EMERGENCE IN A RECOGNITION BASED DRAWING INTERFACE

MARK D. GROSS

Design Machine Group, Department of Architecture
University of Washington

+1.206.616.2817

mdgross@u.washington.edu

Abstract People perceive patterns in representations, patterns that may not
have been initially intended. This phenomenon of emergence is deemed to
play an important role in design. Computer based design assistants can and
should support this human perceptual ability, using pattern recognition to
anticipate human designers’ perception of emergent shapes and supporting
the subsequent manipulation of and reasoning with these shapes as part of
the design. Freehand drawing programs with gesture recognition are well
positioned to implement shape emergence. Support for emergent shapes in
the Back of an Envelope system is described.

1. Emergence in Visual Representations and Design

Textbook examples of visually ambiguous figures such as the “two faces or a
vase,” “young or old woman”, or the Necker cube (Solso 1994) remind us
that visual representations need not dictate a single reading. Yet these figures
are more than curiosities: They illustrate a powerful visual-cognitive effect
that artists and designers take advantage of in everyday work. Multiple
readings in visual representations play a special role in designing, especially
in its conceptual, creative phases. They provide a designer opportunities to
consider alternative interpretations of the representation. These readings
serve several functions: they recall relevant (but previously unconsidered)
design cases, they suggest specific operations to apply to the representation,
and they can suggest ways to restructure or recast a design problem.

Multiple readings and emergent forms are not always helpful in visual
communication. Sometimes a figure should mean just what its maker intended
and no more. Visual languages developed to program computers assume a
one-to-one mapping between a visual representation and a computational
structure. When a diagram is intended to produce a specific outcome, as in a
specific data structure or sequence of instructions, multiple interpretations
are undesirable. In a programming language syntactic ambiguity is a flaw, not
a feature: Therefore visual programming languages (and most visual human-
computer interfaces) appropriately avoid ambiguity and multiple readings.

This is not to say that the benefits of emergent form are limited to the
artistic domains of design. For example, an analog circuit designer might
specify parts of a circuit independently. Upon drawing the circuit layout the
designer notices components from different parts of the circuit are located so

as to interfere with one another electrically, or generate too much heat. The
problem only becomes apparent when the designer makes and examines the
drawing, noticing the unintended and incidental proximity of two otherwise
unrelated parts of the circuit.

1.1 EMERGENCE IN DESIGN

In his studies of designers in action, Don Schén noted the importance of
drawing as a part of the reflective process. Schon and Wiggins (Schon 1992)
argued that making a drawing is a necessary step that enables the designer to
step back momentarily from the making process and reflect on the drawing,
and that in this reflection, or re-examination, the designer sees patterns that
stimulate the next cycle of drawing. Goldschmidt (Goldschmidt 1991, 1999)
explores the way drawings ‘talk back’ to their makers in a series of empirical
experiments with both novice and experienced designers. Mitchell points out,
“Drawings are valuable precisely because they are rich in suggestions of what
might be” (Mitchell 1990). Stiny elaborates, “An evolving design may thus
have alternative descriptions that may change from time to time in
unanticipated ways; it may be decomposed and manipulated in this way and in
another way later without difficulty. The structure of the computer drawing,
however, makes all this impossible. The structure is fixed in definite drawing
operations” (Stiny 1990). Edmonds et al (Edmonds, Candy, Jones et al.
1994) develop this argument and outline a pixel based, machine vision
approach for a computational implementation, described in detail by Soufi
and Scrivener (Soufi and Scrivener 1992). These design researchers make the
case that emergent forms in drawing is an important phenomenon and a
worthwhile goal for a computer supported design system.

Proposals for how shape emergence might be implemented
computationally have been made. Stiny shows how replacement rules can be
used to recognize emergent shapes (Stiny 1993). Gero and Yan (Gero and
Yan 1993) show how data driven search—extending the line segments in a
figure to generate new intersections—can generate a set of emergent shapes,
similar to the more primitive system built by Tan (Tan 1990).

