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Emergence of a Small World from Local Interactions: Modeling Acquaintance Networks

Jörn Davidsen, Holger Ebel, and Stefan Bornholdt*
Institut für Theoretische Physik, Universität Kiel, Leibnizstrasse 15, D-24098 Kiel, Germany

(Received 20 August 2001; revised manuscript received 6 December 2001; published 8 March 2002)

How do we make acquaintances? A simple observation from everyday experience is that often one
of our acquaintances introduces us to one of his or her acquaintances. Such a simple triangle interaction
may be viewed as the basis of the evolution of many social networks. Here, it is demonstrated that this
assumption is sufficient to reproduce major nontrivial features of social networks: short path length, high
clustering, and scale-free or exponential link distributions.
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A remarkable feature of many complex systems is the
occurrence of large and stable network structures as, for
example, networks on the protein or gene level, ecologi-
cal webs, communication networks, and social networks
[1–3]. Simple models based on disordered networks are
quite successful in describing basic properties of such sys-
tems. When addressing topological properties, however,
neither random networks nor regular lattices provide an
adequate framework. A helpful concept along this line is
the idea of “small-world networks” introduced by Watts
and Strogatz [4,5] which initiated an avalanche of scien-
tific activity in this field [6–11]. Small-world networks
interpolate between the two limiting cases of regular lat-
tices with high local clustering and of random graphs with
short distances between nodes. High clustering implies
that, if node A is linked to node B, and B is linked to
node C, there is an increased probability that A will also
be linked to C. Another useful measure is the distance
between two nodes, defined as the number of edges along
the shortest path connecting them. A network is called
a “small-world network” if it exhibits the following two
characteristic properties [4,12]: (i) high clustering and
(ii) a small average shortest path between two random
nodes (sometimes called the diameter of the network), scal-
ing logarithmically with the number of nodes. Thus, two
randomly chosen nodes in the network are likely to be con-
nected through only a small number of links. The most
popular manifestation of a small world is known as “six
degrees of separation,” a postulate by the social psycholo-
gist Stanley Milgram [13] stating that most pairs of people
in the United States can be connected through a path of
only about six acquaintances [14].

Let us here focus on social networks, and acquaintance
networks in particular, which are typical examples for the
small-world property [1,2,12]. What does the concept of
small-world networks tell us about such real world sys-
tems? In its original definition [4,5] it serves as an elegant
toy model demonstrating the consequences of high cluster-
ing and short path length. However, since these networks
are derived from regular graphs, their applicability to real
world systems is very limited. In particular, how a net-
work in a natural system dynamically forms a small-world
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topology, often starting from a completely random struc-
ture, remains unexplained. The main goal of this Letter is
to provide one possible answer to this problem.

A similar problem of dynamical origin is faced (and
much progress has been made) in a different, but not
completely unrelated field: the dynamics of scale-free
networks. Scale-free properties are commonly studied
in diverse contexts from the stability of the internet [15]
to the spreading of epidemics [16] and are observed in
some social networks [1–3,17,18]. The origin of scale-free
properties is well understood in terms of interactions that
generate this topology dynamically, e.g., on the basis of
network growth and preferential linking [2,3,19]. While
these models generate scale-free structures they do not, in
general, lead to clustering and are therefore of limited use
when modeling social networks.

In this Letter, an attempt is made to unify ideas from
the two fields of “small-world networks” and “scale-free
networks” in order to address the dynamics of social net-
works and the dynamical emergence of the small-world
structure. In particular, a simple dynamical model for the
evolution of acquaintance networks is studied. It generates
highly clustered networks with small average path lengths
that scale logarithmically with network size. Furthermore,
for small death-and-birth rates of nodes this model con-
verges towards scale-free degree distributions, in addition
to its small-world behavior. Basic ingredients are a local
connection rule based on “transitive linking,” and a finite
age of nodes.

To be specific, let us formulate a model of an acquain-
tance network with a fixed number N of nodes (as per-
sons) and undirected links between those pairs of nodes
that represent people who know each other. Acquaintance
networks evolve, with new acquaintances forming between
individuals, and old ones dying. Let us assume that people
are introduced to each other by a common acquaintance
and that the network is formed only by people who are
still alive. The dynamics is defined as follows:

(i) One randomly chosen person picks two random ac-
quaintances of his and introduces them to each another.
If they have not met before, a new link between them
is formed. In case the person chosen has less than two
© 2002 The American Physical Society 128701-1
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acquaintances, he introduces himself to one other random
person.

(ii) With probability p, one randomly chosen person is
removed from the network, including all links connected to
this node, and replaced by a new person with one randomly
chosen acquaintance.

