes in the boundary conditions. This can lead to a
transition from a stable to an unstable system. This is known as symme-
try breaking or bifurcation. As a result, nonlinearity is necessary for the
emergence of new behaviors.

7. CONCLUDING REMARKS

We have identified two independent conditions, each sufficient for Broad’s
(diagonal) emergence to occur, which we represented as vertical and
horizontal components. Metaphysicians such as Kim are right that there
are microphysical and mechanistic explanations of biological phenomena.
There are no inexplicable phenomena in the systems we have described:
every systemic phenomenon is completely explicable in principle, or cal-
culable, in terms of the component properties of the parts; that is, in terms
of the behavior of parts embedded within the systemic context (Bechtel and
Richardson 1993). They are mechanistically explainable. Nonetheless, we
argue that there is emergence in cell biology, and that this derives from the
horizontal condition. This emergence is not weak emergence.

Three conditions for weak emergence are: (i) physical monism, (ii)
organizational or systemic properties and (iii) synchronic determination
(Stephan 1998). We associate Broad’s emergence with a strong notion of
emergence on the basis of a similar reasoning as Stephan (1998). Stephan
distinguished strong notions of emergence by adding either the irreducibil-
ity or diachronic unpredictability of these systemic properties to the notion
of weak emergence. What we have identified is an additional condition
for strong emergence; namely synchronic unpredictability. In the form we
have identified and described, synchronic unpredictability means that a
systemic property is not predictable, even in principle, from the properties
of subsystems in isolation.

From a methodological point of view, if we attack a biological problem
experimentally or theoretically, beginning with the constituents of cells
treated in isolation, then the lack of a systemic context can be an imped-
iment to scientific research. With some systemic effects, decomposition
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may reveal mechanistic explanations, but this depends critically on under-
standing the behavior of parts as components. Beginning with the behavior
of parts in radically different contexts, or in much simpler contexts, will
sometimes fail to reveal their contributions to system behavior. Sometimes
it will succeed. Sometimes it does not (Boogerd et al. 2002). In these cases,
systemic behavior cannot be extrapolated from the behavior of parts in
simpler systems, rendering them emergent. We think that this is a general
phenomenon for other complex systems.
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NOTES