Despite the widespread interest in emergent shapes, working
implementations remain scarce. For the most part they have been limited to
demonstrations of techniques for identifying emergent shapes. For example,
Tan’s Emergence Il project (Tan 1990) showed how extending segments in
a drawing to make construction lines and finding intersection points with
other similarly constructed lines could generate a set of candidate emergent

shapes. This method works with hard line drawings rather than freehand
sketches, although their techniques might be adapted to a freehand system.
Nagakura‘s system (Nagakura 1990) for shape recognition and
transformation used a directed search to identify specific subshapes in a
drawing, and Nagakura proposed to use this more generally to support shape
emergence. Liu (Liu 1993; Liu 1995) explored using neural networks to
recognize emergent shapes in simple drawings.

PerSketch (Saund and Moran 1994) is one of the few systems to support
shape emergence in a drawing environment: Computer vision image
processing techniques were used to build what the authors termed a
WYPIWIG (What You Perceive is What You Get) system. The system
decomposed drawing elements into arcs and segments defined by intersections
and corners, and the user could edit the drawing at various levels. The user
could select and operate on the lowest level of segments and arcs, or could
select any shape composed of connected segments and arcs, identifying the
shape by tracing over its outline. We have adopted a similar means of
selection, although the system identifies candidates only through a
recognition based process.

Much of the work on emergent shapes emphasizes the salience of specific
geometry: for example, closed figures created as a by-product of intentional
drawing will emerge. Viewing emergence this way overlooks the important
role of drawing context and the trained eye. The trained eye may see more,
or different, shapes in the same drawing than the eye of the casual observer.
Painters, photographers, and architects speak of “learning to see” as an
important part of their education. It isn’t so much that emergence is in the
eye of the beholder, as one report concludes, “emergence is the eye of the
beholder” (Edmonds, Moran and Do 1998). The recognition driven
approach developed here emphasizes the role that experience has on shape
emergence.

1.2 TYPES OF EMERGENCE

Emergence is the term used for perception of (unintended) patterns in a
representation, and specifically “emergent shapes” describes the
phenomenon of multiple readings of a diagram. Three sources of these
multiple readings are:

« intersecting figures: two or more figures intersect to create recognizable
subfigures.

« alternative configurations: a configuration’s parts can be grouped in
several ways.

« figure-ground reversals: a new figure is formed by the edges of several
drawn figures.

h
.

I
O " N
Figure 1. Three forms of visual emergence:(a) intersecting figures,(b) alternative
configurations, and (c) figure-ground reversal.

Intersecting figures (figure 1a) occur when one or more marks intersect to
make figures that were not initially intended. This canonical example shows
three of the figures created as a side effect of drawing two intersecting
rectangles, one horizontal and one vertical.

Alternative configurations (figure 1b) occur when the designer draws two
(or more) configurations made up of components that once drawn, can be
regrouped or read as belonging to a new configuration. The designer has
drawn a plan diagram with two tee-configurations (left); when juxtaposed this
way the stems of the tees form a doorway configuration (right).

Figure-ground reversal (figure 1c) occurs when a mark or set of marks
bound or define a recognizable shape. For example, in drawing the ground
plan or “footprint” of city block-sized buildings, the designer might create a
plaza or street between the blocks. While drawing the blocks the designer is
actually (also) thinking about the space between. This emergent shape is not
inadvertent but intended, although its boundaries comprise the edges of other
shapes.

2. Computational Drawing Environments

2.1 MENU DRIVEN COMPUTER AIDED DESIGN PROGRAMS

Most computational drawing and design environments are media: they
support making—not interpreting—graphical representations. Paint

programs, for example, simulate traditional paper and ink instruments but
they maintain no representation of the figures drawn beyond the pixels left
on the screen. Drawing and CAD programs require a designer to assemble a
drawing out of primitive geometry elements, and they maintain a
representation of elements assembled. A CAD program interprets a figure in
only one way—just as the designer constructed it. On the other hand, once a
figure is drawn the designer may read it in several different ways. In short,
the machine does not share the user’s perceptual ability to recognize
emergent forms.

