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Abstract: Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) ST398 is mainly
found in Europe and North America, colonizing the nasal cavity of pigs. This study characterized the
MRSA isolates recovered from pig nasal swabs (n = 171) by evaluating the antimicrobial susceptibility
profile by broth microdilution and characterizing the genetic lineages by spa-typing. Three linezolid-
resistant isolates were subjected to Whole-Genome Sequencing (WGS). All strains harbored the mecA
gene and were resistant to tetracycline and susceptible to vancomycin. A high frequency of multidrug
resistance (97.6%) was evidenced, with 55 different multidrug resistance profiles identified. The
MRSA strains were found to belong to 17 spa-types, three being novel. The linezolid-resistant strains
appeared to belong to the ST398 type, spa-type t011, and SCCmec_type_Vc and to harbor the cfr, fexA,
blaZ, mecA, tetM, and tetK genes. The cfr gene was predicted to be carried in the plasmid, flanked
by ISSau9 and the transposon TnpR. MRSA from Portuguese fattening pigs present a high diversity
of genetic lineages. The presence of cfr-positive LA-MRSA may represent a risk of transmission to
humans, mainly to those in contact with livestock.

Keywords: LA-MRSA; pigs; linezolid resistance; cfr gene; WGS; ST398

1. Introduction

Staphylococcus aureus is a widely disseminated commensal organism colonizing the
nasal mucosa and skin of humans and livestock such as pigs, cattle, poultry, pets, and wild
animals [1–6]. Therefore, S. aureus can also be an opportunistic pathogen responsible for
many human infections, from mild skin infections to life-threatening diseases [7]. In ani-
mals, it can also cause a variety of infections such as mastitis and udder impetigo, pyoderma
in adults and neonates, omphalitis, arthritis, and several other pyemic conditions [8].

Methicillin-resistant S. aureus (MRSA) has been colonizing and infecting humans
and animals [1,7,8]. Among MRSA associated with livestock (LA-MRSA) and able to
colonize humans, the MRSA ST398 grouping within the clonal complex (CC) 398 is reported
globally and is widespread in Europe and North America [9,10]. LA-MRSA CC398 poses
a zoonotic risk, particularly for those working in close contact with livestock, such as
farmers, veterinarians, abattoir workers, and people living in areas with a high livestock
density [9–11].

Several studies reported that LA-MRSA CC398 evolved from the human methicillin-
susceptible S. aureus (MSSA) CC398 by losing some virulence features (such as ØSa3
prophage and Panton–Valentine leukocidin, PVL) and acquiring new virulence and resis-
tance genes (copper and zinc czrC, tetracycline tet(M) and β-lactam mecA and blaZ) [12]. LA-
MRSA CC398 also acquired other antimicrobial resistance genes from Gram-positive and
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Gram-negative bacteria by plasmid-mediated horizontal gene transfer, including the gene
for the phenicol exporter fexA, tetracycline tetL, macrolide, lincosamide, and streptogramin B
ermT, trimethoprim dfrK, ABC transporters vgaC and vgaE, and chloramphenicol-florfenicol
cfr [12]. The cfr gene encodes an rRNA methyltransferase targeting an adenine residue in
the 23S rRNA (A2503), which apart from phenicols, also confers resistance to clindamycin,
pleuromutilins, streptogramin A, and oxazolidinones [12,13]. This latter antibiotic class
includes linezolid, approved for treating hospital-acquired pneumonia caused by S. aureus,
including the MSSA and MRSA strains, multidrug-resistant Streptococcus pneumoniae, and
vancomycin-resistant Enterococcus faecium (VRE) infections, among others [13].

In Portugal, MRSA strains belonging to CC398 have been identified in swine farms,
wild boars, pets, wild rabbits, quails, and quail meat [3–6]. In addition, the first detection
of linezolid resistance encoded by the cfr gene occurred in 2019 in three MRSA isolates
recovered from infected human wounds, but none were included in the CC398 lineage [14].
In 2019, under the scope of MRSA monitoring from healthy pigs at slaughter in Portugal,
three linezolid-resistant MRSA isolates belonging to the CC398 cluster and encoded by the
acquired resistance cfr gene were detected [15]. Nevertheless, linezolid-resistant MRSA
was firstly reported in one dog with severe bilateral otitis, although the genetic basis of
resistance was not determined [16].

