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Abstract. The measurement of atmospheric concentrations
by a monitoring network is a promising tool for the identi-
fication of the widespread sources of trace species. The pa-
per addresses the case of the species scattered linearly by a
known meteorology. The question is classical: what can be
said about the source from a set of measurements? Is it pos-
sible to guess from the values observed by the measurements
that the source is spread close to the detectors, or that the
tracer comes from a remote region? And, if the source was
a point source, would it be possible to understand it by just
considering these values? A part of the answers is a matter
of practical sense: the resolution with which an emission can
be retrieved will always be limited and probably lower for
a remote region, even if the detectors and dispersion model
are error free. The paper proposes a linear strategy of infer-
ence: to any set of values taken by the observed concentra-
tions is associated linearly an estimate of the source. Dou-
bled values lead to a doubled estimate. The method, based
on adjoint techniques, is intended to optimise the resolution
by quantifying, with the concept of illumination, which re-
gions are well, poorly or not seen at all. The illumination
tied to ordinary adjoint functions becomes excessive close to
the detectors thus leading to inversion artefacts. This may be
corrected by attributing each point of the space time domain
a geometric and statistical weight. The adjoint functions are
transformed. The choice of this renormalising function is
constrained by an unambiguous entropic criterion preventing
any overestimation of the available information that would
lead to artefacts. It amounts to evenly distribute the infor-
mation between the points organised with their weights as a
“known domain”. The theory is illustrated by calculations
performed with the experimental source ETEX1.

Correspondence to: J.-P. Issartel
(issartel@cerea.enpc.fr)

1 Introduction

The atmospheric transport of tracers, especially the linear
ones, is an active domain (Gallardo et al., 2002; Clerbaux
et al., 2003; Baklanov and Mahura, 2004) with many inves-
tigations about the inverse problems (Bousquet et al., 2000;
Rödenbeck et al., 2003). The natural interpretation of a mea-
surement goes through its adjoint function (Marchuk, 1992;
Robertson and Persson, 1993; Penenko and Baklanov, 2001).
When a tracer is known to originate from an unknown point
source, generally in an accidental context, the localisation
of this origin has been widely studied (Sharan et al., 1995;
Pudykiewicz, 1998; Seibert, 2001; Roussel et al., 2002; Is-
sartel and Baverel, 2003; Penenko et al., 2002). The recon-
struction of the widespread sources of such species as car-
bon dioxide, monoxide or methane is a more general and
very different inverse problem. It involves adjoint techniques
(Marchuk, 1964; Tarantola, 1987; Uliasz and Pielke, 1991;
Enting et al., 1995; Enting, 2000; Wotawa et al., 2003). At
the moment of the measurement the history of the sample
is concentrated in the detector. This results in singularities
(Ashbaugh et al., 1985; Stohl, 1998; Baklanov, 2000) hold-
ing the reconstruction of the source up. This corresponds
to the classical problem of data assimilation: how spread-
ing the local information to the whole system (Bouttier and
Courtier, 1999). The obstacle compromises the achievement
of the natural idea, based on the perturbation theory (Gram,
1879; Cheney, 1966; Marchuk, 1973), to use as base func-
tions of the inverse problem the adjoint concentrations of the
measurements. Bennett and McIntosh (1982) have proposed
to reduce the singular influence of the detectors by a system
of weights. This idea is taken again here through the con-
cept of illumination (Sect. 2). The latter was introduced in
(Issartel, 2003) to give the singularities a sense. The, influ-
ence of the detectors could then be efficiently controlled by
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250 J.-P. Issartel: Emergence of a tracer source from concentration measurements

means of weights empirically adjusted to the various parts,
in space and time, of the domain under investigation. The
present paper aims at understanding the geometric and sta-
tistical meaning of the weights and put their choice on non
empirical bases.

The method proposed hereafter (summarised in the
Sect. 3) is intended to improve the source estimation in gen-
eral. Its optimality is that of a compromise: not all possible
sources will be restored equally well. The question behind
the work is the following. The values µ1, ..., µn have been
obtained from concentration measurements at various posi-
tions and dates, the meteorological fields are known, there
exists no other piece of information, even indirectly, except
perhaps the positivity of the source: what best can be said ?
In particular, if a point source has been used to prepare artifi-
cial values of the measurements, it is hoped that the inversion
procedure will ’understand’ the source is a point by just con-
sidering the special set of values ofµ1, ..., µn. This aim of an
infinite resolution in space and time is clearly an impossible
wish with a few tenths, or thousands, of measurements. The
details will be necessarily smoothed out for lack of informa-
tion. A point will become a smaller or greater spot scattering
in space and time with a shape determined by the current
winds and diffusion. This smoothness of the estimation cor-
responds to a physical limit. Some calculations show that
the smoothing expected from the finite resolution of the cur-
rent meteorological models is not satisfactory. The use of the
weights enables to explore this limit. In fact they transform
the geometry of the space time domain with a new metrics, a
new weighted scalar product and new adjoint concentrations
(Sect. 5). The weighted geometry may as well be interpreted
with the introduction of virtual statistics (Sect. 6), hereafter
called anticipations, describing the outcome expected from
the measurements. Then, based on the idea that the part of
a source not seen by the inversion, somehow, does not ex-
ist, the weighted product is shown physically equivalent to a
fuzzy product no longer seeing points. The concept of illumi-
nation will enable to optimally adjust the weights according
to an entropic criterion preventing from an abusive and arti-
ficial use of the information (Sect. 7).

The quality of the estimation is limited through the
smoothness and fuzziness by the availability of the infor-
mation, it is also limited by the measurement errors due to
the technical performance of the detectors and to the repre-
sentativity of the dispersion model. There the present the-
ory drifts significantly from the usual background of assim-
ilation as the two limitations are considered fundamentally
different and independent. The smoothness and fuzziness
limitation with the statistics of the anticipations have noth-
ing to do with a classical error (Sect. 8). The fuzzy ver-
sion of the weighted product seems to compare well with
the background error covariance matrix of the classical the-
ory as both provide a local geometric description of the re-
gions well or poorly seen. Nevertheless the first one is cal-
culated directly from the meteorological conditions, position

and dates of the measurements independently of their effec-
tive values. The second one is related to a model of the source
with an a priori evaluation amended a posteriori once the val-
ues of the measurements are known. The equations of the
estimate turn out to be different. In particular the compro-
mise of the classical cost function between a source model
and the observations becomes irrelevant. In compensation
a new variable, the informational energy, may be defined to
foresee the good or poor identifiability of a source (Sect. 9).
This new quantity is shown to be pivotal in the interpreta-
tion of the estimate, with perhaps a greater relevance than
the estimate itself. It seems also that, through the informa-
tional energy, bridges open towards theoretical physics. The
geometry of the present theory is summarised by defining a
“known domain” where the information is evenly distributed
(Sect. 10). Finally (Sect. 11) the strategy is compared to the
first ETEX experiment with synthetic and real data. ETEX1
was a twelve hour point release (Brandt et al., 1997; Wen-
dum, 1998; Seibert, 2001). Nevertheless the method is pri-
marily devoted to the identification of widespread sources.
Thus the case of a Gaussian distribution in space and time
was investigated based on synthetic measurements. Syn-
thetic measurements were used as well to explore the be-
haviour of the method when a point source is very close
to some detector. This emphasises the requirement that the
monitoring network should be designed consistently with the
proper geometry and smoothness of the sources to observe.
The notations used throughout the paper are summarised in
the Table 1 where the physical units are given, different if the
sought source is spread in the volume of the atmosphere �
(case 1) or at the surface of the ground 6 (case 2). The many
scalar products used in the paper are listed there.

2 Reminder about the illumination

The mixing ratio of an atmospheric tracer in unit amount
of tracer per unit mass of air will be denoted χ(x) with a
space-time coordinate x=(x, y, z, t). In �, the atmospheric
domain, (x, y) is the horizontal position and z the altitude;
t is the date in the time domain T. Under investigation is
the source σ(x, y, z, t)=σ(x) of this tracer in unit amount of
tracer per unit mass of air and per unit time. We shall suppose
that there is a linear link χ=L(σ ) corresponding to the fol-
lowing dispersion law including a turbulent term ζ(χ) and a
term for linear creation or killing αχ describing for instance
a radioactive decay or a position dependent scavenging rate
α(x). The law must be adequately complemented by zero
boundary conditions. The wind is denoted v(x):

∂χ

∂t
+ v · ∇χ + ζ(χ)+ αχ = σ (1)

The concentration measurements µ1, .., µn used to infer σ
may be described in a very symmetric way. To describe the
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Table 1. Definition of the variables (uat: unit amount of tracer)

Variable Definition Unit, σ in �× T Unit, σ in 6 × T
R
n n copies of real numbers

R
n
+ n copies of positive numb.

S
n unit sphere of R

n

�× T space time domain
6 surface, sea or ground
C known domain
x = (x, y, z, t) space-time position m, s
χ tracer mixing ratio uat kg−1

ρ air density kg m−3

v wind vector m s−1

σ sought source of tracer uat kg−1 s−1 uat m−2 s−1

σ‖(x) = tµH−1r(x), σ+ rough estimates (linear, posit.) uat kg−1 s−1 uat m−2 s−1

σ‖f = tµH−1
f

rf , σ+
f

renormalised estimates uat kg−1 s−1 uat m−2 s−1

σ⊥f = σ − σ‖f non rebuildable part of σ uat kg−1 s−1 uat m−2 s−1

σ obs‖ϕ = tµobs H−1
ϕ rϕ estimate tied to µobs uat kg−1 s−1 uat m−2 s−1

σ est = Argmin J classical estimate uat kg−1 s−1 uat m−2 s−1

πi normal sampling funct. s−1 s−1

µ = µ(σ ) = t(µ1, .., µn) concentr. meas. tied to σ uat kg−1 uat kg−1

µ̂ = |σ 〉 =
√

H−1
ϕ µ recombined measurements uat kg−2 s−1 uat kg−1 m−2 s−1

µobs observed measurements uat kg−1 uat kg−1

δµ measurement errors uat kg−1 uat kg−1

µest = (I + QH−1
b
)−1µobs classical meas. estimates uat kg−1 uat kg−1

r(x) = t(r1, .., rn) st. adjoint concent. at x unitless unitless
rf i = ri

f
, rf = r

f
renorm. adj. concent. kg s m2 s

r̂(x) = |x〉 =
√

H−1
ϕ rϕ(x) recombined adjoint concent. unitless unitless

f (matirx form F) weight funct., matrix form kg−1 s−1 m−2 s−1

ϕ = Argmin det Hf best weight function kg−1 s−1 m−2 s−1

B cl. backgr. err. cov. matrix

bf =
................
σ(x)σ (y) (matrix form Bf ) cov. kernel of anticipations uat2 kg−2 s−2 uat2 m−4 s−2

H, hij = (ri , rj ) standard Gram matrix kg s m2 s
Hf , hf ij = (rf i , rfj )f renormalised Gram matrix kg2 s2 m4 s2

