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(Received 23 May 2019; revised manuscript received 14 July 2019; published 1 August 2019)

A nonhorizontal slope in the isotherm has been observed in the two-phase coexisting region of the first-

order liquid-expanded (LE)–liquid-condensed (LC) phase transition in Langmuir monolayers for many decades.

We show that the simple analysis of a phenomenological Landau free energy involving the coupling-energy

contributions of molecular lateral density (ρ ) with spontaneous collective chain tilt (θ ) and two-dimensional

strain (εs ) inside the LC domain enables one to understand the origin of a nonhorizontal straight-line slope in

the LE-LC phase coexistence region of the isotherm. The presence of ρ − εs coupling must be essential for the

appearance of the straight-line shape of a nonhorizontal plateau in the isotherm. Moreover, it is found from the

comparison of the two-dimensional contour plots of the free energy that an LE phase may persist significantly

even at the later stage of the straight-line regime beyond a transition midpoint surface pressure in the presence of

this coupling. The persistence of the LE phase may lead to the delay of transition progress as manifested more

clearly by the appearance of a compressibility plateau in the coexistence region that indicates the existence of

persistent equilibrium density fluctuations in the monolayer.

DOI: 10.1103/PhysRevE.100.022801

I. INTRODUCTION

Langmuir monolayers have received much attention from

the viewpoints of physical, chemical, biological interests,

and their potential applications [1–4]. Surface pressure (π )

-molecular area (A) isotherms provide information about

the phases and phase transitions in monolayers [5]. The

isotherms, characterized by the appearance of a nonhorizontal

slope region followed by a steeper nonlinear ascent region in

the phase-coexistence region of a first-order liquid-expanded

(LE)–liquid-condensed (LC) phase transition, have been most

commonly found in some fatty-acid monolayers [6] and in

phospholipid monolayers [7,8]. The origin of a nonzero slope

in the isotherm has been extensively discussed from various

perspectives: (i) the effect of impurities in monolayer materi-

als [9,10], (ii) the effect of the long-range dipole interaction

[11,12] and (iii) the formation of two-dimensional molecular

aggregates such as surface micelles and submicroscopic clus-

ters constituting a finite number of amphiphilic molecules

[13–15]. Besides the above possibilities, some authors dis-

cussed the nonhorizontal slope of isotherms from certain

mechanical viewpoints. Arriaga et al. stressed the significance

of the mechanical rigidity of a microheterogeneous composite

medium composed of two coexisting phases to the occurrence

of a finite slope in the phase-coexisting region [16].

As mentioned above, although the origin of the appearance

of a nonhorizontal slope in the isotherm has been extensively

discussed from both theoretical and experimental viewpoints

(and it still remains unclear), another interesting puzzle to

be solved in a monolayer isotherm concerns the shape of a

nonhorizontal slope, which has almost not been addressed

*hatta@ist.hokudai.ac.jp

so far. In this paper we focus our attention on the origin

of the isotherm shape of a nonhorizontal slope appearing

immediately after the onset of the LE to LC phase transition.

The isotherm generally exhibits either one of two types of

shapes in the nonhorizontal slope region: a curved line or

a straight line. The isothermal compressibility, defined as

the fractional change of surface area per unit change in sur-

face pressure, characterizes the isotherm shape in the LE-LC

phase-coexistence region more definitely. It normally shows a

peak [17,18] or a plateau [13,19,20] corresponding to a curved

line or a straight line in the isotherm, respectively (Fig. 1).

The cause of a maximum in the experimental compressibility

curve in an LE-LC transition was discussed in relation to a

change in the tilt of the hydrocarbon chain at the air-water in-

terface and to reorientations in the head group region [17,21].

From a theoretical point of view, the formation of a finite

size of cooperatively transforming molecular clusters as small

systems was attributed to a phase transition over some range

of pressures and this transition would be possible to exhibit a

finite slope in the isotherm [14,22]. In this case, however, the

resultant compressibility curves always must show a peak and

not a plateau, as it can be easily checked by direct calculation

from the cooperative cluster model [14,22].

We must thus seek another cause for the origin of the oc-

currence of a nonhorizontal straight-line shape in the isotherm

and of the resultant compressibility plateau. We here note

that the ordered fluid LE-LC phase transition is a kind of

first-order transition between condensed phases and that the

transition proceeds by the growth of domains of the product

phase at the expense of the surrounding parent phase [16]. In

monolayer isotherms in which the LE-LC phase-coexistence

region can be observed, the area of a molecule (ALE ) in the

LE phase is normally much greater than that (ALC) in the

LC phase. In the phase-coexistence region it is thus highly
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FIG. 1. Schematic illustration of a monolayer isotherm and two

types of compressibilities in the two-phase coexistence region of the

first-order LE-LC phase transition in Langmuir monolayers.

likely that the free energy of an LC domain within a matrix

of LE phase is significantly different from that of an LE

domain of exactly the same size and shape within a matrix of

LC phase due to its different stored strain energy. Therefore

an additional mechanical strain energy contribution must be

involved in the excess free-energy expression of the LE-LC

transition. In Ref. [16] Arriaga et al. indeed investigated the

macroscopic relation between the mechanical rigidity kineti-

cally controlled of a microheterogeneous medium constituted

of two coexisting phases and frustrated first-order metastable

energetics giving rise to a nonhorizontal transition plateau in

the isotherm. Kaganer et al. reported experimental evidence of

an equilibrium phase coexistence in strained heteroepitaxial

films over a wide temperature interval [23,24]. The fraction

of the low-temperature phase decreased almost linearly with

approaching the phase-transition temperature. We expect that

such a mechanical strain-related first-order phase transition

may occur over some temperature or pressure range in the

LE-LC transition.