Some drawing and CAD programs now recognize intersection points of
figures and use these points to support ‘smart snap’ and ‘smart trim’
operations. A more comprehensive recognition based approach, however is
lacking. Recognizing and retaining multiple readings of a drawing— just as
designer might do—could better support designing, as the designer switches
between alternative readings. This, however, entails significant changes in
the underlying software architecture of these programs as well as advances in
the design of their user interface. Specifically, the data structures for
describing drawings would have to be extended to support ambiguity and
indeterminacy as well as multiple and alternative configurations of the
drawing components, and the human-computer interface would have to
support these extensions to the data structures.

The architecture of drawing and CAD programs reveals a popular
prejudice about drawing. Drawing is seen as making a record of a picture that
is already in the designer’s head. The role of the pencil, or the CAD
program, is simply to facilitate this recording process. Accordingly, CAD
programs enable the designer to select from libraries of graphical elements
and add them to a drawing. The programs allow the designer to edit the
drawing, moving and replacing elements, but the programs do not allow for
reinterpreting the drawing once it is made. The question of interpreting does
not come up, because the program relies on the designer’s unambiguous
articulation (selection, placement) of drawing elements in the first place.
Thus, for a conventional CAD or drawing program to support emergence and
multiple readings, a new pattern recognition module must be added. So far,
menu driven CAD systems have not taken this approach.

2.2 RECOGNITION BASED DRAW PROGRAMS

Freehand drawing programs, as distinct from menu-driven draw and paint
programs, depend on gesture or character recognition to identify figures that

the designer draws. In a menu driven draw program the intended elements of
a drawing are determined a-priori by the interface, but a recognition based
program must identify the elements as the designer draws them. The simplest
recognition based programs resolve every drawing mark immediately, but
more sophisticated architectures allow for ambiguity and indeterminacy
(Mankoff, Hudson and Abowd 2000). One reason is that even when the
designer has a clear intent, recognition may fail; supporting ambiguity and
indeterminacy allows for the program’s graceful degradation of performance,
and recovery from recognition errors. A second reason is that the designer
may lack clear intent, and it is then valuable for the program to allow for
this and not to force a more determined and precise representation than the
designer had in mind.

Support for emergent forms is easier to implement in a recognition based
freehand drawing program. It is a more natural component than in
conventional menu-driven CAD because in a recognition based draw program
machine interpretation is already an inherent part of the system.

The following sections describe the support for emergent form in a
freehand drawing program, the Back of an Envelope system (Gross and Do
2000), an enhanced version of the earlier Electronic Cocktail Napkin (Gross
1996; Gross and Do 1996). The focus here is on the program’s architecture
and the mechanisms for supporting emergent form, rather than on the
application of these techniques in design. The program supports two of the
three types of emergent form identified above: intersecting figures and
alternative configurations. The remainder of this section (2) briefly outlines
this program’s architecture. Section 3 then describes how the Back of an
Envelope constructs candidates for emergent form by intersecting pairs of
individual figures, and Section 4 outlines how the program selects emergent
forms from this set of candidates. Section 5 discusses the program’s ability
to parse alternative configurations to support this type of emergence.
Section 6 describes how candidates for emergent shapes could also be
produced by figure-ground reversal. Finally Section 7 concludes with a
discussion of user interface issues posed by emergence in a freehand drawing
system.