The emergence of linezolid-resistant MRSA CC398 in food-producing animals car-
rying the cfr gene poses a significant public health concern due to the possible spread
of these bacteria through the animal–human interface by sharing genes through mobile
genetic elements. Thus, this study aimed to characterize further the MRSA population
previously reported [15], focusing on typing and antibiotic resistance profiles. Moreover,
the three linezolid-resistant LA-MRSA isolates carrying the cfr gene were analyzed by
Whole-Genome Sequencing (WGS).

2. Results
2.1. Bacterial Isolates and Antimicrobial Resistance Patterns

From 171 samples, 169 isolates (98.8%) were identified as MRSA carrying the mecA
gene and being PVL-negative.

According to antimicrobial susceptibility testing, all isolates were non-wildtype with
respect to the genes for cefoxitin, penicillin, and tetracycline resistance and wild-type with
respect to the vancomycin resistance gene (Figure 1 and Table 1).

Figure 1. Antibiotic non-susceptibility resistance distribution of the MRSA isolates (n = 169). Each
bar represents the phenotypic result obtained for each antibiotic according to the ECOFF MIC values.
The red bars represents the percentages of the non-wildtype isolates, and the green bars represents
the percentages of the wild-type isolates for the respective antibiotic.
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Table 1. Clinical and epidemiological breakpoints, MIC50, MIC90, and frequency of resistance of the
MRSA isolates.

Antimicrobial
Clinical MIC

Breakpoints [17]
(mg/L)

Epidemiological
MIC Breakpoints

[17] (mg/L) (T)

MIC50 (mg/L)
(n = 169)

MIC90 (mg/L)
(n = 169)

% DS
(N)

Cefoxitin (FOX) 4 NA >16 >16 100.0 (169)
Chloramphenicol (CHL) 8 NA 16 64 27.2 (46)

Ciprofloxacin (CIP) 1 1 0.5 >8 33.1 (56)
Clindamycin (CLI) 0.25 0.25 >4 >4 88.2 (149)

Erythromycin (ERY) 2 1 >8 >8 61.5 (104)
Fusidic acid (FUS) 1 0.5 ≤0.5 ≤0.5 1.8 (3)
Gentamicin (GEN) 2 (2) ≤1 ≤1 8.3 (14)
Kanamycin (KAN) 8 NA ≤4 32 16.6 (28)

Linezolid (LZD) 4 4 2 4 1.8 (3)
Mupirocin (MUP) NA (1) ≤0.5 ≤0.5 1.2 (2)
Penicillin (PEN) 0.125 NA >2 >2 100.0 (169)

Quinupristin/dalfopristin (SYN) 2 NA 2 4 59.2 (100)
Rifampicin (RIF) 0.06 (0.03) ≤0.016 ≤0.016 0.6 (1)

Streptomycin (STR) NA NA 8 16 9.5 (16)
Sulfamethoxazole (SMX) NA NA ≤64 ≤64 1.2 (2)

Tetracycline (TET) 2 1 >16 >16 100.0 (169)
Tiamulin (TIA) NA NA >4 >4 79.9 (135)

Trimethoprim (TMP) NA (2) ≤2 >32 49.7 (84)
Vancomycin (VAN) 2 2 ≤1 ≤1 0.0 (0)

DS, Decreased susceptibility; NA, Not Applicable; (T), Tentative ECOFF; N, number of DS isolates.

Notably, three isolates (1.8%) showed resistance to linezolid, with MIC = 8 µg/mL.
They contained non-wild-type chloramphenicol, clindamycin, quinupristin/dalfopristin,
tetracycline, and tiamulin genes, and two of them also contained non-wild-type ery-
thromycin and trimethoprim genes. Besides, 28 (16.6%) wild-type isolates with respect to
linezolid had a MIC = 4 µg/mL.

The frequency of multidrug resistance (MDR) was remarkably high (97.6%), with
55 MDR patterns found (Table S1). One isolate exhibited an MDR profile (FOX, CLI,
ERY, FUS, GEN, KAN, MUP, PEN, SYN, RIF, STR, SMX, TET, TIA, TMP) comprising
11 antimicrobial classes. The most common profile was FOX, CLI, ERY, PEN, SYN, TET,
TIA, and TMP, which include seven antimicrobial classes and was found in 27 isolates
(16.4%), followed by the profile including FOX, CLI, ERY, PEN, SYN, TET, TIA, found in
17 isolates (10.3%) (Figure 2).