From the above viewpoints, in this study we present a

simple argument based on a phenomenological (“coarse-

grained”) Landau free energy involving the coupling effects

of molecular lateral density (ρ) with spontaneous molecular

collective chain tilt (θ ) and two-dimensional (2D) strain (εs)

inside the LC domain to examine the effects of stored strain

energy on the first-order LE-LC phase transition in Langmuir

monolayers. As the result of this analysis, it is found that the

existence of ρ − εs coupling in the transition region may lead

to the appearance of a nonhorizontal linear slope region in

the isotherm with equilibrium phase fractions depending on

the surface pressure. The comparison of the 2D-contour plots

of the free energy calculated with different renormalization

parameter values suggests that ρ − εs coupling leads to the

persistence of the LE phase even at the later stage of the linear

slope regime beyond a transition midpoint surface pressure in

the two-phase coexistence region. This may be closely related

to the appearance of an isothermal compressibility plateau as

often previously observed in lipid monolayers [19,20,25].

II. LANDAU MODEL INVOLVING THE

COUPLING-ENERGY TERMS OF LATERAL DENSITY

WITH SPONTANEOUS CHAIN TILT AND 2D STRAIN FOR

A FIRST-ORDER LE-LC PHASE TRANSITION IN

LANGMUIR MONOLAYERS

A. Formulation

The magnitudes of spontaneous molecular collective chain

tilt (θ ) and 2D strain (εs) inside the LC domain in monolayer

can depend on the extent of an LE to LC transition progress,

and the presence of θ and εs, on the other hand, can affect

the degree to which the transition proceeds. There must thus

be a corresponding decrease in the free energy through the

evolution of ρ in such a way as to compensate the excess

elastic energy for θ and εs generated within the monolayer.

That is, the changes of ρ, θ , and εs must be adjusted spon-

taneously to minimize the total free-energy penalty as the

transition proceeds. In order to get direct and intuitive insights

into the macroscopic thermodynamic character of such a first-

order LE-LC phase transition under the growth of internal

strain and the microscopic driving forces behind it, let us

start with a phenomenological Landau model [26]. Since the

generation of a long-range strain field due to ρ − εs coupling

promotes the mean-field behavior, a Landau theory is ex-

pected to provide an accurate description of phase transitions

in a monolayer under influence of strain.

In order to investigate the manner in which spontaneous

orientational elasticity and 2D strain fields influence the

progress of the first-order transition in monolayer with some

pseudo-2D character, we assume that the excess free energy of

the low-symmetry LC phase over that of the high-symmetry

LE phase is given as follows:

�G(π, T ) = GLC − GLE =
1

2
a(T − T0)ρ2 +

1

4
Bρ4 +

1

6
Cρ6 (a,C > 0, B < 0) (�Gρ )

+
1

2
Kθθ

2 +
K0εs

2

2

1 + γ0

1 − ν
ν =

(

RLC

RLE

)2

, γ0 =
4

3

μ0

K0

, (K0, Kθ > 0, εs, μ0 � 0) (�Gelastic)

+ dρ2θ + eρ2εs (d, e � 0) (�Gcoupling)

. (1)

022801-2



EMERGENCE OF A LINEAR SLOPE REGION OF … PHYSICAL REVIEW E 100, 022801 (2019)

In Eq. (1) the order parameter driving the transition in

monolayer is the lateral packing density difference ρ(=

ρLC − ρLE ) between the two phases in order to account for a

large change in molecular lateral density (generally one order

of magnitude higher than density differences between the

liquid and solid phases of bulk materials). A possible LE-LC

phase boundary (line energy) effect can be neglected in the

present case since it is small compared to the long-ranged

strain energy. �Gρ is a standard Landau potential for the

variation of excess free energy with temperature. This has

only even powers from symmetry reasons. a, B, and C are

coefficients which do not depend explicitly on temperature

and surface pressure. We choose B < 0 and C > 0 to consider

the effects of chain tilt and 2D strain on the molecular density

in monolayer for the case of an already first-order transition.

We note that T0 is the equilibrium transition temperature

for second-order and tricritical transitions under ordinary

pressure and that a first-order transition occurs at a higher

transition temperature Ttr(= T0 + (3/16)(B2/aC) > T0).

In addition to �Gρ , we have added excess chain tilt–2D

strain energy �Gelastic and excess molecular density–chain

tilt-2D strain coupling energy �Gcoupling in the total excess

free energy �G. K0 and μ0 are the compression and shear

moduli of the LE phase and εs is the 2D strain inside the LC

phase. Kθ is the orientation (splay) elastic constant. Although

μ0 is normally negligibly small compared to K0 in the LE

phase [16,27], we retain γ0(= (4/3)(μ0/K0)) term for gener-

ality. ν is the area fraction of the LC phase to the total area,

ν = SLC/(SLE + SLC) = (RLC/RLE )2 (see Fig. 6 in Appendix

A). Fluorescence microscopy image analysis combined with

the “lever rule” technique demonstrated that ν is inversely

proportional to A in the LE-LC phase coexistence region

[28,29]. In the present model, one can thus regard ν as a

direct counterpart to the average molecular density (A−1) in

the isotherm. That is, in the phase-coexistence region, ν = 0

corresponds to the molecular area ALE for a single LE phase,

i.e., the onset surface area of the LE to LC transition and

ν → 1 means that the molecular area approaches the molec-

ular area ALC for a single LC phase. �Gelastic in Eq. (1)

