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The dynamics of quantum phase transitions poses one of the most challenging problems in modern many-

body physics. Here, we study a prototypical example in a clean and well-controlled ultracold atom setup by

observing the emergence of coherence when crossing the Mott insulator to superfluid quantum phase transition.

In the one-dimensional Bose-Hubbard model, we find perfect agreement between experimental observations

and numerical simulations for the resulting coherence length. We thereby perform a largely certified analogue

quantum simulation of this strongly correlated system reaching beyond the regime of free quasiparticles. Ex-

perimentally, we additionally explore the emergence of coherence in higher dimensions where no classical

simulations are available, as well as for negative temperatures. For intermediate quench velocities, we observe

a power-law behaviour of the coherence length, reminiscent of the Kibble-Zurek mechanism. However, we find

exponents that strongly depend on the final interaction strength and thus lie outside the scope of this mechanism.

Phase transitions are ubiquitous but rather intricate phe-

nomena and it took until the 20th century until a theory of

classical phase transitions was established. Quantum phase

transitions (QPTs) are marked by sudden drastic changes in

the nature of the ground state upon varying a parameter of the

Hamiltonian. They constitute one of the most intriguing fron-

tiers of modern quantum many-body and condensed-matter

physics [1–6]. While it is typically possible to adiabatically

follow the slowly changing ground state in a gapped phase,

these spectral gaps usually close at a QPT. Since adiabatic-

ity is therefore bound to break down, several important ques-

tions emerge: How does a state dynamically evolve across the

QPT, i.e. how does the transition literally happen? To what

extent can the static ground state of a gapless phase be pre-

pared in a realistic finite-time experiment? When entering a

critical phase associated with an infinite correlation length –

such as superfluid or ferromagnetic order, at what rate and by

what mechanism will these correlations build up? Despite the

fundamental importance of these questions, fully satisfactory

answers have not been identified so far. While the intrinsic

complexity of the underlying non-integrable models hinders

numerical studies in most cases, the progress in the field of ul-

tracold atoms now enables quantitative experiments in clean,

well isolated, and highly controllable systems.

Here, we study for the first time the quantitative dynam-

ics of a transition into a quantum critical phase in the regime

of short and intermediate quench times. As a prototypical

many-body system with a QPT we use the transition from a

Mott insulator to a superfluid in the Bose-Hubbard model [7–

10] by changing (quenching) a parameter of the Hamiltonian.

The non-equilibrium settings considered here are relatively

well understood for sudden quenches, where the buildup of

superfluid correlations (coherence) can be described by the

ballistic spreading of quasiparticles [11, 12]. These excita-

tions are generated during the instantaneous parameter change

and spread with a group velocity limited by Lieb-Robinson

bounds [13]. For continuous quenches the situation is sub-

stantially more complex, since the continuous change of the

Hamiltonian leads to drastically different elementary exci-

tations throughout the evolution. Moreover, a continuous

quench typically starts in the ground state, and the relevant

excitations are only created during the ramp. While there is

a large body of literature trying to capture these intricate dy-

namics of creation and change of quasiparticles in terms of

scaling laws [14, 15], a comprehensive and fully satisfactory

theory is lacking and many questions are still largely open.

These descriptions are built on, e.g., adiabatic perturbation

theory [16, 17] or scaling collapses [5, 15, 18]. Free mod-

els allow an exact treatment [19, 20] and can help to build

an intuition for more complex physical systems. The Kibble-

Zurek framework [6, 14, 21–23] provides a simple guideline

for the growth of correlations and predicts the density of de-

fects following asymptotically slow ramps. It is, however, still

not satisfactorily understood which correlation length results

from crossing a phase transition in a strongly correlated model

at a finite rate. The situation is aggravated by the fact that

in higher-dimensional lattice systems, the available numerical

techniques do not allow an accurate classical numerical simu-

lation of this setting for long evolution times.

In this work, we use ultracold atoms in an optical lattice to

study the Mott to superfluid transition in the Bose-Hubbard

model for experimental timescales far away from the adia-

batic limit. We extract the coherence length from the width

of the interference peaks in time-of-flight absorption images

and observe that, as expected, the final coherence length de-

pends strongly on the quench rate (Fig. 1a): While the result-

ing coherence length should diverge in the limit of adiabatic

ramps, fast quenches result in short coherence lengths. We
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FIG. 1. Growth of coherence length during a quench and ex-

perimental sequence. a, Numerical calculation of the evolution

of the coherence length ξ when ramping from a strong interaction

(U/J)i in the Mott insulating regime (MI, right) over the critical

point (U/J)c to (U/J)f in the superfluid regime (SF, left) in a ho-

mogeneous 1D system. The colors indicate the quench velocity, from

fast (dark red) to the infinitely slow adiabatic limit (light red). b,

Experimental sequence for scattering length a (in units of the Bohr

radius a0), lattice depth Vlat, and U/J . During (I) we prepare a

large central Mott insulator with unity filling. The different scat-

tering length values a chosen in (II) lead to different initial (U/J)i

and final (U/J)f values for the final lattice ramp in (III), performed

in variable time tramp. In 1D (2D), only one (two) lattice directions

are reduced in the final lattice ramp. The horizontal dashed line in-

dicates the critical (U/J)c, separating the superfluid from the Mott

insulating regime. c, Recorded time-of-flight absorption images for

(U/J)f = 3.2 ((U/J)i = 110) in 2D for several τramp (main text).

are able to probe this phase transition experimentally in one-,

two-, and three-dimensional systems (1D, 2D, 3D), as well

as for negative absolute temperature states [24]. We compare

our measurements in the 1D case with a numerical analysis

and find excellent agreement.

Our experiments (Fig. 1b and Methods for details) started

by (I) loading a large n = 1 Mott insulator of 39K atoms in a

3D optical lattice of depth Vlat = Vi = 19Er at U/J ≥ 250
close to the atomic limit of having a product state with ex-

actly one atom per site. Here, Er = h2/(2mλ2lat) denotes

the recoil energy with Planck’s constant h, the atomic mass

m, and the lattice wavelength λlat = 736.65 nm. The on-site

interaction energy of the Bose-Hubbard Hamiltonian [24] is

denoted by U and the tunnelling matrix element by J . In the

deep lattice (II), the scattering length was then tuned within

a wide range of values via a Feshbach resonance at a mag-

netic field of B = 402.50G [25], resulting in different values

of the initial interaction strength (U/J)i in the deep lattice.

We have verified numerically that this Feshbach ramp is very

close to adiabatic such that, within the central Mott insula-

tor, the state at this point can be assumed to be the ground

state of the system (Supplementary Section G). Following this

state preparation, the Mott to superfluid phase transition was

crossed (III) by linearly ramping down the lattice depth along

the horizontal x-direction to V x
lat = Vf = 6Er in variable times

tramp (Vlat(t) = Vi + (Vf − Vi) · t/tramp), resulting in a smaller

interaction strength (U/J)f in the final shallow lattice. For

experiments in 2D and 3D, we simultaneously ramped down

the lattice depth along both horizontal directions or all three

directions, respectively.

After the ramp, we immediately switched off all trapping

potentials and recorded absorption images along the vertical

z-direction after a time-of-flight of tTOF = 7ms (Fig. 1c).

From the width of the interference peaks, we extracted the

coherence length of the system, i.e. the characteristic length

scale of an exponential decay of correlations, by calculat-

ing the expected time-of-flight profiles for various coherence

lengths and fitting them to the experimental data (Fig. 2a and

Methods). We measure the number of tunneling times during

the ramp by defining a dimensionless ramp time τramp = tramp ·
2πJ̄/h ≈ tramp · 0.93/ms. Here, J̄ =

∫ Vf

Vi
J(V ) dV/(Vf − Vi)

denotes the average tunneling rate during the ramp. We focus

on the short and intermediate ramp time regime, where mass

transport is negligible and the dynamics is governed by the be-

haviour of the homogeneous system at the multi-critical tip of

the Mott lobe [7]. This experiment captures for the first time

the physics of essentially homogeneous quantum systems en-

tering a critical phase. In contrast, previous work [26] investi-

gated the generic transition through the side of the Mott lobe,

which is typical for inhomogeneous systems and is dominated

by mass transport, studied the inverse superfluid to Mott insu-

lator transition [27], the vacuum to superfluid transition [28]

or the transition of spinor Bose-Einstein condensates to a fer-

romagnetic state [29].