These steps are then iterated. Note that the number of
nodes remains constant, neglecting fluctuations in the num-
ber of individuals in acquaintance networks. The finite age
implies that the network reaches a stationary state which is
an approximation of the behavior of many social networks,
and is in contrast to most models based on network growth
[2,18,20]. The probability p determines the separation of
the two time scales in the model. In general, the rate at
which people make social contacts can be as short as min-
utes or hours, while the time scale on which people join or
leave the network may be as long as years or decades. In
the following, we therefore focus on the regime p ø 1.

Once the network reaches a statistically stationary state,
one of its characteristic quantities is the degree distribution
P�k� of the network. In Fig. 1, the degree distribution is
shown for different values of p. Because of the limited
lifetime of persons in the network, the observed numbers
of acquaintances of different persons do not grow forever,
but rather fall into some finite range. This can be seen
in the degree distribution where the cutoff at high k re-
sults from the finite age of nodes. In the regime p ø 1,
the degree distribution is dominated by the transitive link-
ing process (i), resulting in a power-law range which in-
creases in size with decreasing p. For larger values of p,
the Poissonian death process (ii) competes with the transi-
tive linking process (i), resulting in a stretched exponential
range in the degree distribution until, in the case p � 1,
the random linking of (ii) dominates with its Poissonian
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FIG. 1. The degree distribution P�k� of the model in the sta-
tistically stationary state. The distribution exhibits a power-law
regime for small p, with an exponent of 1.35 for p � 0.0025.
Note that the distribution is largely insensitive to system size N ,
which here is N � 7000. The exponential cutoff is a result of
the finite age of nodes.
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dynamics. Therefore, the above model generates degree
distributions spanning scale-free and exponential regimes,
both of which are observed in the statistics of social net-
works. For large enough network size N , the specific dis-
tribution P�k� only depends on the single free parameter
of the model p. From experimental data, one can esti-
mate p as well, which is typically very small p ø 1 such
that the two time scales of the network dynamics are well
separated.

As noted above, small-world networks are characterized
by a high degree of clustering C and a small average short-
est path length � which scales logarithmically with the
number of nodes. The degree of clustering is measured
by the clustering coefficient defined as follows: For a dis-
tinct node i, the clustering coefficient Ci is given by the
ratio of existing links Ei between its ki neighbors to the
possible number of such connections 1

2ki�ki 2 1�. Then
the clustering coefficient C of the network is defined as
the average over all nodes,

C � �Ci�i �

ø
2Ei

ki�ki 2 1�

¿
i
. (1)

For the above model, C can be related to the mean de-
gree �k� and p because in the stationary state the number
of added links on average equals the number of removed
links:

1 2 C � p��k� 2 1� . (2)

In Table I, the clustering coefficient of the above model in
the stationary state—calculated according to Eq. (1)—is
shown for different values of p. Within numerical preci-
sion, the same values are obtained via Eq. (2) as one can
easily deduce from Table I. In comparison to the clus-
tering of a random network with the same size and same
mean degree Crand, the model coefficient C is consistently
of a much larger size. The clustering coefficient of a ran-
dom network, i.e., a network with constant probability of
linking each pair of nodes plink � �k���N 2 1� and, there-
fore, a Poissonian distribution of the node degree, is just
this probability Crand � plink. Obviously, Crand is propor-
tional to the mean degree �k� for constant network size.
For further comparison, let us derive an estimate C0 for
an upper bound of the average clustering coefficient of a
network with the same degree distribution, but randomly

TABLE I. Clustering coefficient for different values of p and
a network size of N � 7000. C 0 is an upper bound for the
average clustering coefficient of a network with the same degree
distribution without transitive linking. Crand is the clustering
coefficient of a random network of the same size and with the
same average degree �k�.

p �k� �k2� C C0 Crand

0.04 14.9 912 0.45 0.036 0.0021
0.01 49.1 13 744 0.52 0.29 0.0070
0.0025 149.2 99 436 0.63 0.43 0.021
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assigned links. Thus, C0 provides an upper bound on the
average clustering which one would expect solely from the
degree distribution while neglecting transitive linking of
the model. Using the generating function approach for
graphs with arbitrary degree distributions [21] and assum-
ing that fluctuations of the average degree of the neighbor-
hood of a node can be neglected, an upper bound C0 can
be derived in terms of the first two moments:

C0 �
1

�k�N

µ
�k2�
�k�

2 1

∂2

. (3)

This result holds exactly in the case of the Poissonian de-
gree distribution of a random network �Crand � C0�. As
Table I shows, the network generated by the model ex-
hibits an even higher average clustering coefficient than
a network with links distributed randomly according to
the same degree distribution. In particular, the network is
much more clustered than a random network with a Poisso-
nian distribution as required for the small-world property.
Furthermore, the clustering is not as strongly dependent
on the mean degree �k� as C0 of a network with the same
degree distribution but no transitive linking. This observa-
tion is directly explained by Eq. (2).