Figure 2 shows the basic structure of the Back of an Envelope draw
program. The designer draws freehand on a digitizing tablet. Two recognizers
process this input. A glyph recognizer (R1) compares drawing elements
against a library of previously trained templates, and tags these drawing
elements if it can identify them. A second recognizer, the visual language
parser (R2) continually examines the drawing for patterns of elements

arranged in previously trained specific spatial relationships. (The two
libraries of previously trained templates and configurations are not shown in
the diagram). These two recognizers, normally used to process the designer’s
input, are also used to process emergent form in the drawing.

Freetand | R1: | _ »| R2:
inout Glyph Drawing] \L/;%?Ime
Recoani zr Parser :

Figure 2. Two recognizers process freehand drawing input in the Back of an Envelope
program.

It may be worth pointing out that if the purpose of the draw program is
simply to construct a visual representation of a design, a menu-based
structured draw program may suffice. Emergence is useful for supporting
more sophisticated editing operations, as mentioned above for example,
selecting segments of a line formed by line intersections. The real payoff,
though, comes when the drawing is the grounds for further inference, for
example by knowledge based systems that reason about the design based on
the drawing. The Back of an Envelope is intended not simply as a draw
program per se but as a “front end’ for knowledge based design systems. For
this purpose, emergence is more than an editing convenience. By providing
a more multivalent representation, emergence in the drawing interface allows
the ‘back end’ applications to reason more effectively about the design.

3. Intersecting Figures

One of the canonical forms of emergent visual form derives from
intersecting figures (figure 1a). In the Back of an Envelope system it is
straightforward to generate a set of candidate subfigures formed by the
intersection of any pair of figures, because the program stores each figure as
a sequence of strokes, each consisting of a sequence of points. This section
outlines this computation.

A set of intersecting shapes is constructed from two figures A and B as
follows (see figure 4):

Identify the intersecting points of the two figures i(1, ..., n).

For each figure A and B, add the endpoints i0 and i n+1.

Each segment of figures A and B can then be described as a triple:

s=(fjk)

where fis A or B and j and k are contiguous integers (j = k £ 1) and the
segment s describes the segment along figure f from intersection point ij to
ik.

Subfigures SAB of the intersection of shapes A and B are the sequences of
segments s0, s1, s2, ... such that the points p2 and p1l of successive segments
sn and sn+1 link, that is sn(p2) = sn+1(pl) The set of maximal subfigures
SAB are the set of paths from between the start and end points of figures A
and B that lead through intersection points I, traversing each segment no
more than once.

For example, the maximal subfigures for two figures A and B with two
intersections are given by the paths:

((A0 1) (B12) (A223))
((A0 1) (B12) (B23))

((A0 1) (A12) (B23))

((B0O 1) (A12) (B23))
((B0O 1) (A12) (A23))
((B0O 1) (B12) (A23))

and the following two subfigures, which visit the two
intersection points twice:

((A01) (B12) (A21) (B10))
((A01) (A12) (B21) (B10))

This list is generated by a tree-generating program that starts at (A 0 1)
and at each intersection point generates three alternative paths (forward
along A, forward along B, and backward along B), proceeding until it reaches
an endpoint or an intersection with no untraversed paths.

For example Figure 4 (left) shows two simple intersecting figures A and B
with labeled points of intersection. Figure 4 (right) shows the subfigure made
up of segments:

((A01) (A12) (B21) (B10))

Figure 3. Left: two intersecting figures A and B, with labeled endpoints and intersections.
Right: A subfigure.

A subfigure description is not unique; several names (corresponding to
different traversal sequences of the figure) can describe the same figure. For
example, the traversal sequences

(A01) (B12) (A21) (B10)

and

(B01) (A12) (B21) (A10)

both describe the subfigure on the right of Figure 3: one beginning at the
A end and the other beginning at the B end.

The set of all subfigures may be constructed by trimming segments from
the front and back of the maximal subfigures. The set of subfigure
descriptions depends only on the number of points of intersection of the two
figures A and B, and contains no geometric information. Thus one set of
subfigure descriptions covers all pairs of figures with two intersections,
another for those with three intersections, etc. It is however easy to
construct a figure given the subfigure description and the two figures A and B,
just by sequencing the appropriate segments. The program can generate not
only the subfigure descriptors, but also map each descriptor to the geometry
provided by the figures A and B.