The experimentally measured coherence length (Fig. 2) dis-

plays several distinct dynamical regimes. For very fast ramps,

the evolution can be approximated as being sudden, and the

measured coherence length ξ essentially equals that of the ini-

tial Mott insulator ξi. The latter is significantly below one

lattice spacing dlat = λlat/2 and increases for smaller (U/J)i

closer to the critical point at (U/J)c ≈ 3.3 in 1D [30]. For

larger τramp, ξ quickly increases up to several lattice spacings.

For τramp & 2 − 5, the fitted ξ starts to decrease again due

to the influence of the trap: Contrary to a homogeneous sys-

tem, the equilibrium distributions of both density and entropy

density in a trapped system depend strongly on the interac-

tion strength. While strong interactions result in a large Mott

insulating core with constant density, surrounded by a super-

fluid or thermal shell at lower density, a weakly interacting

superfluid is described by a parabolic Thomas-Fermi distri-

bution. Intuitively speaking, the density distribution cannot

equilibrate during fast and intermediate lattice ramps and re-

sults in gradients in the chemical potential, which give rise to

dephasing between lattice sites that increases over time and
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FIG. 2. Emergence of coherence for increasing ramp times. a, In-

sets show integrated absorption images (black) for the 1D sequence

with corresponding fits of a modelled interference pattern (red, Meth-

ods). The resulting coherence lengths ξ are shown in the main figure

versus τramp in a double-logarithmic plot. The blue curve shows a

DMRG calculation and the red curve the doublon-holon free quasi-

particle model (Supplementary Section F) b, ξ versus τramp for sev-

eral (U/J)f values in 1D. Points indicate experimental data, solid

curves DMRG data. Throughout this work, the ramp time is mea-

sured in integrated tunneling times (main text).

becomes relevant for slower ramps, τramp & 2 − 5 (Supple-

mentary Section D). Furthermore, while entropy in an ideal

bosonic Mott insulator is located predominantly in the sur-

rounding non-insulating shell, it is distributed more homo-

geneously in a superfluid. Thus, for short times the trapped

system is indistinguishable from the homogeneous system,

while for longer times trapping effects dominate the dynamics

[31, 32].

The measured emergence of coherence observed here is

indeed a generic feature of the homogeneous Bose-Hubbard

model, i.e. without trap, as can be seen by directly comparing

the experimental data to a classical density matrix renormal-

ization group (DMRG) [33] simulation of the homogeneous

system, based on matrix-product states (Fig. 2b) [34]. The

sole input parameters for the simulation were U and J and

no fitting to the experimental data points was performed. By

extensive scaling in bond dimension as well as Trotter step

size, we have ensured numerical convergence. Further cross-

validation was obtained by an optimised exact diagonalisation

code performing a Runge-Kutta numerical integration of a ho-

mogeneous Bose-Hubbard model on 15 sites (Supplementary

Section E). We find excellent agreement between experiment

and numerical data for small and intermediate ramp times up

to τramp ≈ 1. For larger τramp, the coherence length of the sim-

ulated homogeneous system continues to increase, while the

experimental data starts to decrease due to the trap.

In the fast and slow limits, the physics of the continuous

quench in the homogeneous model can be understood from

two complementary viewpoints: For fast ramps, τramp . 0.2,

the dynamics can be well described in terms of ballistically

spreading quasiparticles, implemented in a doublon-holon

fermionic model (Fig. 2a and Supplementary Section F). In

this picture, fermionic excitations are continuously created

during the quench and spread with their corresponding ve-

locity that can be shown to follow a Lieb-Robinson bound

[13, 35–40]. For intermediate ramps, τramp & 0.2, interac-

tions between the quasiparticles become important. For slow

ramps, on the other hand, one can employ the language of adi-

abatic quenches and the adiabatic theorem: In the beginning

of the ramps, the gap is sufficiently large and we can expect

the system to perfectly follow the change of the ground state.

Closer to the phase transition, this approximation breaks down

and the full complexity of the problem emerges. If the break-

down of the adiabatic approximation occurs sufficiently close

to the critical point, where the physics is governed by scal-

ing laws, the Kibble-Zurek mechanism suggests a power-law

growth of the correlation length, where the exponent is gov-

erned by the critical exponents of the quantum phase transition

[22, 23].

We find that, also in our setting, the evolution can be cap-

tured in terms of simple power-laws (Fig. 3): Within a range

of τramp of around one order of magnitude, the growth of the

coherence length is very well approximated by a power-law,

ξ(τramp) = a τ bramp. (1)

This is rather surprising, as rough estimates suggest that the

above adiabaticity condition is not fulfilled in the intermedi-

ate ramp time regime studied in this work. By using fits to the

experimental or numerical data, we extract the exponents b
(Fig. 3a,b), finding values that are always substantially lower

than b = 1 suggested by earlier theoretical works based on

the Kibble-Zurek mechanism for the transition at the tip of the

n = 1 Mott lobe [42]. More refined studies of this 1D tran-

sition, which is of the Kosterlitz-Thouless type, show that for

realistic experimental scales, smaller power-laws are expected

[43]. Our main finding on the dynamics of the 1D phase tran-

sition, however, cannot be captured by a simple scaling model,

as the observed exponent crucially depends on the final point

(U/J)f of the quench. In the experiment, ramps with differ-

ent final values (U/J)f also have different initial interactions

(U/J)i. Since the first part of the evolution is, however, es-

sentially adiabatic, this change of the initial interaction does

not significantly alter the emerging scaling laws (Supplemen-
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fits to experimental data in 1D. The fit function ξ(τramp) = (ξ4i +

(a τ b
ramp)

4)1/4 heuristically includes the initial coherence ξi (Supple-

mentary Section C) and is applied to all ramp times up to τmax
ramp = 1.0.

The dotted line shows the pure power-law ξ(τramp) = a τ b
ramp for the

above fitted parameters. b, Exponents b for experiment (blue) and

DMRG (red), extracted via identical fitting procedures. The error

bars include the effect of various fitting ranges as well as the fit-

ting uncertainties (Supplementary Section C). The red dotted line

guides the eye. The vertical dashed line indicates the critical value

(U/J)c ≈ 3.3 for the Mott-superfluid transition and the horizontal

dotted lines indicate the predictions b = 1 and b = 1/4 [41] of a

typical Kibble-Zurek (KZ) model at the tip or side of the Mott lobe,

respectively (main text and Supplementary Section G).

tary Section G). Due to the rather small resulting coherence

lengths, we can also rule out finite-size effects as the origin

for this behaviour, as further corroborated by numerical sim-

ulations on systems of various sizes (Supplementary Section

E). The simulations also show that the trap cannot be the rea-

son for the (U/J)f-dependence of the exponents, since the

homogeneous model considered in the numerics and the ex-

perimental data agree extremely well and the influence of the

trap is only visible for ramp times τramp & 1 (Supplemen-

tary Section D). An inhomogeneous Kibble-Zurek scaling has

recently been analysed for a classical phase transition in ion

chains [3, 4] and for quantum [26] as well as thermal [44, 45]

phase transitions in ultracold atom systems. In contrast, the

agreement between the inhomogeneous experiment and the

numerics for the homogeneous system shown here proves that

we effectively probe the multi-critical quantum phase transi-

tion of the homogeneous Bose-Hubbard model, not influenced

by trap effects.

Fig. 4 shows the results of corresponding experiments for
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FIG. 4. Emergence of coherence in higher dimensions and for

negative absolute temperature. a, Experimental data for 1D, 2D,

and 3D for various (U/J)f. b, Exponents for the 2D and 3D case, ex-

tracted from power-law fits to the experimental data with the identical

fitting procedure as in Fig. 3. The dotted lines indicate the Kibble-

Zurek predictions b = 0.4 and b = 1/3 for the tip of the Mott lobes

in the 2D and 3D case, respectively. c, Experimental data for the

2D case for positive and negative absolute temperature for various

(U/J)f. The insets in the left panel show TOF images for both cases

at τramp = 2.2.

the 2D and 3D Bose-Hubbard model, which are inaccessible

to analytical models as well as current numerical tools. After

having verified that the observed quantum dynamics in 1D in-

deed agree with the homogeneous Bose-Hubbard model, the

experiments in 2D and 3D can be regarded as analogue quan-

tum simulations in a regime out of reach of classical simula-

tion using known methods. Interestingly, the data for higher

dimensions show similar power-laws as the 1D case, even

though any critical scaling analysis would strongly depend

on dimensionality. Thus, we again find that the dynamics

of the Mott to superfluid phase transition shows complex be-

haviour on the studied intermediate timescale, that simple ap-

proaches based on the critical exponents alone, such as KZM,

cannot fully capture. While the extracted exponents for the

most part increase for decreasing interaction strength, they

start to decrease again for (U/J)f . 2 in all dimensions (Fig.