Hb, hbij = (rbi , rbj )b = triBrj classical Gram matrix
E(x) = tr(x) H−1 r(x) rough illumination at x uat2 s2 uat2 s2 m kg−1

Ef (x) = f (x) trf (x) H−1
f

rf (x), illumination tied to f at x kg−1 s−1 m−2 s−1

Sf renormalised entropy
Pf (σ‖f = Pf σ , kernel pf ) projector on the rf i , kernel unitless unitless

Q = δµ tδµ cov. matrix of meas. errors uat2 kg−2 uat2 kg−2

J (s) = tsB−1s + t(Rs − µ)Q−1(Rs − µ) classical cost function
R observation operator

(σ, σ ′) =
∫

ρσσ ′dx standard metrics
〈

σ, σ ′〉
b

= tσB−1σ ′ background error metrics
〈

σ, σ ′〉
bf

= tσB−1
f
σ ′ metrics tied to Bf

(σ, σ ′)f =
∫

ρσσ ′f dx renormalised metrics
〈

σ, σ ′〉
f

= (σ‖f , σ ′
‖f )f fuzzy renorm. metrics

〈

σ |σ ′〉 =
〈

σ, σ ′〉
ϕ

best fuzzy renorm. metrics
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Fig. 1. Geographic and time distribution of the two selections of measurements used for the calculations: upper two images, the 51 measure-
ment selection, lower two images the 137 measurement selection. The time t0 corresponds to the beginning of the pmch release in Monterfil,
23 Oct. 1994, 16 UT; the first sampling period begins at t0−3h. Different detectors are indicated by different symbols. The values in ng of
pmch per m3 are from the ETEX1 database. The ng.m−3 are indicated on a logarithmic scale except that all values less than 0.001 have been
represented as zero.

sample number i we need know how much air has been taken
where and when; a function πi(x) is introduced:

µi =
∫

�×T
ρχπi(x)dx (2)

The unit of the πi is tied to that of the µi . Here with the
µi described as mixing ratios, the πi will be normalised with
respect to the mass of the samples:

∫

ρπi(x)dx=1 . The
measurements behave like a scalar product:

µi = (χ, πi) = (L(σ ), πi) (φ, ψ) =
∫

�×T
ρφψdx (3)

By introducing the adjoint operator L∗ and the adjoint con-
centrations ri=L∗(πi) we obtain:

µi =
∫

�×T
ρσridx, −∂ri

∂t
− v ·∇ri + ζ(ri)+ αri = πi (4)

The derivation of the adjoint law for ri is described in (Is-
sartel and Baverel, 2003) with emphasis to the self adjoint
nature of ζ in the case of a time-symmetric turbulence; the
adjoint law must be complemented by the adjoint boundary
conditions which are in fact zero boundary conditions. A
linear combination σ‖ of the ri might be proposed as an es-
timation for σ . The coefficients would be obtained linearly

from the measurements after inverting the Gram covariance
matrix H of the ri :

µ =





µ1

:
µn



 λ =





λ1

:
λn



 H = [hi,j ] hi,j = (ri, rj )

σ‖(x) =
n

∑

i=1

λi ri(x) with λ = H−1µ

(5)

We shall use as well the following notations:

σ‖ = tλ · r with r(x) =





r1(x)

:
rn(x)



 ∈ R
n
+ (6)

As noticed in (Issartel, 2003) this strategy is not well defined.
Compared to the atmosphere the samples are very small so
that the ri display peaks by the position of the detectors. The
self interaction coefficients hi,i are very large; they are sin-
gular in the theoretical case of Dirac detectors. Calculations
with various resolutions show, on the Figs. 2, 3, 10, 11, that
the effect of the singularity persists even when the detectors
are modelled as large as one mesh. This failure was described
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Fig. 2. The figure represents the illumination on the first line, the source rebuilt for the ETEX release as a linear combination of the adjoint
functions on the second line, under positivity constraint on the third line; these variables are integrated in time for the whole duration of the
calculation performed with a horizontal resolution of 0.5◦ × 0.5◦. Synthetic values were used for the measurements, 51 in (a) and (b), 137
in (c) and (d). No correction of the illumination is made in a nor in c. The optimal renormalisation was performed for (b) and (d). The red
and blue numbers indicate the total amount in kg of the positive and negative releases respectively. The release is indicated by a dot and the
detectors by triangles.

Fig. 3. The figure represents the same calculations as the Fig. 2 now performed with a higher horizontal resolution of 0.25◦×0.25◦. The
synthetic values used for the inversion are nevertheless those produced by the previous calculation. Thus the same list of measurement values
have been inverted. Accordingly the figures differ only for the inversion which includes the calculation of the adjoint retroplumes.

in terms of a function of illumination E; the left superscript
t stands for the transposition:

E(x) = tr(x)H−1r(x) ≥ 0,

∫

�×T
ρ E(x) dx = n (7)

As H is a Gram matrix, it is positive definite and so is H−1.
The second equation is the trace of the definition 5 of H :
∫

ρH−1r trdx=I ; I is the n×n identity matrix. The matrix

M(x)=H−1r(x)tr(x) is the influence the inversion attributes
to a unit mass of ambient air around x: the contribution from
this point to measurements µ is estimated as ρ M(x)µdx.
The illumination E(x) is the trace of M(x) which enables
to interpret it as the share attributed to x of the n available

pieces of information. For a point seen by no detector E(x)
vanishes; in the neighbourhood of the detectors E(x) be-
comes large, all the larger as the detectors are smaller. This
bad geometry is transmitted to the estimate σ‖ as illustrated
by Figs. 2, 3a, c. In the case of gridded calculations this
geometry is finitely bad because the detectors, described by
at least a complete mesh, are finitely small. As the detectors
are much smaller a resolution refinement causes the illumina-
tion, and the source estimate, to more and more focus around
them. In the limit case of infinitely small Dirac detectors the
estimate reduces to infinitesimal sources inside the detectors
as nothing else is seen. This behaviour is illustrated by the
Fig. 3a, c compared to the Fig. 2a, c.

www.atmos-chem-phys.org/acp/5/249/ Atmos. Chem. Phys., 5, 249–273, 2005
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Fig. 4. Evolution of the renormalised illumination for the selections of 51 measurements in (a), 137 in (b). The illumination has been
integrated in time for five successive 24 h periods, the third one beginning 6 hours before and finishing 6 hours after the ETEX release. On
the figures bis this daily integrated illumination is transformed into a geometry by means of a radial transformation centred at Monterfil.The
figure b5ter was obtained with a centre of the radial transformation in the Danish islands. The distortions are less in b5ter than in b5bis but
the areas of the various regions are the same on both figures.

Fig. 5. Enlargement of the Fig. 4 b3bis with emphasis to the coastlines in black, especially close to the horizon in red. The regularisation of
the coasts has not been activated in order to better show the increasing instability of the calculation close to the horizon. In the subfigure the
triangles indicate the detectors operated during the 24 h period (see Fig. 4).

We proposed in (Issartel, 2003) to smooth the inversion
by introducing a renormalising function f (x)≥0 and a new
product ( , )f :

(σ, σ ′)f =
∫

�×T
ρ(x)f (x)σ (x) σ ′(x) dx

µi =
∫

ρf σ(x) rf i dx = (σ, rf i)f rf i(x) = ri(x)

f (x)

(8)

The estimate now becomes σ‖f :

Hf = [hf,i,j ] hf,i,j = (rf i, rfj )f =
∫

�×T
ρ
rirj

f
dx

λf = Hf
−1 µ σ‖f (x) = tλf · rf (x) (9)

This approach removes the peaks from the rf i . Indeed to f
and its scalar product are tied, through a modified version of
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Fig. 6. Daily integrated evolution of the source rebuilt for the ETEX release by means of renormalised adjoint functions. In (a) the source
rebuilt linearly for synthetic measurements is integrated on 24 h periods, and in (c) the source rebuilt under positivity constraints. The red
and blue numbers correspond to the total in kg of the positive and negative releases during the successive periods. The energy released
by both estimate is integrated on the same periods respectively in (b) and (d). This amount is indicated for the five periods as an absolute

value in 10−6
(

3.4 kg km−2day−1
)2

and as a percentage of the total energy release of the estimate. The dot and the triangles indicate the

ETEX release and the detectors when they are active. The figures (e), (f), (g), (h) are obtained similarly for the real values from the ETEX1
database.

the Eq. 7, a renormalised illumination Ef :

Ef (x) = f (x) trf (x) H−1
f rf (x)

∫

�×T
ρ f trf (x) H−1

f rf (x) dx = n
(10)

The inversion was clearly improved for the following empiri-

cal choice f (x)= max
[

E(x), Emax1000

]

inferred from the obser-

vation that around the detectors the illumination E decreased
a factor 1000 from its maximum value for irrelevant space
scales. The aim of the present paper is to put the choice of
the renormalising function on non empirical bases.
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Fig. 7. Results obtained for the selection of 137 measurements. The organisation of this figure is parallel to that of the Fig. 6.

3 Practical calculation of the estimate

This section describes the operations performed to reach
our estimates starting from the observations µ. The alge-
braic estimate is linear with respect to the measurements.
The positive one associated non linearly to a set of non
negative measurements is relevant when the sought source
is known to be purely non negative. The theoretical justi-
fications will be addressed mainly in the subsequent sections.

The first step is the preliminary calculation of the adjoint
functions ri . As passive tracers are considered the adjoint
Eq. (4) is just a retrograde version of the forward advection
diffusion law 1 and α=0. No adjoint model is required: the
forward model is handled with a backward reading of the
meteorological archives, the sign of the winds is changed, the
sign of the diffusion (and decay coefficient if any) is not. The
detector is generally modelled as sampling one complete grid
mesh. The accurate computation of the high values of the ri
inside the detectors is all the more avoided as the resolution
is low.

Atmos. Chem. Phys., 5, 249–273, 2005 www.atmos-chem-phys.org/acp/5/249/
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The second step is the determination of the optimal renor-
malising function that will be denoted ϕ. As will be seen, ϕ
is completely characterised by the following equation valid
for all x effectively seen:

r(x) 6= 0 H⇒ trϕ(x) H−1
ϕ rϕ(x) = 1 (11)

This equation means that in the geometry weighted by ϕ,
the illumination becomes homogeneous, all points become
equally well seen. Despite its forbidding appearance this
equation is easily solved by a few iterations of the following
empiric algorithm. We did not demonstrate mathematically
its observed efficiency. The iterative procedure may be ini-
tiated with f0(x)≡1 corresponding to the ordinary geometry
associated to the illumination tr(x) H−1 r(x). In fact, the
following problem is solved:

tr(x) H−1 r(x) ≥ β H⇒ trϕ(x) H−1
ϕ rϕ(x) ≃ 1 (12)

The algorithm works well provided to stand sufficiently
aside, with β, from the points not seen at all where r(x)=0.
The iterations are defined on the selected domain by:

fk+1(x) = fk(x)

√

trfk (x) H−1
fk

rfk (x) (13)

For the calculations presented here no more than nine
iterations led to 0.985≤trf9 H−1

f9
rf9≤0.995.