4. Interesting Figures

Clearly not every member of the set of subfigures is salient or interesting.
The program cannot determine which subfigures will be interesting simply
from the labeled segment descriptors: interest depends on geometry as well as
on context. Many of the resulting subfigures will be uninteresting. After
computing the set of subfigures the program’s next task is to filter out the

uninteresting shapes and retain those that are interesting. How then to select
from among the candidates?

Simply, a shape is interesting if the program ‘knows’ it. In the example
below, the Back of an Envelope program has determined that the four
subfigures shown in figure 4 are ‘interesting’. (Examples of ‘uninteresting’
figures are shown in figure 5.) It runs all the generated subfigures through its
glyph recognizer and retains only those that match shapes that it finds in its
library of templates—shapes that the designer has previously trained. In the
example above, if we have trained the el-shape and a rectangle, then the
program will recognize them. The program discards all generated subfigures
that do not match a previously trained shape. It considers interesting only
those shapes it can recognize.

For example, the rightmost subfigure (Figure 5d), which is deemed
“uninteresting,” might in some contexts be interesting: It resembles a
diagram of the Big Dipper constellation in the Northern Hemisphere.

Figure 4(a-d): Only four of the subfigures of the intersecting shapes are “interesting’. The
program has been trained to recognize them.

Figure 5(a-d): The set of all subfigures includes these ‘uninteresting’ ones. The program
has not been trained to recognize them.

There are some minor additions to the algorithm. Figure 4d cannot be
extracted using only the method outlined above. The program must

recognize that the two endpoints of B are close enough to latch; a modified
version of the algorithm takes this into account. It is also possible to
generate emergent shapes with a single glyph that crosses over itself.
Another version of the algorithm handles this case. Finally, the example
here shows two single-stroke glyphs, although the program also supports
glyphs drawn with multiple strokes (e.g., a rectangle drawn with four single
strokes may be considered a single glyph if the strokes are made in rapid
succession). The emergent form generator can consider the individual
strokes in a multi-stroke glyph as segments to be combined, just as the
segments made by intersecting two glyphs.

5. Alternative configurations

A second type of emergence in visual representation, one quite different to
finding forms in intersecting figures, is recognizing alternative configurations
(figure 1b). The principle is simple: a designer may draw a set of elements as
part of a configuration, and subsequently reinterpret (mentally regroup) the
elements to form an alternate configuration. This is illustrated abstractly in
the structural hierarchy in figure 6(a-d) below. The four circles in figure 6a
represent individual elements; the two squares (figure 6b) represent two
configurations that the two elements are deemed to belong to; and the square
(figure 6¢) represents an alternative grouping of two of the drawing elements.
Figure 6d illustrates the composite view, in which two of the drawing
elements are now understood as belonging simultaneously to two different
configurations.

0000 0000

Figure 6. Part-whole hierarchy of a simple four-element drawing, showing alternate
groupings of elements. (a) four drawing elements; (b) parsed into two configurations; (c)
alternate configuration for two elements; (d) multiple representations for the two
configurations.

From the designer’s perspective, figure 6a represents the four elements
that are actually drawn; figure 6b represents what he or she had in mind when

drawing the elements; figure 6¢c represents a new grouping that becomes
apparent upon examining the configuration; and figure 6d represents the
designer’s expanded understanding of the drawing after observing the
emergent grouping.

From the machine’s perspective, figures 6b and 6c¢ simply represent
alternative parse trees of the terminal drawing elements in figure 6a. That is,
the machine has no representation of what the designer intended to
construct, so both 6b and 6c are plausible groupings of the drawing elements.
There is no reason to prefer one over the other, so the program admits both
parse trees as alternative interpretations of the drawing.