4b). Furthermore, the full coherence dynamics for τramp . 1
appears to be almost independent of dimensionality and is

mainly governed by the final interaction (U/J)f. Therefore,

in the regime where ξ has increased only up to a few dlat,

the influence of dimensionality on the spreading of correla-

tions is marginal. Higher-dimensional systems continue the

power-law behaviour for longer ramp times than in lower di-
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mensions. This deviation might be explained by the different

critical values (U/J)c in 1D, 2D and 3D: For the same fi-

nal (U/J)f value, the quench in the 1D system ends closer

to, or even deeper in, the Mott regime than for higher dimen-

sions, limiting the maximum achievable coherence length in

addition to the dephasing effect in the trap. A rigorous com-

parison between different dimensions would have to involve

a detailed analysis of the ramp schemes as well as the dif-

ferent mass flow predictions and the individual critical values

together with the different scaling of the equilibrium correla-

tions, i.e. quasi-long-range order in 1D versus true long-range

order in higher dimensions.

To show that the timescale for the emergence of coher-

ence is not influenced by any possible remnant phase order

in the initial state that might seed the dynamics, we addition-

ally studied the emergence of coherence in the attractive Bose-

Hubbard model: By crossing the Feshbach resonance and ad-

ditionally inverting the external confinement in the deep lat-

tice ((II) in Fig. 1b), we can realize an attractive Mott insu-

lator at negative absolute temperature [24, 46–48] (Supple-

mentary Section G). In Fig. 4c, we compare the emergence of

coherence between attractive and repulsive interactions in 2D,

and find essentially identical behaviour. Deviations become

visible only for strong interactions (not shown) and can most

likely be attributed to multi-band effects [49, 50]. Since pos-

itive and negative temperature superfluids occupy completely

different quasimomenta with different correlations (Fig. 4c,

insets), we conclude that the emergence of coherence ob-

served in the experiment is truly governed by the generic be-

haviour of the continuous quench.

In conclusion, by performing an experimental quantum

simulation we have studied the emergence of coherence across

a QPT for various interactions, dimensionalities, and posi-

tive and negative absolute temperatures. In 1D, we have also

performed a detailed theoretical and numerical analysis, and

found very good agreement between experiment and DMRG

calculations. The observed dynamics goes beyond the regime

of free quasiparticles and, despite its complexity, we find that

a simple scaling law emerges in a regime where neither the

adiabatic theorem nor Lieb-Robinson bounds can character-

ize the evolution. While this power-law is reminiscent of a

Kibble-Zurek type scaling, we find that, in the studied inter-

mediate ramp time regime, the exponent crucially depends on

(U/J)f and depends much less on dimensionality than sug-

gested by the Kibble-Zurek mechanism.

This work raises the question how well the dynamical fea-

tures of a quantum phase transition in complex models can

generally be captured in terms of simple scaling laws by sys-

tematically expanding either the free quasiparticle picture or

starting from the Kibble-Zurek mechanism: The success of

the latter for slow quenches in a variety of specific models

suggests that, compared to a full solution of the model, much

less knowledge may be sufficient to characterise the evolution.

A satisfactory answer to this question will be crucial for a the-

ory of the dynamics of quantum phase transitions. Since exact

numerical techniques are not available in higher dimensions,

this work may inspire a deeper and more systematic analysis

of the computational power of analogue quantum simulators

in general. For example, it seems timely to identify, in the lan-

guage of complexity theory, the precise way in which quantum

simulators are indeed more powerful, even in the absence of

error correction, than their classical analogues, and how ac-

curately experimental quantum simulators can ultimately be

certified as functioning quantum devices.

METHODS

The experiments started with essentially pure condensates

of, depending on data set, (25 − 85) · 103 bosonic 39K

atoms in an oblate dipole trap with trap frequencies of ω =
2π · (50, 50, 181)Hz along the (x, y, z) direction. We linearly

ramped up a 3D optical lattice to a depth of Vlat = 19Er (I

in Fig. 1b). In the 1D case, we then quickly increased the

transverse lattice depth to V y
lat = V z

lat = 30Er to minimise cor-

relations along the y- and z-directions. The scattering length

during this loading procedure was a = 148a0, resulting in

(U/J)x ≈ 350 (1D) or U/J ≈ 270 (2D, 3D), i.e. deep in the

Mott insulating regime close to the atomic limit. he trap fre-

quency was increased during the loading to (94, 94, 159)Hz

in the 1D and 2D case and (78, 78, 227)Hz in the 3D case to

ensure a large Mott insulating region in the centre of the cloud.

The momentum distribution of the atoms in the optical

lattice, typically probed using absorption imaging after long

time-of-flight (TOF), is given by [51, 52]

〈n̂(k)〉 = 1

N |w̃(k)|2S(k), (2)

with the Fourier transform of the on-site Wannier function

w̃(k) determining the overall envelope of the interference pat-

tern and a normalisation factor N . The interference term S(k)
has the form of a discrete Fourier transform and is given by a

sum over all lattice sites at positions rµ and rν ,

S(k) =
∑

rµ,rν

eik(rµ−rν)〈â†µâν〉, (3)

where â†µ and âµ are the creation and annihilation operators,

respectively, for a boson on site µ.

In the experiment, we probe the momentum distribution us-

ing a finite time-of-flight tTOF = 7ms, and attribute a momen-

tum k = mrTOF/(~tTOF) to each position rTOF in real space.

Due to the finite time-of-flight, the initial density distribution

still influences this measured distribution and the interference

term is generalized to [51]

S̃(k) =
∑

rµ,rν

e
ik(rµ−rν)−i m

2~ tTOF
(r2µ−r

2
ν)〈â†µâν〉. (4)

The second term in the exponential provides a correction to a

pure Fourier transform and is equivalent to the quadratic term
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in the Fresnel approximation of near-field optics. We model

the correlators by assuming a Gaussian in situ density distri-

bution with width R and exponentially decaying correlations

between lattice sites:

〈â†µâν〉(T>0) =
√
nµ

√
nν · exp

(

−|rµ − rν |
ξ

)

= exp

(

−r
2
µ + r

2
ν

4R2
− |rµ − rν |

ξ

) (5)

Here, ξ denotes the coherence length and nµ the density at site

µ. In the case of negative temperatures, the correlator contains

an additional phase term,

〈â†µâν〉(T<0) = 〈â†µâν〉(T>0) · eiπ(rµ−rν). (6)

To extract the coherence length in the system, we inte-

grate the TOF images over a small region of width dint ≈
0.2htTOF/λlatm along the y-direction. We fit the resulting in-

terference pattern with calculated patterns of the above model

for various ξ and fixed R and extract the coherence length ξ
from the fit (Supplementary Section A). We determine R in-

dependently by fitting a Gaussian distribution to in situ images

(Supplementary Section B). Sample fits are shown as insets of

Fig. 2a for the 1D case. Even though this rather simple ansatz

cannot reproduce the numerically calculated correlation func-

tions in detail (Supplementary Section E), it is sufficient to

reproduce the experimentally measured interference patterns.

Extracted coherence lengths are shown in the main plot of Fig.

2a. In the case of the 2D and 3D sequences, correlations also

spread in the transverse directions. To extract the coherence

length, we integrate the images in the same range of diameter

dint along the y-direction as for 1D and fit the calculated 1D

interference patterns to the resulting data.
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SUPPLEMENTARY INFORMATION

A: Ramp details and extraction of coherence length

The employed final lattice ramp can be well approximated

by an exponential function

(U/J)(t) = B · a · e−C(t/tramp)
D

, (S1)

where a is the scattering length and t ∈ [0, tramp]. The param-

eters depend on dimensionality and are obtained by fits to the

real ramps. In the 1D case, they are B = 2.33/a0, C = 3.04,

D = 1.10, in 2D, B = 1.80/a0, C = 3.32, D = 1.11, and in

3D, B = 1.79/a0, C = 3.60, D = 1.11.