The third step is the calculation of the transformed adjoint
functions rϕi(x) = ri (x)

ϕ(x)
. The points poorly seen are dis-

carded by simply considering rϕi(x)=0. The influence of the
cutting parameter β illustrated by the Fig. 12 will be dis-
cussed later.

The fourth step is simply the calculation of the estimate

λϕ = H−1
ϕ µ σ‖ϕ(x) = tλϕ · rϕ(x) (14)

A fifth step may be added when the sought source is known
to be everywhere non negative. Even if the measurements
are all positive σ‖ϕ(x) may be locally negative. A posi-
tive estimate σ+

ϕ can be calculated according to the method
described in (Issartel, 2003). The reader is reminded that
σ‖ϕ(x) minimises the norm (σ‖ϕ, σ‖ϕ)ϕ under the constraint
that the measurements are satisfied. The positive estimate has
a minimal norm (σ+

ϕ , σ
+
ϕ )ϕ under the additional constraint to

be everywhere non negative. Its calculation is based on the
conjecture, symbolised below by the question mark, that:

σ‖ϕ(x) ≤ 0
?H⇒ σ+

ϕ (x) = 0, x ∈ �× T (15)

Iterating from σ‖ϕ=σ‖ϕ(0) , estimates σ‖ϕ(k) are obtained by
inverting matrices Hϕ(k) with the same definition 9 as Hϕ

except that the domain of integration is a part of �× T
shrinking to eliminate the negative parts of the successive
estimates. After some tenths of iterations the result always
successfully passes the necessary and sufficient optimality
conditions of Karush, Kuhn and Tucker (Rockafellar, 1970).

Nevertheless the conjecture was proved false by J.-B. Baillon
with a counter example reported in (Issartel, 2003).

The above operations imply the inversion of a number of
symmetric positive definite matrices. The matrices Hfk and
Hϕ successively considered in the second and third steps are
usually well conditioned but the conditioning of the matrices
Hϕ(k) of the fifth step rapidly increases up to unmanageable
values. The inversions were regularised by a Truncated Sin-
gular Value Decomposition (Bertero et al., 1985, 1988; Fan
et al., 1999). Practically the inversion of the little eigenvalues
was topped as reported in (Issartel, 2003). The estimates are
finally directly sensitive only to the square root of the regu-
larised conditioning which, accordingly, was chosen here as
large as 900.

The source of a pollutant emitted at the surface 6 of the
ground or oceans may be described as a release σs(x, y, t) at
the altitude zs(x, y) in unit amount of tracer per unit area and
time. The measurements become:

µi =
∫

6×T
σs(x, y, t) ri(x, y, zs, t) dx dy dt

=
∫

6×T
ϕ(x, y, t) σs(x, y, t) rϕi(x, y, t) dx dy dt (16)

This source will be investigated as a combination of
the renormalised restrictions rϕi(x, y, t)= ri (x,y,zs ,t)

ϕ(x,y,t)
with a

renormalisation of the domain 6×T .
The interest of the calculations rapidly described in this

section is illustrated by a number of figures. The Figs. 2 and
3 describe the stability of the renormalised inversion with re-
spect to an improvement of the resolution. The parts a, c, e,
g of the Figs. 6 and 7 describe in space and time the alge-
braic and positive estimates. The inversion of synthetic data
obtained from the model shows the performance of the inver-
sion because the model is then perfectly representative. The
gap between the synthetic and real inversions rather shows
the quality of the model and measurements. Nevertheless
the understanding of even these figures may not be complete
without an account of the theoretical justifications underlying
the calculations. This is the task of the following sections.

4 Calculations about ETEX1

The experiment ETEX, sponsored by the European Commis-
sion, was organised in 1994. A extensive description is given
in (Joint Res. Centre, 1998). It was originally aimed, after the
Chernobyl event in 1986, at validating the dispersion models
that would be involved in forecasting the extension of a pol-
luted plume. A first release ETEX1 was performed near the
village of Monterfil, 2◦ 00′ W, 48◦ 03′ N, Brittany, France. At
ground level 340 kg of an inert tracer, perfluoromethylcyclo-
hexane or pmch, were emitted on October 1994, between the
23 d, 16:00 UT and the 24 th, 04:00 UT. All over Europe 168
detectors delivered three hourly averaged concentration mea-
surements. These data are available from the Joint Research
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Fig. 8. The source σ rebuilt for 51 synthetic ETEX1 measurements is shown in (a) with the renormalised and usual geometries. The space
time density of informational energy is described by ϕσ 2

‖ϕ in the ordinary geometry but in the renormalised geometry of the known domain

it becomes σ 2
‖ϕ as shown in (b). The part (c) shows the variance δσ 2

‖ϕ of this estimate for 30% of relative Gaussian errors:
√

δµ2
i
=0.3µi .

The quantities σ‖ϕ , σ 2
‖ϕ and δσ 2

‖ϕ are represented 12 hourly at five moments without any time integration; the third moment is the middle
of the twelve hour ETEX1 release. The renormalised geometry is accounted for by a radial transformation, centred at Monterfil. As a help,

on the figures bis σ‖ϕ , σ 2
‖ϕ and δσ 2

‖ϕ are represented in the ordinary geometry; take care that in this ordinary geometry σ 2
‖ϕ is not a relevant

description of the energy. The dot and the triangles indicate the source and the detectors operated at the given moments.

Centre, Environment Monitoring Unit, Ispra (Varese), Italy
(web site http://java.ei.jrc.it/etex/database/). The second re-
lease ETEX2 performed later in November was considered
less successful.

The calculations proposed here, related to ETEX1, were
achieved for two selections of 51 measurements performed
by 6 detectors and 137 measurements performed on a wider
area and longer duration by 14 detectors. The measurements
of the first selection are included in the second one except for
half of those performed close to Monterfil by the station F2.
These selections with the concentrations really observed are
presented on the Fig. 1. The stations and measurements were
chosen to capture the evolution of the plume of pmch with
its edges. In particular, the series of zero measurements taken
by the station F8, Brest, should indicate a western limit of the

reconstructed release. This limit is not obtained so clearly in
the calculations because the series of measurements began at
13:00 UT, just three hours before the release. Data collected
earlier would have indicated zero concentrations so that it
would be justified to use artificial measurements. We did
not do it and the lack of data before 23/10/94, 13:00 UT is
expected to harm the quality of the inversion for the early
period.

In a first stage the adjoint concentrations ri were calcu-
lated in pure advection-diffusion with a time step of 15 min
by the compressible version of the model POLAIR3D. The
result was stored hourly at ground level. The calculation was
performed on a grid extending from 25◦ W to 30◦ E and from
43◦ N to 68◦ N.
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Fig. 9. Results obtained for the selection of 137 measurements. The organisation of this figure is parallel to that of Fig. 8. One may notice
in (b) that, corresponding to the positive and negative parts of the estimate, the informational energy is distributed into two regions separated
by a zero line. The zero line could not be seen on the Figs. 6, 7 due to the time integration. The extraction of the level contours from the
ordinary geometry was programmed using the marching squares algorithm (Lorensen and Cline, 1987).

In order to illustrate the influence of the resolution on the
inversion two sets of adjoint ri were prepared with a hori-
zontal resolution of 0.5◦×0.5◦ or 0.25◦×0.25◦. The retro-
plumes are emitted by detectors extending for three hours on
an entire mesh; so their size numerically depends on the res-
olution. Fifteen Cartesian levels were used with boundaries
at 0, 50, 100, 200,..,2300, 2600, 3000 m above ground or
sea level. The calculations with time reversal extended from
27/10/94, 07:00 UT back to 19/10/94, 00:00 UT. The six-
hourly meteorological data were produced by and obtained
from the European Centre for Mediumrange Weather Fore-
cast with the kind agreement of Météo France. The diffu-
sion was parametrised according to Louis (1979) and Louis
et al. (1982). POLAIR3D (Sartelet et al., 2002; Sportisse et
al., 2002; Boutahar et al., 2003) is the fruit of a close coop-
eration with the team in charge at Electricité de France of
the passive atmospheric transport model Diffeul (Wendum,
1998). It is a fully modular 3D Eulerian chemistry transport
model. Advection is solved with a flux limiter method; diffu-

sion is solved by a three point scheme. A general account of
the numerical treatment of the diffusion was given by Ouah-
sine and Smaoui (1999). Each adjoint concentration required
2 mn CPU time for the coarse resolution, 8 mn for the thin
resolution, on a PC (Pentium IV, 2.8 GHz, 1Go RAM).

In a second stage the inversion was performed according
to the method developed in this paper for a surface source at
ground or sea level. The period of time under investigation
extended from 19/10/94, 00:00 UT until 27/10/94, 07:00 UT
with a step of one hour. The area extended between 24.5◦ W
to 23.5◦ E and from 43.5◦ N to 67.5◦ N and both horizon-
tal resolutions were used, 0.5◦×0.5◦ or 0.25◦×0.25◦. Note
that the coarse and thin inversions were performed with the
same sets of synthetic measurements produced by the coarse
model. The comparison is accordingly freed from the direct
effect of the resolution on the measurements. Four sets of
data were used:
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1. synthetic values µs calculated with the resolution of
0.5◦ × 0.5◦ by POLAIR3D for both selections of mea-
surements and for the source ETEX1

2. real values µ from the ETEX1 database for both selec-
tions

3. synthetic values µg calculated in resolution 0.5◦ × 0.5◦

for the selection of 137 measurements and for an imag-
inary widespread Gaussian source

4. synthetic values µp of 137 measurements in resolution
0.5◦×0.5◦ for a point source of 340 kg close to or inside
the mesh of the station F2.

The reconstruction of a Gaussian source was prepared in
order to investigate the potential of the method with respect
to the widespread sources for which it is primarily designed.
The Gaussian source was placed in a space time region of
good illumination with a centre at 8◦ E, 49◦ N in space, on
24/10/94, 10:00 UT in time, six hours after the end of the
ETEX1 release. The total amount of the release was again
340 kg for characteristic length and duration l0=165 km,
τ=18 hours. This imaginary release was accordingly pro-
portional to the Gaussian distribution γ (l, t) for a distance l
and a date t measured from the centre:

γ (l, t) = e
− 1

2

{

l2

l0
2 + t2

τ2

}

(2π)
3
2 τ

1
2 l0

(17)

The reconstructions are complemented by a series of diag-
nostics described in the forthcoming sections: the use of a
renormalised geometry (Sects. 5, 6, 10), the response of the
estimate to measurement errors (Sect. 8), the informational
energy (Sect. 9). The images in the renormalised geometry
were prepared in vector format. The vectorial images are de-
fined with an accuracy independent of the visualisation tools
by contours, and the contours are defined as polygons by a
list of points. In our case the contours were tied to the coast
lines and to function levels. The emission, energy and vari-
ance levels had to be extracted from the ordinary geometry
as indicated in the comments of the Fig. 9. Each point of the
contours was then moved according to the Eq. (46). To this
end the function ϕ calculated with a space grid 96×48 was
interpolated on a much thiner grid 672×336.