As with the intersecting subfigures, support for this type of emergence is
also driven by previously trained structures. That is, only configurations can
emerge that the machine has previously been shown. Emergence depends on
the library of configurations that the program’s parser has been trained to
recognize.

The Back of an Envelope’s visual language parser examines the drawing
elements seeking combinations of elements (el, e2, ... en) arranged in certain
spatial relations (r1, r2, ... rm), An initial set of simple glyph elements (line,
box, circle etc.) are built into the program and additional ones may be trained
by the end-user. The spatial relations (adjacent, contains, connects) are
coded into the program and supported by its recognizer.

The combinations of elements and spatial relationships are organized as a
set of production rules of the form ei <— (rj, ek, el) . This production rule
indicates that when found in spatial relationship rj, elements ek, and el form
a configuration element ei. (We might instead call this ci, to distinguish the
new configuration from a simple element. However, the parser does not
distinguish between simple elements and configurations when it searches the
drawing for applicable rules). When the parser identifies such a pattern of
elements, it constructs a configuration (group) ei with the elements ek, and el
as its parts, asserting the part-of relation P(ei, ek, el) (read: element ei is a
configuration with parts ek and el). There is no restriction on the number
of groups that a part can belong to; therefore the parser can identify multiple
groupings of the same set of parts.

6. Figure-Ground reversal

Figure ground reversal (figure 1c) illustrates yet another type of form
emergence that can be computationally supported. In the current

implementation it is not but it is a straightforward extension to the program.
It is mentioned here as a reminder that other types of shape emergence can
be integrated into this framework, which is not dependent on a particular
geometry algorithm.

Figure ground reversal would require writing an additional generator for
emergent shape candidates, similar in role to the intersecting shapes
generator described above in Section 3. The fgGen generator for figure-
ground reversal would first identify all segments in existing figures, using
corners and intersection points to break each glyph into minimal segments

(B |
o0 B2

Figure 7. After finding the minimal segments in each shape, fgGen will extend each segment
to identify possible figure-ground reversal shapes.

Then fgGen would seek to join colinear segments and nearby
intersections of extended segments, much as in the earlier schemes of Tan
and Gero described above. It would then walk the existing shape boundary
segments and the constructed line segment extensions to construct candidate
shapes. Finally, as with the intersecting subshapes it would apply the
recognizer to the candidates and select only those shapes that match a
previously trained figure.

Like the intersecting shapes generator, fgGen would run whenever the
designer was not busy drawing.

7. Summary and Discussion

The goal of this research is to develop computer aided design tools that can
‘see’ the same emergent shapes in a drawing that a designer does. Most CAD
programs today can’t do this. They store only the structured representation
that the designer makes when constructing the drawing.

Emergence is pattern recognition. Programs that employ freehand input
employ, perforce, a pattern recognizer to identify drawing elements as the
designer enters them. A draw program that already employs pattern
recognition to identify elements and configurations can employ the same
mechanisms to support emergent form. The Back of an Envelope program is
an example of this type of program. It employs a two step recognition
driven process to support shape emergence. First an emergent shape
generator produces a set of candidate forms. This set is then filtered through
the program’s recognizer to produce a set of emergent forms. As the Back of
an Envelope program illustrates, recognizing emergent form is a small and
natural extension to this kind of program. However, most draw programs are
not recognition based, and for these programs to support emergence, a
recognition module would need to be added. Thus, to add support for
emergent form to a conventional menu based CAD program requires serious
extension to the software’s architecture.

The approach developed here differs from other emergent form efforts
mentioned earlier in various ways. As a freehand drawing system, it does not
depend particularly on maximal line constructions; methods that depend on
stright line geometry work for hard line drawings but it is not obvious how
they support emergence from curves and irregular figures. Support for
emergent form would seem to be more appropriate for early design, in which
freehand sketching is traditional, than for the later phases of design that
employ hard line drawing. Unlike PerSketch, though, which provides the
designer complete freedom to specify any perceived emergent form, the
approach described here limits emergent forms to those the program
recognizes. PerSketch does not—on its own—recognize any emergent
shapes, so it is dependent on the designer to point these out. Whereas the
Back of an Envelope can make inferences based on forms latent in the
designer’s drawing, without waiting for the designer to point them out,
PerSketch cannot do this.