Fig. S1 shows several calculated one-dimensional interfer-

ence patterns (Eqs. (2,4,5) ) for a fixed width R and for the

experimentally relevant time-of-flight tTOF = 7ms. For very

small coherence lengths, ξ ≪ dlat, only the Fourier transform

of the on-site Wannier function as envelope function is vis-

ible. For larger coherence lengths, the interference pattern

becomes more and more pronounced. The width of the inter-

ference peaks, however, saturates at a minimum value which

is given by the in situ width R of the cloud.

To extract the coherence length ξ of a measured interfer-

ence pattern, we normalised the interference pattern and deter-

mined the sum of absolute values of residuals (SAR) between

the measured and each calculated interference pattern and de-

n
  
(a

.u
.)

0

1

0 2-2

p  (h/λlat)
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 0.5

 1

 2
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 ∞

FIG. S1. Calculated normalized density interference patterns follow-

ing Eqs. (2-5) in the main text for R = 31dlat and various coherence

lengths ξ.

termined the coherence length ξ by finding the minimal SAR.

Fig. S2 shows that, for all ramp times, the rather simple model

of Eqs. (2,4,5) can reproduce the experimentally measured in-

terference curves well. We applied the fitting method also to

an almost pure condensate at a scattering length of a = 37a0
that was loaded into a 3D lattice of depth Vlat = 6Er. The

resulting SAR values indicate a lower bound of the coherence

length of ξ & 15dlat but are compatible with an infinite coher-

ence length, as expected for a mostly superfluid state. In con-

trast to phase retrieval algorithms [53], where arbitrary phase

profiles φ(r) can be reconstructed from TOF images in the

case of a single pure wavefunction ψ(r) = |ψ(r)| exp(iφ(r))
with finite support, we fix the phase of the correlators but do

not require the system to be in a pure state.

B: Extraction of cloud radius

The fitting function for the extraction of the coherence

lengths (Eqs. (2-6) ) contains two free parameters, the coher-

ence length ξ and the in situ cloud width R. Their influence

on the fit is not completely independent as both a larger ξ and

a smaller R lead to narrower peaks in the resulting interfer-

ence pattern (Fig. S3). We therefore did not extract both pa-

rameters simultaneously from the fit, but instead determined

R independently from in situ images or from the total atom

number.

For selected (U/J)f values in 1D, 2D (each at positive and

negative temperature) and 3D, we recorded in situ images of

the atomic clouds for all ramp times in (III) in Fig. 1b, from

which we directly determined R. In situ imaging was done by

freezing out the atomic distribution via a rapid increase of the

3D optical lattice to Vlat = 33Er. During a hold time of several

ms, we switched off the magnetic field and subsequently per-

formed absorption imaging of the frozen atomic distribution.

http://dx.doi.org/10.1103/PhysRevA.77.015602 
http://dx.doi.org/10.1103/PhysRevB.75.134302 
http://dx.doi.org/10.1103/PhysRevB.83.094304
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FIG. S2. Comparison of experimental data integrated over a small region along y (black, see Methods), with the fitted calculated interference

pattern (red) for (U/J)f = 2 in 1D at positive temperature, for various ramp times. For this plot, after fitting the normalized curves, the curves

have been rescaled to the original amplitudes of the experimental curves.
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R=31, ξ=3

R=5,   ξ=2

FIG. S3. Calculated interference pattern for various widths R and

coherence lengths ξ. Both an increasing ξ and a decreasing R lead

to a decreasing peak width in the interference pattern.

Fig. S4 shows several cuts through in situ images, together

with Gaussian fits

n(x, y) = Ae
−

(x−x0)2

(2R2
x)

−
(y−y0)2

(2R2
y) (S2)

to the full images, from which we determine the root mean

square width R = (R2
x +R2

y)
1/2.

The resulting widths are plotted in Fig. S5 as a function of

ramp time for all (U/J)f values in the 1D measurement. For

small to intermediate τramp, the width of the in situ cloud is

constant. Only for slower ramps, τramp & 10, global mass

redistribution becomes relevant and the cloud expands during

the lattice ramp. As we are mainly interested in the short and

intermediate timescale dynamics, we fix the width for each

(U/J)f value by averaging all R for τramp ≤ 4 and rounding

the result to an integer number of lattice constants.

For those (U/J)f values for which we did not record in

situ images, we determined R indirectly from the total atom

number N , which we measured in TOF images via simple

area sums. As one might expect, for those (U/J)f values for

which we recorded both TOF and in situ images, the width

R is strongly correlated with N1/3 (Fig. S6). In the experi-

ment, we used identical preparation schemes for all 1D and



10

x  (dlat)

O
p

ti
c
a

l 
d

e
n

s
it
y
  
(a

.u
.)

0

0

τramp=

0.056

0.37 2.8

22 220 560

0 100-100 0 100-100 0 100-100

FIG. S4. Fitting of in situ clouds. The blue points are cuts through

experimentally measured in situ distributions for (U/J)f = 2 in 1D

at positive temperature for various ramp times. In some images, the

high density of the cloud centre lead to strong absorption of the imag-

ing beam such that the signal cannot be distinguished from noise.

We excluded the corresponding data points from the fits and also re-

moved them from the plot. The red curves are cuts through the fitted

two-dimensional Gaussian functions.
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FIG. S5. Fitted in situ widths R = (R2

x + R2

y)
1/2 versus ramp time

for various (U/J)f values in 1D at positive temperature. The vertical

dashed line at τramp = 4 indicates the maximum ramp time up to

which the fitted R were averaged. The resulting average is indicated

by the solid horizontal line.

2D runs, but different trap frequencies in the 3D case, and

therefore obtain different dependencies for these two sets. By

fitting the function R = m ·N1/3 to all available in situ data,

we can relate the measured atom number N to the width R
also for those (U/J)f values for which we only recorded TOF

images. We round each resulting R value to an integer num-

ber of lattice constants. All resulting R presented in this work

lie between 26 and 32dlat.

R
  
(d

la
t)

N
1/3

1d, positive T

1d, negative T

2d, positive T

2d, negative T

3d, positive T

34

32

30

28

26

24
30 35 40 45 50

FIG. S6. Fitted in situ widths R versus N1/3. The linear fit R =
m ·N1/3 to the combined 1D and 2D data (grey line) yields a slope

of m1D,2D = 0.685(4)dlat and the fit to the 3D data (purple line)

m3D = 0.807(5)dlat. The different scalings in the two cases are

caused by different trap frequencies.

C: Extracting power-law exponent

To obtain the most precise value of the exponent of the

power-law growth of the coherence length, it is desirable to

include as many data points as possible in the fit. When fitting

a pure power-law ξ(τramp) = a τ bramp to the data, however, the

fitting range is limited by two effects: For very small ramp

times, the coherence length is dominated by the initial coher-

ence length, ξ ≈ ξi, and for large ramp times, τramp & 1, the

influence of the trap leads to a deviation from the power-law

behaviour. To reduce the problem of determining the ‘cor-

rect’ fitting range, we use a heuristic fitting procedure that

includes the initial coherence length ξi and fit all data points

up to a maximum ramp time τmax
ramp. We choose τmax

ramp = 1.0 as

it guarantees that, for all data sets available, no data points are

included that are strongly influenced by the trap (Supplemen-

tary Section D).

The applied heuristic function

ξ(τramp) =
(

ξqi + (a τ bramp)
q
)1/q

(S3)

smoothly interpolates between ξi and the power-law growth.