The calculation time for the coarse inversion with 51
measurements was 2 mn 30 s CPU on a PC (Pentium IV,
2.8 GHz, 1Go RAM). With 137 measurements this time be-
comes 20 min. These delays are roughly multiplied by 4 for
the thin inversions. Most of this time is devoted to the iter-
ative calculation of the renormalising function. The calcula-
tion of the algebraic and positive estimates was organised in
order to require then a few additional seconds. The transfer
of the results into the renormalised geometry required a few
seconds of computational time.

5 Geometry and statistics

This section is a preliminary comparison of the function f in-
troduced in this work through geometric considerations and
the background error covariance matrix defined in usual as-
similation based on statistical arguments. We shall see that
the comparison meets a geometric obstacle and a statistical
one, both to be further investigated in the next section before
addressing the optimal choice of the renormalising function
in the Sec. 7.

The following geometric discussion is the starting point
of the comparison and will be later the basis of the trans-
formation, illustrated on the Fig. 4, of the illumination into
a curved geometry. The usual Eq. (18) of data assimilation
is traditionally presented in a discretised form with a finite
number νmax of meshes at mean space-time positions xν of
space-time weights dν (corresponding to the integral element
ρdx). We keep the same notation σ for the continuous source
σ(x) and the corresponding column vector integrated in each
mesh with elements: σν=dνσ(xν). Most often σ is rather in-
tended as the mismatch between the sought source and an a
priori estimate; µ is then the mismatch between the measure-
ments really observed and the values synthesised for σpri by
the available model. The inversion of µ1, .., µn is usually
addressed with a functional J . The estimate σ est of the un-
known real source σ is the source s minimising J (s):

J (s) = tsB−1s + t(Rs − µ)Q−1(Rs − µ)
〈

s, s′
〉

b
= ts B−1s′

(18)

The νmax×νmax covariance matrix of the estimation error or
background error matrix is B=σ tσ , the bar standing for the
statistical expectation. The related part of the cost function
defines a scalar product 〈 , 〉b. The n×νmax matrix R stands
for the observation operator, or rather, its linear or linearised
deterministic part; the lines of R correspond to our ri . The
measurements µ = Rσ+δµ include a noise described by
the n×n covariance matrix Q=δµ tδµ. This noise is due on
the one hand to the technical performance of the detectors,
on the other hand to the quality of the model from which R

is evaluated. So far the transport model and measurements
were considered perfect which amounts to taking an infinite
Q−1 and to minimising ts B−1s under the constraints that s
strictly obeys the measurements, Rs=µ.

In the present context there is no explicit a priori estimate.
It is possible to consider that the null source plays this role.
Accordingly, B=σ tσ might be seen as the covariance matrix
of the source investigated by the measurements.

The continuous descriptions of B and B−1 are
through inverse kernels b(x, y)=σ(x)σ (y) and b−:
〈

σ, σ ′〉
b
=

∫

σ(x)b−(x, y)σ ′(y)dxdy. The diagonal el-
ements of the discretised matrix B are, by definition,

bνν=σ 2
ν= (dνσ(xν))2. In the geometry of B−1 a vector

source is transformed as σ̃=
√

B−1 σ (Loren, 1988) in
such a way that tσB−1σ ′ becomes tσ̃ σ̃ ′ with the identity
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as new background covariance matrix. If B was diagonal
so would be B−1 with elements 1

bνν
. A source would

become σ̃ν= dνσ(xν )
bνν

and, in compensation of the simplified
background matrix, the weights dν of the meshes would be
replaced by dν√

bνν
. This diagonal example shows that B−1

transforms the subspace �×T of R
4 into a curved space

in which, as σ̃ 2
ν=1, the information is equally distributed.

Hence we shall say that �×T endowed with the product
〈 , 〉b is a version of the known domain. The non vanishing
off diagonal terms bνν′ of B−1 indicate a degree of confusion
between the meshes ν and ν′ that cannot be totally distin-
guished. When B−1 or the kernel b− are purely diagonal the
known domain will be called “separate”.

The strategy of the previous section amounts to minimis-
ing a norm (s, s)f=

∫

ρf s2dx under the constraints that s
strictly meets the measurements µi . The choice of f may
then be suspected to be somehow a hypothesis about the form
of B (in fact B−1) and 〈 , 〉b. The renormalising function may
be represented by a diagonal matrix:

F =





f 1

.

f νmax



 (19)

The straightforward link B=F−1 or 〈 , 〉b =( , )f is all the
more tempting as both objects are aimed at describing which
regions are well or badly monitored. There come the an-
nounced two obstacles.

The first obstacle is geometric. If B was diagonal the iden-
tification f ν= 1

bνν
could be reasonable. By definition F is di-

agonal but B−1 in general is not. This would imply a separate
geometry of the observed domain with vanishing correlations
σ(x)σ (y)=0 unless x=y.

The second obstacle is statistical. The definition of B with
the kernel b(x, y)=σ(x)σ (y) explicitly refers to some prob-
ability distribution of the source. These statistics are classi-
cally tied to the quality of some a priori model for the source
(besides the transport model). No source model enters the
definition of F. In the classical theory this a priori model is
generally not carefully provided because B can be iteratively
clarified by an a posteriori use of the measurements succes-
sively available. The Kalman-Bussy like procedure (Röden-
beck et al., 2003; Anderson and Moore, 1979) is based on
the statistics of the measurement errors due to the transport
model and detectors. But the context of F is error-free: the
transport model and detectors might as well be a perfect re-
ality.

In the next section both obstacles are explored. The geo-
metric one will be arranged by showing that ( , )f is physi-
cally equivalent to a non separate product 〈 , 〉f more reason-
ably identifiable to 〈 , 〉b. Because of the statistical obstacle a
link between B and F cannot be addressed as a mathematical
requirement, but rather as a physically motivated assumption
implying a hypothesis about the probability distribution of

the source investigated by the measurements. We shall nev-
ertheless obtain statistics of nature completely different from
the classical considerations about technical errors.

6 An assumption

The statistical obstacle above suggests that a probability dis-
tribution might be assigned to the source regardless of any a
priori model. Let’s use a dotted bar to denote such hypothet-
ical statistics based on which a covariance matrix or kernel................
σ(x)σ (y) might be defined. A source σ=σ‖f+σ⊥f may al-
ways be decomposed into its parts parallel and orthogonal to
the rf i :

................
σ(x)σ (y) =

......................
σ‖f (x)σ‖f (y)

+
.......................
σ‖f (x)σ⊥f (y) +

........................
σ⊥f (x)σ‖f (y)

+
.........................
σ⊥f (x)σ⊥f (y) (20)

with:
......................
σ‖f (x)σ‖f (y) = trf (x) H−1

f

........
µ tµ H−1

f rf (y) (21)

The last expression contains the measurement (or mismatch)

covariance matrix
........
µ tµ not to be mistaken for a measure-

ment error covariance matrix Q=δµ tδµ. If the information
available from the measurements is optimally used in restor-
ing σ‖f then σ⊥f is essentially unknown and undetermined.
The terms in the second line of the Eq. (20) should vanish and
also the term in the third line when x 6=y. The reasonable as-

sumption that
................
σ(x)σ (y) is a continuous function, combined

with the continuity of the Eq. (21), implies that
...............
σ⊥f (x)2

should vanish too. We think this inconsistency just means
that σ⊥f is not a relevant physical entity; about it nothing
is known, nothing can be said even statistically. Note that,
from a purely mathematical point of view, if the subspace of
the sources parallel to the rf i is well defined, that of the per-
pendicular sources cannot be defined in a unique unambigu-
ous way. A more physical point of view may be obtained by
decomposing ( , )f as:

(σ, σ )f = (σ‖f , σ‖f )f + (σ⊥f , σ⊥f )f (22)

The only term in this expression that may be calculated from
the observations is (σ‖f , σ‖f )f . The term (σ⊥f , σ⊥f )f is not
knowable so that its physical status is indeed questionable.
This discussion implies that if a statistics is to be introduced
to describe the sources likely to be observed, it depends on
the choice of f . Accordingly we denote appropriately la-
belled the covariance matrix and kernel as:

Bf , bf (x, y) =
................
σ(x)σ (y)

= trf (x) H−1
f

........
µ tµ H−1

f rf (y) (23)

Several points must be stressed. Firstly the statistics gives no
indication about the difference σ−σ‖f=σ⊥f which cannot
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be attributed here any physical relevance as a reconstruction
error. The statistics is relevant only for the n-dimensional
vector space containing the observable and rebuildable part
σ‖f . Secondly, the statistics depends on f which seems to
interfere now with the definition of the physical reality. This
is an indication that f should not be chosen arbitrarily as
discussed is the next section. Thirdly, the choice of f is not

completely constraining for the hypothetical statistics:
........
µ tµ

is still free. It is nevertheless clear from the Eq. (23) that Bf is
not diagonal, that the scalar product 〈 , 〉bf hereafter defined
parallel to the definition 18 is not separate as ( , )f is. Let’s
denote:
〈

σ, σ ′〉
bf

= tσB−1
f σ ′ 〈

σ, σ ′〉
f

= (σ‖f , σ
′
‖f )f (24)

The second above definition still provides a scalar product of
σ because σ‖f=Pf σ is a linear function. Denoted in matrix
form, Pf is an orthogonal projector, for ( , )f , on the observ-

able space spanned by the rf i : it is self adjoint and P2
f =Pf .

The kernel pf may be obtained by putting the form 8 of µ

into the expression 9 of σ‖f :

σ‖f (x) =
∫

�×T
σ(y)f (y) trf (y)H

−1
f rf (x) ρ(y)dy

pf (x, y) = f (y) trf (y)H
−1
f rf (x)

(25)

Despite their mathematical difference, ( , )f and 〈 , 〉f are
physically equivalent with restrictions explained in the
Sec. 9. In particular the rf i are adjoint to the measurements
for both ( , )f and 〈 , 〉f :

µi = (σ, rf i)f =
〈

σ, rf i
〉

f
(26)

The matrix associated to ( , )f is F, that tied to 〈 , 〉f is
PfFPf=PfF=FPf . This is no longer a full rank diagonal ma-
trix so that 〈 , 〉f is not a separate product. The following
identification becomes conceivable:

〈 , 〉f = 〈 , 〉bf or B−1
f = PfF = FPf (27)

As already stressed by the Sect. 5, this decision of the am-
biguous link between Bf and F cannot be demonstrated, it
must be admitted as a definition or as an assumption. The ar-
guments developed so far made it reasonable. It is made even
more consistent with the intuition by the resulting Eq. (29).