Given the ability to recognize emergent forms of various types
(intersecting figures, alternative groupings, figure-ground reversals), a draw
program must still make this functionality useful to designers. For example,
Suwa and Tversky (Suwa and Tversky 1996) suggest that computer aided
design programs might, upon recognizing patterns in the designer’s drawing,
bring these patterns to the designer’s attention. This might be done by
showing a figure-ground reversal, or by animating the drawing in ways to
make alternative readings more salient. Based on informal observation, we
found that designers have an excellent ability to perceive emergent forms in

a drawing, and hardly need a drawing program to point these out. (In one
mode, the program’s glyph recognizer identifies glyphs as the designer draws
them, printing “circle”, “box”, etc.; designers who see this wonder why the
program is telling them what they already know). We assume that designers
will readily recognize emergent forms. (Revealing emergent shapes visually
might help novice designers learn to see them). It is important for the
drawing program to recognize the emergent shapes as well, and to make them
available for manipulation.

In “‘diagnostic’ mode, the Back of an Envelope does exactly what Suwa
and Tversky suggest—it displays the emergence process visually—as the
program recognizes emergent forms it highlights them momentarily, bringing
them to the attention of the designer. Normally, though, the forms simply
remain latent in the drawing until they are needed. The designer can select
an emergent form by tracing over it. As in the PerSketch program (Saund
and Moran 1994), if the overtraced lines are close enough to the latent
shape, it is selected.

The Back of an Envelope is designed not ‘merely’ as a draw program, but
as an interface to other application programs. We argue that freehand
drawing is an appropriate way to enter information about designs to
knowledge based design aids. We have used the Back of an Envelope to build
sketch based interfaces to various knowledge based programs, e.g., simulation
programs and databases. In these interfaces, the drawings that a designer
makes serve as input to the application program. For example, the forms in
a drawing serve as a sketch-based query to a database of designs, or as the
input to a visual access simulation. Normally (that is, without emergent
forms) the drawings presented to the application are simply those the
designer makes. With emergent form processing the emergent forms are also
available to these applications. Emergent forms in the drawing can trigger
searches in databases or serve as input to simulation programs. This can
happen automatically: the designer need not explicitly point them out to the
program.

By no means does the Back of an Envelope system fully exploit the
opportunities that emergent form recognition provides, nor does it solve all
the representational issues that emergent form raises for computer aided
design. Yet the system provides in a demonstration prototype form, an
example of how emergent form recognition can be embedded into a freehand
drawing program. It thus offers a computational laboratory for exploring
these issues and opportunities.

Acknowledgements

This research was supported in part by the National Science Foundation under Grant No. I1S-
96-19856 and 11S-00-96138. The views contained in this material are those of the authors and
do not necessarily reflect the views of the National Science Foundation. My colleague Ellen
Yi-Luen Do worked on other parts of the Back of an Envelope system and participated in
many discussions of shape emergence issues. A conversation with Ernest Edmonds first
suggested this extension of the program; Masaki Suwa contributed valuable suggestions
about forms of emergence and suggested the figure-ground reversal functionality.

References

Edmonds, E., L. Candy, R. Jones, et al. (1994). “Support for Collaborative Design: Agents and
Emergence.” Communications of the ACM 37 (7): 41-47.

Edmonds, E., T. Moran and E. Do (1998). “Interactive Systems for Supporting the Emergence
of Concepts and Idea, a CHI 97 workshop.” SIGCHI bulletin, a quarterly publication of
the ACM Special Interest Group on Computer-Human Interaction 30(1).