Within the power-law regime, the coherence created during

the ramp is substantially larger than ξi. Thus, for q ≥ 2, the

initial coherence has little influence on the power-law expo-

nent and this fitting procedure yields the same power-law ex-

ponent as choosing the fitted range by eye. The precise value

of the parameter q is fixed by fitting both numerical and ex-

perimental data in the 1D case for the values (U/J)f = 2 and

1 with various q. To match the data as closely as possible, we

aim to minimize the sum of squared residuals (SSR) of the fit;

Fig. S7 indicates that q = 4 is a good compromise. Fig. S8

shows that the extracted exponents are robust with respect to
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the particular choice of q and Fig. S9 illustrates that a choice

of q = 4 indeed captures the emergence of coherence very

well.

q

S
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R
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e
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             2, experiment

             1, DMRG

             2, DMRG

FIG. S7. SSR of the general power-law fit versus parameter q for

1D data. Light-blue and dark-blue lines indicate the result for fits to

experimental data for (U/J)f = 1 and 2, respectively. Light-red and

dark-red lines are the analogue results for DMRG data. A choice of

q = 4 leads to a close-to-minimum SSR for all four cases.
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FIG. S8. Fitted exponents in 1D for τmax
ramp = 1 for various values

of q. Left, experimental data, right, DMRG data. Error bars are

fit uncertainties and the vertical dashed line indicates (U/J)c. For

details about the fitting procedure, see Figs. S9 and S10.

In general, the power-law exponent as well as ξi are ex-

tracted directly from fitting the data. This method is robust

since the influence of the two parameters on the fit function

is independent. Only for very strong interactions in 1D where

the system remains in the Mott insulating regime, the power-

law increase is rather slow and it is difficult to distinguish the

power-law regime from the regime that is dominated by ξi. To

optimize the stability of the fit for those particular data sets

where (U/J)f > (U/J)c, we fix ξi to the numerically calcu-

lated values. Fig. S9 shows that the calculated ξi of the state

at the beginning of the lattice ramp is close to the fitted ξi

in the experimental data where (U/J)f < (U/J)c, indicat-

ing that fixing the initial coherence length has little influence

on the extracted power-law exponent. The resulting power-

law fits capture the data well (Fig. S10); only for very large

0.1 1

1

5

0.5

τramp

ξ 
 (
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FIG. S9. Power-law fits (q = 4) including the initial coherence

length ξi as a free parameter in 1D for values (U/J)f < (U/J)c.

Left, experimental data, right, DMRG data. The vertical dashed line

indicates the upper end of the fitting range, τmax
ramp = 1.0. The hori-

zontal dashed lines indicate the numerically calculated ξi at the be-

ginning of the lattice ramp, showing good agreement with the extrap-

olated fitted values ξ(τramp → 0).

(U/J)f ≫ (U/J)c, systematic deviations from the simple

power-law model become relevant.

While this method eliminates the problem of setting the

lower limit of the fitting range, the upper limit τmax
ramp is still

arbitrary. To quantify the dependence of the fitted power-law

exponent on the choice of τmax
ramp, we also performed power-law

fits for different τmax
ramp. A larger value than τmax

ramp = 1.0 would

lead to systematic errors due to the dephasing effects of the

trap. Therefore, we perform the power-law fit to all data sets

for reduced limits of τmax
ramp = 0.9 and 0.7. In Fig. S11, all

resulting exponents in the 1D case are plotted, including fit

errors. To represent the uncertainty with respect to the choice

of τmax
ramp, we take the total amplitude of fitting errors for all

three different τmax
ramp as error bar, i.e. the range from the max-

imum point of the highest error bar to the minimum point of

the lowest error bar (see Fig. 3 in the main text).

D: Influence of the trap

In contrast to the homogeneous model system, the experi-

ment takes place in a harmonic trap. As outlined in the main

text (Fig. 2b), the emergence of coherence shows a discrep-

ancy between the homogeneous theory and the experiment for
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FIG. S10. Power-law fits for q = 4 in 1D for values (U/J)f >
(U/J)c. Left, experimental data, right, DMRG data. The vertical

dashed line indicates the upper end of the fitting range, τmax
ramp = 1.0.

The initial coherence length ξi is fixed to the respective calculated

value, indicated by the horizontal dashed line.

relatively long ramp times, τramp & 1.

To understand the influence of the trap, let us first consider

the equilibrium situation of the Mott insulating and superfluid

phases for systems with and without trap. In the homogeneous

case, both the Mott insulator as well as the resulting super-

fluid state share the same filling, e.g. one atom per lattice site,

n = 1. Thus, when performing quenches between the two

regimes, no mass or entropy redistribution is required. In the

trapped system, in contrast, the density and entropy distribu-

tions strongly depend on the phase of the ensemble. While

a weakly interacting superfluid is described by a parabolic

Thomas-Fermi distribution, an n = 1 Mott insulator has a

flat central density, with a superfluid or thermal shell at lower

density around the Mott insulating core. While entropy in a

strongly interacting (U/J ≫ (U/J)c) bosonic Mott insulator

state is, for low temperatures, located only in the surrounding

shell, it is distributed more homogeneously in the weakly in-

teracting system. Therefore, during a quench across the phase

transition in a trapped system, not only phase coherence has
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FIG. S11. Fitted exponents in 1D for various limits τmax
ramp of the fit

range for a, experimental data, and b, DMRG data. Error bars are

fit uncertainties and the vertical dashed line indicates (U/J)c. The

insets show sample fits for (U/J)f = 2, with the various τmax
ramp indi-

cated by the vertical dashed lines.

to be established or destroyed, but also mass and entropy has

to be redistributed, as illustrated in Fig. S12.

In our experiment, we use a 50ms ramp to initially load the

atoms into a deep optical lattice with depth Vlat = 19Er. This

timescale, in contrast to shorter ramps, experimentally turned

out to produce large Mott insulating cores with low doublon

fraction [54], thus allowing the bulk of necessary mass and

entropy transport. Since the ramp is, however, not perfectly

adiabatic, the ensemble is heated and additional entropy is cre-

ated during the ramp and will accumulate in the non-insulating

outer shell during this slow loading procedure. The density

distribution at the beginning of the lattice ramp therefore con-

sists of a low-entropy n = 1 Mott insulating core surrounded

by a hot thermal gas at lower density. The Mott core may also

carry some entropy in the form of holes and it cannot be as-

sumed that the ensemble is in global thermal equilibrium at

the end of the initial loading ramp. Nonetheless, the remark-

able agreement between the measured coherence lengths and

the numerical predictions (Fig. 2 in the main text) clearly indi-
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cates that the dynamical behaviour of the experimental system

at short and intermediate ramp times is dominated by that of a

perfect Mott insulator.

During the final lattice ramp-down from Vlat = 19Er to 6Er,

substantial mass and entropy redistributions would be neces-

sary for an adiabatic evolution. Fig. S5, however, indicates

that relevant mass transport happens only on a timescale of

τramp & 10. Since the initial loading corresponds to a ramp

time of τramp ≈ 32 for the used ramp, this behaviour is consis-

tent with our choice of the loading ramp.

For short and intermediate lattice ramps, on the other hand,

mass transport is negligible and the resulting final density dis-

tribution cannot correspond to the equilibrium density distri-

bution of the superfluid state. The resulting chemical poten-

tial is thus not constant throughout the system. Intuitively,

the decrease of the coherence length caused by the trap can

be captured in a dephasing picture: The difference in chemi-

cal potential leads to a phase difference between lattice sites

that increases linearly with time. These phase differences,

which can be seen in the complex two-point correlators in Fig.

S16, in turn drive a particle current that tries to equilibrate the

chemical potential and thereby establish an equilibrium den-

sity profile. This mechanism competes with the emergence

of phase coherence as soon as the latter is being established.

Since the phase difference accumulates over time, it is neg-

ligible for short times τramp . 1, where we can observe the

power-law behaviour. For slower ramps, dephasing increases

and leads to a deviation of the emergence of coherence signal

from the power-law describing the homogeneous system. Fig.

S13 shows the comparison of two measurements in 1D for the

same (U/J)f but different trap frequencies. While the initial

emergence of coherence is identical and gives rise to the same

power-law exponents, the breakdown of the power-law occurs

earlier for the weaker trap. This indicates that the breakdown

of the power-law is indeed caused by the influence of the trap.

Fig. S14 shows that the coherence length for a given τramp can

be optimised by choosing the right trapping frequency, there-

fore also maximising the range of the power-law regime: For

some trapping frequency, for which the required mass redistri-

bution is minimal, also the mismatch of the chemical potential

across the system is minimised.

For a ramp time of τramp & 40, the ramp should be close-to-

adiabatic such that dephasing is not relevant. However, at this

ramp time the coherence length is significantly reduced com-

pared to the maximum value, by around a factor of 2. This can

be attributed to entropy transport which is expected to happen

on a similar timescale as mass transport: Only after this time,

the entropy that is concentrated in the shell around the Mott in-

sulating core has spread throughout the system. The increased

entropy density reduces phase coherence between lattice sites.