According to the assumption 27 the rank of B−1
f , bounded

by the number of measurements, is not full. The inverse no-
tation might be questioned but there will be no problem as
long as the very working space is that spanned by the rf i . As

B−1
f =PfF or Bf=F−1Pf with a diagonal F we get from the

Eq. (25):

bf (x, y) = trf (y)H
−1
f rf (x) (28)

Comparing with the Eq. (23) we find that the assumption 27
leads to expect measurement values according to a law with
a covariance matrix:
........
µ tµ = Hf or

.......
µiµj = (rf i, rfj )f =

〈

rf i, rfj
〉

f
(29)

In particular if two detectors have adjoint functions rf i , rfj
that do not overlap, the correlation between the expectable
measurements vanishes:

.......
µiµj =0. For the continuation the

Eq. (27) will be complemented by the assumption that the
measurements are expected according to a Gaussian law with

a covariance matrix
........
µ tµ = Hf and distribution:

qf (µ) = e
− 1

2

{

tµ H
−1
f µ

}

√

(2π)n det Hf
(30)

The geometric obstacle of the Sect. 5 that F is diagonal has
been overcome. The assumption 27 did not totally remove
the statistical obstacle because, contrary to the classical the-
ory, the statistics assigned to each function f are indepen-
dent of any a priori source model; Bf above does not fit with
the classical interpretation of a background error covariance
matrix B. The above statistics do not rely on technical er-
rors. They correspond to the following question before the
measurements are effectively known: which sources σ and
measurements µ we may expect to observe? The question
is independent of the technical quality of the detectors. This
makes sense: σ is supposed to exist independently from its
observation and from the quality of its observation. Once f
will have been optimised in the Sect. 7, we will propose to
designate these statistics with the word “anticipations”.

7 Intrinsically relevant information

The function f was introduced based on the idea that weights
could be attributed to the various parts of�×T in order to in-
terpret the measurements. In the Sects. 5 and 6 we realised
these weights also had a statistical meaning interfering with
the definition of a physical reality. This conclusion could
be perplexing but it happens that a unique function consis-
tently achieves the idea of a weight distribution. This unique
optimal renormalising function, denoted ϕ(x), will be seen
furthermore to minimise the information retrieved from the
observations thus avoiding such inversion artefacts as those
visible about the detectors on the parts a, c of the Figs. 2 and
3. The calculation of ϕ depends of the space time position
of the detectors and meteorological conditions. Shortly, it is
a function of the observation setup regardless of its techni-
cal quality (the measurement errors), also regardless of the
values effectively observed.

The renormalising function should be chosen among func-
tions of a given total weight, for instance and for the sake of
further clarity, n, the number of pieces of information. So f
will be termed acceptable provided that:

r(x) 6= 0 H⇒ f (x) > 0 and

∫

�×T
ρf dx = n (31)

The Eq. 10 shows the modified illumination Ef (x) to be an-
other acceptable weight. The weight Ef (x) is attributed to
x by the inversion based on the previous choice of a weight
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f (x). Hence the weighting strategy becomes inconsistent
unless Ef=f . Thus ϕ should be chosen in such a way that:

r(x) 6= 0 H⇒ trϕ(x) H−1
ϕ rϕ(x) = 1 i.e. Eϕ = ϕ (32)

This equation selects a unique optimal ϕ because, as shown
in Appendix A, it is the minimality condition for det Hf
which is positive and convex among all acceptable functions.
We may now unambiguously define as anticipations the dot-
ted statistics from the Sect. 6 tied to the present choice of
ϕ.

The minimality of det Hϕ may be obtained as a more phys-
ical entropic requirement. Roughly speaking, the amount of
information obtained from the measurements depends on the
choice of f and, in order to avoid inversion artefacts, this
amount should be minimised.

The entropy of an experiment with N discrete possibilities
having probabilities qi was formulated by Hartley (1928);
Shannon (1948) after the work of Boltzmann in statistical
thermodynamics:

S = −
N

∑

i=1

qi log qi (33)

The quantity − log qi measures the information got by an ob-
server discovering the result number i; it may be thought of
as the surprise of the observer, weak for very probable events
with qi≃1, and strong for improbable events. The entropy
of information 33 is the expectation of this information, it
measures the relevance of the experiment.

If the outcome of the experiment is a vector µ with a con-
tinuous probability distribution function q(µ) the entropy of
information generalises as:

S = −
∫

q(µ) log q(µ)dµ (34)

This generalisation is not as straightforward as it looks like.
An account of the problems may be found in (Hatori, 1958;
Middleton, 1960). The entropy of the Gaussian distribution
30 for µ1, .., µn with a covariance matrix Hf is:

Sf = n

2
log(2π)+ 1

2
log det Hf (35)

Thus, as det Hϕ is minimised by the condition 32, the aver-
age information expected from the measurements is minimal
for ϕ. We think the excess of entropy Sf−Sϕ≥0 tied to an-
other geometric choice would correspond to an artificial in-
formation and would lead to inversion artefacts. For instance
the entropy S1 tied to the standard geometry, f≡1, is indefi-
nitely large: the diagonal terms hi,i of the covariance matrix
H diverge thus outgrowing the off-diagonal ones. The mea-
surements, attributed artificially to the close environment of
the detectors, become pairwise independent. This explains
why on the Figs. 10d and 11d, when a higher numerical res-
olution shrinks the modelled detectors, the negative parts of
the non renormalised estimate vanish. The excess of entropy

with respect to the intrinsic minimum Sϕ measures our ex-
cessive surprise at discovering the estimates of the Figs. 2,
3 parts a, c. When the geometry is optimised the potential
sources away from the detectors are duly taken into account.

Let’s consider now two situations. In the first situation n
measurements µ1, ..., µn are performed. In the second situa-
tion, exactly the same measurements are performed plus one,
µn+1. Note that the subscript n+1 is not a chronological in-
dication that this additional measurement is done after the
other ones, it is just one more measurement. The first situa-
tion will correspond to an optimal renormalising function ϕn
and the statistics of the measurements will follow a n×n co-
variance matrix Hn. In the second case an optimal renormal-
ising function ϕn+1 will be obtained with a (n+1)×(n+1)
covariance matrix Hn+1:

Hn = [hn,i,j ] i = 1, .., n j = 1, .., n

hn,i,j = ........
µiµj

/n=
∫

�×T
ρ
ri rj

ϕn
dx (36)

Hn+1 = [hn+1,i,j ] i = 1, .., n+ 1 j = 1, .., n+ 1

hn+1,i,j = ........
µiµj

/n+1=
∫

�×T
ρ
ri rj

ϕn+1
dx (37)

The dotted bars for the statistical anticipations now bear an
indication of the situation under examination. There is no
reason why ϕn and ϕn+1 should be equal. Thus Hn does not
coincide with the n×n upper diagonal submatrix Hn+1/n of
Hn+1. The mere existence of µn+1 changes the anticipated
statistics of µ1, ..., µn. This is a at first sight a strange re-
sult. We could indeed imagine that we perform the additional
measurement but do not look at the result. This is of course
an effect of how the additional rn+1(x) will overlap with the
other ri(x) thus altering the system of weights distributed in
�×T.

Note that if rn+1(x) did not overlap at all with any of the
ri(x), i≤n, then the optimisation of ϕn+1 would split into
two separate optimal problems for the domains of rn+1(x)

on the one hand, of the other ri(x) on the other hand. And
then the identity Hn=Hn+1/n would stand. In the reality, two
retroplumes always overlap in an early enough past.

Surprisingly the optimal function ϕ is numerically ob-
tained by the simple and straightforward algorithm 13. This

algorithm might be read : fk+1(x)=
Efk (x)

√

trfk (x) H
−1
fk

rfk (x)
thus

combining the properties 32 and 10 of the limit ϕ=Eϕ and

ϕ(x)= Eϕ(x)

trϕ(x) H
−1
ϕ rϕ(x)

. It enables to obtain ϕ with any re-

quired accuracy and rapidly on any subdomain avoiding the
condition r(x)=0. Its efficiency was always verified though
no formal proof was found yet.

8 Anticipations and measurement errors

The best renormalising function ϕ generates the dotted an-
ticipated statistics about the future measurements µ that will
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Fig. 10. Reconstruction, with meshes 0.5◦×0.5◦, of a Gaussian surface source with renormalised adjoint functions corresponding to the
selection of 137 measurements. The daily integrated evolution of the source to be rebuilt is represented in (a) for five successive 24 h
periods. This source is centred at 24 Oct. 94, 10:00 UT, and at 8◦ E, 49◦ N in order to be well inserted among the measurements. The
characteristic length and duration of this 340 kg Gaussian release were 167 km, 18 h. In (b) and (c) the source is rebuilt out of renormalised
retroplumes respectively without and with a positivity constraint. In (d) the non renormalised algebraic estimate includes negligible negative
contributions, but is still lightly different from its positive analogue in (e) in the early poorly seen regions. The red and blue numbers indicate
the total amount, in kg, of the positive and negative releases during the successive periods with the active detectors indicated by triangles.
The results should be compared to the illumination shown by the Fig. 4b.

stem error free from the unknown real source σ . Thus the
future reality is made a statistical thing. The dotted statistics
are a property of the observational setup, describing which
values of the measurements could be expected to come out
related to which observable sources. For lack of knowledge
the average anticipation is

....
µ =0. The reading of the very

observations µobs closes the time of the suppositions as then
we learn µ=µobs . The anticipations, as a statistical interpre-
tation of the renormalised geometry, do not correspond to the
stage after the availability of the observations.

After the observations more classical statistics take over
related to the technical quality of the setup. The correspond-
ing averages are denoted with a solid bar. From µ that would
be ideally observed, µobs stray with a error δµ=µobs−µ.
This error accounts for the known limitation of the detec-
tor quality and may also account for the generally not so
well known limitation of the transport model representativ-
ity: δµ=δµd+δµt . If the error is unbiased, δµ=0. Thus,
once µobs has been read, the conditional expectation for the
ideal µ becomes: µ/µobs=µobs . The rebuildable part of the

source is observed with an error:

σ obs‖ϕ = tµobs H−1
ϕ rϕ δσ‖ϕ = tδµ H−1

ϕ rϕ

δσ‖ϕ(x) = 0 Q = tδµδµ

δσ‖ϕ(x)σ‖ϕ(y) = trϕ(x) H−1
ϕ Q H−1

ϕ rϕ(y)

(38)

This may be compared to the anticipation 28 rewritten:
......................
σ‖ϕ(x)σ‖ϕ(y) = trϕ(y)H

−1
ϕ rϕ(x) (39)

The Figs. 8c, 9c show the variance δσ‖ϕ(x)2 of the synthetic
reconstructions of ETEX1 for a total Gaussian uncertainty
representing 30% of the synthetic measurements. This is
twice as large as the 15% evaluated for the detector errors
(Joint Res. Centre, 1998) but probably not sufficient for the
error of representativity of the transport model. We also ig-
nored the correlated behaviour of the representativity errors
and handled the following diagonal covariance matrix:

Q = 0.09





µ1
2

.