involves spontaneous strain-energy terms derived from the

orientation and the 2D Hooke’s laws, assuming that their

changes are small through the transition. The first term in

�Gelastic represents the excess elastic energy caused by the

orientational change of molecules. In the collective change

in equilibrium tilt angle, θ = θLC − θLE, resulting from inter-

molecular interactions between the tail groups, θLE and θLC

are the angles between the average chain orientation and the

normal to the water surface in each phase. The second term

in �Gelastic is the excess 2D strain energy of the LC phase

depending on the LC phase area ratio ν, and it was derived

within the linear elasticity framework under the assumption

that the monolayer is under hydrostatic compression (see Ap-

pendix A for the derivation). The “renormalized” compression

modulus, K ′ =
1+γ0

1−ν
K0, indicates that elastic hardening of the

two-phase coexistence system gradually develops as the LE to

LC transition proceeds. The value of ρ will be influenced by

θ and εs during the transition. �Gcoupling in Eq. (1) represents

the coupling contributions of θ and εs to ρ. The geometrical

parameters, θ and εs, are allowed to be coupled with ρ in the

lowest order by symmetry reasons. The coupling constants

d and e express the strength of coupling of ρ with θ and

εs, respectively. We have ignored the complexities introduced

by π , T dependences of the coupling constants d , e and of

the elastic moduli K0, Kθ for simplicity. The first terms in

�Gelastic and �Gcoupling were first introduced by Albrecht and

coauthors in order to investigate the chain-melting transition

in phospholipid monolayers [13].

The Landau expansion is normally described for phase

transitions that occur as temperature is varied under ordi-

nary pressure. It would be convenient to convert the external

intensive variable from temperature to surface pressure in

�Gρ in order to consider a monolayer isotherm. After some

manipulation of Eq. (1) (Appendix B), we finally obtain the

rescaled free energy, �Gres
ν :

�Gres
ν =

(

C2

|B|3

)

�Gν

= ν

(

π res

2
ξ 2 −

1

4

(

1 + α + β
1 − ν

1 + γ0

)

ξ 4 +
1

6
ξ 6

)

,

ρ =

(

|B|

C

)1/2

ξ, π res = −
aC

B2

(

dTc

dπc

)

(π − πc),

α =
2d2

|B|Kϑ

� 0, β =
2e2

|B|K0

� 0, γ0 =
4μ0

3K0

� 0.

(2)

Here we note that the actual surface pressure π (< πc)

increases as the rescaled surface pressure π res decreases since

the coefficient −(aC/B2)(dTc/dπc) is always negative under

the condition considered here.

B. Analysis of the rescaled Landau free energy

Using the rescaled free energy, Eq. (2) and from the con-

dition ∂�Gres
ν /∂ξ = 0, π res can be expressed by the rescaled

order parameter ξ as follows:

∂�Gres
ν

∂ξ
= νξ

{

π res −

(

1 + α + β
1 − ν

1 + γ0

)

ξ 2 + ξ 4

}

= 0,

∴ π res =

(

1 + α + β
1 − ν

1 + γ0

)

ξ 2 − ξ 4. (3)

Substituting π res in Eq. (3) into that in Eq. (2) and from

the condition ∂�Gres
ν /∂ν = 0, one can obtain the equilibrium

order parameters ξLE and ξLC:

∂�Gres
ν

∂ν
= ξ 4

{

−
1

3
ξ 2 +

1

4
(1 + α) +

β

4

(

1 − 2ν

1 + γ0

)}

= 0.

∴ ξLE = 0 and ξLC = ±

{

3

4

(

1 + α + β
1 − 2ν

1 + γ0

)}1/2

.

(4)

Since the order parameter ξLC must be real and nonzero

in the phase coexistence, we impose the condition of the

radicand in Eq. (4) being real and positive in the phase-

coexistence region between ν = 0.0 and ν = 1.0. The range

of β is hence bounded above by the condition 1 + α > β.

At the transition midpoint, the condition �Gres
ν = 0 should

be satisfied. Using the nonzero ξLC in Eq. (4), we have ν
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dependence on π res:

νξ 2

{

π res

2
−

1

4

(

1 + α + β
1 − ν

1 + γ 0

)

ξ 2 +
1

6
ξ 4

}

= 0,

∴ π res
ν =

1

2

(

1 + α + β
1 − ν

1 + γ0

)

ξ 2 −
1

3
ξ 4

=
3

16

(

1 + α + β
1

1 + γ0

)(

1 + α + β
1 − 2ν

1 + γ0

)

.

(5)

From π res
ν in Eq. (5) and the relation between π res and π in

Eq. (2), we can obtain the following important result: In the

presence of molecular density–2D strain coupling (β�0), the

actual surface pressure π increases “linearly” with increasing

(decreasing) molecular density (molecular area) in a nonhor-

izontal plateau of the two-phase coexistence region of the

isotherm.

From Eqs (2), (4), and (5), we obtain the following scaling

relation between ξLC and π :

ξLC = ±2

(

aC

B2

)1/2(
dTc

dπc

)1/2(

1 + α + β
1

1 + γ0

)−1/2

× (πc − π )1/2 . (6)

Using π res
ν in Eq. (5), the onset surface pressure of the LE

to LC transition (ν = 0),

π res
ν=0 =

1

2

(

1 + α + β
1

1 + γ0

)

ξ 2 −
1

3
ξ 4

=
3

16

(

1 + α + β
1

1 + γ0

)2

. (7)

At the transition midpoint (ν = 0.5),

π res
tr ≡ π res

ν=0.5 =
1

2
+ (1 + α)ξ 2 −

1

3
ξ 4

=
3

16

(

1 + α + β
1

1 + γ0

)

(1 + α). (8)

Therefore, the actual transition midpoint surface pressure

πtr is

πtr = πc − π res
tr

(

B2

aC

)(

dπc

dTc

)

= πc −
3

16

B2

aC

(

dπc

dTc

)(

1 + α + β
1

1 + γ0

)

(1 + α). (9)

From Eq. (9) the strain-renormalized, actual surface pres-

sure πtr becomes lower compared to the corresponding

“bare” surface pressure π0
tr (= πc − (3/16)(B2/aC)(dπc/dTc))

for α �= 0 and/or β �= 0.