For very long ramp times τramp & 100, we expect heating due

to light scattering and technical noise as an additional effect

that decreases the coherence length even further.

To qualitatively model the effect of the trap, we have per-

formed DMRG simulations in the 1D case including a har-

monic trap with a trap frequency of ωx/2π = 66Hz (Sup-

x (dlat)

S
it
e

 o
c
c
u

p
a

ti
o

n

0

1.0

0.5

0 20-20

τramp = 0

 1.09

 2.29

 ∞

FIG. S12. Density profile for various ramp times and the ground

state both at the beginning (diabatic limit τramp = 0) and at the end

(adiabatic limit τramp = ∞) of the ramp. The simulation was per-

formed for 28 particles and a ramp with (U/J)f = 3 in 1D for a trap

frequency of ωx/2π = 66Hz.
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FIG. S13. Coherence length versus ramp time for (U/J)f = 3 in

1D in a log-lin plot for two different trap frequencies ωx along the x-

axis. The solid curves are corresponding power-law fits up to τmax
ramp =

1.0, plotted to larger τramp.

plementary Section E). The simulated 1D systems consist of

tubes containing zero-temperature n = 1 Mott insulators of

variable lengths. The experimental data is an average over

these tubes with different particle numbers, depending on the

position within the ellipsoid created by the harmonic trap (see

also Supplementary Material of Ref. [55]). To extract the co-

herence length for each of the simulated tubes, we use the cal-

culated density information and fit the two-point correlators in

the same way as in Eq. (5) in the main text. These calculations

qualitatively confirm that the decrease of coherence length is

indeed caused by the trap and that it is dominated by the in-

fluence of the shorter tubes (Fig. S15). Any more elaborate
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FIG. S14. Coherence length for (U/J)f = 4 in 1D for a fixed

ramp time τramp = 2.8 versus power in the vertical dipole trap beam.

The dipole power at the maximum corresponds to a trap frequency

ωx/(2π) ≈ 70Hz.

modelling of the trapped situation is not feasible due to un-

certainties in the initial state: Since the initial loading of the

lattice is not perfectly adiabatic and the resulting initial state

is not guaranteed to be in global thermal equilibrium, it is im-

possible to precisely predict the initial state without perform-

ing a full dynamical simulation of the complete 3D loading

procedure, which is beyond current numerical techniques.
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FIG. S15. Emergence of coherence in the presence of a trap for

(U/J)f = 3 in 1D. The points are experimental data and the solid

curves DMRG calculations for various particle numbers N .

In Fig. S16, we additionally plot the behaviour of the two-

point correlators of a tube with few particles for different ramp

times. For longer ramp times, τramp > 1, the spatially depen-

dent chemical potential gives rise to complex two-point corre-

lators, illustrating the role of the trap.
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FIG. S16. Final correlator for (U/J)f = 3 in trapped systems filled

with N = 24 particles for various ramp times. Real (Re) and imagi-

nary part (Im) are plotted separately.

E: DMRG details and finite size effects

The DMRG simulation is based on the ‘Open Source

TEBD’ code [34] that has been streamlined and optimized for

this task. The only input parameters for the simulation are

the time-dependent U(t) and J(t) and no fitting to the experi-

mental data points was performed. The numerical simulations

start in the ground state of the system. This turns out to be

an excellent approximation for the experiment: The Feshbach

ramp used to prepare the initial state is very close to adiabatic,

since the preparation takes place deep in the Mott insulator

regime with a large spectral gap (see also Fig. S24). The code

uses a fifth order Trotter decomposition and truncates the lo-

cal occupation at 6 bosons. By performing an extensive scal-

ing in Trotter step size as well as bond dimension, we have

ensured that the simulation is stable with respect to these pa-

rameters and that the two parameters are chosen sufficiently

small and large, respectively (Fig. S17). The simulation as-

sumes open boundary conditions and the coherence length is

evaluated by an exponential fit of the correlations at the centre

of the system. In contrast to other settings where a sharp spa-

tial transition in the decay behaviour was observed [56], the

correlation decay is smooth for the ramps considered in this

work (Fig. S18). For long τramp, the correlators are expected

to decay exponentially only for large distances but to follow

a power-law behaviour for short distances [56]. However, we

fit the decay with a pure exponential function as this describes

the experimental results sufficiently well.

The validity of the DMRG simulation was further cross-

checked with the doublon-holon model (Supplementary sec-

tion F), as well as an optimised exact diagonalisation code

(Fig. S19). The exact diagonalisation simulation is a Runge-

Kutta numerical integration of a homogeneous Bose-Hubbard

model on 15 sites with unity average filling, where the lo-

cal occupation is truncated at 9 bosons. We assume periodic

boundary conditions and all symmetries are taken into account

to reduce the computational complexity. This comparatively

small 1D system is able to capture the initial emergence of
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time τramp = 2.0 versus Trotter step size ∆t (left) and truncation error

(right), calculated for N = 40. Based on this scaling, a Trotter step
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sufficiently large to obtain a small enough truncation error ǫtrunc <
10−7.
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FIG. S18. Spatial behaviour of the non-equilibrium correlators

and the corresponding exponential fit for different ramp times for

(U/J)f = 1 in 1D.

coherence of the large scale system considered in the exper-

iment, because the relevant coherence lengths remain much

smaller than the system size for the timescales at hand. Thus,

the two simulations yield the same power-laws for the emer-

gence of coherence.

A deviation between DMRG and exact diagonalisation is

only visible for longer simulation times, τramp ≥ 1. For those

times, an extensive finite size scaling was performed (Fig.

S20). As one would expect from light-cone-like arguments,

for each ramp time, all systems larger than a particular size

behave essentially like an infinite system.

F: Quasiparticles and the doublon-holon model

The Doublon-Holon Fermionic Model (DHFM) offers an

excellent approximation for the 1D Bose-Hubbard model in

the strong interaction regime U/J ≫ 1 with integer filling

fraction n̄. In this scenario, the ground state of the system
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FIG. S19. Comparison between the various simulation methods for

(U/J)f = 2 in 1D. The vertical dashed lines indicate the ramp times

where the different methods start to deviate from each other.
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FIG. S20. Finite size scaling for (U/J)f = 1 in 1D for a fixed ramp

time τramp = 2.0. Exact diagonalisation and DMRG data are plotted

versus system size L (left). A plot versus 1/L allows to extract the

limit L → ∞ (right).

is given by a Mott insulator with n̄ particles per site. Due

to the strong interaction coupling, the low energy subspace is

well described by local occupations with values n̄− 1, n̄, and

n̄ + 1. This suggests the introduction of two kinds of exci-

tations on top of the background Mott insulator ground state,

doublons and holons, corresponding to occupations n̄+1 and

n− 1, respectively. The DHFM is still quantitatively valid in

the regime of intermediate interactions, from the deep Mott

insulator regime down to a value (U/J)limit ≈ 8 for n̄ = 1
[11, 12]. While the DHFM is unable to adequately describe

the behaviour at the phase transition (U/J)c ≈ 3.3 (n̄ = 1),

it provides a very physical picture of the problem and has a

broader parameter range than most methods. Furthermore, it

is exactly solvable and therefore allows us to explore the evo-

lution of the system for time-dependent parameters U(t) and

J(t), even for several hundreds of bosons. Even though the

modelled ramps cross the phase transition, we found that the

DHFM reproduces the results of the full Bose-Hubbard model

for sufficiently short ramp times.
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Formal description

Following Refs. [11, 12], we assume periodic boundary

conditions and a filling of n̄ = 1 and start from the transla-

tion invariant Bose-Hubbard Hamiltonian

H =

L−1
∑

j=0

[

−J
(

â†j âj+1+h.c.
)

+
U

2
n̂j(n̂j −1)−µn̂j

]

, (S4)

where n̂j = â†j âj , L is the length of the chain and µ the chem-

ical potential.