2.2. Molecular Characterization of the MRSA Population

Overall, 17 different spa-types were identified among the MRSA isolates, i.e., t011, t034,
t108, t1451, t15444, t2970, t2971, t4208, t4571, t4885, t567, t6575, t899, and t943, including
3 novel types that were submitted to the Ridom SpaServer platform [18], having been
classified as t20098, t20099, and t20100 (Figure 3). The spa-type t011 was the most common
(52.7%), followed by t108 (27.2%). Furthermore, t011, t034, and t108 belonging to CC398
accounted for 145 isolates (85.8%).

The three isolates resistant to linezolid (MIC = 8 µg/mL) belonged to t011 and showed
amplification of the cfr gene. However, linezolid-non-wild-type isolates with MIC values
equal to the cutoff were negative for the gene.
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Figure 2. Distribution of the MDR profiles, showing the 15 most common phenotypes of the MDR
strains (n = 165). The number and the percentage of isolates are indicated in the graph. FOX-
Cefoxitin, CHL-Chloramphenicol, CIP-Ciprofloxacin, CLI-Clindamycin, ERY-Erythromycin, FUS-
Fusidic acid, GEN-Gentamicin, KAN-Kanamycin, LZD-Linezolid, MUP-Mupirocin, PEN-Penicillin,
SYN-Quinupristin/dalfopristin, RIF-Rifampicin, STR-Streptomycin, SMX-Sulfamethoxazole, TET-
Tetracycline, TIA-Tiamulin, TMP-Trimethoprim, VAN-Vancomycin.

Figure 3. Distribution of spa-types among the MRSA groups isolated from samples collected from
the 13 slaughterhouses (n = 169). Each bar represents the spa-types obtained from a slaughterhouse.
The number and the percentage of isolates are shown for each bar.

2.3. Whole-Genome Characterization of Linezolid-Resistant MRSA

The genotypic traits of the linezolid-resistant MRSA are summarized in Table 2.
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Table 2. Whole-genome characterization of linezolid-resistant MRSA (n = 3).

Feature INIAV_MRSA001 INIAV_MRSA002 INIAV_MRSA003

Sampling date October 22 November 7 November 20
Farm region AML (Peninsula de Setubal) Alentejo Alentejo Litoral

Slaughterhouse ID (region) A (AML, Península
de Setúbal) K (North region, Ave) K (North region, Ave)

Phenotype FOX, CHL, CLI, ERY, LZD,
PEN, SYN, TET, TIA, TMP

FOX, CHL, CLI, ERY, LZD,
PEN, SYN, TET, TIA, TMP

FOX, CHL, CLI, LZD, PEN,
SYN, TET, TIA, TMP

Antibiotic resistance genes aadD, blaZ, mecA, lsa(B), cfr,
fexA, tet(M), tet(L), tet(K)

blaZ, mecA, vga(A)LC, cfr, fexA,
tet(M), tet(K), dfrG

blaZ. mecA, erm(B), Isa(B), cfr,
vga(A)LC, fexA, tet(M), tet(L),

tet(K), dfrK
Biocide resistance genes norA, lmrS, mepA, sepA norA, lmrS, mepA, sepA norA, lmrS, mepA, sepA

SCCmec elements SCCmec_type_Vc(5C2&5) SCCmec_type_Vc(5C2&5) SCCmec_type_Vc(5C2&5)
Virulence genes aur; hlgA; hlgB; hlgC aur; hlgA; hlgB; hlgC aur; hlgA; hlgB; hlgC

Plasmid replicons rep21, rep22, rep7a, repUS43 rep7a, rep7b, repUS43, repUS5 rep16, repUS5, rep22, rep7a,
rep7b, repUS43

Pathogenicity (%) 97.9 97.7 97.7
Spa-type t011 t011 t011

MLST ST398 ST398 ST398

FOX-Cefoxitin, CHL-Chloramphenicol, CIP-Ciprofloxacin, CLI-Clindamycin, ERY-Erythromycin, FUS-
Fusidic acid, GEN-Gentamicin, KAN-Kanamycin, LZD-Linezolid, MUP-Mupirocin, PEN-Penicillin, SYN-
Quinupristin/dalfopristin, RIF-Rifampicin, STR-Streptomycin, SMX-Sulfamethoxazole, TET-Tetracycline, TIA-
Tiamulin, TMP-Trimethoprim, VAN-Vancomycin, AML-Área Metropolitana de Lisboa.