At the later stage of the straight-line regime of the transi-

tion (for instance, at ν = 0.8):

π res
ν=0.8 =

1

2
(1 + α)ξ 2 −

1

3
ξ 4

=
3

16

(

1 + α + β
1

1 + γ0

)(

1 + α − 0.6β
1

1 + γ0

)

.

(10)

FIG. 2. 2D-contour plots of the Landau free energy �Gres
ν

[Eq. (2)] along the rescaled lateral density order parameter ξ and

the LC phase area ratios ν: (a) α = 0.0; β = 0.0, γ0 = 0.0, πtr
res =

0.188 (decoupling); (b) α = 0.143, β = 0.0, γ0 = 0.0, ptr
res = 0.245

(density–chain tilt coupling); (c) α = 0.0, β = 0.143, γ0 = 0.0,

πtr
res = 0.214 (density–2D strain coupling); (d) α = 0.143, β =

0.143, γ0 = 0.0, πtr
res = 0.276 (density–chain tilt-2D strain cou-

pling). (�) ν = 0.2; (�) ν = 0.5; (�) ν = 0.8.

From Eqs. (2), (7), and (10), as the transition proceeds from

ν = 0.0 to ν = 0.8, the actual surface pressure interval �π is

�π = πν=0.8 − πν=0

= −
B2

aC

(

dπc

dTc

)

(

π res
ν=0.8 − π res

ν=0

)

=
3

10

B2

aC

(

dπc

dTc

)

β

(1 + γ0)2
{(1 + α)(1 + γ0) + β}.

(11)

For the decoupling limit (β → 0) between ρ and εs, �π

approaches zero; that is, a nonhorizontal slope of 2D strain

origin does vanish in the isotherm.

III. RESULTS

To investigate the geometrical features of our derived free

energy �Gres
ν [Eq. (2)], we show the two-dimensional contour

plots of the free energy along the rescaled lateral density order

parameter ξ and for some typical LC phase area ratios ν in

the two-phase coexistence region (Fig. 2). �Gres
ν is an even

function of ξ and it is symmetric with respect to ξ = 0.0. Each

2D free-energy contour plot was made with the equilibrium

transition surface pressure π res
tr [Eq. (8)] for given α, β, γ0

values. The values of α, β, γ0 were chosen arbitrarily for illus-

tration of the effects of molecular density–mechanical strain

coupling on �Gres
ν . The LE and the LC phases correspond to

the free-energy minima at ξLE = 0 and at some nonzero ξLC,

respectively. They have the same energy value at ν = 0.5 for

all cases. There is one free-energy maximum constituting a

finite energy barrier between the two free-energy minima. The

energy barrier height depends on the strength of both ρ − θ
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FIG. 3. (a) 2D-contour plot (ξ� 0.0) of the Landau free energy

shown in (d). The two minima correspond to the LE (ξ = 0) and

the LC (ξ �= 0) phases, respectively. (b) The LC phase area ratio

ν dependence on the energy barrier height W (�) and the energy

asymmetry � μ (�). Inset: The LC phase area ratio ν dependence

on the driving force � (≡ �μ/W ) (�) for transition. (c) Schematic

of the transition from a higher metastable α phase, over an energy

barrier W to a lower stable β phase.

(α) and ρ − εs (β) couplings as well as on ν. In the presence

of ρ − εs coupling [Figs. 2(c) and 2(d)], the energy barrier

for both (LE→LC and LC→LE) directions is not identical

except at ν = 0.5. We can see that the barrier asymmetry

is reversed across at the transition midpoint (ν = 0.5) and

that the LC phase becomes energetically metastable above

it. Figure 3(a) shows the 2D contour plot of the free energy

shown in Fig. 2(d) at a smaller interval of ν. In order to see

this behavior more quantitatively we show ν dependence on

the energy barrier height W and the energy asymmetry �μ

[Fig. 3(b); see also Fig. 3(c)]. In the range of ν = 0.0 to

ν = 0.5 the energy barrier height WLE→LC from the majority

LE phase to the minority LC phase increases monotonously

with increasing ν while the energy asymmetry �μLE→LC does

not change significantly. Above the midpoint, WLC→LE from

the majority LC phase to the minority LE phase remains

almost constant while �μLC→LE increases monotonously. The

driving force � for transition is plotted as a function of ν in the

inset of Fig. 3(b). As the LC phase grows beyond the transition

midpoint (ν > 0.5), the driving force from the majority LC

to the minority LE phase increases monotonously. In Fig. 4,

we plot ν dependence on π res
ν from Eq. (5) (remember that

ν is a direct counterpart to the average molecular density,

A−1). In this plot we consider only the effect of density–

mechanical (chain tilt–2D) strain coupling on the surface

pressure. Although the effect of limited cooperativity in the

FIG. 4. LC phase area ratio ν dependence on rescaled equilib-

rium surface pressure π res
ν : (a) α = 0.0 , β = 0.0 , γ0 = 0.0 (decou-

pling); (b) α = 0.0 , β = 0.143 , γ0 = 0.0 (density–2D strain cou-

pling); (c) α = 0.143 , β = 0.0 , γ0 = 0.0 (density–chain tilt

coupling); (d) α = 0.143 , β = 0.143 , γ0 = 0.0 (density–chain

tilt-2D strain coupling).

transition would produce an additional contribution for the

isotherm shape, its effect is not included in this plot. Only

in the presence of ρ − εs coupling [Figs. 4(b) and 4(d)], π res
ν

decreases (or the actual surface pressure π increases) linearly

with increasing ν (or decreasing A) in the phase coexistence

region. From Eq. (11), the stronger ρ − εs coupling (the larger

β) is, the larger is the surface pressure interval �π .