µn
2



 (40)
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Fig. 11. Reconstruction of the same synthetic Gaussian source (a) as in the Fig. 10 with meshes 0.25◦×0.25◦. The algebraic and positive
reconstructions in (b) and (c) where renormalised retroplumes were used do not display important differences with the previous calculations
using meshes 0.5◦×0.5◦. On the contrary the non renormalised calculation in part (d) is very different: in the limit of an infinite resolution,
not only the estimate of the source tends to zero but also Dirac detectors become uncorrelated. Therefore the algebraic reconstruction in (d)
is already everywhere positive.

Note that the statistical law of the measurement errors may
depend on the observations, here the synthetic µi . The vari-
ance or covariance 38 are by no means an evaluation of σ⊥ϕ .
As already said in the Sect. 6, from the point of view of the
monitoring network σ⊥ϕ is exactly as if it did not exist and
this point of view would be ours if we could put all our in-
formation in the evaluation of σ‖ϕ . The above variance and
covariance just describe the uncertainty of the estimate stem-
ming from the uncertainty of the measurements. It is accord-
ingly natural to see that the variance evaluated on the Figs. 8
b3bis, 9 b3bis are not representative for the huge local differ-
ence between the ETEX1 point release and its estimate.

The same figures show weak errors in the regions poorly
seen. In the regions not seen at all there is logically no error:
there is no estimate. Though logical this result may upset the
common idea that the quality of an estimation would be lo-
cally described by a local level of error. This quality is also
tied to the sufficiency or insufficiency of the observations re-
sulting in a necessary smoothness of the estimate. This local
deficiency of information is not equivalent to an error which
in fact was already said when stressing in the Sect. 6 the
essentially unknown nature of the difference σ⊥ϕ=σ−σ‖ϕ .
This behaviour is proper to the observation of infinite di-
mensional systems. For a finite dimensional system it would
be possible to observe all the degrees of freedom and our
knowledge would be limited only by the quality of the ob-
servations. Our sources are not completely knowable with

a finite number of observations. Independently of the qual-
ity of these observations the infinite dimensionality still pro-
duces uncertainties described, we think, by the function ϕ.
The comparison on the Figs. 6 and 7 of the results obtained
for synthetic or real data shows that the smooth inaccuracy
of the estimate is mainly due to the insufficiency of the data.

These ideas suggest that the complete identification of the
usual background error covariance matrix B with the covari-
ance matrix of the measurement anticipations Bϕ could be
mainly a matter of reinterpretation of the first one. This iden-
tification, if it could be further justified, would enable a com-
plete computation of the matrix based on the position and
date of the measurements together with the current meteo-
rological conditions, instead of the usual a priori and a pos-
teriori approximations. There would still be the following
difference between the classical and present theories which
suggest, for the future, to investigate carefully their statistical
properties.

The observations µobs with their unbiased error δµ are di-
rectly linearly transformed into an estimate σ obs‖ϕ with a zero
mean error δσ‖ϕ . In particular the estimate would produce
measurements equal to the observations: (σ obs‖ϕ , rϕi)ϕ=µobsi .
This is because, contrary to the classical theory, the infor-
mation provided by the observations is not combined to an
priori evaluation of the sought source: there is none. Here
the a priori zero mean anticipation

....
µ = 0, or

...
σ = 0, is not a

model. It is not an information competing with µobs . It is on
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Fig. 12. During the calculation of the renormalising function ϕ, after the first iteration, the points x for which trf0(x)H−1
f0

rf0(x) is less than

a given threshold are removed from the iterations, and from the inversion, by prescribing ϕ(x) = 0. The present reconstruction of ETEX1
for 51 synthetic measurement is analogous to the previous one except that the cutting threshold is 1000 times more little. More points are
effectively considered. The parts (a), (b), (c), (d) of the figure should be compared to the Fig. 6a, b, c, d and its part e to the Fig. 8a. The
reconstruction looks somewhat different when the estimate is considered in the ordinary geometry. The difference vanishes in terms of the
informational energy. In fact the weight of the additional points is weak. The renormalised geometry and ϕ are almost unaltered and, when
the source estimate is considered in this geometry, the changes are shown to be unimportant.

the contrary a default value of µobs for lack of any informa-
tion until the reading. This zero says that nothing is known
about σ until the reading.

Through the minimisation of the functional J (s), Eq. 18,
the classical theory balances the information obtained from
the measurements against the information produced by an a
priori model of the source. Let Hb=RBtR. The classical esti-
mate σ est produces measurements µest=(I + QH−1

b )−1µobs

generally distinct from µobs ; see for instance the deduction
of Courtier (1997). Note that if we introduce in discrete ma-
trix form the functions adjoint for 〈 , 〉b to the measurements,
rbi=Bri , then Hb is the Gram covariance matrix of elements
〈

rbi, rbj
〉

b
=trbiB

−1rbj=triBrj .

9 The informational energy

The algebraic estimate may look disappointing on the Figs. 6,
7, even based on synthetic data. Its structure around the very
space time location of the ETEX1 release is correct consis-
tently with the space time density of the measurements. Nev-
ertheless the early contributions are excessive. The default,
mostly improved by the positive estimation, is, we think, in
the nature of the things, it must be understood and accepted.
The figures provide representations in the ordinary geometry
which is of an utmost convenience to us, but not to the moni-
toring network living in the geometry of 〈 , 〉ϕ . The estimates
σ‖ϕ , σ+

ϕ do belong to this geometry, not to the ordinary one.
The simplest way to account for this is by representing them
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in the renormalised geometry, which is made, according to
the explanations of the Sect. 10, on the Figs. 8, 9. There the
previously unsatisfactory parts of the estimates, in fact asso-
ciated to poorly illuminated regions, are much reduced.

These ideas enable to address the consequence of an im-
provement, i.e. a reduction, of the cutting threshold β in the
algorithm 12, 13. This would cause the effective involve-
ment of more regions into the calculations. The reduction
of a β already small enough would just add marginally seen
regions having a marginal importance. The Fig. 12 shows re-
sults obtained for a reduction of β by a factor of 1000 com-
pared to the Figs. 6 and 8. The respective estimates look
different when they are represented in the ordinary geome-
try. Their equivalence appears in the renormalised geometry,
itself practically unaltered.

This discussion finally leads to the conclusion that
it is inappropriate to consider such a total release as
∫

�×T ρσ‖ϕ(x) dx. This would amount to adding well and
poorly seen contributions. The integral might as well be di-
vergent. It is probably possible to consider total releases in-
tegrated for a limited subdomain having a uniformly good
illumination, but the very meaning of this should be further
investigated. We think that the only appropriate global inte-
gral quantity is

∫

�×T ρϕσ
2
‖ϕdx. This leads now to the defini-

tion of an informational energy.
The norm of a source was seen to decompose as:

(σ, σ )ϕ =
∫

ρ ϕ σ 2 dx = 〈σ, σ 〉ϕ + (σ⊥ϕ, σ⊥ϕ)ϕ

〈σ, σ 〉ϕ = (σ‖ϕ, σ‖ϕ)ϕ

(41)

Indirectly (σ, σ )ϕ is a measure of the amount of tracer re-
leased but not only. The total release may even vanish if
the positive and negative contributions compensate. Thus
(σ, σ )ϕ is also a measure of the structural complexity of the
source. The part of this complexity that may be captured by
the detectors is 〈σ, σ 〉ϕ ≤ (σ, σ )ϕ . From the point of view of
the detectors handled with the renormalised geometry, σ‖ϕ is
σ and 〈 , 〉ϕ is ( , )ϕ . Nevertheless the theoretician often puts
himself in the situation to know more about a source than the
information available from the measurements. For him ( , )ϕ
and 〈 , 〉ϕ are different. For instance we know the ETEX1 re-
lease but pretend in our calculations that we know only a few
measurements. We propose to use in this situation the fol-
lowing wording. The quadratic form (σ, σ )ϕ will be called
the informational energy of the source σ and we shall say
that 〈σ, σ 〉ϕ =(σ‖ϕ, σ‖ϕ)ϕ is the part of this energy captured

by or interacting with the detectors. Then ϕ(x)σ (x)2 will be
the density of energy per unit mass around the space time po-
sition x in the ordinary geometry where the elementary mass
is ρdx. In the renormalised geometry, the element is ρϕdx
and the density of informational energy is simply σ(x)2. So,
contrary to σ‖ϕ(x), the new quantity undergoes natural trans-
formations according to the geometry chosen for its repre-
sentation. Its interest is shown in the ordinary geometry by

the Figs. 6, 7, in the renormalised geometry by the Figs. 8,
9. The density of informational energy captured by the mon-
itoring network, especially in the positive case, is unambigu-
ously focused in space and time by the position of the point
release ETEX1.

The present theory seems to display links with theoretical
physics. The entropic constraints 32 may be indeed related,
according to how it is looked at, either to the general relativ-
ity, or to the quantum theory.

The criterion, in its form Eϕ(x)=ϕ(x), involves ϕ defined
as a geometric weight or mass attributed to the ordinary ge-
ometry while its illumination Eϕ(x)=ϕ(x) trϕ(x)H−1

ϕ rϕ(x)

behaves like a density of energy. This is an evocation of
the general relativity, E=mc2, relying on interpretations of
Eϕ and ϕ to be supported by further investigations probably
based on tensor analysis.

The link with the quantum theory was already suggested
by the discussion at the end of the Sect. 7. The following
notations will be convenient to better see the relevance of the
comparison. To any position x and any source σ , producing
measurements µ, we associate the following vectors in R

n

with a double notation as standard vectors and a quantum
notation as “bras” or “kets”:

r̂(x) = |x〉 =
√

H−1
ϕ rϕ(x) 〈x| = tr̂(x)

µ̂ = |σ 〉 =
√

H−1
ϕ µ 〈σ | = tµ̂

........
µ̂ tµ̂= I

(42)

This linear recombination enables to have the identity matrix
as the covariance matrix of the measurement anticipations.
Then we obtain for sources σ , σ ′ producing measurements
µ, µ′, and for space time positions x, y:
〈

σ, σ ′〉
ϕ

= tµ H−1
ϕ µ′ = tµ̂ µ̂

′ =
〈

σ |σ ′〉

trϕ(x) H−1
ϕ rϕ(y) = tr̂(x)r̂(y) = 〈x|y〉

σ‖ϕ(x) = tµ H−1
ϕ rϕ(x) = tµ̂ r̂(x) = 〈σ |x〉

(43)

The pivotal point is the form taken by the entropic constraint
32 for a positional vector:

〈x|x〉 = 1 (44)

The recombined vectors r̂(x)= |x〉 are thus analogous to the
pure states of a quantum system. This supports the inter-
pretation of the renormalisation as an equipartition of the in-
formation. A reader not familiar with this theory may con-
sult the presentations by Kholevo (1980) or Fano (1967). It
is now justified to investigate more accurately the connec-
tions between data assimilation and the statistical formalism
of the quantum theory. If a vector r̂(x)= |x〉 is considered as
a source σx(y)=tr̂(x)r̂(y), the integral form of its norm 44
becomes:
∫

〈x|y〉2 ρϕ(y)dy = 1 (45)
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Hence the density of informational energy 〈x|y〉2 of the
source |x〉 at the position r̂(y)= |y〉 might as well be re-
garded as probability distribution for the unit amount of en-
ergy 〈x|x〉 =1. Accordingly |x〉 behaves like a wave function
for this energy. This would account for the impossibility to
retrieve a point release at the position x with an infinite res-
olution.