Resistome analysis corroborated the presence of the cfr gene and revealed several
additional genes in the genome, consistent with the antimicrobial resistance profiles of
the isolates. These included β-lactam, encoding the genes blaZ and mecA, the fexA gene,
encoding resistance to florfenicol, and genes conferring resistance to tetracycline tet(M) and
tet(K). In addition, one isolate (INIAV_MRSA001) also carried the gene aadD conferring
resistance to aminoglycosides, and two isolates non-wildtype for the gene for trimetho-
prim resistance (INIAV_MRSA002 and INIAV_MRSA003) harbored the dfr(G) and dfr(K)
genes, respectively (Table 2). Moreover, all isolates carried efflux pump genes responsible
for biocide resistance, namely, norA, lmrS, mepA, and sepA. No chromosomal mutations
responsible for antimicrobial resistance were found.

All isolates belonged to the ST398 type, t011 spa-type, and SCCmec_type_Vc. Viru-
lenceFinder predicted the presence of four virulence factors (aur; hlgA; hlgB; hlgC) in all.
According to PlasmidFinder, the plasmid replicon sequences rep7a and repUS43 were
identified in all isolates. Additionally, several other replicons were found, namely, rep21
and rep22 in INIAV_MRSA001; rep7b and repUS5 in INIAV_MRSA002; and rep22, rep7b,
repUS5, and rep16 in INIAV_MRSA003. The plasmids identified by having rep22 car-
ried tet(L), aad, and/or dfr(K), rep7a carried tet(K), repUS43 carried tet(M), rep7b carried
vga(A)LC, and in INIAV_MRSA003, rep16 carried the erm(B) gene, and repUS5 carried the
fex(A) gene.

MobileElementFinder did not predict that the fexA gene was carried by MGE in
INIAV_MRSA001 and INIAV_MRSA002, while the cfr gene was predicted to be carried
by plasmids. The analysis of the genetic vicinity of the cfr gene revealed that all isolates
contained the insertion sequence ISSau9 and the transposon TnpR elements flanking the
gene. INIAV_MRSA002 also showed the presence of ISBli29 and Tn552 downstream of the
TnpR element (Figure 4). The Isa(B) gene encoding resistance to lincosamide was carried in
the same contig of the cfr gene in the INIAV_MRSA001 and MRSA003 strains.



Antibiotics 2022, 11, 1439 6 of 13

Figure 4. Genetic platforms of the cfr genes in the MRSA isolates determined using EasyFig. This
figure represents the genomic environment of the cfr genes, regarding mobilization elements (insertion
sequences and transposons) and other antibiotic determinants. The gray area represents the blast
identities, and the percentage of identity is indicated in the legend.

The phylogenetic analysis with the 3 linezolid-resistant isolates from this study and other
23 MRSA ST398 spa-type t011 strains recovered from multiple sources, from Belgium and the
United Kingdom, revealed that all strains shared between 1 and 519 SNPs. The strains were
arranged in two phylogenetic groups, one composed of the isolates from this study (Figure 5,
green label), and the other containing the remaining strains (Figure 5, grey label). Therefore,
there was no closed genetic relationship between the isolates from this study and the remaining
strains (Figure 5). Most strains from Belgium grouped together despite their source, as well
as the main strains isolated from horse samples (Figure 5). The most closely related isolates
from this study sharing 39 SNPs were INIAV_MRSA002 and INIAV_MRSA003, obtained from
samples collected on different days at the same abattoir from animals from different farms.

Figure 5. Phylogenetic analysis based on core genome single-nucleotide polymorphisms (SNPs) using
CSI Phylogeny v.1.4 of 26 MRSA ST398, t011 strains from multiple sources and different countries.
Graphic representation using the iTol interactive tree of life, showing the geographic location, source,
and genetic distance of the isolates. In green are the isolates from this study. ERR*******, accession
numbers of the strains used in this analysis.
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3. Discussion

The present study revealed a very high prevalence of MRSA (98%) in pool nasal swabs
collected from healthy, fattening pigs at slaughterhouses in Portugal. Other studies also
reported a high prevalence of MRSA in pigs at slaughterhouses and farms in Portugal,
ranging from 60 to 99% [3,19,20]. According to the EFSA, the prevalence of MRSA in pigs
varies between countries, depending on the sample type, sampling time, antibiotic usage,
and legislation implemented at the national level [15].