1 We make use of notions like ‘prediction’, ‘knowledge’ and ‘explanation’ to define
emergence. However, this does not turn emergence into an epistemic notion. If a person
or a group of scientists is ignorant of some causal factors then a system’s behavior might
appear emergent. If increased knowledge of the relevant causal factors would make the
behavior explainable then this is only an epistemological form of emergence. If a person
or a group of scientists knows all the causal factors but lacks a theory to explain the system
behavior, this behavior might still appear emergent. Once again this is merely epistemic
if another theory would make the system behavior explainable. Since we allow complete
knowledge of all causal factors and theories, this is an absolute notion of emergence that is
not epistemological. For more detail see Stephan (1999, chapter 11).
2 We use “property” in a generous way, to include both static properties (for example,
shape), dynamic properties (for example, movement), and behaviors (for example, repro-
duction); we also include relational properties (for example, being a parent). If what is at
issue is explaining dynamical behavior then we need to specify the initial and boundary
conditions. We will return to this later.
3 We use the term “organizational property” to cover what Stephan called a “systemic
property” (Stephan 1998, 641, 1999, 16–22). In our context, “systemic property” is used
in a broader sense, meaning any properties we can ascribe to a system including those it
shares with its parts, such as having a weight. Properties of a system which some of its
parts have are called “ordinally neutral properties” by Broad (1925, 78).
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4 The “relevant” laws in this case are the principles governing the behavior of the com-
ponents of the system; that is, these describe the behavior of constituents as parts of the
whole. Mechanistic explanation is reserved for this special case.
5 We use prediction and explanation interchangeably. There are uses of prediction that are
weak, insofar as they base prediction merely on correlations. Prediction and explanation in
our sense require mechanical models. We sometimes echo Broad in speaking of “deduc-
tion” as a shorthand for explanation or prediction. What we argue for does not depend on
any particular theory of explanation.
6 Broad’s position is common in recent philosophy of mind. Particularly, Jaegwon Kim
(1999) and Joseph Levine (1983, 1993) focus on failures of reductive (i.e., mechanistic)
explanations, assuming a (vertical) “explanatory gap” in the case of phenomenal states or
the qualia they exhibit (Beckermann 2000; Stephan 2002).
7 The “σX” in the article denotes the same as “R(A, B, C)” in the book. The function
“fX(A, B, C, σX, SX)” is a macroscopic property corresponding to the “PR” above.
8 Here, T1(A,C,D,F) stands for any system that is more complex than R(A, B, C),
R1(A,B,D) for one that has the same degree of complexity, and S2(A,C) for one that is
simpler. Of course, complexity does not depend on the number of components, but on the
structure and mutual interactions of the parts. Therefore, a system with fewer components
could be more complex than one with more components. However, we have to indicate
differences of complexity somehow, and we do it here by the number of parts.
9 Today, however, it is widely believed that the power of quantum theory suffices to
explain chemical bonding and also the systemic properties of chemical compounds; cf.,
e.g., Brian McLaughlin’s ‘The rise and fall of British Emergentism” (McLaughlin 1992,
53–57, 89–90).
10 He is only convinced that “this method of avoiding emergent laws is not logically
possible for trans-physical processes” (Broad 1925, 81), with which he refers to both
the secondary and the phenomenal qualities. Both are behaviorally unanalyzable (not
“functionalizable”) and thus mechanically inexplicable.
11 Qualia are the only example of properties which cannot be functionalized.
12 Once again, we do not distinguish between prediction and explanation. We assume there
is complete information concerning components and their properties, and that explanation
is not limited by computational resources. See footnote 5.
13 In general terms, the state of a homogeneous system is defined in thermodynamic terms:
the volume (V) of the system, temperature (T) and pressure (P), the number of molecular
species (ni), and their concentrations. Any change in these values brings about a change
in the state of the system and thereby the macroscopic properties, e.g. Gibbs free energy,
energy, enthalpy, entropy, heat flow, mass flow, etc. The systems we will discuss are “semi-
open” and have constant T and P.
14 The change in Gibbs free energy (G) is a function of changes in the total energy (U)
corrected for expansion work (p.V) and entropic energy dissipation (T.S): dG = d(U +
p.V–T.S).
15 The boxes provide more detailed examinations of material described more informally in
the text.
16 In more complex cases in which there are multiple substrates and products for each
reaction, more complicated definitions for K-values and for KEQ are necessary. We omit
the details.
17 It is not always entirely clear whether a specific property is intrinsic or relational. For
instance, the specific three dimensional structure of proteins is certainly in part a function
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of their amino acid sequence. If this tertiary structure were determined entirely by the pri-
mary structure, this would make the three dimensional structure intrinsic. The environment
would then exert minimal effect on the tertiary structure. However, for some proteins, their
three dimensional structure also depends on other proteins, called “chaperones” (Langer
et al. 1992). The effect is to select one out of many tertiary structures, all of which are,
naturally, consistent with the primary structure. In such cases, the tertiary structure is not
intrinsic, but relational (Bechtel 1988, 95).
18 In describing the “ideal of pure mechanism”, Broad speaks of a “principle of composi-
tion, according to which the behaviour of any aggregate of particles, or the influence of any
one aggregate on any other, follows in a uniform way from the mutual influences of the
constituent particles taken by pairs” (Broad 1925, 45). Sometimes he calls these “laws of
composition” (Broad 1925, 62). We do not limit ourselves to pairwise comparisons, though
we do limit ourselves to proper parts.
19 Here we assume that the system is homogeneous, i.e. that there are no significant
concentration gradients. This is a realistic assumption given the diffusional properties of
(macro)molecules in microorganisms and the sizes of most microorganisms.
20 If we do not have a nested hierarchy, then we can decompose A into two subsystems A1
and A2 that consist of the components X1 and X2, respectively;

A1(t) : {dX1(t, p1)/dt = F1(X1(t, p1),

X2(t), p1) | X1(0, p1) = X1,0, p1 = {p1,K, p1,BC}},
A2(t) : {dX2(t, p2)/dt = F2(X2(t, p2),

X1(t), p2) | X2(0, p2) = X2,0, p2 = {p2,K, p2,BC}},
A is defined in terms of its subsystems as:

A(t) : {A1(t) ∪ A2(t) | X1(t) ∩ X2(t) = ∅ | X1(t) ∪ X2(t) = X(t),

pK = {p1,K ∪ p2,K | p1,K ∩ p2,K �= ∅},
pBC = {p1,BC ∪ p2,BC | p1,BC ∩ p2,BC �= ∅}}.

21 In vitro reconstitution is a general experimental tool that is used in biochemistry to
study the properties of subsystems of living systems. For readers who are interested in in
silico kinetic models of metabolism, there are some realistic kinetic models available at
www.jjj.bio.vu.nl.
22 It is important that we include only those factors which actually affect the behavior of
the component. To include more would be to include what is irrelevant.
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