IV. DISCUSSION

It is experimentally well known that cooperative clusters

are formed in the LE-LC phase-coexistence region and that

their size is normally finite (the order of 10–100 molecules)

[13,15,30,31]. If this limited cooperativity is a dominant

mechanism for the transition progress, the transition will

certainly occur over some surface pressure range [14,22]. For

such a finite cooperative transition, however, the isotherm

must show a curved line shape in the coexistence region and

the resultant compressibility curve must result in a peak with

finite width and height. The presence of coupling of molec-

ular lateral density ρ with additional mechanical degrees of

freedom, θ and εs, might significantly affect its energetics in

the LE-LC transition. In fact, if all the domains were to collect

together to form one large domain, for instance, instead of a

large number of separate small domains of one phase within

the bulk, parent phase, then effects of strain energy would be

remarkably reduced [32]. From the above considerations, we

have investigated the energy cost of the formation of a finite

fraction of LC region embedded inside an LE matrix within

the framework of a phenomenological Landau model. The

coupling effects of ρ with spontaneous θ and εs can produce

a strain renormalization of the fourth-order coefficient in

the excess free energy �Gres
ν [Eq. (2)]. This renormalization

leads to the change in strength of the LE-LC transition and

provides some useful information on how the LE to LC

transition proceeds [Eq. (5)]. The fourth coefficient in �Gres
ν

increases negatively with increasing the renormalization con-

stants α and β. This suggests that the transition is driven even

more strongly first order with increasing the renormalization

strength and that the actual transition pressure πtr is reduced

more strongly [Eq. (9)]. From Eqs. (2), (4), and (5), ν and the

discontinuity in the order parameter �ξ (= ξLC − ξLE(≡ 0))

scale with π as ν ∝ π and �ξ ∝ (πc − π )
1/2

, respectively. The

former relation is consistent with the previous experimental
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FIG. 5. Renormalized, control parameters α, β dependence on

the equilibrium actual surface pressure difference �π in the two-

phase coexistence region of the LE-LC phase transition. [B2/aC =

3.0 K, dπc/dTc = 2.35 mNm−1 K−1, γ0 = 0.0 in Eq. (11)].

results [13,19]. From the latter scaling relation, as the LE to

LC transition proceeds from ν = 0 to ν = 0.8, ξLC is expected

to decrease by 1.6β due to ρ − εs coupling. In the molecular

density–mechanical strain decoupling limit (α, β → 0), ξLC

reduces to the bare order parameter ρ0
LC

= (3|B|/4C)1/2 at

a single transition surface pressure π0
tr (= πν=0 = πν=0.8) =

πc − (3/16)(B2/aC)(dπc/dTc). It should be noteworthy from

Eqs. (5) and (11) that as far as a finite ρ − εs coupling

(β �= 0) exists a finite isotherm linear slope must arise, irrel-

evant of the presence of density–chain tilt coupling. It was

reported that the main (first-order) transition is characterized

by the appearance of a nonhorizontal straight-line region in

isotherms and isobars [13,19]. The appearance of a straight-

line shape of the isotherm in the LE-LC coexistence region is,

however, nontrivial [20,33]. Our result indeed suggests that π

increases linearly with increasing ν (or with decreasing A) in

the isotherm only in the presence of ρ − εs coupling. Although

a nonhorizontal straight-line shape of mechanical strain origin

would certainly vanish in the phase-coexistence region of

isotherm in the absence of ρ − εs coupling, a nonhorizontal

curved line shape would still remain in the isotherm due to the

existence of intrinsic limited cooperativity of the transition.

To consider how the horizontality of isotherm in the phase-

coexistence region is lost upon the renormalization parameters

α and β, we plot the actual surface pressure interval �π as a

function of α and β using Eq. (11) (Fig. 5). For plotting this

schematic phase space, we need the values of dπc/dTc and

Landau coefficient ratio B2/aC. Albrecht et al. [13] carried out

to determine dipalmitolylphosphatidylcholine (DPPC) mono-

layer phase diagrams from the isotherm measurements. They

identified a tricritical point as well as a line of first-order

phase transitions on their phase diagram. From their phase

diagram we take dπc/dTc = 2.35 mNm−1 K−1 as a typical

value for evaluation. The Landau coefficients of monolayers

have not been reported to date. However, some efforts were

made to evaluate the Landau coefficients for DPPC bilayers

[34] and for liquid crystals [35,36]. Typically, the coefficients

in lipid bilayers are one order of magnitude larger than those

in liquid crystals. This can be simply explained by the large

latent heat of gel to liquid-crystalline phase transition (we

note that the latent heat of monolayers is comparative to

that of lipid bilayers [13]). Most transition properties remain

constant except the latent heat when the Landau coefficients

are increased by the same factor [34]. In fact, we have

compared the values of the Landau coefficient ratio using the

coefficients reported for DPPC bilayer [34] and for nematic

N-(p-methoxybenzylidene)-p′–butylaniline (MBBA) [37] and

have obtained the comparative values, 2.7 (DPPC) and 4.7

(MBBA). We thus take B2/aC = 3.0 K as a moderate value

of the coefficient ratio. Using these values we have plotted

α and β dependences on the surface pressure interval �π

in Fig. 5. The calculated values of �π are reasonable and

the values previously reported for nonhorizontal isotherms lie

within �π for chosen ranges of α and β. From this schematic

phase plot we can see how the horizontality of the isotherm

is lost depending upon the control parameters α and β. The

horizontality of an isotherm is kept only on the β = 0 line.