Gero, J. S. and M. Yan (1993). Discovering Emergent Shapes Using a Data-Driven Symbolic
Model. CAAD Futures ‘93. S. van Wyk and U. Flemming. Pittsburgh / USA, Springer: 3-
17.

Goldschmidt, G. (1991). “The Dialectics of Sketching.” Creativity Research Journal
v.4(no.2): 123-143.

Goldschmidt, G. (1999). The Backtalk of Self-Generated Sketches. Spatial and Visual
Reasoning in Design. Sydney, Australia, Key Centre of Design Computing.

Gross, M. D. (1996). “The Electronic Cocktail Napkin - working with diagrams.” Design
Studies 17(1): 53-70.

Gross, M. D. and E. Y.-L. Do (1996). Ambiguous Intentions. Proceedings, ACM Symposium
on User Interface Software and Technology (UIST '96). Seattle, WA, ACM SIGGRAPH and
SIGCHI: 183-192.

Gross, M. D. and E. Y.-L. Do (2000). “Drawing on the Back of an Envelope: a framework for
interacting with application programs by freehand drawing.” Computers and Graphics
24(6): 835-849.

Liu, Y.-T. (1993). Recognizing Emergent Subshapes in Design Problem Solving: A
Connectionist Investigation. Education and Practice: The Critical Interface [ACADIA
Conference Proceedings]: 131-139.

Liu, Y.-T. (1995). Problem Decomposition on Restructuring Shapes in Terms of Emergent
Subshapes. Sixth International Conference on Computer-Aided Architectural Design
Futures. M. Tan and R. Teh. Singapore: 439-451.

Mankoff, J., S. E. Hudson and G. D. Abowd (2000). Providing integrated toolkit-level support
for ambiguity in recognition-based interfaces. Proceedings of the CHI 2000 conference
on Human factors in computing systems: 368 - 375.

Mitchell, W. J. (1990). Introduction: A New Agenda for Computer Aided Design. The
Electronic Design Studio. M. McCullough, W. Mitchell and P. Purcell. Cambridge, MA,
MIT Press: 1-16.

Nagakura, T. (1990). Shape Recognition and Transformation: A Script-Based Approach. The
Electronic Design Studio:Architectural Knowledge and Media in the Computer Era. M.
McCullough, W. Mitchell and P. Purcell. Cambridge MA, MIT Press: 149-170.

Saund, E. and T. P. Moran (1994). A Perceptually-Supported Sketch Editor. ACM Symposium
on User Interface Software and Technology, Marina del Rey, CA, ACM Press.

Schoén, D. (1992). “Designing as Reflective Conversation with the Materials of a Design
Situation.” Knowledge Based Systems 5(3).

Solso, R. L. (1994). Cognition and the Visual Arts. Cambridge, MA, MIT Press.

Soufi, B. and S. A. R. Scrivener (1992). Perceptual grouping algorithms and object
identification. Proc. Third International Conference on Visual Search. Nottingham.

Stiny, G. (1990). What Designers Do that Computers Should. The Electronic Design Studio.
M. McCullough, W. Mitchell and P. Purcell. Cambridge MA, MIT Press: 17-30.

Stiny, G. (1993). Emergence and Continuity in Shape Grammars,. CAAD Futures ‘93. S. van
Wyk and U. Flemming, Springer: 37-54.

Suwa, M. and B. Tversky (1996). What Architects See in Their Sketches: Implications for
Design Tools. ACM Human Factors in Design '96 (CHI '96) Conference Companion.
Vancouver, Addison Wesley: 191-192.

Tan, M. (1990). Saying What It Is by What It Is Like - Describing Shapes Using Line
Relationships. The Electronic Design Studio:Architectural Knowledge and Media in_the
Computer Era. M. McCullough, W. Mitchell and P. Purcell. Cambridge MA, MIT Press:
201-213.