The scaling of the average path length with system size
is shown in Fig. 2. The data are consistent with a loga-
rithmic behavior and, thus, our model meets the second
requirement for a small-world behavior as well. Also, this
is what one expects in the framework of a random graph
with arbitrary degree distribution [21]. Moreover, we can
compare the average path length of our model � with the
path length �0 of a network with the same degree distribu-
tion and randomly assigned links. Applying the generating
function approach, we obtain

n2 � �k2� 2 �k� , (4)

FIG. 2. The average path length ��N� as a function of system
size N on a semilogarithmic scale �p � 0.04�. The data are in
good agreement with a logarithmic fit (straight line).
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i.e., the mean number of second neighbors n2 of a node
is the difference between the second and the first moment
of the degree distribution. Equation (4), in combination
with the results in [21], leads to the following estimate of
the average shortest path length:

�0 �
log� N

�k� �

log� �k2�2�k�
�k� �

1 1 . (5)

For the Poissonian distribution of a random network, one
obtains

�rand �
logN

log�k�
. (6)

Note that only N , �k�, and �k2� are used to estimate � as
also used in the derivation of (3). With the help of Table I,
one finds that �0 � 1.59 and �rand � 1.77 for p � 0.0025.
Numerical simulations of our model similarly yield a very
short path length of � � 2.38 which is further evidence
that the simple linking rule of our model leads to small-
world behavior. Intuitively, �0 , �rand follows from the
highly connected “hubs” present in the scale-free networks
for p � 0.0025. The fact that � is slightly larger than �rand

is due to the fact that, in step (i) of the model, many links
are used to build highly clustered neighborhoods. This
price to pay for clustering, however, only slightly affects
the small overall mean path length.

One example for an observed small-world effect is the
network of coauthorships between physicists in high en-
ergy physics [17]. Nodes are researchers who are con-
nected if they have coauthored a paper. In a recent study
of the publications in the SPIRES database over the five
year period 1995–1999, a graph was reconstructed from
the data and analyzed [17,22]. The resulting network con-
sists of 55 627 nodes with a mean degree �kS� � 173, a
mean shortest path length �S � 4.0, and a very high clus-
tering coefficient CS � 0.726. The degree distribution is
consistent with a power law of exponent 21.2 [17]. From
these data, one can derive C0 and �0 for a network with the
same degree distribution but random links to C0 � 0.19
and �0 � 1.81. These numbers show that the real network
exhibits clustering which is very much higher than would
be expected from the degree distribution alone. Also, the
path length is short but still larger than for a randomly
linked network of the same degree distribution. Using the
logarithmic scaling for �, the data of the example agree
with the values of the above model. The basic assumptions
made in the model are met by the data set, as the number
of researchers in the sample is, to a good approximation,
stationary, and as the small rate of researchers entering or
leaving the system during the time frame of the sample
justifies the regime of small p ø 1.

The previous example demonstrates how our model can
be applied to a social network in the dynamically station-
ary state. Moreover, the model studied here is also able to
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accommodate other small-world scenarios, e.g., without a
scale-free degree distribution [12] as the particular shape
of the distribution varies, depending on the turnover rate
p. The question of the origin of small-world behavior in
social systems has led to other approaches as well. In an
interesting model Mathias and Gopal [23] showed that a
small-world topology can arise from the combined opti-
mization of network distance and physical distance. Ap-
plications of this principle, however, are more likely to be
found in the field of transportation networks rather than
acquaintance networks considered here. A more similar
approach to the study presented here has been taken by Jin
et al. [24], who study a model which shares a mechanism
similar to transitive linking as defined here. Otherwise,
however, it is more complicated than we feel it needs to
be, at least for some classes of social networks. Also its
upper limit on the degree of a node, motivated by one spe-
cific trait of some acquaintance networks, makes the model
less suitable to meet experimental data of social networks
which exhibit broad degree distributions.

Even though our work has focused on social networks,
possible applications also include biological systems. For
example, the neural network of the fresh-water polyp hy-
dra self-organizes by the continuous addition and removal
of neurons maintaining a stationary size [25,26]. It is
conceivable that some form of transitive linking may oc-
cur when new neurons form connections into an exist-
ing dynamical neural network, e.g., when linking between
two neurons is guided by the mutual correlation of their
activities.

In conclusion, a simple dynamical model for the emer-
gence of small-world network structures has been stud-
ied. It is based on a local linking rule which connects
nodes who share a common neighbor, as well as on a slow
turnover of nodes and links in the system. The network
approaches a dynamically stationary state with high clus-
tering and small average path lengths which scale loga-
rithmically with system size. Depending on a single free
parameter, the turnover rate of nodes, this model inter-
polates between networks with a scale-free and an expo-
nential degree distribution, both of which are observed in
experimental data of social networks.
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