Therefore, β can be identified as the key control parameter

of nonhorizontality in the isotherm. At the constant β (�0),

�π is weakly dependent on α. A negative fourth-order term

in the Landau free energy creates an energy barrier in the free-

energy landscape, leading to a first-order transition. In Eq. (2)

the renormalized parameters α, β are expected to decrease

monotonously with increasing surface pressure since the den-

sity jump at the first-order transition decreases monotonously

with increasing surface pressure upon approaching the tricrit-

ical point [13]. From the above argument, the relative contri-

bution of 2D strain energy on nonhorizontality of isotherms

is expected to decrease with increasing surface pressure. The

size of the cooperative transforming clusters was, on the other

hand, observed to increase upon approaching the tricritical

point [13]. This suggests that the cooperativity of transi-

tion plays a dominant role for the nonhorizontal isotherm

behavior in the coexistence region with increasing surface

pressure. It may be instructive to compare our results with

those by Arriaga et al. [16]. They ascribed the origin of

nonhorizontal isotherm plateau in the coexistence region and

the subsequent nonzero compression rigidity to kinetically

limited growth of LC domains upon continuous compression.

In their kinetic scenario, the growth of LC domains does not

have enough time to incorporate molecules supplied from the

surrounding LE phase if strained at high compression rates

and the monolayer resists against compression, producing a

finite compression rigidity. They proposed the “Plum-Cake”

model to estimate the compression modulus as a function

of the LC phase fraction in the coexistence region at a high

compression rate limit. The model predicts an upper limit

for the compression modulus of the coexisting monolayer

expected for a relaxation process due to lipid changes between

the LC domains and the surrounding LE phase at strain rates

much higher than the characteristic growth rates of the LC

domain. It is interesting to point out that the LC-phase fraction

dependence of the renormalized composite compression mod-

ulus K ′(=K0(1 + γ0)/(1 − ν)) involved in the elasticity term

of the free energy [Eq. (1)] shows qualitatively the similar

behavior as that of the high-rate limit compression modulus

given by the Plum-Cake model. In the equilibrium context, a

composite elasticity term that includes the above compression
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modulus is naturally introduced into the free energy in our

equilibrium mean-field approach. The minimization of the

resultant free energy leads to a linear π increase with the

increased LC-phase fraction in the coexistence region. From

the standpoint of a kinetic approach to the isotherm shape of

monolayers in the coexistence region, it will be meaningful

to investigate the relation between the effect of compression

rates on LC domain growth kinetics and the curvature of the

nonhorizontal isotherm slope.

For a single-component macroscopic system the Gibbs

phase rule would require that the two-phase coexistence could

be in thermodynamic equilibrium only at a single surface

pressure at a fixed temperature. The phase rule in general

describes the relationship among the degrees of freedom ( f )

that can be independently varied, the number of chemical

components (c), the number of phases (p), and the number of

intensive variables (i). Although controllable intensive fields

are limited to temperature and pressure (i = 2) for traditional

physicochemical systems, the phase rule must in general be

changed with respect to the number of additional degrees of

freedom for systems that is subjected to varying external fields

such as electrical, magnetic, or mechanical ones. It must then

be stated as f = i + c − p in general form for any integer

value i depending on the experiment in question, instead

of the conventional form f = 2 + c − p. The strain energy

generated within the monolayer can contribute to an extra

degree of freedom. It would thus not be necessary to invoke

any violations of the phase rule in the LE-LC transition in the

presence of a long-ranged strain field. Our strain-renormalized

surface pressure π res
ν [Eq. (5)] in the phase-coexistence region

is indeed consistent with the phase rule modified by the strain

energy. It was reported that an apparent contradiction with the

Gibbs phase rule is resolved by the presence of long-ranged

elastic interactions for the temperature-dependent phase coex-

istence between condensed (crystalline) phases where the free

energies of the two phases are modified by a mechanical strain

energy [23,24]. From the above considerations the diffuse

first-order transition in monolayers could be caused not only

by limited cooperativity of the constituent molecules within

submicroscopic clusters but also by molecular density–2D

strain coupling, causing two different shapes of isotherm. We

should note that ρ − θ coupling alone does not lead to the

appearance of a finite linear slope in the isotherm [Fig. 4(c)].

This coupling term, however, makes the surface pressure

during the LE-LC transition lower effectively. In fact, the

lowering of transition midpoint surface pressure can be caused

if at least one of α and β is nonzero [Eq. (9)].

Here let us remember that an isothermal lateral com-

pressibility is one of the thermodynamic response functions

that describe the response of the order parameter to a field

conjugate to it [38]. Response functions are closely related

to equilibrium fluctuations of order parameters in the sys-

tem. In this respect, the appearance of a compressibility

plateau [13,19,20,25,33] in the LE-LC phase-coexistence re-

gion means that molecular density fluctuations remains almost

constant and therefore that they do not decay easily even

across at the midpoint of the transition. This indicates that

ρ − εs coupling plays a significant role for the persistence

of equilibrium molecular density fluctuations or for the delay

of transition progress in the nonhorizontal linear π increase

regime of the isotherm. The 2D free-energy contour plots

(Fig. 2) might provide us with some useful information

about the persistence of equilibrium density fluctuations in

the phase-coexistence region. We find that the presence of

ρ − εs coupling leads to the formation of an asymmetric

energy barrier between the LE and the LC phases, regardless

of whether ρ − θ coupling is present or not [Figs 2(c) and

2(d)]. The development of such an asymmetric energy barrier

due to ρ − εs coupling, assisted by a significant increase in

the energy asymmetry �μ, would provide the possibility of

producing a substantial driving force �LC→LE from the en-

ergetically metastable, majority LC phase to the energetically

stable, minority LE phase even beyond the transition midpoint

[inset in Fig. 3(b)]. This might provide a microscopic basis

for the persistence of equilibrium density fluctuations mani-

fested macroscopically as the appearance of a compressibility

plateau.