Globally, 17 different spa-types were identified in the MRSA population, t011 and t108
being the most frequent. The high diversity of spa-types observed in our study may be
attributed to the sample type and the significant number of holdings sampled (n = 170)
at several slaughterhouses (n = 13). In addition, the high variability can be related to
international trade; in fact, countries with high trade levels hold a greater diversity of
strains [15].

Previous studies also found t011 and t108 as the most common spa-types [3,19–21].
However, besides t011 and t108, t034 was also identified in our study in 5.8% of the
isolates (n = 10), following other reports where t034 was one of the most common spa-
types found in pigs from animal/herds/holdings/slaughterhouses in other European
countries [15]. Additionally, strains belonging to three new spa-types were found from three
farms collected at two slaughterhouses (t20098, t20099, and t20100). The spa-type indicates
the tandem repeats present in the region X of the spa gene, which is very polymorphic. So
far, 20,627 different spa-types have been registered in the Ridom SpaServer, obtained by the
random combination of 832 repeats (last accessed on 11 August 2022). New spa-types can
be obtained by random rearrangements or by the emergence of new repeats due to genetic
mutations or duplication events [22].

Besides the expected resistance to β-lactams, all isolates were also resistant to tetracy-
cline but susceptible to vancomycin, which is in accordance with previous reports [3,19,20].
Overall, 55 different MDR patterns were found; the most common pattern was shared by
27 isolates, with decreased susceptibility to 7 antimicrobial classes, and, notably, one isolate
showed resistance to 11 classes. MDR patterns have been observed in LA-MRSA strains
originated from the acquisition of genes encoding resistance to several antibiotic families
by horizontal gene transfer from other staphylococci and bacteria of human and animal
origin [12]. Macrolides, lincosamides, β-lactams, tetracyclines, and sulphonamides are fre-
quently used in pig production as curative, prophylactic, or metaphylactic treatments [23].
The administration of antibiotics can lead to an increase in antimicrobial-resistant bacteria
due to their selective pressure exerted on animals and the environment.

The genotype of the linezolid-resistant isolates was in accordance with the susceptibil-
ity phenotype, and the resistance genes found, namely, cfr, tet(K), tet(M), tet(L), vga(A)LC,
erm(B), fex(A), and dfr(K), were mainly predicted in plasmids. The cfr genes is flanked by
ISSau9 (also called IS21-558) and the transposon TnpR. The clindamycin exporter gene Isa(B)
was also located upstream of ISSau9 in two strains, as already described [24]. The IS21-558
element, originally identified in the plasmid pSCFS3 recovered from a S. aureus strain of
pig origin in Germany, was also found in the plasmid pGMI17-006 from an S. aureus strain
from Denmark [25]. Therefore, IS21-558 may be involved in the mobility and dissemination
of the multi-resistant gene cfr between different staphylococcal species [24,25]. Regardless
of our efforts with the in silico analysis, the short-read sequencing performed in this study
should be complemented with long-read sequencing to better understand the location of
the resistance genes in plasmids. In addition, further efforts will be made to sequence the
plasmid carrying the cfr gene in the strains from this study to provide information for the
scientific community.

In addition, cfr-positive MRSA isolates also co-carried some efflux pump genes re-
sponsible for biocide resistance (norA, lmrS, mepA, and sepA). Biocides are widely used
in animal production as antiseptics and disinfectants, to maintain good hygiene levels in
animal holdings and for workers [20]. The three cfr-positive isolates were typed as ST398,
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spa-type t011, and SCCmec_type_V and harbored four virulence factors, i.e., aur, hlgA, hlgB,
and hlgC, encoding aureolysin and gamma-hemolysin, respectively.

Previous studies reported the presence of MRSA from ST398 with the same spa-type
observed in pigs, in humans in close contact with pig farms [3,11,20]. The emergence of cfr-
mediated linezolid resistance in MRSA from animal origin has also been reported in horses
in Germany [26], pigs in Belgium [27], Korea [28], China [29], and Spain [30], and poultry
in China [29]. Moreover, cfr-positive MRSA strains have been reported sporadically in
humans in several European countries, including Italy [31], Portugal [14], Spain [32], as well
in hospital outbreaks in Spain [33] and China [34]. Although cfr-carrying Staphylococcus has
already been reported among S. pseudintermedius from a dog in Portugal [35], the detection
of cfr-carrying MRSA ST398 in healthy fattening pigs at slaughterhouses is alarming because
of the high zoonotic transmissibility reported for ST398 [11].