10 The known domain

The transformation x 7→ |x〉=r̂(x) may be regarded as a
mapping or coordinate change sending �× T, onto a four-
dimensional submanifold C of the unit sphere S

n of R
n. This

submanifold, endowed with its ordinary Euclidean geometry,
gives the best natural account of the information: no renor-
malisation is necessary for it.

Indeed as a result of the renormalisation the probabil-
ity distribution 30 is constant for all vectors µ̂ ∈ S

n,
qϕ(µ̂)=(2π)−

n
2 which means that the parts of S

n are mea-
sured proportionally to their (n-1)-dimensional Euclidean
volume. As a submanifold of S

n, C is endowed with
the 4-dimensional Euclidean geometry inherited from the
(n-1)-dimensional Euclidean geometry of S

n. This im-
plies that the Jacobian function g of the transformation,
dx=g(r̂)d r̂ , is equal to ϕ−1 in order to transform the mea-
surement µ̂i=

∫

�×T σ r̂iϕρdx into the Euclidean integral:
µ̂i=

∫

C
σ r̂iρd r̂ .

The geometry of C cannot be represented on a sheet of pa-
per. The main problem is that C is embedded in R

n. This
geometry was obtained from the ordinary geometry by at-
tributing the point x of the ordinary domain �× T a weight
ϕ(x). It is possible to obtain a satisfactory account of this
selected property. We just have to find some mapping from
R

4 into itself with ϕ as Jacobian function. The Figs. 4, 5, 8,
9 and 12 were built as follows. As the source was investi-
gated at the surface 6 of the ground or oceans, the working
domain was in fact 6×T . Then, for some selected moment
t0 we obtained an illumination ϕ(x, y, t0). For the Figs. 4
and 5 the illumination was averaged on 24 h periods. It was
then very easy to obtain a two-dimensional transformation of
6 with the given Jacobian ϕ(x, y, t0). To this end the Carte-
sian coordinates (x, y) are first replaced by polar coordinates
(l, θ) for some given centre. Then, with θ kept unchanged, l
is transformed into l′ according to the following differential
equation which provides the adequate transformation of the
surface and time element:

dl′2 = ϕ(l, θ, t0) dl
2

dθ l′dl′dt = ϕ(l, θ, t0) dθ ldl dt
(46)

The representation obtained this way is just an approximation
of the known domain but it emphasises several points.

Firstly, the known domain is finite. Its total weight is the
number of measurements. On the distorted maps obtained

for Europe on the Figs. 4, 5, 8, 9, 12 an edge or horizon is
clearly visible.

Secondly the illumination is important in the space-time
neighbourhood of the detectors. This produces flare shaped
excrescences on the figures. The detailed behaviour cannot
be investigated by numerical tools; we think that ϕ should
display a square summable singularity by the point detectors.
No flare is visible on the subfigures 4 a1bis, a2bis, b1bis,

b2bis corresponding to periods of time with no active detec-
tor. In the very geometry of C each flare corresponds to a
deep cone with, locally, a symmetric arrangement around a
detector in the bottom of the cone.

Thirdly there is an intermediate region between the “deep”
detectors and the remote horizon. In this region the distortion
is not so big and the European coastline is well identifiable.

Fourthly the regions away from the detectors become
smaller and smaller. We think this corresponds to the well
known conic illusion that a remote object looks smaller. The
coast of Iceland, of the Iberian peninsula, of Scandinavia fi-
nally become chaotic zigzags along the horizon. This is il-
lustrated by the Fig. 5. A source of tracer there will be more
and more difficult to capture with the measurements.

The approximate representation for the known domain
puts all the distortion on the space coordinates (x, y). It
should be noted that in the finite geometry of C the distortion
with respect to the ordinary geometry necessarily touches t
as well. The following arguments even suggest a severe con-
traction of the time close to the horizon. The measurements
performed for ETEX cover a period of time of 90 h. The
adjoint functions ri of these measurements behave like retro-
plumes transported back in time by the winds and scattered
by the diffusion. Due to the diffusion, the regions far away
will have been passed over by the retroplumes during periods
of time all the larger than the original 90 h as they lie further
away from the monitoring network. This means in turn that
the 90 h measurements will have captured a part of existence
of these remote regions representing more, possibly much
more, than 90 h. Just as if, by sitting in the countryside for
one hour and looking far enough, we could see a tree grow-
ing from a seed, have fruits and die. One may for instance
consider that, at times preceding the states represented on
Fig. 4a1, b1, the illumination extends through the Atlantic
ocean to North America. At these times the retroplumes are
so flattened and homogenised that their ability to discrimi-
nate the structural details of a source there and then is purely
residual. Accordingly the contribution to the known domain
by the long passing of the adjoint functions above this conti-
nent should reduce to a tiny spot. Due to the scarcity of the
information in the space-time regions close to the horizon,
the very structure of a source there is lost in practice. The
image of the growing tree was idealised: with the logical
connections mostly cancelled by the scarcity of the informa-
tion, we would rather see a chaotic agitation of seeds, fruits
and branches.
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11 Results

obtained from the calculations described in the Sect. 4 for
the estimation of the source ETEX1 may be summarised as
follows. The Fig. 2 is a comparison of the results obtained
with the ordinary geometry and with a geometry transformed
by the optimal renormalising function. The adjoint functions
ri were calculated with a horizontal resolution of 0.5◦×0.5◦.
The illumination, algebraic and positive estimates are inte-
grated in time for both selections of synthetic measurements,
without or with renormalisation. The comparison of the sub-
figures 2 a1 and b1 or c1 and d1 shows a much better and
wider distribution of the illumination in the renormalised
case. Contrary to our expectation, the optimised illumina-
tion is not flat around the monitoring network. It still dis-
plays peaks, of a lesser intensity, around the detectors. The
quality of the renormalised estimates is clearly improved.
The maximum releases are no longer obtained by the po-
sitions of the detectors, they are found close to Monterfil.
The magnitude of the total amount is now correct, closer to
340 kg in the positive case. The Fig. 3 corresponds to the
same description except that the calculation of the ri and the
inversion were performed with a higher horizontal resolu-
tion of 0.25◦×0.25◦. The meteorological fields were sim-
ply interpolated and the inversion was based on the same
synthetic measurements produced by the coarsest resolution.
The renormalised results display a noticeable stability with
respect to the improvement of the resolution. On the con-
trary the non renormalised inversion is clearly more focused
around the detectors with surrounding releases decreased by
at least a factor two.

The Fig. 4, prepared in resolution 0.5◦, illustrates the geo-
metric meaning of the optimal renormalising function ϕ co-
inciding with its own illumination. The time evolution of the
known domain C is represented for five successive days by
the flat approximations corresponding to a radial transforma-
tion centred at Monterfil, except for the subfigure 4 b5ter.
The known domain is finite, limited by a space time horizon
in red on the figures. The effect of aperture from the subfig-
ures 4 a1bis to a3bis or b1bis to b3bis illustrates as well its
finite extent in the past. The known domain is finite towards
the future, nothing is known after the end of the last measure-
ment. This shutting is visible on the subfigure 4 a5bis. The
comparison of the parts a and b illustrates the influence of
a greater number of measurements. In particular the second
selection includes many measurements for the fifth period
and the known domain is still wide open. At that moment
the illuminated cloud is shifted to the north east and a radial
transformation centred in the Danish islands produces on the
subfigure 4 b5ter lesser distortions than may be seen in b5bis.

The finite extension of the known domain does not mean
that finitely many regions are seen. It means that large, pos-
sibly infinitely large remote regions of the space time domain
will be attributed a residual information weight. As an illus-
tration Iceland is reduced on the Fig. 5 to a thin zigzag along

the horizon, close to Ireland.
The quality of the algebraic sources rebuilt on the Figs. 6

and 7 is better for the periods including and following the
real twelve hour release. As already shown by the Fig. 4 the
region of Monterfil is better seen during the period after the
release than before. The tracer contribution from the early
poorly seen regions is overestimated. The overestimation of
the first two periods could mean that there is not enough in-
formation in the selections of measurements to decide be-
tween a smaller close source or a bigger one further away.
This interpretation may be compared to the impossibility to
estimate the distances and the real dimensions of the stars
with the naked eyes. A valuable correction is brought by the
positivity constraint. The representation of the informational
energy displays a surprisingly well peaked structure by the
space time position of the very release. This may be under-
stood because in the ordinary geometry the density of energy
ϕσ 2 is a compromise including the renormalising or illumi-
nation function which is weak during the first two periods.
The comparison of the Figs. 6 and 7 mainly shows that, due
to a greater number of measurements the reconstruction from
the real data is subject to more model errors. These are seen
on the subfigures f4, f5, h4, h5 in the form of peaks of energy
by the positions of the detectors.

For the synthetic inversions the focus of the energy in the
appropriate part of the known domain is even clearer in the
renormalised geometry of the Figs. 8, 9, part b. Note that
the total duration covered by these figures is 48 hours instead
of 120 for the previous ones. The comparison of the subfig-
ures 8b3, b4, 9b3, b4 indicate a better focus in time for the
selection of 51 measurements and in space for the selection
of 137 measurements. The most interesting comparison is
between the part c of the figures describing the variance of
the estimate as a result of measurement errors representing
30% of the signal. The variance associated to 137 measure-
ments is roughly three time less than the variance associated
to 51 measurements. In both cases the variance is one order
of magnitude below the informational energy. This suggests
that the difference shown by the Figs. 6 and 7 between the
sources rebuilt out of synthetic or real measurements is due
mostly to the model errors.

The algebraic and positive reconstructions of a widespread
source on the Fig. 10 for a resolution 0.5◦ and on the Fig. 11
for 0.25◦ support the above conclusions. The non renor-
malised inversion is considerably changed, more focused
around the detectors for the thinnest resolution. The alge-
braic estimate is essentially positive and coincides with the
positive one almost in the coarse case and completely in the
thin case. This is not a good indication: it means that the cor-
relations between the measurements are ignored. The com-
parison shows again the stability of the renormalised inver-
sion. The general features of the source are recovered, the
total amount of the release for each period is retrieved within
a factor two. There is still an overestimation of the early re-
leases, when the illumination is low. Again this aberration
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Fig. 13. The source ETEX1 is located in Monterfil, 163 km or five
meshes of 0.5◦, west of the station F2 in Alençon. The figure repre-
sents the time integrated algebraic and positive inversions for the 51
synthetic measurements produced by a source of 340 kg (a): 65 km
or two meshes west of Alençon, (b): in Alençon. These releases are
still spread on 12 h starting from the 23 October 1994, 16:00 UT. For
a synthetic source in Monterfil the four measurements by F2 during
these 12 hours would have an average value of 2.7 ng.m−3. This
value goes up to 15.4 ng.m−3 in the case (a) and to 99.3 ng.m−3

in the case (b). The other detectors are not significantly affected.
The red and blue numbers indicate the total amounts, in kg, of the
positive and negative estimated releases.

is mostly corrected by the positivity constraint. It must be
noted that the quality of the estimate is better in the close en-
vironment of the active detectors. This is very visible with
the deep low valued indentation tied to the station F8, Brest,
on the subfigures c3, c4, d3, d4.