V. CONCLUSIONS

In this paper we have presented a generalized approach

based on a phenomenological Landau free energy to inves-

tigate the coupling effects of molecular area density with

spontaneous collective chain tilt and 2D strain inside the LC

domain on the nonhorizontal isotherm shape in the first-order

LE-LC phase transition in Langmuir monolayers. This theo-

retical approach has the advantage that one can gain intuitive

physical insights into the effects of the above mechanical

degrees of freedom on the evolution of the LE-LC phase

transition. The constructed Landau free energy includes sur-

face pressure terms in the lowest-order coefficient and lateral

density–chain tilt-2D strain coupling renormalization terms in

the fourth-order coefficient. As thermodynamic consequences

of strain renormalization in the Landau expansion, we can

get some useful information on the strength of the first-order

transition and on the possible existence of isotherm slope and

if any, on its shape in a strained monolayer. As a main result of

this phenomenological approach it is found that the existence

of a finite lateral density–2D strain coupling in the transition

region must be essential for the occurrence of a linear increase

of surface pressure with decreasing molecular area. This result

can also explain the apparent violation of the phase rule due

to a contribution from the strain energy to the total degrees

of freedom. In 2D contour plots calculated from our derived

Landau free energy, the presence of a finite molecular density–

2D strain coupling might cause some significant driving force

for the majority LC phase to the minority LE phase beyond the

transition midpoint, leading to the possibility of the delayed

LE to LC transition due to the persistence of the LE phase.

From the above arguments, the appearance of a compressibil-

ity plateau as often reported before in lipid monolayers might

be regarded as a natural macroscopic manifestation of the

persistence of equilibrium density fluctuations due to residual

LE phase caused by the molecular lateral density–2D strain

coupling.

APPENDIX A: EXCESS 2D STRAIN ENERGY TERM IN

THE LANDAU FREE ENERGY

Let us consider a circular LC domain embedded in a

circular LE matrix (Fig. 6). Since we are concerned with the
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FIG. 6. Correspondence between π -A isotherm and the growth of

an LC domain surrounded by a circular LE matrix in the two-phase

coexistence region of a monolayer.

nonhorizontal slope region of an isotherm appearing imme-

diately after the onset of the two-phase coexistence in the

first-order LE-LC transition, we assume that LC domains are

well separated from each other. Thus we consider the region

(0 � ν � 0.8) in which the interactions between LC domains

could definitely be ignored, where ν = (RLC/RLE )2 is the area

fraction of grown LC phase to the total area. We may regard

ν as a direct counterpart of the molecular density (A−1) in

the isotherm as described in Sec. II A. We use cylindrical

coordinates for the symmetrical reason, with the origin at

the center of a circular LC domain and the z axis parallel

to the normal to the domain. Assuming that the monolayer

is uniformly compressed from all directions in the phase-

coexistence region, the tangential displacements are zero and

the displacement vector u is purely radial and is only a

function of r, ur = u(r). Hence curl u = 0 and using the

equation of equilibrium, 2(1 − σ ) grad div u − (1 − 2σ ) curl

curl u = 0 from the linear elastic theory [39], we have

∇ · u =
1

r

d (ru)

dr
≡ 2a = Tr(ε̂) = εs (a : constant), (A1)

where εs = Tr(ε̂) is a 2D strain inside the LC domain (2D

strain is equivalent to the divergence of a displacement field).

An LC domain increases in size and a misfit strain εs devel-

ops due to the LE-LC boundary continuity requirement with

increasing surface pressure in the phase-coexistence region

(Fig. 6). The radial displacement field ur within or outside an

LC domain can be written as

uLC
r = a1r (r � RLC) and uLE

r = a2r +
b2

r
(RLC < r � RLE ),

(A2)

where RLE and RLC are LE and LC domain radii, respectively.

a1, a2, and b2 are constants to be determined. Boundary con-

ditions of this problem are determined from the two require-

ments: (i) The displacement field vanishes at the boundary,

r = RLE of parent phase considered; (ii) the strain field is

continuous at the LE-LC phase boundary, r = RLC.

From the first condition,

a2RLE +
b2

RLE

= 0. (A3)

From the second condition,

a1RLC = a2RLC +
b2

RLC

. (A4)

From the above equations, we obtain the following coeffi-

cients:

For LC domain

a1 =
εs

2
. (A5)

For LE domain

a2 = −
b2

R2
LE

= −
εs

2

R2
LE

R2
LE − R2

LC

=
εs

2

ν

ν − 1
,

b2 =
εs

2

R2
LCR2

LE

R2
LE − R2

LC

=
εs

2

R2
LC

1 − ν
. (A6)

We note that the strain field uLE
r in the LE region is

expressed by the 2D strain εs within the LC region through the

boundary conditions. Since we are in the Hooke’s law regime,

the free energy of a deformed body F is obtained from the fact

that F is quadratic in the strain tensor [39]:

F = 1
2
σikuik, σik : stress tensor, uik : strain tensor. (A7)

The excess free energy of the LE region (RLC < r � RLE)

is (per unit area of the LC domain) as follows:

∴ �GLE
εs

=
1

2πRLC
2

∫ RLE

RLC

(σrrurr + σϕϕuϕϕ )2πrdr. (A8)

The stress tensor σik is [39]

σik = K0ullδik + 2μ0

(

uik − 1
3
δikull.

)

, (A9)

where K0 and μ0 are compression and shear moduli of the LE

phase, respectively.