Using the conservative cutoffs of 25 wgSNPs proposed by Coll et al. (2020) [36], above
which transmission of MRSA within the previous 6 months can be ruled out, we can exclude
possible transmission events between the closest strains (INIAV_002 and INIAV_003) from
different farms collected in the same abattoir on different days. This strain pair does not
comply with the criteria established for the occurrence of a direct transmission (<25 SNPs)
because the number of SNP differences was 39 SNPs. However, MRSA strains can persist
over time [37], and so those isolates are probably related to the same abattoir. Still, the
strains from this study belonging to different farm regions and collected from different
abattoirs may indicate that the cfr gene is emerging in our country.

Linezolid and vancomycin are the last resource treatments to fight against highly
resistant and complicated S. aureus infections in humans [13]. Although all the identified
linezolid-resistant MRSA strains harboring the cfr gene were susceptible to vancomycin,
these finding is relevant, as they constitute a potential public health risk. Interestingly,
we recently found linezolid-resistant enterococci, including optrA- and poxtA-positive
Enterococcus faecium and optrA-positive Enterococcus faecalis, in pigs from Portugal [38].
These findings highlight the urgency of monitoring linezolid resistance in selected Gram-
positive pathogens from animals in Portugal. The emergence of novel resistance genes
poses a major threat to human and animal health due to the possibility of horizontal gene
transfer from animals to humans and vice-versa through direct contact or the food chain.

The implementation of surveillance and control strategies in the animal and human
sectors under the One Health perspective is crucial to better understand the spread of
MRSA ST398 in both reservoirs.

4. Materials and Methods
4.1. Sampling and Bacterial Isolation

One hundred and seventy-one pooled nasal swab samples were collected from pigs
sampled at 13 abattoirs across mainland Portugal between October and December 2019.
Each pooled sample was composed of nasal swabs from five animals in the same farm, with
a total of 170 farms. The samples were sent under refrigeration (4–8 ◦C) to the National
Institute of Agrarian and Veterinary Research (INIAV, IP) for further analyses.

Isolation and identification of MRSA were performed according to the protocol defined
by the EU Reference Laboratory for antimicrobial resistance (EURL-AR) [39]. Briefly, the
nasal swabs were placed in a pre-enrichment broth containing 6.5% sodium chloride,
followed by incubation and plating on the selective chromogenic medium Brilliance MRSA2
agar (Oxoid, Hampshire, UK). The suspected colonies (one single colony by pooled sample)
were confirmed to be MRSA by multiplex PCR (mecA, mecC, spa, and pvl genes) [40].

4.2. Antimicrobial Susceptibility Testing

The antimicrobial susceptibility profile of all isolates was assessed considering 19 an-
timicrobial agents (Clindamycin, Tetracycline, Rifampin, Streptomycin, Fusidic acid, Peni-
cillin, Chloramphenicol, Kanamycin, Tiamulin, Quinupristin/dalfopristin, Vancomycin,
Gentamicin, Trimethoprim, Erythromycin, Ciprofloxacin, Cefoxitin, Linezolid, Mupirocin,
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and Sulfamethoxazole). The determination of the minimum inhibitory concentrations
(MIC) was obtained by the broth microdilution method, using the commercially available
96-well microplate assay Sensititre Staphylococci plate-EUST (Sensititre®, Trek Diagnostic
Systems, East Grinstead, West Sussex, UK). The results were interpreted according to
EUCAST clinical and epidemiological breakpoints (Table 1) [17]. The susceptibility assays
used the S. aureus strain ATCC 29213 as a quality control. An isolate is defined as MDR if
it shows resistance to three or more classes of antimicrobials. The non-wild-type isolates
were considered resistant for the determination of multidrug resistance patterns.

4.3. Molecular Characterization of the Isolates

Molecular characterization of the isolates based on spa-typing was performed. DNA
was extracted by the boiling method and tested according to the protocol used by the
EURL-AR [41]. The spa-type was determined using Ridom SeqSphere+ software v8 (Ridom
GmbH, Münster, Germany).