The Fig. 12 emphasises the meaning of the theory. It
shows the same synthetic calculations tied to 51 measure-
ments as previously the Figs. 6 and 8. Nevertheless in the
implementation of the condition 12 the cutting threshold β
is reduced by a factor 1000 so that some additional poorly
seen regions are effectively included in the inversion. In the
ordinary geometry the important differences of the algebraic
estimates observed on the Figs. 6a, 12a completely vanish in
terms of informational energy on the Figs. 6b, 12b. The com-
parison of the Figs. 8a and 12e shows a lack of consequences
of the reduction of β on the following two points. Firstly the
renormalised geometry is not significantly altered. Secondly,
when they are considered in the renormalised geometry, the
algebraic estimates no longer display significant differences.

The Fig. 13 explores the effect of a point source close to
a detector. When the source is put nearer and nearer the es-
timation becomes clearly divergent. In fact, when the source
is put inside the detector, it is not the inversion which is di-
vergent, it is the value of the measurements to which the es-
timation is linearly tied: σ est=

∑

µig
i for some gi(x) with

(ri, g
j )=δji (Kronecker’s symbols). A point source inside

the detector is a highly “improbable” configuration not in-
cluded in the optimally smooth inversion compromise. When
the inversion is adequately smoothed the source is investi-
gated at space and time scales consistent with the relative

arrangement of the detectors. This means that if the distance
between two detectors is typically 1000 km then any set of
measurements will be interpreted in terms of a source at the
continental scale with all other details smoothed as irrele-
vant. Then, if somebody scratches a match just in front of
a detector, we shall logically conclude that the Amazonia is
burning! Indeed the presence of an important point source
much closer to a detector than the typical distance between
two detectors is a serious disturbance and should be avoided.

12 Discussion and perspectives

The inverse technique proposed in this paper processes at
once all the measurements available at all times in order to
retrieve a source σ‖f with its complete time evolution. In this
respect, it could be classified four-dimensional variational
assimilation (Bouttier and Courtier, 1999). The evaluation
of the estimation quality follows nevertheless an unusual
scheme resulting from the distinction proposed between the
measurement anticipations and the measurement errors. This
evaluation is illustrated by the Figs. 8, 9. The simultaneous
assimilation of all the data may also be regarded as a new
feature. In classical assimilation the data are divided accord-
ing to successive dates or periods and assimilated sequen-
tially with a parallel improvement of the background error
covariance matrix. In the present theory the measurements
are jointly processed because they are all correlated as de-
scribed by a background matrix of anticipations calculated
from their positions and dates and from the meteorological
conditions. An additional measurement obtained days later
will not only be correlated with the measurements previously
available, but also will change the correlations between the
previous measurements. The assimilation will be non lin-
early altered and improved. Though logical this attitude will
lead to a problem when the number of observations will be
daily increased by the operation of a regular network. The
difficulty may probably be solved reasonably as the correla-
tion between two measurements becomes negligible if they
are separated by a long delay. The results presented here
show it is worth trying.

The calculation time required by the present method is
probably larger, but reasonably, than required by a more tra-
ditional approach. Anyway the most costly stage is the pre-
liminary calculation of the adjoint functions. As for the in-
version itself, the time is roughly multiplied by the number of
iterations towards the renormalising function as each require
the calculation of one covariance matrix of size the squared
number of measurements. The requirement that all the mea-
surements be processed together has just been discussed. In
compensation the method enables to describe wich regions
should be really concerned by the inversion. This will pro-
vide a criterion to reduce considerably the calculations to the
most relevant meshes in space or time.
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The comparison with the usual assimilation is so far in-
complete because it is uneasy to compare the underlying dif-
ferent logics. The classical theory is organised as the quest
of a source considered both real and unknown. In the present
framework there is no further reality than the measurements
and the meteorological fields. The quality of the estimation is
limited in terms of smoothness and fuzziness by the availabil-
ity of the information. This limitation is not an error because
it does not represent a lag between the estimation and the re-
ality: the estimation is the reality. The debate is not purely
theoretical, the calculations presented here showed that the
quality of the estimate was limited by the availability of the
information more than by 30% of errors. The use of real
data, containing both measurement and model errors, did not
considerably degrade the synthetic inversion. This suggests
that the errors are not preponderant in limiting the quality of
the estimation. A numerical comparison of the theories, not
done here, should certainly shed a useful light. This extreme
point of view that the estimation is the reality is consistent,
but the ways to relax it ought to be investigated. The a priori
information that the source is positive was seen to consider-
ably improve the estimate. Other a priori information might
be included in the usual framework based on Kalman’s fil-
tering (Rödenbeck et al., 2003; Anderson and Moore, 1979),
not yet in ours: the source lies rather here than there, varies
slowly in space or time, is periodic.

Another difference is the absence in the present framework
of a model of the source. Hence the information obtained
from the measurements is not balanced with that from such
a model. In particular the a priori expectation, called here
anticipation, that the observations and the observed source
should vanish in average, is not considered a piece of infor-
mation. On the contrary, it is considered an absence of in-
formation, absence cancelled by the measurements when the
results are known.

The definition of a “known domain” is both natural and
useful. It is natural because the intuition perfectly agrees that
the relevance of a set of data cannot extend indefinitely. And
it is a useful diagnostics about the sufficiency and adequacy
of a monitoring network. The known domain is a strange
object. The measurements are combined to produce an es-
timate regardless of the precedence of the ones compared to
the others. The idea of a time flying seems to vanish. In
the known domain what would be the meaning of a ket |x〉
’before’ a ket |y〉? Keys would probably arise from an in-
vestigation of the form taken by the transport equation of the
tracer after the transformation from the ordinary geometry.
A transport equation should also be established for the in-
formational energy. These investigations will require a better
representation of the known domain than the above flat radial
transformations. It seems that the complete description of its
four-dimensional geometry embedded in a higher dimension
is a matter of tensor analysis (Raschewski, 1953). This would
enable to further explore the aforementioned analogies with
the theoretical physics, the general relativity and quantum

theory. In order to proceed more easily we neglected to intro-
duce dimensional constants in the identification 27 of ( , )f
with 〈 , 〉bf and in the formula 35 for the entropy with the
evaluation of a logarithm for det Hf . This does not alter the
logics of the paper, except that it is natural in physics to un-
derstand the meaning of such constants with their logics and
consequences.

It must be noted that the increasing development of non
linear chemistry transport models (Mallet and Sportisse,
2004; Quélo, 2004) is a field of application of inverse tech-
niques, in the hypothesis of linear perturbations. In the case
of the present strategy, this would mean that the link is lin-
ear between the expectable mismatch of the sought source
compared to an a priori estimate on the one hand and on
the other hand the expectable mismatch of the measurements
compared to their a priori values.

The word “renormalisation” was chosen by analogy with
the theory of quantum electrodynamics where it designates
the removal of an unphysical infinity by means of an infinite
additive correction.

A: Least entropy renormalisation

We want to prove that, under the requirements 31, f (x)>0,
∫

�×T ρf dx=n, the condition 32, trf (x)H
−1
f rf (x)≡1 is

equivalent to minimising det Hf . We shall prove too that the
function det Hf is strictly convex among the acceptable f so
that it reaches a global minimum previously denoted ϕ.

Let’s discretise the domain �×T into a number νmax of
meshes, like in the Sects .5, 6, with now the following nota-
tions: xν and dν are the space-time position and space-time
mass (the mass multiplied by the duration) of the meshes,
rνi =ri(xν), f ν=f (xν), rνf,i=

ri (x
ν )

f (xν )
etc. The discretisation

can be made as thin as possible so that the results are valid
for the continuous problem. With these notations the matrix
Hf may be written:

Hf = (47)



















d1 r
1
1 r

1
1

f 1 + d2 r
2
1 r

2
1

f 2 + .. , d1 r
1
1 r

1
2

f 1 + d2 r
2
1 r

2
2

f 2 + .. , ......

d1 r
1
2 r

1
1

f 1 + d2 r
2
2 r

2
1

f 2 + .. , d1 r
1
2 r

1
2

f 1 + d2 r
2
2 r

2
2

f 2 + .. , ......

d1 r
1
3 r

1
1

f 1 + d2 r
2
3 r

2
1

f 2 + .. , d1 r
1
3 r

1
2

f 1 + d2 r
2
3 r

2
2

f 2 + .. , ......

......... .........



















Each column of Hf is itself a sum of subcolumns contributed

by each mesh ν with a factor dν

f ν
. Hence the n-linear deter-

minant splits into a sum of determinants related to the sub-
columns; G is the Gram matrix of a family of n vectors:

det Hf =
∑

1≤ν1<..<νn≤νmax

dν1 ... dνn
det G(rν1 , ..., rνn)

f ν1 ... f νn
(48)

G =
[

gi,j
]

gi,j (r
νi , ..., rνj ) = tr̃(xνi ) · r̃(xνj )

www.atmos-chem-phys.org/acp/5/249/ Atmos. Chem. Phys., 5, 249–273, 2005



272 J.-P. Issartel: Emergence of a tracer source from concentration measurements

A Gram determinant is strictly positive except when some rν

vanishes. Accordingly, as far as we consider only the meshes
effectively observed by one or more detectors, det Hf is a
strictly convex function of f because each term 1/f ν1 ... f νn

is. As f is constrained by 31 to a compact set, det Hf reaches
a minimum. The latter is characterised by its first order in-
sensitiveness to variations δf preserving the total weight:
∑νmax
ν=1 d

νδf ν=0.
The variation of Hf+δf=Hf+δH due to δf is obtained by

means of the Eq. (47) with the identities 1
f ν+δf ν ≃

1
f ν

− δf ν

f νf ν

and rνk
f ν

=r
νk
f :

δhi,j = −δf 1d1r1
f ir

1
fj − δf 2d2r2

f ir
2
fj − ...

δH = −
νmax
∑

ν=1

dνf ν rf (x
ν) trf (x

ν) (49)

It is known that det(Hf+δH)≃ det Hf
(

1+ tr (Hf
−1δH)

)

and it is easily seen that for any two vectors a, b we have:
tr (Hf

−1a tb)=tb Hf
−1a. This leads finally to the following

result:

δ det Hf = − det Hf

νmax
∑

ν=1

dνδf ν trf (x
ν)H−1

f rf (x
ν) (50)

The variation 50 vanishes for all admissible δf if and only
if the trf (x

ν) H−1
f rf (x

ν) are all equal. This is indeed the
constraint 32.
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