The components of the stress tensor in cylindrical coordi-

nates are

σrr = K0(urr + uϕϕ ) + 2μ0

(

urr −
1

3
(urr + uϕϕ )

)

= 2a2K0 + 2μ0

(

a2

3
−

b2

r2

)

,

σϕϕ = K0(urr + uϕϕ ) + 2μ0

(

uϕϕ −
1

3
(urr + uϕϕ )

)

= 2a2K0 + 2μ0

(

a2

3
+

b2

r2

)

. (A10)

The components of the strain tensor in cylindrical coordi-

nates are

urr =
∂ur

∂r
= a2 −

b2

r2
,

uϕϕ =
∂uϕ

∂ϕ
+

ur

r
= a2 +

b2

r2
. (A11)
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Therefore,

∴ σrrurr + σϕϕuϕϕ

=

{

2a2K0 + 2μ0

(

a2

3
−

b2

r2

)}(

a2 −
b2

r2

)

+

{

2a2K0 + 2μ0

(

a2

3
+

b2

r2

)}(

a2 +
b2

r2

)

=

(

4K0 +
4

3
μ0

)

a2
2 +

4μ0b2
2

r4
. (A12)

Finally the excess free energy of surrounding LE region is

expressed as follows:

∴ �GLE
εs

=
1

2πRLC
2

∫ RLE

RLC

{(

4K0 +
4

3
μ0

)

a2
2 +

4μ0b2
2

r4

}

2πrdr

=
εs

2

2

1

1 − ν

{(

K0 +
1

3
μ0

)

ν + μ0

}

. (A13)

We see that the excess elastic energy �GLE
εs

of the LE ma-

trix is associated with the spontaneous 2D strain εs within the

grown LC domain weighted by the factor ν/(1 − ν) reflecting

the growth of LC domain. Similarly, from the excess free

energy of an LC domain (r = RLC)

�GLC
εLC

= �SF = 1
2
πRLC

2(σrrurr + σϕϕuϕϕ ), (A14)

it is (per unit area of the LC domain) as follows:

�GLC
εs

= 1
2
πRLC

2
(

4a2
1K0 + 4

3
μ0a2

1

)/

πRLC
2

= 1
2
K0εs

2 + 1
6
μ0εs

2. (A15)

Finally, the total excess elastic energy due to the develop-

ment of 2D strain field as the LE to LC transition proceeds, is

expressed as

�Gεs
= �GLE

εs
+ �GLC

εs

=
εs

2

6(1 − ν)
(3K0 + 4μ0)

=
K0εs

2

2

1 + γ0

1 − ν
, γ0 ≡

4

3

μ0

K0

. (A16)

This is the second term of �Gelastic in Eq. (1).

APPENDIX B: DERIVATION OF THE RESCALED

FREE ENERGY

Let us consider �Gρ in more detail below. In an isobaric

experiment carried out at some elevated π , by assuming that

the LE-LC phase boundary is linear in the π − T phase dia-

gram with a positive slope, dπc/dTc > 0 (Fig. 7), the critical

temperature for transition changes from T0 to T0 + dTc/dπcπ .

Thus we have

�Gρ =
1

2
a

{

T −

(

T0 +
dTc

dπc

π

)}

ρ2 +
1

4
Bρ4 +

1

6
Cρ6.

(B1)

FIG. 7. Schematic illustration of the relationship between

isothermal and isobaric measurements of an LE-LC phase transition

with a positive slope ∂πc/∂Tc > 0 for the phase boundary.

From Fig. 7, π dependence of the excess free energy

�Gρ can be derived by noting that at some temperature T

the transition surface pressure πc can be written as πc =

dπc/dTc(T − T0):

�Gρ = −
1

2
a

(

dTc

dπc

)

(π − πc)ρ2 +
1

4
Bρ4 +

1

6
Cρ6. (B2)

Equation (B2) gives the evolution of ρ with increasing π

under an isothermal condition. Replacing �Gρ in Eq. (1) with

that in Eq. (B2), we obtain an equation, providing the basis

for the analysis of chain tilt–2D strain effects on the LE-

LC transition under an isothermal condition. The interactions

between the polar heads can be considered to be involved in

π and εs implicitly. Since at equilibrium the monolayer must

be stress free, finding the minimum of the total excess free

energy in Eq. (1) with respect to θLC and εs, respectively, we

obtain ρ dependence on θ and εs:

θ = −
dρ2

Kθ

, (B3)

εs = −
eρ2

K0

1 − ν

1 + γ0

. (B4)

Thus, as ρ increases, the tilt angle decreases (molecular

tails orient more perpendicularly to the water surface) and the

negative strain increases at constant ν.

From Eqs. (B3) and (B4) we obtain the relation between εs

and θ :

εs =

(

Kθ

K0

)

( e

d

) 1 − ν

1 + γ0

θ. (B5)

For a finite ρ − εs coupling (e �= 0), the spontaneous 2D

negative strain grows as the tilt angle decreases at some

constant ν. Inserting Eqs. (B2)–(B4) into Eq. (1), we obtain

the following equation:

�G = −
1

2
a

(

dTc

dπc

)

(π − πc)ρ2

+
B

4

(

1 −
2d2

BKϑ

−
2e2

BK0

1 − ν

1 + γ0

)

ρ4 +
C

6
ρ6. (B6)
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The energy cost for the formation of LC phase should be multiplied by its area fraction ν. The free energy �Gν for the system

under the application of surface pressure is now expressed as follows:

�Gν = ν

(

−
1

2
a

(

dTc

dπc

)

(π − πc)ρ2 +
B

4

(

1 −
2d2

BKϑ

−
2e2

BK0

1 − ν

1 + γ0

)

ρ4 +
C

6
ρ6

)

. (B7)

Rescaling the order parameter ρ = (|B|/C)1/2ξ to simplify the above expression, we finally obtain the rescaled free energy,

�Gres
ν [Eq. (2)].
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