Isolates with MIC ≥ 4 µg/mL for linezolid were tested for the presence of the cfr gene
by standard PCR, using the primers described by Kehrenberg and Schwarz (2006) [26] for
the amplification of a 746 bp fragment. The reactions were carried out in a total volume of
25 µL containing 1 × Gel Load Reaction buffer (NzyTech, Lisbon, Portugal), 2 mM MgCl2
(NzyTech), 400 mM dNTPs (NzyTech), 0.4 µM of each primer, 1U of NZYTaq II DNA
polymerase (NzyTech), and 2 µL of DNA. Amplification was performed in a Biometra
TOne Thermal Cycler (Analytik Jena, Jena, Germany) with an initial denaturation step at
94 ◦C for 5 min, followed by 30 cycles at 94 ◦C for 30 s, 54 ◦C for 90 s, and 72 ◦C for 60 s,
with a final extension at 72 ◦C for 10 min. The PCR products were visualized, and images
were collected using the UVP BioDoc-It® Imaging System (UVP, Cambridge, UK).

4.4. Whole-Genome Sequencing of Linezolid-Resistant Isolates

The genomic DNA of isolates showing resistance to linezolid (MIC > 4 µg/mL) was
extracted using the PureLink® Genomic DNA kit, following the Gram-positive bacterial
cell lysate protocol (Invitrogen, Carlsbad, CA, USA) and according to the manufacturer’s
instructions. DNA was eluted with 50 µL of Tris-HCl buffer, pH 8.5. The quality and
quantity of DNA were assessed using a spectrophotometer (Nanodrop® 2000, Thermo
Scientific, Waltham, MA, USA) and a QuantusTM Fluorometer with the QuantiFluor®

ONE dsDNA Dye kit (Promega, Madison, WI, USA), according to the manufacturer’s
recommendations. Library preparation and DNA sequencing were performed by Novogene
Europe, UK, using the Illumina HiSeq sequencing technology (NovaSeq 6000 S2 PE150 XP
sequencing mode). The nucleotide sequences were deposited in, the European Nucleotide
Archive (ENA) [42] with the accession numbers ERS6142034, ERS6142035, and ERS6142036.

Raw data quality was assessed by FastQC [43] and low-quality sequencing data and
adapter sequences were removed using Trimmomatic v0.27 [44] with default settings. All
pre-processed reads were assembled with SPAdes v3.12.0 [45], and the assembly stats were
calculated using QUAST-5.0.2 [46]. Bioinformatics analyses were performed after removing
the contigs with sizes lower than 500 bp.

Acquired antimicrobial resistance genes and chromosomal point mutations, plasmid
replicons, multi-locus sequence type (MLST), identification of virulence genes, pathogenic-
ity, spa-type, and staphylococcal cassette chromosome mec (SCCmec) elements were
assessed using ResFinder v4.0 (command line, 90% threshold for %ID/60% minimum
length) [47,48], PlasmidFinder (command line, 95% threshold for %ID) [49], MLST (com-
mand line) [50], VirulenceFinder (command line, 90% threshold for %ID/60% minimum
length) [51], PathogenFinder v1.1 [52], SpaTyper v1.0 [53], and SCCmecFinder v1.2 (90%
threshold for %ID/60% minimum length) [54–56], respectively. MobileElementFinder
v1.0.3 was used to identify mobile genetic elements and their relation to antimicrobial resis-
tance genes and virulence factors [57]. The Comprehensive Antibiotic Resistance Database
(CARD) [58] was used to complement the characterization of the isolates genomic content.
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For identifying the genetic platform of the cfr gene, the contigs containing this gene
were annotated using Prokka v1.14.6 [59], followed by analysis with Artemis [60], EasyFig
v2.2.5 [61], and Basic Local Alignment Search Tool (BLAST) from NCBI website.

A phylogenetic analysis based on single-nucleotide polymorphisms (SNPs) present
in the genomes, using CSI Phylogeny v.1.4 (10 reads of minimal depth at SNP positions,
10% minimal relative depth at SNP positions of, 10 bp of minimal distance between SNP,
minimal SNP quality of 30, minimal read mapping quality of 25, and a minimal Z-score of
1.96) [62] from the CGE website was conducted with the three MRSA from this study and
other 23 MRSA ST398 strains from multiple sources from Belgium and the United King-
dom [63]. Staphylococcus aureus strain ISU926 isolate ST398 (accession number CP017091.1)
was used as the reference genome. The graphical representation and tree annotation were
performed using iTOL, Interactive Tree Of Life v6. [64].

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/antibiotics11101439/s1. Table S1: Antibiotic resistance patterns
of the MRSA isolates.
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