Deep in the Mott phase, local density fluctuations and oc-

cupation numbers are small. In this regime, a model in which

the local Hilbert space dimension is truncated at a maximum

of two bosons per site is expected to approximate the true

dynamics well. With this truncation, we construct the new

fermionic doublon (d̂) and holon species (ĥ) via a double Jor-

dan Wigner (JW) transformation. These operators represent

localised excitations on top of a background state with a sin-

gle particle per site. To solve the resulting model, we turn to

the Fourier basis,

H =
L−1
∑

k=0

Hk =
L−1
∑

k=0

[

ǫd(k)d̂
†
kd̂k + ǫh(k)ĥ

†
kĥk

+ iσ(k)(ĥ†−kd̂
†
k + d̂−kĥk)− µ

]

,

(S5)

where

ǫh(k) = µ− 2J cos

(

2π

L
k

)

, ǫd(k) = 2ǫh + U − 3µ,

(S6)

σ(k) = 2
√
2J sin

(

2π

L
k

)

. (S7)

Eq. (S5) incorporates the additional approximation of uncon-

strained fermions: A projection term eliminating the unphys-

ical situation of having a doublon and a holon at the same site

has been dropped. In the deep Mott insulator regime, this ap-

proximation holds to excellent accuracy, as two excitations at

the same site are very unlikely due to the low density of exci-

tations.

With Eq. (S5), we can model the experimental ramp by in-

troducing time-dependent parameters U(t), J(t). For a given

time, we can always exactly diagonalise the resulting Hamil-

tonian in this approximation by making use of a Bogoliubov

transformation into new modes (quasiparticles with definite

momenta, γd̂,k, γĥ,−k). From the dispersion relation, we ob-

tain, in the same fashion as in Ref. [12], a maximum velocity

for the spread of correlations that is reminiscent of a Lieb-

Robinson bound. This velocity is the maximum relative ve-

locity of pairs of quasiparticles of distinct types and oppo-

site momenta, which are created simultaneously during the

quench,

V = max
k

∣

∣

∣
vγ

ĥ,−k
− vγ

d̂,k

∣

∣

∣
= 6J − 96

16

J3

U2
+O

(

J4

U3

)

.

(S8)

To obtain the correlators needed for the comparison with the

experimentally measured TOF images, we use the fact that

the time dependence does not affect the decomposition of the

system into a tensor product of independent modes labelled

by momentum index k (Eq. (S5)). As the ramp starts in the

ground state of the deep Mott insulator, the initial state can be

well approximated by a product state with one particle per site

and thus without any doublons or holons: d̂k|ψ0〉= ĥk|ψ0〉=
0. Therefore, we can work separately for each k in the sub-

space spanned by |0〉k := |0〉d̂k,ĥ−k
and |1〉k := d̂†kĥ

†
−k|0〉k.

The time-evolved state for such a time-dependent Hamiltonian

can be written as |ψ(t)〉 =⊗k |ψ(t)〉k, with

|ψ(t)〉k = C0(k, t)|0〉k + C1(k, t)|1〉k (S9)

and the initial state is described by C0(k, 0) = 1 and

C1(k, 0) = 0 for all k. The time evolution is then given

by a system of coupled differential equations for C0(k, t) and

C1(k, t).

Correlator techniques

By solving the corresponding equations, we obtain the

mode decomposition of a state at any time after a quench start-

ing deep in the Mott phase, as long as we work within the va-

lidity regime of the method. To subsequently obtain the origi-

nal bosonic two-point correlators 〈a†µaν〉 is challenging, since

it involves the computation of many-point fermionic correla-

tors,

〈â†µâν〉 = 2〈d̂†µẐ†(d)
µ Ẑ(d)

ν d̂ν〉+
√
2〈Ẑ(h)

µ ĥµẐ
(d)
ν d̂ν〉 (S10)

+
√
2〈d̂†µẐ†(d)

µ ĥ†νẐ
†(h)
ν 〉+ 〈Ẑ(h)

µ ĥµĥ
†
νẐ

†(h)
ν 〉, (S11)

where Ẑ is the string operator corresponding to the JW trans-

formation. In the calculation, each of these correlators is ex-

panded using auxiliary Majorana fermions and then decom-

posed, by applying Wick’s theorem, into a Pfaffian involving

products of two-point fermionic correlators. These two-point

correlators can be calculated by relating them to the coeffi-

cients C0(k, t), C1(k, t). The whole derivation is rather ex-

tensive and not included here.

Applicability of the model

To assess the validity of the DHFM for our setting, we com-

pared the results for a quench in the Bose-Hubbard model for

the DHFM with 64 sites with the exact diagonalisation routine

for 15 sites. Although we only show the results for the quench
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(U/J)i = 47, (U/J)f = 2, we have compared the plots for all

other ramps and checked that, qualitatively, they all share the

same behaviour.

We can easily verify that for short ramp times the DHFM

follows accurately the exact diagonalisation numerics, even

though the ramp reaches into the superfluid regime, where

the model is not applicable anymore (Fig. S19). For fast

quenches, few doublons and holons are created and do not

have enough time to propagate. Thus, the limitations of the

model, i.e. less than three particles per site and unconstrained

fermions, are not reached. For slow quenches, however, this

statement does not hold anymore and the prediction deviates

from the exact treatment.

Lieb-Robinson bounds and coherence length growth

To develop a better intuition of the underlying physical

processes, we connect our results with Lieb-Robinson (LR)

bounds. As rigorous Lieb-Robinson bounds are not applicable

to strongly correlated Bose-Hubbard models, we consider the

time-dependent maximum velocity V for the spread of quasi-

particle pairs introduced in Eq. (S8). By the end of the quench,

significant spreading must be less than
∫ τramp

0
dtV(t), yielding

a crude upper bound for the coherence length

ξ(τ) ≤ ξ0 +

∫ τramp

0

dtV(t). (S12)

This inequality considers spreading of quasiparticles and an

associated increase of the coherence length, even when the

system is deep in the Mott insulating regime and close to the

ground state, where excitations are absent. Nevertheless, it is

still interesting to see that this approximation, which captures

most of the intuitions underlying the DHFM, already shows a

resemblance with the exact computation (Fig. S21).

G: Kibble-Zurek mechanism

The Kibble Zurek mechanism (KZM) provides an intuitive

explanation of the defect formation and the resulting coher-

ence lengths when a second order phase transition is crossed

at a finite velocity. In the quantum case, the situation can usu-

ally be captured in the following way:

• Initially, the system is at equilibrium in a disordered

phase.

• By changing a parameter of the Hamiltonian, the sys-

tem is driven at a certain velocity across critical lines

towards an ordered phase that breaks the symmetry.

• As the transition is crossed within finite time, sufficient-

ly remote regions are causally disconnected. Hence, the

symmetry cannot be broken homogeneously and the lo-

cal order parameter takes different values in different

spatial domains, giving rise to defects.

0.1 0.5

τramp

ξ 
(d

la
t)

1

0.5

2

Lieb-Robinson bound

doublon-holon model

0.05

FIG. S21. Correlation length of the DHFM and the Lieb-Robinson

bound provided by the group velocity of the excitations for (U/J)f =
3 in 1D. The vertical dashed line indicates the ramp time for which

deviations between the doublon-holon model and the full exact diag-

onalisation appear (Fig. S19).

The KZM provides a simple argument to estimate the size

of the domains as well as the final correlation length. The

essence of the KZM states that key properties of the final state

scale like power-laws with the quench time and the exponent

depends only on the critical scaling of the model at equilib-

rium. Thus, the KZM can be seen as an extension of the uni-

versality of the equilibrium features of a model to its dynam-

ics. The KZM has successfully been applied to many experi-

mental results and numerical simulations [3, 4, 6, 19, 57, 58].

Adiabatic – frozen evolution

Several ground state properties near criticality can be cap-

tured by means of critical exponents. More concretely, the

spectral gap ∆ > 0 and the correlation length ξ > 0 of the

system are expected to scale with the distance |λ − λc| from

the critical point λc as

∆ ∝ |λ− λc|zν and (S13)

ξ ∝ |λ− λc|ν , (S14)

where ν, z > 0 are the critical exponents and λ is the con-

trol parameter of the Hamiltonian. The scaling law emerging

from the KZM is typically stated in a narrative that suggests

to divide the evolution into an adiabatic and a frozen regime.

• Adiabatic dynamics: The system is initially in the

ground state protected by a spectral gap ∆ > 0. As long

as the gap is large compared to the change rate of the

control parameter, typically estimated by ∆̇ ≪ ∆2, the

adiabatic approximation holds: At all times, the state

of the system is well approximated by the respective

ground state.
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• Adiabaticity breaking: As the control parameter is

driven at a finite velocity v = λ̇ and the gap closes to

zero at the critical point, at some moment (λ = λZ),

the system cannot follow the change of parameters any-

more and the evolution fails to be adiabatic. If this

occurs sufficiently close to the phase transition and if

the ground state properties are meaningfully captured

by the critical exponents defined above, the adiabatic-

ity condition, together with Eq. (S13), implies a scaling

relation for the distance between the breakdown of adi-

abaticity and the critical point,

|λZ − λc| ∝ v−1/(1+νz) . (S15)

• Frozen dynamics: From this moment on, the dynamics

are considered ‘frozen’ in the sense that long-range cor-

relations can no longer be established and the final value

of the coherence length of the system is determined by

Eq. (S14),

ξfinal ∝ v−ν/(1+νz) . (S16)

This frozen correlation length can also be connected

with a ‘sonic horizon’ [23].

Validity of the adiabatic – sudden approximation

Both the simplicity and the predictive power of the previ-

ous argument are striking. It has been the subject of a large

body of literature, how the KZM could actually be realised

and rigorously true in strongly correlated models, and several

questions are still not quite satisfactorily resolved. Specifi-

cally in the situation at hand, the above mindset appears to be

not directly applicable. The time evolution is, within excellent

accuracy, indeed adiabatic far away from the phase transition

(Fig. S22). When the gap becomes small compared to the

change of the Hamiltonian, adiabaticity clearly breaks down.

It is very unclear, however, in what sense the correlation dy-

namics could be conceived as ‘frozen’. In fact, in the Bose-

Hubbard model discussed here, the bulk of the dynamics hap-

pens just around the critical point (Fig. S22). In standard text

books [59], one can find rigorous lower bounds for the quench

rate of the Hamiltonian for which the full system remains un-

changed. Yet, these bounds are very restrictive and strongly

depend on the system size. These limitations, however, are not

an artefact of the bounds: A vast range of dynamical processes

exists which are neither adiabatic nor sudden.

Approaches to the study of the dynamics of phase transitions

Exactly solvable integrable models provide a reasonable

guideline to investigate how faithfully the KZM describes

slow quenches across second order phase transitions. This ap-

proach has been pursued specifically for translational invari-
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FIG. S22. Time evolution for (U/J)i = 47, (U/J)f = 2 in 1D for

a fixed ramp time τramp = 0.25. Red dots represent the overlap with

the ground state. Blue dots display a change of the coherence length

ξ. The vertical dashed line indicates the phase transition.

ant free fermionic systems, where the Hilbert space decouples

into subspaces corresponding to different independent modes.

The transition probability for a given two-level mode can be

estimated via the Landau-Zener formula. In this scenario,

the size of the domains is determined by the smallest wave-

length among all excited modes and can be proven to scale

as a power-law with the quench time, with the exponent pro-

vided by the critical exponents [14, 60]. Via adiabatic pertur-

bation theory [61, 62], which follows a similar approach de-

spite being mathematically inequivalent, power-law scalings

have also been derived for more complex and non-integrable

models. There is increasing evidence that power-laws remi-

niscent of the KZM emerge from a deeper scale invariance in

the system [5, 15, 18]. This intuition can again be corrobo-

rated by free bosonic or fermionic models.

Applicability of the KZM to the Bose-Hubbard model

Fig. 3 shows that the complexity of the dynamics of the

Bose-Hubbard model, when quenched from the Mott insula-

tor to the superfluid phase, is not satisfactorily captured by

the KZM in the considered regime of fast and intermediate

ramps. Although for intermediate ramp times, the coherence

length follows a power-law, the KZM prediction turns out to

be too crude to model the full complexity of this transition:

The observed exponents strongly depend on the final position

of the quench within the superfluid phase and depend much

less on dimensionality than suggested (Fig. 4).

There are several plausible reasons why KZM is not suf-

ficient to capture the observed dynamics. A number of vari-

ants of the KZM as well as corrections have recently been

proposed that take into account several specifics of slow

quenches. These include the initial and final values of the

control parameter [15, 63], finite size effects [6, 64], particu-
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larities of the quench schedule chosen [60, 65–67], and multi-

critical points as well as the dimensionality of the critical sur-

face [17, 20, 68, 69]. Furthermore, it was pointed out recently

that the 1D case requires a more careful analysis due to its

Kosterlitz-Thouless transition [43], characterised by an expo-

nential closing of the gap. In the following, we investigate the

relevance of these issues to this work.

We have verified that the influence of the starting point of

the ramp is marginal for most quenches considered in this

work. Merely for the quench that proceeds deepest into the

superfluid regime, an analogous quench starting in a deeper

lattice of Vlat = 45Er alters the power-law exponent. Yet, the

characteristic behaviour of a decreasing power-law exponent

for smaller (U/J)f is still present (Fig. S23).
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FIG. S23. a, Comparison of the 1D behaviour between the experi-

mentally considered ramp (blue) and one that starts in a deeper lattice

of Vlat = 45Er (red) for (U/J)f = 2 (left) and (U/J)f = 0.5 (right).

Data is obtained with exact diagonalisation on 15 sites. b, Power-law

exponents from exact diagonalisation when starting the quenches in a

deeper lattice. The dotted line guides the eye and the vertical dashed

line indicates (U/J)c.

The small resulting coherence lengths allow us also to rule

out finite size effects as the origin for our observations. Nu-

merical simulations also support this as they agree both among

themselves and with the experiment in a range of system sizes

from 12 to 70 sites.

In the 1D case, the Mott to superfluid transition is of a

Kosterlitz-Thouless type and hence the quench schedule is

usually claimed irrelevant. This might, however, deserve fur-

ther attention in the light of the newest results on the dynamics

of such transitions [43]. In higher dimensions, the observed

power-law could in principle be altered by the quench sched-

ule, but the experimental ramp is close to linear in a large area

around the phase transition at (U/J)c = 16.74 [70] in 2D and

29.36 [71] in 3D, such that this influence is expected to be

small (Fig. 1b).

The potential influence of the initial state has been studied

much less in the literature [72]. We have verified numerically

that the Feshbach ramp of the 1D experiment indeed prepares

the ground state of the system, as presumed by the typical

Kibble-Zurek setting (Fig. S24a).

To investigate the influence of defects and finite temper-

ature effects, we ran exact diagonalisation simulations on a

small system where the initial state involves a doublon or a

hole. This leads to a slight decrease of the exponents com-

pared to the zero temperature case (Fig. S24b). It seems un-

likely that this could satisfactorily explain the unexpected role

of dimensionality (Fig. 4).
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FIG. S24. a, Adiabaticity of the Feshbach ramp for positive and neg-

ative temperatures. For positive (U/J)i, this refers to the overlap

with the ground state. In the case of attractive interactions, corre-

sponding to negative temperatures, the overlap with the highest ex-

cited state is plotted. b, Influence of defects in the initial state ob-

tained by an exact diagonalisation simulation on 12 sites.

Sufficiently slow ramps are another usually assumed con-

dition for the KZM, even though it is difficult to give an esti-

mate for this limit. It seems reasonable to demand that adia-

baticity should break down only sufficiently close to the phase

transition, such that knowledge of the ground state scaling is

sufficient to describe the time-evolved state at that point. It re-

mains an interesting challenge to obtain quantitative estimates

for this condition that do not require the full knowledge of the

time evolution. A complete formulation of the KZM should

thus also incorporate a range of quench times for which it is

expected to approximate the true scaling laws well. Presum-

ably, one cannot expect the range to be universal and only

depend on the critical exponents, but are there guidelines in-

dependent of very specific features of the Hamiltonian that

may give rise to good bounds? To what extent would the ini-

tial state and the precise quench schedule affect it?

It thus remains an intriguing and general question how

much knowledge about the performed quench and the system

is necessary for an accurate characterisation of the evolution.

While obviously a full knowledge of the quench, the energy

levels and the eigenstates of the model is sufficient, the suc-

cess of the Kibble-Zurek mechanism suggests that a lot less

knowledge is typically necessary. A satisfactory answer to

this question will be crucial for a theory of the dynamics of

quantum phase transitions. The present work, presenting reli-

able data both from numerical and quantum simulations, is an

invitation in this direction.
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